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Preface

These notes are intended as a kind of annotated index to the various standard
references in homotopical algebra: the focus is on definitions and statements of
results, not proofs.
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0

Foundations

0.1 Set theory
In category theory it is often convenient to invoke a certain set-theoretic device
commonly known as a ‘Grothendieck universe’, but we shall say simply ‘uni-
verse’, so as to simplify exposition and proofs by eliminating various circumlo-
cutions involving cardinal bounds, proper classes etc.

Definition 0.1.1. A pre-universe is a set 𝐔 satisfying these axioms:

1. If 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝐔, then 𝑥 ∈ 𝐔.

2. If 𝑥 ∈ 𝐔 and 𝑦 ∈ 𝐔 (but not necessarily distinct), then {𝑥, 𝑦} ∈ 𝐔.

3. If 𝑥 ∈ 𝐔, then 𝒫 (𝑥) ∈ 𝐔, where 𝒫 (𝑥) denotes the set of all subsets of 𝑥.

4. If 𝑥 ∈ 𝐔 and 𝑓 : 𝑥 → 𝐔 is a map, then ⋃𝑖∈𝑥 𝑓(𝑖) ∈ 𝐔.

A universe is a pre-universe 𝐔 with this additional property:

5. 𝜔 ∈ 𝐔, where 𝜔 is the set of all finite (von Neumann) ordinals.

Example 0.1.2. The empty set is a pre-universe, and with very mild assump-
tions, so is the set 𝐇𝐅 of all hereditarily finite sets.

¶ 0.1.3. The notion of universe makes sense in any material set theory, but
their existence must be postulated. We adopt the following:

• Grothendieck–Verdier universe axiom. For each set 𝑥, there exists a
universe 𝐔 with 𝑥 ∈ 𝐔.
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0. Foundations

For definiteness, we may take our base theory to be Mac Lane set theory, which
is a weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC). Readers
interested in the details of Mac Lane set theory are referred to [Mathias, 2001],
but in practice, as long as one is working at all times inside some universe, one
may as well be working in ZFC. Indeed:

Proposition 0.1.4. With the assumptions of Mac Lane set theory, any universe
is a transitive model of ZFC.

Proof. Let 𝐔 be a universe. By definition, 𝐔 is a transitive set containing pairs,
power sets, unions, and 𝜔, so the axioms of extensionality, empty set, pairs,
power sets, unions, choice, and infinity are all automatically satisfied. We must
show that the axiom schemas of separation and replacement are also satisfied,
and in fact it is enough to check that replacement is valid; but this is straightfor-
ward using axioms 2 and 4. ■

Definition 0.1.5. Let 𝐔 be a pre-universe. A 𝐔-set is a member of 𝐔, a 𝐔-class
is a subset of 𝐔, and a proper 𝐔-class is a 𝐔-class that is not a 𝐔-set.

Lemma 0.1.6. A 𝐔-class 𝑋 is a 𝐔-set if and only if there exists a 𝐔-class 𝑌 such
that 𝑋 ∈ 𝑌 . ■

Proposition 0.1.7. If 𝐔 is a universe in Mac Lane set theory, then the collection
of all 𝐔-classes is a transitive model of Morse–Kelley class–set theory (MK),
and so is a transitive model of von Neumann–Bernays–Gödel class–set theory
(NBG) in particular. ■

Definition 0.1.8. A 𝐔-small category is a category ℂ such that ob ℂ and mor ℂ
are 𝐔-sets. A locally 𝐔-small category is a category u� satisfying these condi-
tions:

• ob u� and mor u� are 𝐔-classes, and

• for all objects 𝑥 and 𝑦 in u�, the hom-set u�(𝑥, 𝑦) is a 𝐔-set.

An essentially 𝐔-small category is a category u� for which there exist a 𝐔-small
category ℂ and a functor ℂ → u� that is fully faithful and essentially surjective
on objects.

Proposition 0.1.9. If 𝔻 is a 𝐔-small category and u� is a locally 𝐔-small cat-
egory, then the functor category [𝔻, u�] is locally 𝐔-small.

2



0.1. Set theory

Proof. Strictly speaking, this depends on the set-theoretic implementation of
ordered pairs, categories, functors, etc., but at the very least [𝔻, u�] should be
isomorphic to a locally 𝐔-small category.

In the context of [𝔻, u�], we may regard functors 𝔻 → u� as being the pair
consisting of the graph of the object map ob 𝔻 → ob u� and the graph of the
morphism map mor 𝔻 → mor u�, and these are 𝐔-sets by the 𝐔-replacement
axiom. Similarly, if 𝐹 and 𝐺 are objects in [𝔻, u�], then we may regard a natural
transformation 𝛼 : 𝐹 ⇒ 𝐺 as being the triple (𝐹 , 𝐺, 𝐴), where 𝐴 is the set of all
pairs (𝑐, 𝛼𝑐). ■

One complication introduced by having multiple universes concerns the ex-
istence of (co)limits.

Theorem 0.1.10 (Freyd). Let u� be a category and let be a cardinal such that
|mor u�| ≤ . If u� has products for families of size , then any two parallel
morphisms in u� must be equal.

Proof. Suppose, for a contradiction, that 𝑓, 𝑔 : 𝑋 → 𝑌 are distinct morphisms
in u�. Let 𝑍 be the product of -many copies of 𝑌 in u�. The universal property
of products implies there are at least 2 -many distinct morphisms 𝑋 → 𝑍; but
u�(𝑋, 𝑍) ⊆ mor u�, so this is an absurdity. ■

Definition 0.1.11. Let 𝐔 be a pre-universe. A 𝐔-complete (resp. 𝐔-cocomplete)
category is a category u� with the following property:

• For all 𝐔-small categories 𝔻 and all diagrams 𝐴 : 𝔻 → u�, a limit (resp.
colimit) of 𝐴 exists in u�.

We may instead say u� has all finite limits (resp. finite colimits) in the special
case 𝐔 = 𝐇𝐅.

Proposition 0.1.12. Let u� be a category and let 𝐔 be a non-empty pre-universe.
The following are equivalent:

(i) u� is 𝐔-complete.

(ii) u� has all finite limits and products for all families of objects indexed by a
𝐔-set.

3



0. Foundations

(iii) For each 𝐔-small category 𝔻, there exists an adjunction

Δ ⊣ lim←−−𝔻
: [𝔻, u�] → u�

where Δ𝑋 is the constant functor with value 𝑋.

Dually, the following are equivalent:

(i′) u� is 𝐔-cocomplete.

(ii′) u� has all finite colimits and coproducts for all families of objects indexed
by a 𝐔-set.

(iii′) For each 𝐔-small category 𝔻, there exists an adjunction

lim−−→𝔻
⊣ Δ : u� → [𝔻, u�]

where Δ𝑋 is the constant functor with value 𝑋.

Proof. This is a standard result; but we remark that we do require a sufficiently
powerful form of the axiom of choice to pass from (ii) to (iii). □

¶ 0.1.13. In the explicit universe convention, the words ‘set’, ‘class’, etc.
have their usual meanings, and in the one-universe convention, these instead
abbreviate ‘𝐔-set’, ‘𝐔-class’, etc. for a fixed (but arbitrary) universe 𝐔. However,
the word ‘category’ always refers to a category that is contained in some universe,
which may or may not be locally 𝐔-small, and we shall use the word ‘ensemble’
to refer to sets which may or may not be in 𝐔. In subsequent chapters, the implicit
universe convention should be assumed unless otherwise stated.

We now recall some definitions and results about ordinal and cardinal num-
bers. Readers familiar with axiomatic set theory may wish to skip ahead.

Definition 0.1.14. A von Neumann ordinal is a set 𝛼 with the following prop-
erties:

• If 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝛼, then 𝑥 ∈ 𝛼.

• The binary relation ∈ is strict total ordering of 𝛼.

• If 𝑆 is a subset of 𝛼 such that

– ∅ ∈ 𝑆,

4



0.1. Set theory

– If 𝛽 ∈ 𝑆 and 𝛽 ∪ {𝛽} ∈ 𝛼, then 𝛽 ∪ {𝛽} ∈ 𝑆.

– If 𝑇 ⊆ 𝑆, then ⋃ 𝑇 ∈ 𝑆.

then 𝑆 = 𝛼.

We identify 0 with the von Neumann ordinal ∅, and by induction, we identify
the natural number 𝑛 + 1 with the von Neumann ordinal {0, … , 𝑛}.

Proposition 0.1.15.
(i) If 𝛼 is a von Neumann ordinal, then every member of 𝛼 is an initial segment

of 𝛼 and is in particular a von Neumann ordinal.

(ii) If 𝛼 is a von Neumann ordinal, so is 𝛼 ∪ {𝛼}. (This is usually denoted by
𝛼 + 1 and called the successor of 𝛼.)

(iii) The union of a set 𝑆 of von Neumann ordinals is another von Neumann
ordinal. (This is usually denoted by sup 𝑆 and called the supremum of
𝑆.)

(iv) If 𝐔 is a pre-universe and (𝐔) is the set of von Neumann ordinals in 𝐔,
then (𝐔) a von Neumann ordinal, but (𝐔) ∉ 𝐔.

Proof. Claims (i) – (iii) are all easy, and claim (iv) is Burali-Forti’s paradox. ⧫

Theorem 0.1.16 (Classification of well-orderings).
(i) In Zermelo–Fraenkel set theory, every well-ordered set is isomorphic to a

unique von Neumann ordinal.

(ii) In Mac Lane set theory, if 𝐔 is a pre-universe and 𝑋 is a well-ordered set
in 𝐔, then 𝑋 is isomorphic to a unique von Neumann ordinal in 𝐔.

Proof. Claim (i) is a standard result in axiomatic set theory, and claim (ii) is an
obvious corollary. □

Definition 0.1.17. A transitive set is a set 𝑇 such that, given 𝑥 ∈ 𝑦, if 𝑦 ∈ 𝑇 ,
then 𝑥 ∈ 𝑇 as well. The transitive closure of a set 𝑋 is a set tcl(𝑋) such that,
for all transitive sets 𝑇 with 𝑋 ⊆ 𝑇 , we have tcl(𝑋) ⊆ 𝑇 as well.

Lemma 0.1.18. In Mac Lane set theory, every set has a unique transitive closure.
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Proof. One of the axioms of Mac Lane set theory states that every set 𝑋 is a
member of some transitive set 𝑇 , and so 𝑋 ⊆ 𝑇 . Clearly, the intersection of any
family of transitive sets containing 𝑋 is again a transitive set containing 𝑋, so
tcl(𝑋) exists and is unique so long as there is at least one transitive set containing
𝑋. ■

Definition 0.1.19. A partial rank function from a transitive set 𝑇 to a well-
ordered set 𝑊 is a partial function 𝜌 : 𝑇 → 𝑊 with these properties:

• If ∅ ∈ 𝑇 , then 𝜌(∅) is the least element of 𝑊 .

• If 𝑦 ∈ 𝑇 and 𝜌(𝑥) is defined for all 𝑥 ∈ 𝑦, then

𝜌(𝑦) = min {𝑤 ∈ 𝑊 | ∀𝑥 ∈ 𝑦. 𝜌(𝑥) < 𝑤}

provided the RHS is defined.

• Otherwise 𝜌(𝑦) is undefined.

A total rank function is a partial rank function that is defined on its entire do-
main. The rank of a set 𝑋, if it exists, the least von Neumann ordinal rank(𝑋)
for which there exists a total rank function tcl(𝑋) → rank(𝑋).

Proposition 0.1.20. In Mac Lane set theory:

(i) If 𝑇 is a transitive set and 𝑊 is a well-ordered set, then there is a unique
partial rank function 𝜌 : 𝑇 → 𝑊 .

(ii) If 𝐔 is a pre-universe and 𝑥 ∈ 𝐔, then rank(𝑥) can be defined by a Δ0-for-
mula with 𝐔 as a parameter, and for each von Neumann ordinal 𝛼 in 𝐔,
the set

𝐕𝛼 = {𝑥 ∈ 𝐔 | rank(𝑥) < 𝛼}

is a 𝐔-set.

(iii) Assuming the Grothendieck–Verdier universe axiom, rank(𝑥) is defined for
all 𝑥.

Proof. (i). This is a straightforward application of well-founded induction.

(ii). 𝐔 is a transitive set and the set (𝐔) of all von Neumann ordinals in 𝐔
is well-ordered by inclusion, so by claim (i) there is a partial rank function 𝜌 :
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0.1. Set theory

𝐔 ⇀ (𝐔). ZFC proves that every set has a rank, so 𝜌 must in fact be a total
rank function; hence, for any 𝑥 ∈ 𝐔, rank(𝑥) is defined. It is clear that 𝜌 can be
defined by a Δ0-formula with only 𝐔 as a parameter, and the rest of the claim
follows.

(iii). Obvious, assuming claim (ii). □

Definition 0.1.21. Two sets are equinumerous if there exists a bijection between
them. A cardinality class in a pre-universe 𝐔 is an equivalence class under the
relation of equinumerosity.

Definition 0.1.22. An ℵ-number is an infinite von Neumann ordinal such
that, for any von Neumann ordinal such that and are equinumerous, we
have ⊆ .

Example 0.1.23. The first infinite von Neumann ordinal, i.e. 𝜔 = {0, 1, 2, …},
is the ℵ-number ℵ0.

Lemma 0.1.24. If is an ℵ-number, then there exists a unique ℵ-number +

with the following property:

• For any ℵ-number such that < , we have + ≤ .

The cardinal successor of is +.

Proof. The class of ℵ-numbers is well-ordered and unbounded, so the class of
all ℵ-numbers > has a minimal element +, as required. ■

Theorem 0.1.25 (Classification of cardinalities).
(i) In Zermelo–Fraenkel set theory, for every well-ordered infinite set 𝑋, there

exists a unique ℵ-number such that 𝑋 and are equinumerous.

(ii) In Zermelo–Fraenkel set theory with the axiom of choice, the same is true
for any infinite set whatsoever.

(iii) In Mac Lane set theory, if 𝐔 is a universe and 𝑋 is an infinite set in 𝐔,
then there exists a unique ℵ-number in the cardinality class of 𝑋.

(iv) In Mac Lane set theory with the Grothendieck–Verdier universe axiom, if
𝐔 is a pre-universe and is an ℵ-number not in 𝐔, then the cardinality of
𝐔 is at most .

7



0. Foundations

Proof. Claim (i) is a standard fact, whence claims (ii) and (iii), by the well-
ordering theorem. Claim (iv) can be proven using axiom 4 for pre-universes. □

¶ 0.1.26. Henceforth, we identify the cardinality class of a finite set with the
unique von Neumann ordinal contained in that class, and similarly we identify
the cardinality class of an infinite set with the unique ℵ-number in that class.
These are the cardinal numbers.

Definition 0.1.27. A cofinal subset of a partially-ordered set 𝑋 is a subset
𝑌 ⊆ 𝑋 such that, for all 𝑥 in 𝑋, there exists some 𝑦 in 𝑌 such that 𝑥 ≤ 𝑦.
A regular cardinal number is an ℵ-number such that any cofinal subset of
has cardinality equal to . A singular cardinal number is an ℵ-number that is
not regular.

The following helps to motivate the definition of regular cardinal numbers.

Definition 0.1.28. Let 𝐔 be a pre-universe. An arity class in 𝐔 is a 𝐔-class 𝐾
of cardinal numbers satisfying the following conditions:

• 1 ∈ 𝐾 .

• If ∈ 𝐾 and : → 𝐾 is a function, then the cardinal sum ∑𝛼∈ (𝛼) is
also in 𝐾 .

• If ∈ 𝐾 and : → 𝐔 is a function such that each (𝛼) is a cardinal
number and ∑𝛼∈ (𝛼) ∈ 𝐾 , then (𝛼) ∈ 𝐾 as well.

Theorem 0.1.29 (Classification of arity classes). In Mac Lane set theory, if 𝐾
is an arity class in a pre-universe 𝐔, then 𝐾 must be either

• {1}, or

• {0, 1}, or

• of the form { ∈ 𝐔 | is a cardinal number and < } for some regular
cardinal number (possibly not in 𝐔).

Proof. The notion of arity class and this result are due to Shulman [2012]. □

Definition 0.1.30. Let be a regular cardinal number. A -small category
is a category ℂ such that mor ℂ has cardinality < . A finite category is an
ℵ0-small category, i.e. a category ℂ such that mor ℂ is finite. A finite diagram

8



0.1. Set theory

(resp. -small diagram, 𝐔-small diagram) in a category u� is a functor 𝔻 → u�
where 𝔻 is a finite (resp. -small, 𝐔-small) category.

Theorem 0.1.31. Let 𝐔 be a pre-universe, let 𝐔+ be a universe with 𝐔 ∈ 𝐔+, let
𝐒𝐞𝐭 be the category of 𝐔-sets, and let 𝐒𝐞𝐭+ be the category of 𝐔+-sets.

(i) If 𝑋 : 𝔻 → 𝐒𝐞𝐭 is a 𝐔-small diagram, then there exist a limit and a colimit
for 𝑋 in 𝐒𝐞𝐭.

(ii) The inclusion 𝐒𝐞𝐭 ↪ 𝐒𝐞𝐭+ is fully faithful and preserves limits and colimits
for all 𝐔-small diagrams.

Proof. One can construct products, equalisers, coproducts, coequalisers, and
hom-sets in a completely explicit way, making the preservation properties ob-
vious. ⧫

Corollary 0.1.32. The inclusion 𝐒𝐞𝐭 ↪ 𝐒𝐞𝐭+ reflects limits and colimits for all
𝐔-small diagrams. ■

Corollary 0.1.33. For any 𝐔-small category ℂ:

(i) The functor category [ℂ, 𝐒𝐞𝐭] is 𝐔-complete and 𝐔-cocomplete, with limits
and colimits for 𝐔-small diagrams computed componentwise in 𝐒𝐞𝐭.

(ii) The inclusion [ℂ, 𝐒𝐞𝐭] ↪ [ℂ, 𝐒𝐞𝐭+] is fully faithful and both preserves and
reflects limits and colimits for all 𝐔-small diagrams. ■

Definition 0.1.34. An strongly inaccessible cardinal number is a regular car-
dinal number such that, for all sets 𝑋 of cardinality less than , the power set
𝒫 (𝑋) is also of cardinality less than .

Example 0.1.35. ℵ0 is a strongly inaccessible cardinal number and is the only
one that can be proven to exist in ZFC. It is more conventional to exclude ℵ0
from the definition of strongly inaccessible cardinal number by demanding that
they be uncountable.

Proposition 0.1.36. In Mac Lane set theory:

(i) If 𝐔 is a non-empty pre-universe, then there exists a strongly inaccessible
cardinal number such that the members of 𝐔 are all the sets of rank less
than . Moreover, this is the rank and the cardinality of 𝐔.

9



0. Foundations

(ii) If 𝐔 is a universe and is a strongly inaccessible cardinal number such
that ∈ 𝐔, then there exists a 𝐔-set 𝐕 whose members are all the sets of
rank less than , and 𝐕 is a pre-universe.

(iii) If 𝐔 and 𝐔′ are pre-universes, then either 𝐔 ⊆ 𝐔′ or 𝐔′ ⊆ 𝐔; and if
𝐔 ⫋ 𝐔′, then 𝐔 ∈ 𝐔′.

Proof. (i). Let be the set of all von Neumann ordinals in 𝐔; this exists by
Δ0-separation applied to 𝐔. Since 𝐔 is closed under power sets and internally-
indexed unions, must be a strongly inaccessible cardinal.

We can construct the set all of 𝐔-sets of rank less than using transfinite
recursion on as follows: starting with 𝐕0 = ∅, for each von Neumann ordinal 𝛼
less than , we set 𝐕𝛼+1 = 𝒫 (𝐕𝛼), and for each ordinal that is not a successor,
we set 𝐕 = ⋃𝛼< 𝐕𝛼. The well-foundedness of ∈ (restricted to 𝐔) implies that
in fact this must be all of 𝐔.

Clearly, every set of rank less than is in fact a 𝐔-set, and 𝐔 is itself a set of
rank . The cardinality of 𝐔 is also , since is a regular cardinal number and
any cardinal number less than is a member of 𝐔.

(ii). We may construct 𝐕 using the same method as in (i). By construction 𝐕
satisfies axiom 1; since is infinite, 𝐕 satisfies axioms 2 and 3; and since is
strongly inaccessible, 𝐕 satisfies axiom 4. Thus 𝐕 is a pre-universe.

(iii). Again, let be the rank of 𝐔. If ∈ 𝐔′ then we can show by transfinite
induction that 𝐕 ∈ 𝐔′ and so 𝐔 ⫋ 𝐔′; else we must have 𝐔′ ⊆ 𝐕 = 𝐔. ■

0.2 Accessibility and ind-completions
Prerequisites. §0.1.

A classical technology for controlling size problems in category theory, due
to Gabriel and Ulmer [1971], Grothendieck and Verdier [SGA 4a, Exposé I, §9],
and Makkai and Paré [1989], is the notion of accessibility. Though we make use
of universes, accessibility remains important and is a crucial tool in verifying the
stability of various universal constructions when one passes from one universe
to a larger one.
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0.2. Accessibility and ind-completions

Definition 0.2.1. Let be a regular cardinal.

• A -filtered category is a category u� with the following property:

– For each -small diagram 𝐴 in u� , there exist an object 𝑗 and a cocone
𝐴 ⇒ Δ𝑗.

A -filtered diagram in a category u� is a functor u� → u� where u� is a
-filtered category.

• A -directed preorder is a preordered set 𝑋 that is -filtered when con-
sidered as a category, i.e. a preorder with the following property:

– For each -small subset 𝑌 ⊆ 𝑋, there exists an element 𝑥 of 𝑋 such
that 𝑦 ≤ 𝑥 for all 𝑦 in 𝑌 .

A -directed diagram in a category u� is a functor u� → u� where u� is a
-directed preorder (considered as a category).

In both cases, it is conventional to omit when = ℵ0.

Remark 0.2.2. For any regular cardinal , the category with one object and only
one non-trivial arrow 𝑓 is -filtered if and only if 𝑓 = 𝑓 ∘ 𝑓 . In particular, any
category that has colimits for small -filtered diagrams must also have splittings
for idempotents.

Example 0.2.3. Let 𝑋 be any set. The set of all finite subsets of 𝑋, partially
ordered by inclusion, is a directed preorder. More generally, if is any regu-
lar cardinal, then the set of all subsets of 𝑋 of cardinality < is a -directed
preorder.

Lemma 0.2.4. Let u� be a category. The following are equivalent:

(i) u� is a filtered category.

(ii) u� is inhabited; for any two objects 𝑗 and 𝑗′ in u� there exist an object
𝑗″ and morphisms 𝑗 → 𝑗″ and 𝑗′ → 𝑗″ in u� ; and for any parallel pair
𝑓0, 𝑓1 : 𝑗 → 𝑗′ in u� , there is a morphism 𝑔 : 𝑗′ → 𝑗″ in u� such that
𝑔 ∘ 𝑓0 = 𝑔 ∘ 𝑓1.

11
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Proof. (i) ⇒ (ii). The conditions say precisely that u� has cocones for diagrams
of shape ∅, {•, •}, and {• ⇉ •}, respectively.

(ii) ⇒ (i). See Lemma 2.13.2 in [Borceux, 1994a]. □

Definition 0.2.5. Let 𝛼 be an ordinal. An 𝛼-chain in a category u� is a functor
𝛼 → u�, where we have identified 𝛼 with the well-ordered set of ordinals < 𝛼.

Remark 0.2.6. If 𝛼 is an ordinal with cofinality , then 𝛼 is a -directed preorder.
In particular, 𝛼-chains are -directed diagrams.

Lemma 0.2.7. Let ℐ be any category and let u� be a filtered category. Given a
full functor 𝐹 : ℐ → u� , the following are equivalent:

(i) 𝐹 : ℐ → u� is a cofinal functor.[1]

(ii) For each object 𝑗 in u� , there exist an object 𝑖 in ℐ and a morphism 𝑗 → 𝐹 𝑖
in u� .

Proof. (i) ⇒ (ii). Since 𝐹 : ℐ → u� is a cofinal functor, the comma category
(𝑗 ↓ 𝐹 ) is connected; in particular, it is inhabited.

(ii) ⇒ (i). The hypothesis says that the comma category (𝑗 ↓ 𝐹 ) is inhabited
for all objects 𝑗 in u� ; it remains to be shown that each (𝑗 ↓ 𝐹 ) is connected.
Suppose we have morphisms 𝑓 : 𝑗 → 𝐹 𝑖 and 𝑓 ′ : 𝑗 → 𝐹 𝑖′ in u� . Since u� is a
filtered category, there exist morphisms 𝑔 : 𝐹 𝑖 → 𝑗′ and 𝑔′ : 𝐹 𝑖′ → 𝑗′ such that
𝑔 ∘ 𝑓 = 𝑔′ ∘ 𝑓 ′. By hypothesis, there is a morphism ℎ : 𝑗′ → 𝐹 𝑖″ in u� , and since
𝐹 : ℐ → u� is full, there exist morphisms 𝑘 : 𝑖 → 𝑖″ and 𝑘′ : 𝑖′ → 𝑖″ in ℐ such
that 𝐹 𝑘 = ℎ ∘ 𝑔 and 𝐹 𝑘′ = ℎ ∘ 𝑔′. Thus, we have 𝐹 𝑘 ∘ 𝑓 = 𝐹 𝑘′ ∘ 𝑓 ′, so (𝑗 ↓ 𝐹 )
is indeed connected. ■

Lemma 0.2.8. Let ℐ be a filtered category and let u� be any preorder. Given a
functor 𝐹 : ℐ → u� , the following are equivalent:

(i) 𝐹 : ℐ → u� is a cofinal functor.

(ii) For each object 𝑗 in u� , there exist an object 𝑖 in ℐ such that 𝑗 ≤ 𝐹 𝑖 in u� .

[1] See definition a.5.31.
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Proof. (i) ⇒ (ii). Since 𝐹 : ℐ → u� is a cofinal functor, the comma category
(𝑗 ↓ 𝐹 ) is connected; in particular, it is inhabited.

(ii) ⇒ (i). The hypothesis says that the comma category (𝑗 ↓ 𝐹 ) is inhabited for
all objects 𝑗 in u� ; it remains to be shown that each (𝑗 ↓ 𝐹 ) is connected. Suppose
we have morphisms 𝑗 ≤ 𝐹 𝑖 and 𝑗 ≤ 𝐹 𝑖′ in u� . Since ℐ is a filtered category,
there exist an object 𝑖″ in ℐ and morphisms 𝑖 → 𝑖″ and 𝑖′ → 𝑖″; thus, we have
𝑗 ≤ 𝐹 𝑖 ≤ 𝐹 𝑖″ and 𝑗 ≤ 𝐹 𝑖′ ≤ 𝐹 𝑖″, so (𝑗 ↓ 𝐹 ) is indeed connected. ■

Lemma 0.2.9. Let u� be a -filtered diagram. If u� is also -small, then there
exist an object 𝑗 in u� and an idempotent morphism 𝑒 : 𝑗 → 𝑗 such that the
subcategory of u� generated by 𝑒 is cofinal in u� .

Proof. Since id : u� → u� is a -small diagram in u� , there must exist an object
𝑗 in u� and a cocone : id ⇒ Δ𝑗. Let 𝑒 = 𝑗 : 𝑗 → 𝑗. Since is a cocone, we
must have 𝑒 = 𝑒 ∘ 𝑒, i.e. 𝑒 : 𝑗 → 𝑗 is idempotent.

Let ℐ be the subcategory of u� generated by 𝑒 and let 𝑗′ be any object in u� .
We must show that the comma category (𝑗′ ↓ ℐ) is connected. It is inhabited:

𝑗′ : 𝑗′ → 𝑗 is an object in (𝑗′ ↓ ℐ). Moreover, given any morphism 𝑓 : 𝑗′ → 𝑗
in u� , we must have 𝑗′ = 𝑗 ∘ 𝑓 = 𝑒 ∘ 𝑓 , so (𝑗′ ↓ ℐ) is indeed connected. Thus,
ℐ is a cofinal subcategory of u� . ■

Lemma 0.2.10. Let be a regular cardinal and let (u�𝑖 | 𝑖 ∈ 𝐼) be a set of
-filtered categories.

(i) The product u� = ∏𝑖∈𝐼 u�𝑖 is a -filtered category.

(ii) Each projection 𝜋𝑖 : u� → u�𝑖 is a cofinal functor.

Proof. (i). We may construct cones over -small diagrams in u� componentwise.

(ii). Similarly, one can show that the comma categories (𝑗𝑖 ↓ 𝜋𝑖) are connected
for all 𝑗𝑖 in u�𝑖 and all 𝑖 in 𝐼 . ■

Theorem 0.2.11. Let be a regular cardinal in a universe 𝐔. If u� is a 𝐔-small
-filtered category, then there exist a 𝐔-small -directed poset ℐ and a cofinal

functor 𝑃 : ℐ → u� .

Proof. See Theorem 1.5 and Remark 1.21 in [LPAC]. □
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Theorem 0.2.12. Let 𝐔 be a universe. The following are equivalent for a cat-
egory u�:

(i) u� has colimits for 𝐔-small ℵ0-filtered diagrams.

(ii) u� has colimits for 𝐔-small ℵ0-directed diagrams.

(iii) u� has colimits for 𝛼-chains for all infinite ordinals 𝛼 in 𝐔.

Proof. (i) ⇔ (ii). This is implied by theorem 0.2.11.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (ii). See Corollary 1.7 in [LPAC]. □

Theorem 0.2.13. Let 𝐔 be a universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and let
be any regular cardinal in 𝐔. Given a 𝐔-small category u� , the following are

equivalent:

(i) u� is a -filtered category.

(ii) The functor lim−−→u�
: [u� , 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves limits for all -small dia-

grams.

Proof. The claim (i) ⇒ (ii) is very well known, and the converse is an exercise
in using the Yoneda lemma and manipulating limits and colimits for diagrams of
representable functors; see Satz 5.2 in [Gabriel and Ulmer, 1971]. □

Definition 0.2.14. Let and be regular cardinals in a universe 𝐔 and let 𝐒𝐞𝐭
be the category of 𝐔-sets.

• A ( , )-compact object in a locally 𝐔-small category u� is an object 𝐴
such that the representable functor u�(𝐴, −) : u� → 𝐒𝐞𝐭 preserves colimits
for all -small -filtered diagrams.

• Let 𝐔′ be a universe with 𝐔′ ⊆ 𝐔. A ( , 𝐔′)-compact object in a locally
𝐔-small category is an object that is ( , )-compact for all regular cardinals

in 𝐔′.

Though the above definition is stated using a universe 𝐔, the following lemma
shows there is in fact no dependence on 𝐔.
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Lemma 0.2.15. Let 𝐴 be an object in a locally 𝐔-small category u�. The follow-
ing are equivalent:

(i) 𝐴 is a ( , )-compact object in u�.

(ii) For all -small -filtered diagrams 𝐵 : u� → u�, if : 𝐵 ⇒ Δ𝐶 is a
colimiting cocone, then for any morphism 𝑓 : 𝐴 → 𝐶 , there exist an
object 𝑖 in u� and a morphism 𝑓 ′ : 𝐴 → 𝐵𝑖 in u� such that 𝑓 = 𝑖 ∘ 𝑓 ′; and
moreover if 𝑓 = 𝑗 ∘ 𝑓 ″ for some morphism 𝑓 ″ : 𝐴 → 𝐵𝑗 in u�, then there
exists an object 𝑘 and a pair of arrows 𝑔 : 𝑖 → 𝑘, ℎ : 𝑖 → 𝑘 in u� such that
𝐵𝑔 ∘ 𝑓 ′ = 𝐵ℎ ∘ 𝑓 ″.

Proof. Use the explicit description of lim−−→u�
u�(𝐴, 𝐵) as a filtered colimit of sets;

see Definition 1.1 in [LPAC], or Proposition 5.1.3 in [Borceux, 1994b]. □

Corollary 0.2.16. Let 𝐵 : u� → u� be a -small -filtered diagram, and let
: 𝐵 ⇒ Δ𝐶 be a colimiting cocone in u�. If 𝐶 is a ( , )-compact object in u�,

then 𝐶 is a retract of some vertex of 𝐵, i.e. there exists an object 𝑖 in u� such that
𝑖 : 𝐵𝑖 → 𝐶 is a split epimorphism. ■

Lemma 0.2.17. Let 𝐴 be an object in a category u�.

(i) If 𝐴 is a ( , )-compact object in u� and ′ is any regular cardinal ≤ ,
then 𝐴 is ( , ′)-compact as well.

(ii) If 𝐴 is ( , )-compact and is any regular cardinal ≥ , then 𝐴 is also
( , )-compact.

Proof. Obvious. ⧫

Lemma 0.2.18. Let and be regular cardinals in a universe 𝐔. If 𝐵 : 𝔻 → u�
is a -small diagram of ( , )-compact objects in a locally 𝐔-small category,
then the colimit lim−−→𝔻

𝐵, if it exists, is also a ( , )-compact object in u�.

Proof. Use theorem 0.2.13 and the fact that u�(−, 𝐶) : u� op → 𝐒𝐞𝐭+ maps colimits
in u� to limits in 𝐒𝐞𝐭+. ■

Corollary 0.2.19. A retract of a ( , )-compact object is also a ( , )-compact
object.
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Proof. Suppose 𝑟 : 𝐴 → 𝐵 and 𝑠 : 𝐵 → 𝐴 are morphisms in u� such that
𝑟 ∘ 𝑠 = id𝐵. Then 𝑒 = 𝑠 ∘ 𝑟 is an idempotent morphism and the diagram below

𝐴 𝐴 𝐵
id𝐴

𝑒

𝑟

is a (split) coequaliser diagram in u�, so 𝐵 is ( , )-compact if 𝐴 is. ■

Proposition 0.2.20. Let 𝐔 be a pre-universe and let 𝐒𝐞𝐭 be the category of
𝐔-sets. For any 𝐔-set 𝐴, the following are equivalent:

(i) 𝐴 has cardinality less than .

(ii) The representable functor 𝐒𝐞𝐭(𝐴, −) : 𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves colimits for
all 𝐔-small -filtered diagrams.

(iii) The representable functor 𝐒𝐞𝐭(𝐴, −) : 𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves colimits for
all 𝐔-small -directed diagrams.

Proof. The claim (i) ⇒ (ii) follows from theorem 0.2.13, and (ii) ⇒ (iii) is obvi-
ous. To see (iii) ⇒ (i), we may use corollary 0.2.16 and the fact that every set is
the -directed union of its subsets of cardinality < . ■

Corollary 0.2.21. A 𝐔-set 𝑋 is ( , 𝐔)-compact if and only if |𝑋| < . ■

Definition 0.2.22. Let be a regular cardinal in a universe 𝐔. A -accessible
𝐔-category is a locally 𝐔-small category u� satisfying the following conditions:

• u� has colimits for all 𝐔-small -filtered diagrams.

• There exists a 𝐔-set u� whose element are ( , 𝐔)-compact objects in u� such
that, for each object 𝐵 in u�, there exists a 𝐔-small -filtered diagram in u�
whose vertices are in u� and whose colimit is 𝐵.

We write 𝐊𝐔(u�) for the full subcategory of u� spanned by the ( , 𝐔)-compact
objects.

Example 0.2.23. The category of 𝐔-sets is a -accessible 𝐔-category for any
regular cardinal in 𝐔.

Theorem 0.2.24. Let u� be a locally 𝐔-small category and let be a regular
cardinal in 𝐔. There exist a locally 𝐔-small category 𝐈𝐧𝐝𝐔(u�) and a functor
𝛾 : u� → 𝐈𝐧𝐝𝐔(u�) with the following properties:
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(i) The objects of 𝐈𝐧𝐝𝐔(u�) are 𝐔-small -filtered diagrams 𝐵 : 𝔻 → u�, and
𝛾 sends an object 𝐶 in u� to the corresponding trivial diagram 𝟙 → u� with
value 𝐶 .

(ii) The functor 𝛾 : u� → 𝐈𝐧𝐝𝐔(u�) is fully faithful, injective on objects, pre-
serves all limits that exist in u�, and preserves all -small colimits that
exist in u�.

(iii) 𝐈𝐧𝐝𝐔(u�) has colimits for all 𝐔-small -filtered diagrams.

(iv) For every object 𝐶 in u�, the object 𝛾𝐶 is ( , 𝐔)-compact in 𝐈𝐧𝐝𝐔(u�), and
for each 𝐔-small -filtered diagram 𝐵 : 𝔻 → u�, there is a canonical
colimiting cocone 𝛾𝐵 ⇒ Δ𝐵 in 𝐈𝐧𝐝𝐔(u�).

(v) If u� is a category with colimits for all 𝐔-small -filtered diagrams, then
for each functor 𝐹 : u� → u�, there exists a functor ̄𝐹 : 𝐈𝐧𝐝𝐔(u�) → u� that
preserves colimits for all 𝐔-small -filtered diagrams in 𝐈𝐧𝐝𝐔(u�) such that
𝛾 ̄𝐹 = 𝐹 , and given any functor �̄� : 𝐈𝐧𝐝𝐔(u�) → u� whatsoever, the induced
map Nat( ̄𝐹 , �̄�) → Nat(𝐹 , 𝛾�̄�) is a bijection.

The category 𝐈𝐧𝐝𝐔(u�) is called the free ( , 𝐔)-ind-completion of u�, or the cat-
egory of ( , 𝐔)-ind-objects in u�.

Proof. If 𝐵 : 𝔻 → u� and 𝐵′ : 𝔻′ → u� are two 𝐔-small -filtered diagrams, then
properties (ii) and (iii) together imply that

Hom(𝐵′, 𝐵) ≅ lim←−−𝔻′
lim−−→𝔻

u�(𝐵′, 𝐵)

and so, taking the RHS as the definition of the LHS, we need only find a suitable
notion of composition to make 𝐈𝐧𝐝𝐔(u�) into a locally 𝐔-small category. How-
ever, we observe that, if N : u� → [u� op, 𝐒𝐞𝐭] is the Yoneda embedding, then

Hom(lim−−→𝔻′
N𝐵′, lim−−→𝔻

N𝐵) ≅ lim←−−𝔻′
lim−−→𝔻

u�(𝐵′, 𝐵)

and, assuming property (v), the Yoneda embedding N : u� → [u� op, 𝐒𝐞𝐭] must
extend along 𝛾 to a functor N̄ : 𝐈𝐧𝐝𝐔(u�) → [u� op, 𝐒𝐞𝐭] that preserves colimits
for 𝐔-small -filtered diagram, so, in consideration of properties (i) and (iv), we
may as well define the composition in 𝐈𝐧𝐝𝐔(u�) so that N̄ becomes fully faithful.
This completes the definition of 𝐈𝐧𝐝𝐔(u�) as a category.

It remains to be shown that 𝐈𝐧𝐝𝐔(u�) actually has properties (ii), (iii), (iv), and
(v); see Corollary 6.4.14 in [Borceux, 1994a] and Theorem 2.26 in [LPAC]. Note
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that the fact that 𝛾 preserves colimits for -small diagrams essentially follows
from theorem 0.2.13. □

Proposition 0.2.25. Let 𝔹 be a 𝐔-small category and let be a regular cardinal
in 𝐔.

(i) 𝐈𝐧𝐝𝐔(𝔹) is a -accessible 𝐔-category.

(ii) Every ( , 𝐔)-compact object in 𝐈𝐧𝐝𝐔(𝔹) is a retract of an object of the form
𝛾𝐵, where 𝛾 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔹) is the canonical embedding.

(iii) 𝐊𝐔(𝐈𝐧𝐝𝐔(𝔹)) is an essentially 𝐔-small category.

Proof. (i). This claim more-or-less follows from the properties of 𝐈𝐧𝐝𝐔(𝔹) ex-
plained in the previous theorem.

(ii). Use corollary 0.2.19.

(iii). Since 𝔹 is 𝐔-small and 𝐈𝐧𝐝𝐔(𝔹) is locally 𝐔-small, claim (ii) implies that
𝐊𝐔(𝐈𝐧𝐝𝐔(𝔹)) must be essentially 𝐔-small. ■

Proposition 0.2.26. Let u� be a -accessible 𝐔-category and let 𝐶 be an object
in u�.

(i) The comma category (𝐊𝐔(u�) ↓ 𝐶) is an essentially 𝐔-small -filtered cat-
egory.

(ii) If 𝑃 𝐶 : (𝐊𝐔(u�) ↓ 𝐶) → u� is the canonical diagram, then the tautological
cocone[2] 𝑃 𝐶 ⇒ Δ𝐶 is a colimiting cocone in u�.

Proof. See Proposition 2.1.5 in [Makkai and Paré, 1989] or Proposition 2.8 in
[LPAC]. □

Corollary 0.2.27. Let u� be a -accessible 𝐔-category. For any 𝐔-small -filtered
diagram 𝔻, lim−−→𝔻

: [𝔻, u�] → u� preserves componentwise limits for -small dia-
grams.

Proof. The claim is certainly true when u� = [𝔹op, 𝐒𝐞𝐭], by theorem 0.2.13. In
general, choose a fully faithful functor 𝑅 : u� → [𝔹op, 𝐒𝐞𝐭] that preserves limits
for all -small diagrams and colimits for all 𝐔-small -filtered diagrams; then 𝑅

[2] See definition a.5.7.
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0.2. Accessibility and ind-completions

reflects limits for -small diagrams and colimits for 𝐔-small -filtered diagrams,
so we may deduce the claim from the corresponding fact for [𝔹op, 𝐒𝐞𝐭]. Note that
such a functor exists: propositions 0.2.26 and a.5.25 imply we may take 𝔹 to be
𝐊𝐔(u�) and 𝑅 to be the induced Yoneda representation. ■

Definition 0.2.28. Let be a regular cardinal in a universe 𝐔. A ( , 𝐔)-access-
ible functor is a functor 𝐹 : u� → u� such that

• u� is a -accessible 𝐔-category, and

• 𝐹 preserves all colimits for 𝐔-small -filtered diagrams.

We write 𝐀𝐜𝐜𝐔(u�, u�) for the full subcategory of the functor category [u�, u�]
spanned by the ( , 𝐔)-accessible functors. An accessible functor is a functor
that is ( , 𝐔)-accessible functor for some regular cardinal in some universe 𝐔.

Theorem 0.2.29 (Classification of accessible categories). Let be a regular
cardinal in a universe 𝐔 and let u� be a locally 𝐔-small category. The following
are equivalent:

(i) u� is a -accessible 𝐔-category.

(ii) The inclusion 𝐊𝐔(u�) ↪ u� extends along 𝐊𝐔(u�) → 𝐈𝐧𝐝𝐔(𝐊𝐔(u�)) to a
( , 𝐔)-accessible functor 𝐈𝐧𝐝𝐔(𝐊𝐔(u�)) → u� that is fully faithful and es-
sentially surjective on objects.

(iii) There exist a 𝐔-small category 𝔹 and a functor 𝐈𝐧𝐝𝐔(𝔹) → u� that is fully
faithful and essentially surjective on objects.

Proof. See Theorem 2.26 in [LPAC], or Theorem 5.3.5 in [Borceux, 1994b].
□

Corollary 0.2.30. If u� is a -accessible 𝐔-category and u� is any category, then:

(i) The restriction 𝐀𝐜𝐜𝐔(u�, u�) → [𝐊𝐔(u�), u�] is fully faithful and surjective
on objects.

(ii) In particular, if u� is also locally 𝐔-small, then 𝐀𝐜𝐜𝐔(u�, u�) is equivalent
to a locally 𝐔-small category.

(iii) If u� has colimits for all 𝐔-small -filtered diagrams, then the inclusion
𝐀𝐜𝐜𝐔(u�, u�) ↪ [u�, u�] has a left adjoint. ■
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Proposition 0.2.31. Let u� be a -accessible 𝐔-category and let u� be a locally
𝐔-small category. Given an adjunction 𝐹 ⊣ 𝐺 : u� → u�, if 𝐺 is fully faith-
ful and preserves colimits for all 𝐔-small -filtered diagrams, then u� is also a

-accessible 𝐔-category.

Proof. Under our hypotheses, given any 𝐔-small -filtered diagram 𝐴 : u� → u�,
we may take 𝐹 lim−−→u�

𝐺𝐴 as its colimit in u�. Our hypotheses also imply that 𝐹
sends ( , 𝐔)-compact objects in u� to ( , 𝐔)-compact objects in u�; thus if u� is a
𝐔-small set of objects that generates u� under 𝐔-small -filtered colimits, then
{𝐹 𝑋 | 𝑋 ∈ u�} is a 𝐔-small set of objects that generates u� in the same sense. ■

Definition 0.2.32. Let and be regular cardinals and let 𝒫 (𝑋) denote the set
of all -small subsets of a set 𝑋. We say is sharply less than if

• < , and

• for all -small sets 𝑋, there exists a -small cofinal subposet of the poset
𝒫 (𝑋).

We define ⊲ to mean that is sharply less than .

Example 0.2.33. Let be a regular cardinal and let + be its cardinal successor.
Then ⊲ +: every +-small set can be mapped bijectively onto an initial seg-
ment 𝛼 of (but possibly all of ), and it is clear that the subposet

{𝛽 | 𝛽 ≤ 𝛼} ⊆ 𝒫 (𝛼)

is a +-small cofinal subposet of 𝒫 (𝛼): given any -small subset 𝑋 ⊆ 𝛼, we
must have sup 𝑋 ≤ 𝛼, and 𝑋 ⊆ sup 𝑋 by definition.

Theorem 0.2.34. Let and be regular cardinals in a universe 𝐔, and suppose
< . The following are equivalent:

(i) ⊲ .

(ii) For any 𝐔-small -directed poset 𝑋 and any -small subset 𝑌 ⊆ 𝑋, there
exists a -small -directed subposet 𝑋′ ⊆ 𝑋 with 𝑌 ⊆ 𝑋′.

(iii) Any -accessible 𝐔-category is also a -accessible 𝐔-category.

Proof. See Theorem 2.11 in [LPAC]. □
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Proposition 0.2.35.
(i) The binary relation ⊲ is transitive.

(ii) If ≤ , then ⊲ (2< )+, where 2< = sup {2 | is a cardinal < }
and 2 = |𝒫 ( )|, and also ⊲ (2 )+.

(iii) For any set 𝐾 of regular cardinals, there exists a regular cardinal such
that ⊲ for all in 𝐾 .

Proof. (i). See Proposition 2.3.2 in [Makkai and Paré, 1989], or theorem 0.2.34.

(ii). See Proposition 2.3.5 in [Makkai and Paré, 1989], or Example 2.13(5) in
[LPAC], or Proposition 5.4.7 in [Borceux, 1994b].

(iii). This follows from claim (ii). □

Definition 0.2.36. Let be a regular cardinal in a universe 𝐔. A locally -
presentable 𝐔-category is a -accessible 𝐔-category that is also 𝐔-cocomplete.
A locally presentable 𝐔-category is one that is a locally -presentable 𝐔-cat-
egory for some regular cardinal in 𝐔, and we often say ‘locally finitely present-
able’ instead of ‘locally ℵ0-presentable’.

Example 0.2.37. The category of 𝐔-sets is a locally -presentable 𝐔-category
for any regular cardinal in 𝐔.

Lemma 0.2.38. Let u� be a locally -presentable 𝐔-category.

(i) For any regular cardinal in 𝐔, if ≤ , then u� is a locally -presentable
𝐔-category.

(ii) With as above, if 𝐹 : u� → u� is a ( , 𝐔)-accessible functor, then it is
also a ( , 𝐔)-accessible functor.

(iii) If 𝐔+ is any universe with 𝐔 ∈ 𝐔+, and u� is a locally -presentable
𝐔+-category, then u� must be a preorder.

Proof. (i). See the remark after Theorem 1.20 in [LPAC], or Propositions 5.3.2
and 5.2.3 in [Borceux, 1994b].

(ii). A -filtered diagram is certainly -filtered, so if 𝐹 preserves colimits for all
𝐔-small -filtered diagrams in u�, it must also preserve colimits for all 𝐔-small
-filtered diagrams.
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(iii). This is a corollary of theorem 0.1.10. ■

Corollary 0.2.39. A category u� is a locally presentable 𝐔-category for at most
one universe 𝐔, provided u� is not a preorder.

Proof. Use proposition 0.1.36 together with the above lemma. ■

Theorem 0.2.40 (Classification of locally presentable categories). Let be a
regular cardinal in a universe 𝐔, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and let u� be
a locally 𝐔-small category. The following are equivalent:

(i) u� is a locally -presentable 𝐔-category.

(ii) There exist a 𝐔-small category 𝔹 that has colimits for -small diagrams
and a functor 𝐈𝐧𝐝𝐔(𝔹) → u� that is fully faithful and essentially surjective
on objects.

(iii) The restricted Yoneda embedding u� → [𝐊𝐔(u�)op, 𝐒𝐞𝐭] is fully faithful,
( , 𝐔)-accessible, and has a left adjoint.

(iv) There exist a 𝐔-small category 𝔸 and a fully faithful ( , 𝐔)-accessible
functor 𝑅 : u� → [𝔸, 𝐒𝐞𝐭] such that 𝔸 has limits for all -small diagrams,
𝑅 has a left adjoint, and 𝑅 is essentially surjective onto the full subcat-
egory of functors 𝔸 → 𝐒𝐞𝐭 that preserve limits for all -small diagrams.

(v) There exist a 𝐔-small category 𝔸 and a fully faithful functor u� → [𝔸, 𝐒𝐞𝐭]
that preserves colimits for small -filtered diagrams and has a left adjoint.

(vi) u� is a -accessible 𝐔-category and is 𝐔-complete.

Proof. See Proposition 1.27, Corollary 1.28, Theorem 1.46, and Corollary 2.47
in [LPAC], or Theorems 5.2.7 and 5.5.8 in [Borceux, 1994b]. □

Remark 0.2.41. If u� is equivalent to 𝐈𝐧𝐝𝐔(𝔹) for some 𝐔-small category 𝔹 that
has colimits for all -small diagrams, then 𝔹 must be equivalent to 𝐊𝐔(u�) by
proposition 0.2.25. In other words, every locally -presentable 𝐔-category is, up
to equivalence, the free ( , 𝐔)-ind-completion of an essentially unique 𝐔-small

-cocomplete category.
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Example 0.2.42. Obviously, for any 𝐔-small category 𝔸, the functor category
[𝔸, 𝐒𝐞𝐭] is locally finitely presentable. More generally, one may show that for
any -ary algebraic theory 𝗧, possibly many-sorted, the category of 𝗧-algebras
in 𝐔 is a locally -presentable 𝐔-category. The above theorem can also be used to
show that 𝐂𝐚𝐭, the category of 𝐔-small categories, is a locally finitely presentable
𝐔-small category.

Proposition 0.2.43. If u� is an accessible 𝐔-category and 𝔻 is any 𝐔-small cat-
egory, then the functor category [𝔻, u�] is also an accessible 𝐔-category.

Proof. See Theorem 2.39 in [LPAC]. □

Proposition 0.2.44. If u� is a locally -presentable 𝐔-category and 𝔻 is any
𝐔-small category, then the functor category [𝔻, u�] is also a locally -presentable
𝐔-category.

Proof. This can be proven using the classification theorem by noting that the
2-functor [𝔻, −] preserves reflective subcategories, but see also Corollary 1.54
in [LPAC]. □

It is commonplace to say ‘ -presentable object’ instead of ‘ -compact ob-
ject’, especially in algebraic contexts. The following propositions justify the al-
ternative terminology.

Proposition 0.2.45. Let u� be a -accessible 𝐔-category. If is a regular car-
dinal in 𝐔 and ⊲ , then the following are equivalent for an object 𝐶 in u�:

(i) 𝐶 is a ( , 𝐔)-compact object in u�.

(ii) There exists a -small -filtered diagram 𝐴 : u� → u� such that each 𝐴𝑗 is
a ( , 𝐔)-compact object in u� and 𝐶 ≅ lim−−→u�

𝐴.

(iii) There exists a -small -directed diagram 𝐴 : u� → u� such that each 𝐴𝑗
is a ( , 𝐔)-compact object in u� and 𝐶 is a retract of lim−−→u�

𝐴.

Proof. (i) ⇔ (ii). See Proposition 2.3.11 in [Makkai and Paré, 1989].

(i) ⇔ (iii). See Remark 2.15 in [LPAC]. □

Proposition 0.2.46. Let u� be a locally -presentable 𝐔-category, and let be
a regular cardinal in 𝐔 with ≥ . If ℋ is a 𝐔-small full subcategory of u� such
that
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• every ( , 𝐔)-compact object in u� is isomorphic to an object in ℋ, and

• ℋ is closed in u� under colimits for -small diagrams,

then every ( , 𝐔)-compact object in u� is isomorphic to an object in ℋ. In partic-
ular, 𝐊𝐔(u�) is the smallest replete full subcategory of u� containing 𝐊𝐔(u�) and
closed in u� under colimits for -small diagrams.

Proof. Let 𝐶 be any ( , 𝐔)-compact object in u�. Clearly, the comma category TODO: Simplify
this argument.(ℋ ↓ 𝐶) is a 𝐔-small -filtered category. Let u� = ℋ ∩ 𝐊𝐔(u�). One can show

that (u� ↓ 𝐶) is a cofinal subcategory in (ℋ ↓ 𝐶), and the classification theorem
(0.2.40) plus proposition a.5.25 implies that the tautological cocone on the dia-
gram (u� ↓ 𝐶) → u� is colimiting, so the tautological cocone on the diagram
(ℋ ↓ 𝐶) → u� is also colimiting. Now, by corollary 0.2.16, 𝐶 is a retract of
an object in ℋ, and hence 𝐶 must be isomorphic to an object in ℋ, because ℋ is
closed under coequalisers.

For the final claim, note that 𝐊𝐔(u�) is certainly a replete full subcategory of
u� and contained in any replete full subcategory containing 𝐊𝐔(u�) and closed in
u� under colimits for -small diagrams, so we just have to show that 𝐊𝐔(u�) is
also closed in u� under colimits for -small diagrams; for this, we simply appeal
to lemma 0.2.18. ■

Proposition 0.2.47. Let u� be a locally 𝐔-small category and let 𝔻 be a -small
category in 𝐔.

(i) If is a regular cardinal ≥ , u� has colimits for 𝐔-small -filtered dia-
grams, and 𝐴 : 𝔻 → u� is componentwise ( , 𝐔)-compact, then 𝐴 is a
( , 𝐔)-compact object in [𝔻, u�].

(ii) If u� is a -accessible 𝐔-category and has products for -small families
of objects, then every ( , 𝐔)-compact object in [𝔻, u�] is componentwise
( , 𝐔)-compact.

Proof. (i). First, note that the Mac Lane subdivision category[3] 𝔻§ is also -small,
so [𝔻, u�](𝐴, 𝐵) is computed as the limit of a -small diagram of hom-sets. More
precisely, using end notation,[4]

[𝔻, u�](𝐴, 𝐵) ≅ ∫𝑑:𝔻
u�(𝐴𝑑, 𝐵𝑑)

[3] See definition a.6.7.
[4] See §a.6.
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and so if ≤ and 𝐴 is componentwise ( , 𝐔)-compact, then [𝔻, u�](𝐴, −) pre-
serves colimits for 𝐔-small -filtered diagrams, hence 𝐴 is itself ( , 𝐔)-compact.

(ii). Now, suppose 𝐴 is a ( , 𝐔)-compact object in [𝔻, u�]. Let 𝑑 be an object in
𝔻, let 𝑑∗ : [𝔻, u�] → u� be evaluation at 𝑑, and let 𝑑∗ : u� → [𝔻, u�] be the right
adjoint, which is explicitly given by

(𝑑∗𝐶)(𝑑′) = 𝔻(𝑑′, 𝑑) ⋔ 𝐶

where ⋔ is defined by following adjunction:

𝐒𝐞𝐭(𝑋, u�(𝐶, 𝐶′)) ≅ u�(𝐶, 𝑋 ⋔ 𝐶′)

The unit 𝐴 : 𝐴 → 𝑑∗𝑑∗𝐴 is constructed using the universal property of ⋔ in the
obvious way, and the counit 𝐶 : 𝑑∗𝑑∗𝐶 → 𝐶 is the projection 𝔻(𝑑, 𝑑) ⋔ 𝐶 → 𝐶
corresponding to id𝑑 ∈ 𝔻(𝑑, 𝑑). Since u� is a -accessible 𝐔-category, there
exist a 𝐔-small -filtered diagram 𝐵 : u� → u� consisting of ( , 𝐔)-compact
objects in u� and a colimiting cocone 𝛼 : 𝐵 ⇒ Δ𝑑∗𝐴, and since each 𝔻(𝑑′, 𝑑)
has cardinality < , the cocone 𝑑∗𝛼 : 𝑑∗𝐵 ⇒ Δ𝑑∗𝑑∗𝐴 is also colimiting, by
corollary 0.2.27. Lemma 0.2.15 then implies 𝐴 : 𝐴 → 𝑑∗𝑑∗𝐴 factors through
𝑑∗𝛼𝑗 : 𝑑∗(𝐵𝑗) → 𝑑∗𝑑∗𝐴 for some 𝑗 in u� , say

𝐴 = 𝑑∗𝛼𝑗 ∘ 𝜎

for some 𝜎 : 𝐴 → 𝑑∗𝐵𝑗. But then, by the triangle identity,

id𝐴𝑑 = 𝐴𝑑 ∘ 𝑑∗
𝐴 = 𝐴𝑑 ∘ 𝑑∗𝑑∗𝛼𝑗 ∘ 𝑑∗𝜎 = 𝛼𝑗 ∘ 𝐵𝑗 ∘ 𝑑∗𝜎

and so 𝛼𝑗 : 𝐵𝑗 → 𝐴𝑑 is a split epimorphism, hence 𝐴𝑑 is a ( , 𝐔)-compact
object, by corollary 0.2.19. ■

Remark 0.2.48. The claim in the above proposition can fail if > . For ex-
ample, we could take u� = 𝐒𝐞𝐭, with 𝔻 being the set 𝜔 considered as a discrete
category; then the terminal object in [𝔻, 𝐒𝐞𝐭] is componentwise finite, but is not
itself an ℵ0-compact object in 𝐒𝐞𝐭.

Lemma 0.2.49. Let and be regular cardinals in a universe 𝐔, with ≤ .

(i) If u� is a locally -presentable 𝐔-category, u� is a locally 𝐔-small category,
and 𝐺 : u� → u� is a ( , 𝐔)-accessible functor that preserves limits for all
𝐔-small diagrams in u�, then, for any ( , 𝐔)-compact object 𝐶 in u�, the
comma category (𝐶 ↓ 𝐺) has an initial object.
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(ii) If u� is a locally -presentable 𝐔-category, u� is a locally 𝐔-small category,
and 𝐹 : u� → u� is a functor that preserves colimits for all 𝐔-small dia-
grams in u�, then, for any object 𝐷 in u�, the comma category (𝐹 ↓ 𝐷) has
a terminal object.

Proof. (i). Let ℱ be the full subcategory of (𝐶 ↓ 𝐺) spanned by those (𝐷, 𝑔)
where 𝐷 is a ( , 𝐔)-compact object in u�. 𝐺 preserves colimits for all 𝐔-small
-filtered diagrams, so, by lemma 0.2.15, ℱ must be a weakly initial family in

(𝐶 ↓ 𝐺). Proposition 0.2.25 implies ℱ is an essentially 𝐔-small category, and
since u� has limits for all 𝐔-small diagrams and 𝐺 preserves them, (𝐶 ↓ 𝐺) is
also 𝐔-complete. Thus, the inclusion ℱ ↪ (𝐶 ↓ 𝐺) has a limit, and it can be
shown that this is an initial object in (𝐶 ↓ 𝐺).[5]

(ii). Let u� be the full subcategory of (𝐹 ↓ 𝐷) spanned by those (𝐶, 𝑓 ) where
𝐶 is a ( , 𝐔)-compact object in u�; note that proposition 0.2.25 implies u� is an
essentially 𝐔-small category. Since u� has colimits for all 𝐔-small diagrams and
𝐹 preserves them, (𝐹 ↓ 𝐷) is also 𝐔-cocomplete.[6] Let (𝐶, 𝑓 ) be a colimit for the
inclusion u� ↪ (𝐹 ↓ 𝐷). It is not hard to check that (𝐶, 𝑓 ) is a weakly terminal
object in (𝐹 ↓ 𝐷), so the formal dual of Freyd’s initial object lemma[7] gives
us a terminal object in (𝐹 ↓ 𝐷); explicitly, it may be constructed as the joint
coequaliser of all the endomorphisms of (𝐶, 𝑓 ). ■

Theorem 0.2.50 (Accessible adjoint functor theorem). Let and be regu-
lar cardinals in a universe 𝐔, with ≤ , let u� be a locally -presentable
𝐔-category, and let u� be a locally -presentable 𝐔-category.

Given a functor 𝐹 : u� → u�, the following are equivalent:

(i) 𝐹 has a right adjoint 𝐺 : u� → u�, and 𝐺 is a ( , 𝐔)-accessible functor.

(ii) 𝐹 preserves colimits for all 𝐔-small diagrams and sends ( , 𝐔)-compact
objects in u� to ( , 𝐔)-compact objects in u�.

(iii) 𝐹 has a right adjoint and sends ( , 𝐔)-compact objects in u� to ( , 𝐔)-com-
pact objects in u�.

[5] See Theorem 1 in [CWM, Ch. X, §2].
[6] See the Lemma in [CWM, Ch. V, §6].
[7] See Theorem 1 in [CWM, Ch. V, §6].
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On the other hand, given a functor 𝐺 : u� → u�, the following are equivalent:

(iv) 𝐺 has a left adjoint 𝐹 : u� → u�, and 𝐹 sends ( , 𝐔)-compact objects in u�
to ( , 𝐔)-compact objects in u�.

(v) 𝐺 is a ( , 𝐔)-accessible functor and preserves limits for all 𝐔-small dia-
grams.

(vi) 𝐺 is a ( , 𝐔)-accessible functor and there exist a functor 𝐹0 : 𝐊𝐔(u�) → u�
and hom-set bijections

u�(𝐶, 𝐺𝐷) ≅ u�(𝐹0𝐶, 𝐷)

natural in 𝐷 for each ( , 𝐔)-compact object 𝐶 in u�, where 𝐷 varies in u�.

Proof. We will need to refer back to the details of the proof of this theorem later,
so here is a sketch of the constructions involved.

(i) ⇒ (ii). If 𝐹 is a left adjoint, then 𝐹 certainly preserves colimits for all 𝐔-small
diagrams. Given a ( , 𝐔)-compact object 𝐶 in u� and a 𝐔-small -filtered diagram
𝐵 : u� → u�, observe that

u�(𝐹 𝐶, lim−−→u�
𝐵) ≅ u�(𝐶, 𝐺 lim−−→u�

𝐵) ≅ u�(𝐶, lim−−→u�
𝐺𝐵)

≅ lim−−→u�
u�(𝐶, 𝐺𝐵) ≅ lim−−→u�

u�(𝐹 𝐶, 𝐵)

and thus 𝐹 𝐶 is indeed a ( , 𝐔)-compact object in u�.

(ii) ⇒ (iii). It is enough to show that, for each object 𝐷 in u�, the comma category
(𝐹 ↓ 𝐷) has a terminal object (𝐺𝐷, 𝐷);[8] but this was done in the previous
lemma.

(iii) ⇒ (i). Given a ( , 𝐔)-compact object 𝐶 in u� and a 𝐔-small -filtered dia-
gram 𝐵 : u� → u�, observe that

u�(𝐶, 𝐺 lim−−→u�
𝐵) ≅ u�(𝐹 𝐶, lim−−→u�

𝐵) ≅ lim−−→u�
u�(𝐹 𝐶, 𝐵)

≅ lim−−→u�
u�(𝐶, 𝐺𝐵) ≅ u�(𝐶, lim−−→u�

𝐺𝐵)

[8] See Theorem 2 in [CWM, Ch. IV, §1].
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because 𝐹 𝐶 is a ( , 𝐔)-compact object in u�; but theorem 0.2.40 says the restric-
ted Yoneda embedding u� → [𝐊𝐔(u�)op, 𝐒𝐞𝐭] is fully faithful, so this is enough to
conclude that 𝐺 preserves colimits for 𝐔-small -filtered diagrams.

(iv) ⇒ (v). If 𝐺 is a right adjoint, then 𝐺 certainly preserves limits for all 𝐔-small
diagrams; the rest of this implication is just (iii) ⇒ (i).

(v) ⇒ (vi). It is enough to show that, for each ( , 𝐔)-compact object 𝐶 in u�, the
comma category (𝐶 ↓ 𝐺) has an initial object (𝐹0𝐶, 𝐶); but this was done in
the previous lemma. It is clear how to make 𝐹0 into a functor 𝐊𝐔(u�) → u�.

(vi) ⇒ (iv). We use theorems 0.2.24 and 0.2.40 to extend 𝐹0 : 𝐊𝐔(u�) → u� along
the inclusion 𝐊𝐔(u�) ↪ u� to get ( , 𝐔)-accessible functor 𝐹 : u� → u�. We then
observe that, for any 𝐔-small -filtered diagram 𝐴 : 𝕀 → u� of ( , 𝐔)-compact
objects in u�,

u�(lim−−→𝕀
𝐴, 𝐺𝐷) ≅ lim←−−𝕀

u�(𝐴, 𝐺𝐷) ≅ lim←−−𝕀
u�(𝐹0𝐴, 𝐷)

≅ u�(lim−−→𝕀
𝐹 𝐴, 𝐷) ≅ u�(𝐹 lim−−→𝕀

𝐴, 𝐷)

is a series of bijections natural in 𝐷, where 𝐷 varies in u�; but u� is a locally
-presentable 𝐔-category, so this is enough to show that 𝐹 is a left adjoint of 𝐺.

The remainder of the claim is a corollary of (i) ⇒ (ii). ■

Corollary 0.2.51. Let u� and u� be locally presentable 𝐔-categories. If a functor
𝐺 : u� → u� has a left adjoint, then there exists a regular cardinal in 𝐔 such
that 𝐺 is a ( , 𝐔)-accessible functor.

Proof. Suppose u� is a locally -presentable 𝐔-category, u� is a locally -present-
able 𝐔-category, and 𝐹 : u� → u� is a left adjoint for 𝐺. Since 𝐊𝐔(u�) is an essen-
tially 𝐔-small category, recalling lemma 0.2.17, there certainly exists a regular
cardinal in 𝐔 such that ≥ and 𝐹 sends ( , 𝐔)-compact objects in u� to
( , 𝐔)-compact objects in u�. The above theorem, plus lemma 0.2.38, implies 𝐺
is an ( , 𝐔)-accessible functor. ■

0.3 Accessible constructions
Prerequisites. §§0.1, 0.2, a.5
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Definition 0.3.1. Let 𝐔 be a universe and let 𝐹 : u� → u� be a functor. The
𝐔-rank of 𝐹 is the smallest regular cardinal in 𝐔 such that 𝐹 preserves colimits
for 𝐔-small -filtered diagrams, provided any such cardinal exists.

Remark 0.3.2. The class of regular cardinals is well-ordered, so the definition
above makes sense. Of course, every ( , 𝐔)-accessible functor has 𝐔-rank ≤ .

Definition 0.3.3. Let 𝐔 be a universe and let u� be a locally 𝐔-small category.
The compactness 𝐔-rank of an object 𝐴 in u� is the 𝐔-rank of the hom-functor
u�(𝐴, −) : u� → 𝐒𝐞𝐭, where 𝐒𝐞𝐭 is the category of 𝐔-sets.

Remark 0.3.4. Lemma 0.2.18 implies that, for each object 𝐴 in an accessible
𝐔-category, there exists a regular cardinal in 𝐔 such that 𝐴 is ( , 𝐔)-compact;
in particular, every object in an accessible 𝐔-category has a compactness 𝐔-rank.

Definition 0.3.5. Let and be regular cardinals in a universe 𝐔. A ( , )-compactly
generated 𝐔-category is an essentially 𝐔-small category u� that satisfies the fol-
lowing conditions:

• u� has colimits for all -small -filtered diagrams.

• Every object in u� is a colimit for some -small -filtered diagram of ( , )-compact
objects in u�.

We write 𝐊 (u�) for the full subcategory of u� spanned by the ( , )-compact
objects.

Remark 0.3.6. Lemma 0.2.9 implies an essentially 𝐔-small category is ( , )-compactly
generated if and only if it is Cauchy-complete, i.e. if and only if all idempotent
endomorphisms in u� are split.

Proposition 0.3.7. Let u� be a -accessible 𝐔-category.

(i) 𝐊𝐔(u�) is a ( , )-compactly generated 𝐔-category, and every object in
𝐊𝐔(u�) is ( , )-compact.

(ii) If is a regular cardinal in 𝐔 and ⊲ , then 𝐊𝐔(u�) is a ( , )-compactly
generated 𝐔-category, and the ( , )-compact objects in 𝐊𝐔(u�) are pre-
cisely the ( , 𝐔)-compact objects in u�.

Proof. (i). This follows from lemma 0.2.17, corollary 0.2.19, and remark 0.3.6.

(ii). Combine corollary 0.2.16, lemma 0.2.18, and proposition 0.2.45. ■
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Proposition 0.3.8. Let and be regular cardinals in a universe 𝐔, let 𝔸 and
𝔹 be 𝐔-small categories, and let 𝐹 : 𝔸 → 𝔹 be a fully faithful functor. Assume
the following hypotheses:

• ≤ .

• 𝔸 is a Cauchy-complete category and 𝔹 has colimits for -small -filtered
diagrams.

• Each 𝐹 𝐴 is a ( , )-compact object in 𝔹, and each object in 𝔹 is a colimit
for a -small -filtered diagram of objects in the image of 𝐹 .

Then:

(i) Every ( , )-compact object in 𝔹 is isomorphic to an object in the image
of 𝐹 : 𝔸 → 𝔹.

(ii) There exists a functor 𝑈 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔸) equipped with a natural bijection
of the form below,

𝐈𝐧𝐝𝐔(𝔸)(𝐴, 𝑈𝐵) ≅ 𝔹(𝐹 𝐴, 𝐵)

and it is unique up to unique isomorphism.

(iii) Moreover, the functor 𝑈 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔸) is fully faithful and essentially
surjective onto the full subcategory of ( , 𝐔)-compact objects in 𝐈𝐧𝐝𝐔(𝔸).

(iv) 𝐹 : 𝔸 → 𝔹 is a dense functor.

(v) If ⊲ , then the ( , 𝐔)-accessible functor �̄� : 𝐈𝐧𝐝𝐔(𝔹) → 𝐈𝐧𝐝𝐔(𝔸)
induced by 𝑈 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔸) is fully faithful and essentially surjective on
objects.

Proof. (i). Let 𝐵 be an object in 𝔹. By hypothesis, there is a -small -filtered
diagram 𝑌 : u� → 𝔹 such that each 𝑌 𝑗 is in the image of 𝐹 and 𝐵 ≅ lim−−→u�

𝑌 .
Thus, if 𝐵 is a ( , )-compact object in 𝔹, then 𝐵 must be a retract of some 𝑌 𝑗
(by corollary 0.2.16). But 𝔸 is Cauchy-complete and 𝐹 : 𝔸 → 𝔹 is fully faithful,
so 𝐵 must be isomorphic to some object in the image of 𝐹 .

(ii). The assumptions imply each functor 𝔹(𝐹 −, 𝐵) : 𝔸op → 𝐒𝐞𝐭 is a colimit
for a -small -filtered diagram of functors of the form 𝔸(−, 𝐴′) for various 𝐴′
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in 𝔸. Hence, for each object 𝐵 in 𝔹, there exist an object 𝑈𝐵 in 𝐈𝐧𝐝𝐔(𝔸) and
bijections

𝐈𝐧𝐝𝐔(𝔸)(𝐴, 𝑈𝐵) ≅ 𝔹(𝐹 𝐴, 𝐵)

that are natural in 𝐴. Since the canonical embedding 𝔸 → 𝐈𝐧𝐝𝐔(𝔸) is dense, we
thus obtain a functor 𝑈 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔸) with the required property.

(iii). It is clear that 𝑈 is a fully faithful functor that preserves colimits for -small
-filtered diagrams. We may then apply proposition 0.2.45 to deduce that every

( , 𝐔)-compact object in 𝐈𝐧𝐝𝐔(𝔸) is isomorphic to one in the image of 𝑈 .

(iv). This follows from claim (iii) and the fact that the canonical embedding
𝔸 → 𝐈𝐧𝐝𝐔(𝔸) is dense.

(v). If ⊲ , then theorem 0.2.34 says 𝐈𝐧𝐝𝐔(𝔸) is a -accessible category, so
we may apply the classification theorem (0.2.29) to deduce that �̄� : 𝐈𝐧𝐝𝐔(𝔹) →
𝐈𝐧𝐝𝐔(𝔸) is fully faithful and essentially surjective on objects. ■

Corollary 0.3.9 (Classification of compactly generated categories). Let and
be regular cardinals in a universe 𝐔. If either = or ⊲ , then the following
are equivalent for a Cauchy-complete category u�:

(i) u� is a ( , )-compactly generated 𝐔-category.

(ii) 𝐈𝐧𝐝𝐔(u�) is a -accessible 𝐔-category.

(iii) u� is equivalent to 𝐊𝐔(u�) for some -accessible 𝐔-category u�.

Proof. (i) ⇒ (ii). See proposition 0.3.8.

(ii) ⇒ (iii). Apply proposition 0.2.25.

(iii) ⇒ (i). See proposition 0.3.7. ■

Definition 0.3.10. Let and be regular cardinals in a universe 𝐔. A ( , )-compactly
defined functor is a functor 𝐹 : u� → u� with the following properties:

• u� is a ( , )-compactly generated 𝐔-category.

• 𝐹 : u� → u� preserves colimits for -small -filtered diagrams of ( , )-compact
objects in u�.
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Lemma 0.3.11. Let u� be a ( , )-compactly generated 𝐔-category, let u� be a
locally 𝐔-small category, and let 𝐒𝐞𝐭 be the category of 𝐔-sets. If 𝐹 : u� → u� is
a ( , )-compactly defined functor, then the natural maps

u�(𝐹 𝐶, 𝐷) → [𝐊 (u�)op, 𝐒𝐞𝐭](u�(−, 𝐶), u�(𝐹 −, 𝐷))
𝑓 ↦ (𝑐 ↦ 𝑓 ∘ 𝐹 𝑐)

are bijections.

Proof. Choose a -small -filtered diagram 𝑋 : u� → u� such that each vertex is
( , )-compact in u� and 𝐶 ≅ lim−−→u�

𝑋. We then have a natural bijection

u�(𝐴, 𝐶) ≅ lim−−→u�
u�(𝐴, 𝑋)

as 𝐴 varies in 𝐊 (u�), so

[𝐊 (u�)op, 𝐒𝐞𝐭](u�(−, 𝐶), u�(−, 𝐷)) ≅ lim←−−u� [𝐊 (u�)op, 𝐒𝐞𝐭](u�(−, 𝑋), u�(𝐹 −, 𝐷))

and by applying the Yoneda lemma, we have

lim←−−u� [𝐊 (u�)op, 𝐒𝐞𝐭](u�(−, 𝑋), u�(𝐹 −, 𝐷)) ≅ lim←−−u�
u�(𝐹 𝑋, 𝐷)

but 𝐹 : u� → u� preserves colimits for -small -filtered diagrams of ( , )-compact
objects in u�, so:

lim←−−u�
u�(𝐹 𝑋, 𝐷) ≅ u�(lim−−→u�

𝐹 𝑋, 𝐷) ≅ u�(𝐹 𝐶, 𝐷)

We may therefore deduce that the indicated maps are bijections. ■

Proposition 0.3.12. Let u� and u� be ( , )-compactly generated 𝐔-categories.
If 𝐹 : u� → u� is a ( , )-compactly defined functor, then the induced functor
𝐈𝐧𝐝𝐔(𝐹 ) : 𝐈𝐧𝐝𝐔(u�) → 𝐈𝐧𝐝𝐔(u�) is ( , 𝐔)-accessible.

Proof. Let u� = 𝐊 (u�), let 𝛾u� : u� → 𝐈𝐧𝐝𝐔(u�) and 𝛾u� : u� → 𝐈𝐧𝐝𝐔(u�) be
the canonical embeddings and let ̄𝐹 = 𝐈𝐧𝐝𝐔(𝐹 ). Theorems 0.2.24 and a.5.15
imply ̄𝐹 : 𝐈𝐧𝐝𝐔(u�) → 𝐈𝐧𝐝𝐔(u�) is (the functor part of) a pointwise left Kan
extension of 𝛾u�𝐹 : u� → 𝐈𝐧𝐝𝐔(u�) along 𝛾u� : u� → 𝐈𝐧𝐝𝐔(u�). By proposition 0.3.8,
𝐈𝐧𝐝𝐔(u�) and 𝐈𝐧𝐝𝐔(u�) are -accessible 𝐔-categories, and to verify that ̄𝐹 is a
( , 𝐔)-accessible functor, it suffices to show that ̄𝐹 is (the functor part of) a
pointwise left Kan extension of 𝛾u�𝐹 |u� along 𝛾u�|u�.
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Since 𝛾u� : u� → 𝐈𝐧𝐝𝐔(u�) preserves colimits for -small diagrams, the com-
posite 𝛾u�𝐹 : u� → 𝐈𝐧𝐝𝐔(u�) is also a ( , )-compactly defined functor, and so
𝛾u�𝐹 is (the functor part of) a pointwise left Kan extension of 𝛾u�𝐹 |u� along the
inclusion u� ↪ u� (by lemma 0.3.11). We may therefore apply theorem a.5.20 to
deduce that ̄𝐹 is indeed (the functor part of) a pointwise left Kan extension of
𝛾u�𝐹 |u� along 𝛾u�|u�. ■

Definition 0.3.13. Let be a regular cardinal in a universe 𝐔. A strongly
( , 𝐔)-accessible functor is a functor 𝐹 : u� → u� with the following proper-
ties:

• Both u� and u� are -accessible 𝐔-categories.

• 𝐹 preserves colimits for 𝐔-small -filtered diagrams.

• 𝐹 sends ( , 𝐔)-compact objects in u� to ( , 𝐔)-compact objects in u�.

Example 0.3.14. Given any functor 𝐹 : 𝔸 → 𝔹, if u� and ℬ are small cat-
egories, then the induced functor 𝐈𝐧𝐝𝐔(𝐹 ) : 𝐈𝐧𝐝𝐔(𝔸) → 𝐈𝐧𝐝𝐔(𝔹) is strongly
( , 𝐔)-accessible, by corollaries 0.2.16 and 0.2.19.

Proposition 0.3.15 (Products of accessible categories). Let be a regular car-
dinal in a universe 𝐔. If (u�𝑖 | 𝑖 ∈ 𝐼) is a -small family of -accessible 𝐔-categories,
then:

(i) The product u� = ∏𝑖∈𝐼 u�𝑖 is also a -accessible 𝐔-category.

(ii) Moreover, the projection functors u� → u�𝑖 are strongly ( , 𝐔)-accessible
functors.

Proof. It is clear that u� has colimits for 𝐔-small -filtered diagrams: indeed,
they can be computed componentwise. Theorem 0.2.13 implies that an object
in u� is ( , 𝐔)-compact as soon as its components are ( , 𝐔)-compact objects in
their respective categories. Recalling lemma 0.2.10, it follows that u� is generated
under 𝐔-small -filtered colimits by a 𝐔-small family of ( , 𝐔)-compact objects,
as required of a -accessible 𝐔-category. ■

Lemma 0.3.16. Let be a regular cardinal in a universe 𝐔, let 𝐔+ be a uni-
verse with 𝐔 ⊆ 𝐔+, let u� be an accessible 𝐔-category, let u� be an accesible
𝐔+-category, and let 𝐹 : u� → u� be a ( , 𝐔)-accessible functor.
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(i) There is a regular cardinal in 𝐔+ such that 𝐹 sends ( , 𝐔)-compact ob-
jects in u� to ( , 𝐔+)-compact objects in u�.

(ii) Moreover, if is a regular cardinal in 𝐔+ such that ⊲ and ≤ , then
𝐹 sends ( , 𝐔)-compact objects in u� to ( , 𝐔+)-compact objects in u�.

Proof. (i). Such a regular cardinal exists by remark 0.3.4 and proposition 0.2.25.

(ii). If is not in 𝐔, then the claim is trivial; otherwise, proposition 0.2.45 and
lemma 0.2.18 imply that 𝐹 sends ( , 𝐔)-compact objects in u� to ( , 𝐔+)-compact
objects in u�, as required. ■

Corollary 0.3.17. Let u� and u� be accessible 𝐔-categories. If 𝐹 : u� → u� is a
( , 𝐔)-accessible functor, then:

(i) There exists a regular cardinal in 𝐔 such that 𝐹 is strongly ( , 𝐔)-accessible.

(ii) Moreover, if is a regular cardinal in 𝐔 and ⊲ , then 𝐹 is also strongly
( , 𝐔)-accessible.

Proof. Combine lemma 0.3.16, theorem 0.2.34, and proposition 0.2.35. ■

Lemma 0.3.18. Let u� be a -filtered category. If 𝔸 is a -small category, then
the functor category [𝔸, u� ] is also a -filtered category.

Proof. There is a natural bijection between diagrams 𝔻 → [𝔸, u� ] and diagrams
𝔻 × 𝔸 → u� ; but if 𝔻 is -small, then so is 𝔻 × 𝔸. Thus, every -small diagram
in [𝔸, u� ] has a cocone, as required. ■

Lemma 0.3.19. Let u� be a -filtered category, let 𝐴 : ℐ → u� be a -small
diagram, let 𝐴∕u� be the cocone category (𝐴 ↓ Δ), and let 𝑃 : 𝐴∕u� → u� be the
projection functor.

(i) The cocone category 𝐴∕u� is also a -filtered category.

(ii) 𝑃 : 𝐴∕u� → u� is a cofinal functor.[9]

Proof. (i). Let 𝔻 be a -small category. There exists a -small category �̃�
equipped with a functor 𝐿 : ℐ → �̃� and a natural bijection between diagrams
𝑋 : 𝔻 → 𝐴∕u� and diagrams �̃� : �̃� → u� such that �̃�𝐿 = 𝐴, and moreover

[9] See definition a.5.31.
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this construction is natural in 𝔻. Thus, every -small diagram in 𝐴∕u� admits a
cocone, as required.

(ii). We must show that the comma category (𝑏 ↓ 𝑃 ) is connected for all objects
𝑏 in u� . Since u� is filtered, there must exist an object 𝑐, a cocone 𝐴 ⇒ Δ𝑐, and
a morphism 𝑏 → 𝑐 in u� ; thus, (𝑏 ↓ 𝑃 ) is inhabited. Moreover, any diagram in
[ℐ, u� ] of the form shown below on the left can be completed to one of the form
shown below on the right,

𝐴

Δ𝑐 Δ𝑑

Δ𝑏

𝐴

Δ𝑐 Δ𝑒 Δ𝑑

Δ𝑏

so we may conclude that (𝑏 ↓ 𝑃 ) is indeed connected. ■

Lemma 0.3.20. Let be a regular cardinal in a universe 𝐔, let 𝑋 : ℐ → u�
be a -small diagram, let 𝑌 : u� → u� be a 𝐔-small -filtered diagram, and let

: 𝑌 ⇒ Δ𝐵 be a colimiting cocone in u�. If each 𝑋𝑖 is a ( , 𝐔)-compact object
in u�, then every cocone 𝑋 ⇒ Δ𝐵 must factor through 𝑗 : 𝑌 𝑗 → 𝐵 for some 𝑗
in u� .

Proof. Let 𝜑 : 𝑋 ⇒ Δ𝐵 be a cocone, and regard it as a morphism in the
functor category [ℐ, u�]. By proposition 0.2.47, 𝑋 is a ( , 𝐔)-compact object
in [ℐ, u�]; but Δ : Δ𝑌 ⇒ ΔΔ𝐵 is a colimiting cocone in [ℐ, u�], so we may
apply lemma 0.2.15. ■

Lemma 0.3.21. Let be a regular cardinal in a universe 𝐔 and let 𝐹 : u� → ℰ
and 𝐺 : u� → ℰ be functors that send ( , 𝐔)-compact objects to ( , 𝐔)-compact
objects. Given an object (𝐶, 𝐷, 𝑒) in the comma category (𝐹 ↓ 𝐺), if 𝐶 is a
( , 𝐔)-compact object in u� and 𝐷 is a ( , 𝐔)-compact object in u�, then (𝐶, 𝐷, 𝑒)
is a ( , 𝐔)-compact object in (𝐹 ↓ 𝐺).

Proof. Let ℬ = (𝐹 ↓ 𝐺) and let 𝜑 : 𝐹 𝑃 ⇒ 𝐺𝑄 be the canonical natural trans-
formation. Then, given any two objects 𝐵 and 𝐵′ in ℬ, we have the following
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pullback diagram,

ℬ(𝐵, 𝐵′) u�(𝑄𝐵, 𝑄𝐵′)

u�(𝑃 𝐵, 𝑃 𝐵′) ℰ(𝐹 𝑃 𝐵, 𝐺𝑄𝐵′)

where the map u�(𝑃 𝐵, 𝑃 𝐵′) → ℰ(𝐹 𝑃 𝐵, 𝐺𝑄𝐵′) is induced by the functor 𝐹 :
u� → ℰ and the morphism 𝜑𝐵′ : 𝐹 𝑃 𝐵′ → 𝐺𝑄𝐵′, and the map u�(𝑄𝐵, 𝑄𝐵′) →
ℰ(𝐹 𝑃 𝐵, 𝐺𝑄𝐵′) is induced by the functor 𝐺 : u� → ℰ and the morphism 𝜑𝐵 :
𝐹 𝑃 𝐵 → 𝐺𝑄𝐵. Thus, if 𝑃 𝐵 and 𝑄𝐵 are ( , 𝐔)-compact objects, then so are
𝐹 𝑃 𝐵 and 𝐺𝑄𝐵, and therefore we may use theorem 0.2.13 deduce that 𝐵 is a
( , 𝐔)-compact object in ℬ. ■

Theorem 0.3.22 (Accessibility of comma categories). Let be a regular car-
dinal in a universe 𝐔 and let 𝐹 : u� → ℰ and 𝐺 : u� → ℰ be ( , 𝐔)-accessible
functors.

(i) The comma category (𝐹 ↓ 𝐺) has colimits for 𝐔-small -filtered diagrams,
created by the projection functor (𝐹 ↓ 𝐺) → u� × u�.

(ii) If 𝐹 and 𝐺 are strongly ( , 𝐔)-accessible functors, then (𝐹 ↓ 𝐺) is a -ac-
cessible 𝐔-category, and the projection functors 𝑃 : (𝐹 ↓ 𝐺) → u� and
𝑄 : (𝐹 ↓ 𝐺) → u� are strongly ( , 𝐔)-accessible.

Proof. See Theorem 2.43 in [LPAC]. □

Corollary 0.3.23. If u� is a -accessible 𝐔-category and 𝐴 is a ( , 𝐔)-compact
object in u�, then:

• The slice category 𝐴∕u� is a -accessible 𝐔-category, and the projection
functor 𝐴∕u� → u� is a strongly ( , 𝐔)-accessible functor.

• The slice category u�∕𝐴 is a -accessible 𝐔-category, and the projection
functor u�∕𝐴 → u� is a strongly ( , 𝐔)-accessible functor. ■

Corollary 0.3.24. If u� is a -accessible 𝐔-category, then so is the functor cat-
egory [𝟚, u�], and moreover the ( , 𝐔)-compact objects in [𝟚, u�] are precisely the
componentwise ( , 𝐔)-compact objects.

Proof. The functor category [𝟚, u�] is isomorphic to the comma category (u� ↓ u�),
and id : u� → u� is certainly a strongly ( , 𝐔)-accessible functor. ■
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Corollary 0.3.25. If u� is a ( , )-compactly generated 𝐔-category, then so is
[𝟚, u�].

Proof. Combine lemma 0.3.21 and corollaries 0.3.9 and 0.3.24. ■

Lemma 0.3.26. Let and be regular cardinals in a universe 𝐔, with ≤ ,
let ℰ be a locally 𝐔-small category with colimits for 𝐔-small -filtered diagrams,
let 𝑋 : ℐ → ℰ and 𝑌 : u� → ℰ be 𝐔-small -filtered diagrams that are compon-
entwise ( , 𝐔)-compact, let 𝐶 = lim−−→ℐ

𝑋 and 𝐷 = lim−−→u�
𝑌 , and let 𝑐𝑖 : 𝑋𝑖 → 𝐶

and 𝑑𝑗 : 𝑌 𝑗 → 𝐷 be the components of the respective colimiting cocones.

(i) Given any object 𝑖0 in ℐ and any morphism 𝑒 : 𝐶 → 𝐷, there exist an
object 𝑗0 in u� and a morphism 𝑓0 : 𝑋𝑖0 → 𝑌 𝑗0 such that the following
diagram commutes:

𝑋𝑖0 𝐶

𝑌 𝑗0 𝐷

𝑓0

𝑐𝑖0

𝑒

𝑑𝑗0

(ii) Given any commutative diagram of the above form, if 𝑒 : 𝐶 → 𝐷 is an
isomorphism in ℰ, then there exist chains 𝐼 : → ℐ and 𝐽 : → u� and
a factorisation of the form below,

𝑋𝑖0 𝐶′ 𝐶

𝑌 𝑗0 𝐷′ 𝐷

𝑓0 𝑒′ 𝑒

where 𝐼(0) = 𝑖0, 𝐽(0) = 𝑗0, 𝐶′ = lim−−→𝛼<
𝑋𝐼(𝛼), 𝐷′ = lim−−→𝛼<

𝑌 𝐽(𝛼),
𝑒′ : 𝐶′ → 𝐷′ is an isomorphism, and the morphisms 𝐶′ → 𝐶 and 𝐷′ → 𝐷
are the ones induced by the evident cocones.

Proof. (i). Since 𝑋𝑖0 is ( , 𝐔)-compact and 𝑌 : u� → ℰ is a 𝐔-small -filtered
diagram, such a factorisation of 𝑒 ∘ 𝑐𝑖0

must exist, by lemma 0.2.15.

(ii). We will construct 𝐼 , 𝐽 , and 𝑒′ by transfinite induction on .

37



0. Foundations

• Given 𝑗𝛼 and 𝑓𝛼, choose a morphism 𝑖𝛼→𝛼+1 : 𝑖𝛼 → 𝑖𝛼+1 in ℐ and a morph-
ism 𝑔𝛼 : 𝑌 𝑗𝛼 → 𝑋𝑖𝛼+1 in ℰ such that the diagram below commutes:

𝑋𝑖𝛼 𝑋𝑖𝛼+1 𝐶

𝑌 𝑗𝛼 𝐷

𝑓𝛼

𝑋𝑖𝛼→𝛼+1 𝑐𝑖𝛼+1

𝑔𝛼

𝑑𝑗𝛼

𝑒−1

Such 𝑖𝛼→𝛼+1 and 𝑔𝛼 exist because 𝑓𝛼 : 𝑋𝑖𝛼 → 𝑌 𝑗𝛼 defines a ( , 𝐔)-compact
object in the slice category 𝑋𝑖𝛼∕ℰ (by lemma 0.3.21) and there is an evident
𝐔-small -filtered diagram 𝑖𝛼∕𝑋 : 𝑖𝛼∕ℐ → 𝑋𝑖𝛼∕ℰ with colimit defined by
𝑐𝑖𝛼

: 𝑋𝑖𝛼 → 𝐶 (by lemma 0.3.19).

• Given 𝑖𝛼+1 and 𝑔𝛼, choose a morphism 𝑗𝛼→𝛼+1 : 𝑗𝛼 → 𝑗𝛼+1 in u� and a
morphism 𝑓𝛼+1 : 𝑋𝑖𝛼+1 → 𝑌 𝑗𝛼+1 in ℰ such that the diagram below com-
mutes:

𝑌 𝑗𝛼 𝑌 𝑗𝛼+1 𝐷

𝑋𝑖𝛼+1 𝐶

𝑔𝛼

𝑌 𝑗𝛼→𝛼+1 𝑑𝑖𝛼+1

𝑓𝛼+1

𝑐𝑖𝛼+1

𝑒

• Given a limit ordinal 𝛽 < and 𝑖𝛼 for all ordinals 𝛼 < 𝛽, choose an object
𝑖𝛽 in ℐ and a cocone from the chain defined by (𝑖𝛼 | 𝛼 < 𝛽) to 𝑖𝛽 .

• Given 𝑖𝛽 for a limit ordinal 𝛽 < and 𝑗𝛼 for all ordinals 𝛼 < 𝛽, choose
an object 𝑗𝛽 in u� , a cocone from the chain defined by (𝑗𝛼 | 𝛼 < 𝛽), and a
morphism 𝑓𝛽 : 𝑋𝑖𝛽 → 𝑌 𝑗𝛽 such that the following diagram commutes for
all ordinals 𝛼 < 𝛽:

𝑌 𝑗𝛼 𝑌 𝑗𝛽 𝐷

𝑋𝑖𝛼+1 𝑋𝑖𝛽 𝐶

𝑔𝛼

𝑌 𝑗𝛼→𝛽 𝑑𝑗𝛽

𝑋𝑖𝛼+1→𝛽

𝑓𝛽

𝑐𝑖𝛽

𝑒

Such data exist because the chains 𝑋′ and 𝑌 ′ defined by (𝑋𝑖𝛼 | 𝛼 < 𝛽)
and (𝑌 𝑗𝛼 | 𝛼 < 𝛽) are ( , 𝐔)-compact objects in the category [𝛽, ℰ] (by
proposition 0.2.47) and there is an evident 𝐔-small -filtered diagram in
𝑌 ′∕[𝛽, ℰ] with colimit Δ𝐷 (by lemma 0.3.19).
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0.3. Accessible constructions

Now take 𝐼 : → ℐ and 𝐽 : → u� to be the chains defined by 𝐼(𝛼) = 𝑖𝛼 and
𝐽(𝛼) = 𝑗𝛼. Let 𝐶′ = lim−−→𝛼<

𝑋𝑖𝛼 and 𝐷′ = lim−−→𝛼<
𝑌 𝑗𝛼. The above construction

yields commutative diagrams of the form below for all ordinals 𝛼 < 𝛽 < ,

𝑋𝑖𝛼 𝑋𝑖𝛽

𝑌 𝑗𝛼 𝑌 𝑗𝛽

𝑓𝛼

𝑋𝑖𝛼→𝛽

𝑓𝛽

𝑌 𝑗𝛼→𝛽

𝑌 𝑗𝛼 𝑌 𝑗𝛽

𝑋𝑖𝛼+1 𝑋𝑖𝛽+1

𝑔𝛼

𝑌 𝑗𝛼→𝛽

𝑔𝛽

𝑋𝑖𝛼+1→𝛽+1

so there are induced morphisms 𝑓 : 𝐶′ → 𝐷′ and 𝑔 : 𝐷′ → 𝐶′; moreover, since
𝑔𝛼 ∘𝑓𝛼 = 𝑋𝑖𝛼→𝛼+1 and 𝑓𝛼+1 ∘𝑔𝛼 = 𝑌 𝑗𝛼→𝛼+1, we have 𝑔 ∘𝑓 = id𝐶′ and 𝑓 ∘𝑔 = id𝐷′.
Thus, we have the required isomorphism 𝑒 : 𝐶′ → 𝐷′. ■

Theorem 0.3.27 (Accessibility of iso-comma categories). Let be a regular
cardinal in a universe 𝐔, let u�, u�, and ℰ be categories with colimits for 𝐔-small

-filtered diagrams, and let 𝐹 : u� → ℰ and 𝐺 : u� → ℰ be be functors of 𝐔-rank
≤ .

(i) The iso-comma category (𝐹 ≀ 𝐺) has colimits for 𝐔-small -filtered dia-
grams, created by the projection functor (𝐹 ≀ 𝐺) → u� × u�.

(ii) Assuming 𝐹 and 𝐺 are strongly -accessible functors, given an object
(𝐶, 𝐷, 𝑒) in (𝐹 ≀ 𝐺), if 𝐶 is a ( , 𝐔)-compact object in u� and 𝐷 is a ( , 𝐔)-compact
object in u�, then (𝐶, 𝐷, 𝑒) is a ( , 𝐔)-compact object in (𝐹 ≀ 𝐺).

(iii) If 𝐹 and 𝐺 are strongly ( , 𝐔)-accessible functors and < , then (𝐹 ≀ 𝐺)
is a -accessible 𝐔-category, and the projection functors 𝑃 : (𝐹 ≀ 𝐺) → u�
and 𝑄 : (𝐹 ≀ 𝐺) → u� are strongly ( , 𝐔)-accessible.

Proof. (i). This is a straightforward consequence of the hypothesis that both
𝐹 : u� → ℰ and 𝐺 : u� → ℰ preserve colimits for 𝐔-small -filtered diagrams.

(ii). Since the iso-comma category (𝐹 ≀ 𝐺) is a full subcategory of the comma
category (𝐹 ↓ 𝐺), the claim is an immediate corollary of lemma 0.3.21.

(iii). Let ℬ = (𝐹 ≀ 𝐺). First, we must show that there is a 𝐔-small set of
( , 𝐔)-compact objects in ℬ that generate ℬ under colimits for 𝐔-small -filtered
colimits. Let (𝐶, 𝐷, 𝑒) be an object in ℬ. Since u� and u� are ( , 𝐔)-accessible
categories, we may choose 𝐔-small skeletons ℐ and u� of the comma categories
(𝐊𝐔(u�) ↓ 𝐶) and (𝐊𝐔(u�) ↓ 𝐷) and obtain 𝐔-small -filtered diagrams 𝑋 : ℐ →
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u� and 𝑌 : u� → u� that are componentwise ( , 𝐔)-compact and have 𝐶 ≅ lim−−→ℐ
𝑋

and 𝐷 ≅ lim−−→u�
𝑌 (by proposition 0.2.26 and theorem 0.2.34). Let u� be full

subcategory of the iso-comma category (𝐹 𝑋 ≀ 𝐺𝑌 ) spanned by those objects
(𝑖, 𝑗, 𝑓 ) such that the following diagram commutes,

𝐹 𝑋𝑖 𝐹 𝐶

𝐺𝑌 𝑗 𝐺𝐷

𝑓

𝐹 𝑐𝑖

𝑒

𝐺𝑑𝑗

where 𝑐𝑖 : 𝑋𝑖 → 𝐶 and 𝑑𝑗 : 𝑌 𝑗 → 𝐷 are the components of the respective
colimiting cocones. Let 𝑃 ′ : u� → ℐ and 𝑄′ : u� → u� be the projection
functors, and let 𝑍 : u� → ℬ be the evident diagram with 𝑃 𝑍 = 𝐹 𝑋𝑃 ′ and
𝑄𝑍 = 𝐺𝑌 𝑄′. It is clear that u� is a 𝐔-small category, and we claim 𝑍 : u� → ℬ
is -filtered diagram with (𝐶, 𝐷, 𝑒) as its colimit.

First, we verify that (𝐶, 𝐷, 𝑒) is a colimit for the diagram 𝑍 : u� → ℬ. Let
𝑖 be any object in ℐ and consider the comma category (𝑖 ↓ 𝑃 ′). Lemma 0.3.26
implies it is inhabited. Suppose we have two objects in (𝑖 ↓ 𝑃 ′), i.e. two objects
(𝑖0, 𝑗0, 𝑓0) and (𝑖1, 𝑗1, 𝑓1) in u� and two morphisms ℎ0 : 𝑖 → 𝑖0 and ℎ1 : 𝑖 → 𝑖1
in ℐ. Since ℐ is a filtered category, there exist an object 𝑖′ in ℐ and morphisms
ℎ′

0 : 𝑖0 → 𝑖′ and ℎ′
1 : 𝑖1 → 𝑖′ such that ℎ′

0 ∘ ℎ0 = ℎ′
1 ∘ ℎ1. Similarly, u� is

a filtered category, so there exist an object 𝑗2 in u� and morphisms 𝑗0 → 𝑗2
and 𝑗1 → 𝑗2. By considering a suitable diagram of shape 𝑗2∕u� in the category
(𝐺𝑌 𝑗0,𝐺𝑌 𝑗1)∕ℰ × ℰ (using the fact that 𝑓0 : 𝐹 𝑋𝑖0 → 𝐺𝑌 𝑗0 and 𝑓1 : 𝐹 𝑋𝑖1 → 𝐺𝑌 𝑗1
are isomorphisms in ℰ) and applying lemmas 0.3.19 and 0.3.26, we see that there
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is a commutative diagram in ℰ of the form shown below,

𝐹 𝑋𝑖0

𝐹 𝑋𝑖′ 𝐹 𝐶

𝐹 𝑋𝑖1

𝐺𝑌 𝑗0

𝐺𝑌 𝑗′ 𝐺𝐷

𝐺𝑌 𝑗1

𝑓0

𝐹 𝑋ℎ′
0

𝐹 𝑐𝑖0

𝑓 ′

𝐹 𝑐𝑖′

𝑒

𝑓1

𝐹 ℎ′
1

𝐹 𝑐𝑖1

𝐺𝑌 𝑘′
0

𝐺𝑑𝑗0

𝐺𝑑𝑗′

𝐺𝑌 𝑘′
1

𝐺𝑑𝑗1

and recalling lemma 0.2.18, we may assume that 𝑓 ′ : 𝐹 𝑋𝑖′ → 𝐺𝑌 𝑗′ is an
isomorphism in ℰ. Thus, the comma category (𝑖 ↓ 𝑃 ′) is connected, and therefore
𝑃 ′ : u� → ℐ is a cofinal functor. The symmetric argument shows that 𝑄′ : u� →
u� is also a cofinal functor, and since 𝐹 : u� → ℰ and 𝐺 : u� → ℰ preserve colimits
for 𝐔-small -filtered diagrams, we may deduce that the canonical cocone from
𝑍 to (𝐶, 𝐷, 𝑒) in ℬ is a colimiting cocone.

It remains to be shown that u� is a 𝐔-small -filtered category. Indeed, sup-
pose 𝐾 : 𝔸 → u� is a -small diagram. Since ℐ is a -filtered category, there
is an object 𝑖0 in ℐ with a cocone 𝑃 ′𝐾 ⇒ Δ𝑖0, and by considering a suitable
-filtered diagram in the category 𝐺𝑄′𝐾∕[𝔸, ℰ], we obtain an object 𝑗0 in u� and a

morphism 𝑓0 : 𝐹 𝑋𝑖0 → 𝐺𝑌 𝑗0 such that the diagram below commutes,

𝐹 𝑋𝑖0 𝐹 𝐶

𝐺𝑌 𝑗0 𝐺𝐷

𝑓0

𝐹 𝑐𝑖0

𝑒

𝐺𝑑𝑗0

as well as a cocone from 𝐾 to (𝑋𝑖0, 𝑌 𝑗0, 𝑓0) in the comma category (𝐹 ↓ 𝐺)
that is compatible with the colimiting cocone 𝐺𝑌 ⇒ Δ𝐺𝐷. Combining lemmas
0.2.18 and 0.3.26, we then obtain a cocone under 𝑃 in u�, as required. This
shows that every object in ℬ is a colimit for a 𝐔-small -filtered diagram of
componentwise ( , 𝐔)-compact objects in ℬ, and since u� and u� are -accessible
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𝐔-categories, proposition 0.2.25 implies the full subcategory of ℬ spanned by
such componentwise ( , 𝐔)-compact objects is essentially 𝐔-small.

Finally, observe that every ( , 𝐔)-compact object in ℬ is a retract of a com-
ponentwise ( , 𝐔)-compact object (because the set of such objects generate ℬ
under colimits for 𝐔-small -filtered diagrams), and thus we may apply corol-
lary 0.2.19 to deduce that every ( , 𝐔)-compact object in ℬ is itself component-
wise ( , 𝐔)-compact. Thus the projection functors 𝑃 : ℬ → u� and 𝑄 : ℬ → u�
are strongly ( , 𝐔)-accessible. ■

Definition 0.3.28. Let be a regular cardinal in a universe 𝐔. A -accessible
𝐔-subcategory of a -accessible 𝐔-category u� is a subcategory ℬ ⊆ u� such that
ℬ is a -accessible 𝐔-category and the inclusion ℬ ↪ u� is a ( , 𝐔)-accessible
functor.

Proposition 0.3.29. Let u� be a -accessible 𝐔-category and let ℬ be a replete
and full -accessible 𝐔-subcategory of u�.

(i) If 𝐴 is a ( , 𝐔)-compact object in u� and 𝐴 is in ℬ, then 𝐴 is also a
( , 𝐔)-compact object in u�.

(ii) If the inclusion ℬ ↪ u� is strongly ( , 𝐔)-accessible, then 𝐊𝐔(ℬ) = ℬ ∩
𝐊𝐔(u�).

Proof. (i). This is clear, since hom-sets and colimits for 𝐔-small -filtered dia-
grams in ℬ are computed as in u�.

(ii). Given claim (i), it suffices to show that every ( , 𝐔)-compact object in ℬ is
also ( , 𝐔)-compact in u�, but this is precisely the hypothesis that the inclusion
ℬ ↪ u� is strongly ( , 𝐔)-accessible. ■

Proposition 0.3.30. Let be a regular cardinal in a universe 𝐔, let u� and ℰ
be categories with colimits for 𝐔-small -filtered diagrams, let u� be a replete
and full subcategory of ℰ that is closed under colimits for 𝐔-small -filtered
diagrams, let 𝐹 : u� → ℰ be a functor of 𝐔-rank ≤ , and let ℬ be the preimage
of u� under 𝐹 , so that we have the following strict pullback diagram:

ℬ u�

u� ℰ𝐹
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(i) ℬ is a replete and full subcategory of u� and is closed under colimits for
𝐔-small -filtered diagrams in u�.

(ii) If 𝐹 : u� → ℰ and the inclusion u� ↪ ℰ are strongly ( , 𝐔)-accessible
functors and < , then ℬ is a -accessible 𝐔-subcategory of u� and the
inclusion ℬ ↪ u� is also strongly ( , 𝐔)-accessible.

Proof. (i). This is a straightforward exercise.

(ii). Consider the iso-comma category (𝐹 ≀ u�) and the induced comparison func-
tor 𝐾 : ℬ → (𝐹 ≀ u�). It is clear that ℬ is fully faithful; but since u� is a re-
plete subcategory of u�, for every object (𝐶, 𝐷, 𝑒) in (𝐹 ≀ u�), there is a canonical
isomorphism 𝐾𝐶 → (𝐶, 𝐷, 𝑒), namely the one corresponding to the following
commutative diagram in ℰ:

𝐹 𝐶 𝐹 𝐶

𝐹 𝐶 𝐷

id

id

𝑒

𝑒

Thus, 𝐾 : ℬ → (𝐹 ≀ u�) is (half of) an equivalence of categories. Theorem 0.3.27
says the projection 𝑃 : (𝐹 ≀ u�) → u� is a strongly ( , 𝐔)-accessible functor, so
we may deduce that the same is true for the inclusion ℬ ↪ u�. ■

Proposition 0.3.31. Let be a regular cardinal in a universe 𝐔, let 𝐹 : u� → u�
be a strongly ( , 𝐔)-accessible functor, and let u�′ be the full subcategory of u�
spanned by the image of 𝐹 .

(i) Every object in u�′ is a colimit for some 𝐔-small -filtered diagram con-
sisting of objects in u�′ that are ( , 𝐔)-compact as objects in u�.

(ii) Every ( , 𝐔)-compact object in u�′ is also ( , 𝐔)-compact as an object in
u�.

(iii) If u�′ is closed under colimits for 𝐔-small -filtered diagrams in u�, then
u�′ is a -accessible 𝐔-subcategory of u�.

Proof. (i). Let 𝐷 be any object in u�′. By definition, there is an object 𝐶 in u�
such that 𝐷 = 𝐹 𝐶 , and since u� is a -accessible 𝐔-category, there is a 𝐔-small

-filtered diagram 𝑋 : u� → u� such that each 𝑋𝑗 is a ( , 𝐔)-compact object in
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u� and 𝐶 ≅ lim−−→u�
𝑋. Since 𝐹 : u� → u� is a strongly ( , 𝐔)-accessible functor,

each 𝐹 𝑋𝑗 is a ( , 𝐔)-compact object in u� and we have 𝐷 ≅ lim−−→u�
𝐹 𝑋.

(ii). Moreover, if 𝐷 is a ( , 𝐔)-compact object in u�′, then 𝐷 must be a retract of
𝐹 𝑋𝑗 for some object 𝑗 in u� , and so 𝐷 is also ( , 𝐔)-compact as an object in u�.

(iii). Any object in u�′ that is ( , 𝐔)-compact as an object in u� must be ( , 𝐔)-compact
as an object in u�′, because u�′ is a full subcategory of u� that is closed under
colimits for 𝐔-small -filtered diagrams. ■

Proposition 0.3.32. Let 𝔹 be a 𝐔-small category and let 𝔻 be a -small poset.
If 𝔻 is well-founded, then:

(i) The ( , 𝐔)-accessible functor

𝐈𝐧𝐝 ([𝔻, 𝔹]) → [𝔻, 𝐈𝐧𝐝 (ℬ)]

obtained by extending the canonical embedding [𝔻, 𝔹] → [𝔻, 𝐈𝐧𝐝 (ℬ)] is
fully faithful and essentially surjective on objects.

(ii) The evaluation functors [𝔻, 𝐈𝐧𝐝 (𝔹)] → 𝐈𝐧𝐝𝐔(𝔹) are strongly ( , 𝐔)-accessible
functors.

Proof. Let 𝑌 : 𝔻 → 𝐈𝐧𝐝𝐔(𝔹) be a diagram, let 𝛾 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔹) be the canon-
ical embedding, and consider the following pullback diagram,

u� [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]∕𝑌

[𝔻, 𝔹] [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]

𝑃

[𝔻,𝛾]

where the functor [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]∕𝐶 → [𝔻, 𝐈𝐧𝐝𝐔(𝔹)] is the projection. The objects
of the category u� are diagrams 𝔻 → 𝔹 (regarded as diagrams 𝔻 → 𝐈𝐧𝐝𝐔(𝔹))
equipped with a morphism 𝑋 → 𝑌 in [𝔻, 𝐈𝐧𝐝𝐔(𝔹)], so u� is a 𝐔-small cat-
egory. Recalling corollaries 0.2.16 and 0.2.19 and proposition 0.2.47, to prove
the claims, it suffices to show that u� is a -filtered category and that the tauto-
logical cocone is a colimiting cocone.

Let 𝑋 : ℐ → u� be a -small diagram. We can then build an object �̃� in u�
equipped with a cocone under 𝑋 by well-founded induction over 𝔻:

44



0.3. Accessible constructions

• Given �̃�(𝑑′) and the cocone components for all 𝑑′ < 𝑑 in 𝔻, by consider-
ing an appropriate diagram in 𝐈𝐧𝐝𝐔(𝔹) and using lemma 0.3.20, we may
choose an object �̃�(𝑑) in 𝔹 equipped with morphisms �̃�(𝑑′) → �̃�(𝑑) for
all 𝑑′ < 𝑑, morphisms 𝑋(𝑖)(𝑑) → �̃�(𝑑) for all 𝑖 in ℐ, and a morphism
�̃�(𝑑) → 𝑌 (𝑑), all these making the appropriate diagrams commute.

Thus u� is indeed a -filtered category. To complete the proof, we must check
that the tautological cocone to 𝑌 is a colimiting cocone in [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]. Let
𝑑 be an object in 𝔻 and consider the comma category (𝛾 ↓ 𝑌 𝑑). There is an
evident functor 𝑃𝑑 : u� → (𝛾 ↓ 𝑌 𝑑) induced by u� → [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]∕𝑌 , and 𝑃𝑑
is a cofinal functor: indeed, by modifying the construction above (at the stage
where �̃�(𝑑) is chosen) in the cases ℐ = ∅ and ℐ = disc 2, one may verify that
the comma category ((𝐵, 𝑞) ↓ 𝑃𝑑) is connected for each object (𝐵, 𝑞) in (𝛾 ↓ 𝑌 𝑑).
Thus, the tautological cocone under the canonical diagram u� → [𝔻, 𝐈𝐧𝐝𝐔(𝔹)]
is a colimiting cocone, as required. ■

Corollary 0.3.33. Let be a regular cardinal in a universe 𝐔 and let 𝔻 be a
-small well-founded poset.

(i) If u� is a -accessible 𝐔-category, then so is [𝔻, u�], and the evaluation
functors [𝔻, u�] → u� are strongly ( , 𝐔)-accessible.

(ii) If 𝔹 is a 𝐔-small category with colimits (resp. limits) of shape 𝔻, then
𝐈𝐧𝐝𝐔(𝔹) has colimits (resp. limits) of shape 𝔻.

Proof. (i). The classification theorem for accessible categories (theorem 0.2.29)
says u� is equivalent to 𝐈𝐧𝐝 (𝔹) for some small category 𝔹, so we may apply
proposition 0.3.32.

(ii). Recalling proposition 0.1.12, this follows from claim (i) and the fact that
𝐈𝐧𝐝𝐔(−) is pseudofunctorial (hence, preserves adjunctions). ■

Corollary 0.3.34. Let be a regular cardinal in a universe 𝐔 and let 𝔹 be a
𝐔-small Cauchy-complete category. The following are equivalent:

(i) 𝐈𝐧𝐝𝐔(𝔹) has colimits for 𝐔-small ℵ0-filtered diagrams.

(ii) 𝔹 has colimits for -small ℵ0-filtered diagrams.

(iii) 𝔹 has colimits for 𝛼-chains for all ordinals 𝛼 of cardinality < .
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Proof. (i) ⇒ (ii). Use lemma 0.2.18 and proposition 0.2.25.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). By corollary 0.3.33, 𝐈𝐧𝐝𝐔(𝔹) has colimits for 𝛼-chains for all ordinals
𝛼 of cardinality < if 𝔹 has them; but since 𝛼-chains for ordinals 𝛼 of cardin-
ality ≥ are -filtered, it then follows that 𝐈𝐧𝐝𝐔(𝔹) has colimits for all 𝐔-small
chains. We may then apply theorem 0.2.12 to deduce that 𝐈𝐧𝐝𝐔(𝔹) has colimits
for 𝐔-small ℵ0-filtered diagrams. ■

Theorem 0.3.35 (The category of algebras for an accessible monad). Let u� be a
locally -presentable 𝐔-category, let 𝗧 = (𝑇 , , ) be a monad on u�, and let u�𝗧

be the category of algebras for 𝗧. If 𝑇 : u� → u� is a ( , 𝐔)-accessible functor,
then:

(i) The forgetful functor 𝑈 : u�𝗧 → u� creates colimits for 𝐔-small -filtered
diagrams and creates limits for all 𝐔-small diagrams.

(ii) u�𝗧 is a locally -presentable 𝐔-category.

Proof. (i). This is well-known: cf. Propositions 4.3.1 and 4.3.2 in [Borceux,
1994b].

(ii). See Theorem 2.78 and the following remark in [LPAC], or Theorem 5.5.9
in [Borceux, 1994b]. □

Lemma 0.3.36. Let u� be a locally -presentable 𝐔-category and let 𝗧 = (𝑇 , , )
be a monad on u�. If the forgetful functor 𝑈 : u�𝗧 → u� is strongly ( , 𝐔)-accessible,
then so is the functor 𝑇 : u� → u�.

Proof. The accessible adjoint functor theorem (0.2.50) says the free 𝗧-algebra
functor 𝐹 : u� → u�𝗧 is strongly ( , 𝐔)-accessible if the forgetful functor 𝑈 :
u�𝗧 → u� is ( , 𝐔)-accessible; but 𝑇 = 𝑈𝐹 , so 𝑇 is strongly ( , 𝐔)-accessible
when 𝑈 is. ■

Theorem 0.3.37 (The category of algebras for a strongly accessible monad).
Let u� be a locally -presentable 𝐔-category, let 𝗧 = (𝑇 , , ) be a monad on u�
where 𝑇 : u� → u� has 𝐔-rank , and let u�𝗧 be the category of algebras for 𝗧. If
𝑇 : u� → u� is a strongly ( , 𝐔)-accessible functor and < , then:
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(i) Given a coequaliser diagram in u�𝗧 of the form below,

(𝐴, 𝛼) (𝐵, 𝛽) (𝐶, 𝛾)

if 𝐴 and 𝐵 are ( , 𝐔)-compact objects in u�, then so is 𝐶 .

(ii) Given a -small family ((𝐴𝑖, 𝛼𝑖) | 𝑖 ∈ 𝐼) of 𝗧-algebras, if each 𝐴𝑖 is a
( , 𝐔)-compact object in u�, then so is the underlying object of the 𝗧-algebra
coproduct ∑𝑖∈𝐼 (𝐴𝑖, 𝛼𝑖).

(iii) The forgetful functor 𝑈 : u�𝗧 → u� is strongly ( , 𝐔)-accessible.

Proof. (i). By referring to the explicit construction of coequalisers in u�𝗧 given
in the proof of Proposition 4.3.6 in [Borceux, 1994b] and applying lemma 0.2.18,
we see that 𝐶 is indeed a ( , 𝐔)-compact object in u� when 𝐴 and 𝐵 are, provided
𝑇 : u� → u� has 𝐔-rank and is strongly ( , 𝐔)-accessible.

(ii). Let 𝐹 : u� → u�𝗧 be a left adjoint for 𝑈 : u�𝗧 → u�. In the proof of Proposition
4.3.4 in [Borceux, 1994b], we find that the 𝗧-algebra coproduct ∑𝑖∈𝐼 (𝐴𝑖, 𝛼𝑖)
may be computed by a coequaliser diagram of the following form:

𝐹 (∑𝑖∈𝐼 𝑇 𝐴𝑖) 𝐹 (∑𝑖∈𝐼 𝐴𝑖) ∑𝑖∈𝐼 (𝐴𝑖, 𝛼𝑖)

Since 𝑇 : u� → u� is strongly ( , 𝐔)-accessible, the underlying objects of the
𝗧-algebras 𝐹 (∑𝑖∈𝐼 𝑇 𝐴𝑖) and 𝐹 (∑𝑖∈𝐼 𝐴𝑖) are ( , 𝐔)-compact objects in u�. Thus,
by claim (i), the underlying object of ∑𝑖∈𝐼 (𝐴𝑖, 𝛼𝑖) must also be a ( , 𝐔)-compact
object in u�.

(iii). It is shown in the proof of Theorem 5.5.9 in [Borceux, 1994b] that the full
subcategory ℱ of u�𝗧 spanned by the image of 𝐊𝐔(u�) under 𝐹 : u� → u�𝗧 is a dense
subcategory. Let u� be the smallest replete full subcategory of u�𝗧 that is closed
under colimits for -small diagrams in u� and that contains ℱ. Observe that claims
(i) and (ii) imply that the underlying object of every 𝗧-algebra that is in u� must be
a ( , 𝐔)-compact object in u�. To show that the forgetful functor 𝑈 : u�𝗧 → u� is
strongly ( , 𝐔)-accessible, it is enough to verify that every ( , 𝐔)-compact object
is in u�.

It is not hard to see that the comma category (u� ↓ (𝐴, 𝛼)) is then an essentially
𝐔-small -filtered category for any 𝗧-algebra (𝐴, 𝛼), and moreover, it can be
shown that the tautological cocone for the canonical diagram (u� ↓ (𝐴, 𝛼)) → u�𝗧
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is a colimiting cocone. Thus, if (𝐴, 𝛼) is a ( , 𝐔)-compact object in u�𝗧, it must
be a retract of an object in u�. But u� is closed under retracts, so (𝐴, 𝛼) is indeed
in u�. ■

Definition 0.3.38. Let u� be any category.

• A pointed endofunctor on u� is a functor 𝐽 : u� → u� equipped with a
natural transformation : idu� ⇒ 𝐽 .

• An algebra for a pointed endofunctor (𝐽 , ) on u� is an object 𝐴 in u�
equipped with a morphism 𝛼 : 𝐽𝐴 → 𝐴 such that 𝛼 ∘ 𝐴 = id𝐴.

• A homomorphism of algebras for a pointed endofunctor (𝐽 , ) on u�, say
𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽), is a morphism 𝑓 : 𝐴 → 𝐵 making the following
diagram commute:

𝐽𝐴 𝐽𝐵

𝐴 𝐵

𝛼

𝐽𝑓

𝛽

𝑓

We write u�(𝐽 , ) for the category of algebras for a pointed endofunctor (𝐽 , ) on u�.

The following result on the existence of free algebras for a pointed endofunc-
tor is a special case of a general construction due to Kelly [1980].

Theorem 0.3.39 (Free algebras for a pointed endofunctor). Let be a regular
cardinal, let u� be a category with pushouts and colimits for chains of length
≤ , and let (𝐽 , ) be a pointed endofunctor on u� such that 𝐽 : u� → u� preserves
colimits for -chains.

(i) The forgetful functor 𝑈 : u�(𝐽 , ) → u� has a left adjoint, say 𝐹 : u� → u�(𝐽 , ).

(ii) Let be a regular cardinal in a universe 𝐔. If 𝐽 : u� → u� sends ( , 𝐔)-compact
objects to ( , 𝐔)-compact objects and < , then the functor 𝑈𝐹 : u� → u�
has the same property.

Proof. Let 𝑋 be an object in u�. We now define a chain 𝑋• : + 2 → u� by
transfinite induction:

• Let 𝑋0 = 𝑋, let 𝑋1 = 𝐽𝑋0, let 𝑞0 = id𝐽𝑋0
, and let 𝑋0→1 : 𝑋0 → 𝑋1 be

𝑋0
.
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• Given 𝑞𝛼 : 𝐽𝑋𝛼 → 𝑋𝛼+1 for an ordinal 𝛼 < , define 𝑋𝛼+2 by the following
coequaliser diagram in u�:

𝐽𝑋𝛼 𝐽𝑋𝛼+1 𝑋𝛼+2

𝐽𝑞𝛼∘𝐽 𝑋𝛼

𝐽𝑞𝛼∘ 𝐽𝑋𝛼

𝑞𝛼+1

Then, for all 𝛼′ < 𝛼 + 2, set 𝑋𝛼′→𝛼+2 = 𝑞𝛼+1 ∘ 𝑋𝛼+1
∘ 𝑋𝛼′→𝛼+1; note that the

diagram below commutes:

𝐽𝑋𝛼 𝐽𝑋𝛼+1

𝑋𝛼+1 𝑋𝛼+2

𝑞𝛼

𝐽𝑋𝛼→𝛼+1

𝑞𝛼+1

𝑋𝛼+1→𝛼+2

• Given a limit ordinal 𝛽 ≤ and 𝑞𝛼 for all ordinals 𝛼 < 𝛽, define 𝑋𝛽 =
lim−−→𝛼<𝛽

𝑋𝛼 and take 𝑋𝛽→𝛼 : 𝑋𝛽 → 𝑋𝛼 to be the component of the colimiting
cocone; then define 𝑋𝛽+1 to be the colimit of the following diagram,

𝐽𝑋0 𝐽𝑋1 𝐽𝑋2 ⋯ 𝐽𝑋𝛽

𝑋1 𝑋2 𝑋3 ⋯ 𝑋𝛽

𝑞0 𝑞1 𝑞2

and let 𝑞𝛽 : 𝐽𝑋𝛽 → 𝑋𝛽+1 and 𝑋𝛽→𝛽+1 : 𝑋𝛽 → 𝑋𝛽+1 be the respect-
ive components of the colimiting cocone; note that the following diagram
commutes,

𝑋0 𝑋1 𝑋2 ⋯ 𝑋𝛽

𝐽𝑋0 𝐽𝑋1 𝐽𝑋2 ⋯ 𝐽𝑋𝛽

𝑋1 𝑋2 𝑋3 ⋯ 𝑋𝛽 𝑋𝛽+1

𝑋0 𝑋1 𝑋2 𝑋𝛽

𝑞0 𝑞1 𝑞2 𝑞𝛽

so we have 𝑋𝛽→𝛽+1 = 𝑞𝛽 ∘ 𝑋𝛽
.

Our hypothesis is that 𝐽 preserves colimits for -chains, so the canonical
comparison lim−−→𝛼<

𝐽𝑋𝛼 → 𝐽𝑋 is an isomorphism, as is 𝑋 → +1. However, for
all ordinals 𝛼 < 𝛽 < , we have

𝑋𝛼+1→𝛽+1 ∘ 𝑞𝛼 = 𝑞𝛽 ∘ 𝐽𝑋𝛼→𝛽
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so there is a unique morphism 𝛾𝑋 : 𝐽𝑋 → 𝑋 such that

𝛾𝑋 ∘ 𝐽𝑋𝛼→ = 𝑋𝛼+1→ ∘ 𝑞𝛼

for all ordinals 𝛼 < . Moreover, we have

𝛾𝑋 ∘ 𝑋𝜅
∘ 𝑋𝛼→ = 𝛾𝑋 ∘ 𝐽𝑋𝛼→ ∘ 𝑋𝛼

= 𝑋𝛼+1→ ∘ 𝑞𝛼 ∘ 𝑋𝛼
= 𝑋𝛼→

and {𝑋𝛼→ | 𝛼 < } is a jointly epimorphic family, so 𝛾𝑋 ∘ 𝑋𝜅
= id𝑋𝜅

, i.e.
(𝑋 , 𝛾𝑋) is a (𝐽 , )-algebra.

It remains to be shown that (𝑋 , 𝛾𝑋) is a free (𝐽 , )-algebra generated by 𝑋.
Let 𝑋 = 𝑋0→ , let (𝐷, 𝛿) be any (𝐽 , )-algebra, and let 𝑓 : 𝑋 → 𝐷 be any
morphism in u�. We construct a cocone 𝑓• : 𝑋• ⇒ Δ𝐷 by transfinite induction:

• Let 𝑓0 = 𝑓 , let 𝑓1 = 𝛿 ∘ 𝐽𝑓0, and note that 𝛿 ∘ 𝐽𝑓0 = 𝑓1 ∘ 𝑞0.

• Given 𝑓𝛼 : 𝑋𝛼 → 𝐷 and 𝑓𝛼+1 : 𝑋𝛼+1 → 𝐷 such that 𝑓𝛼+1 ∘ 𝑞𝛼 = 𝛿 ∘ 𝐽𝑓𝛼,
let 𝑓𝛼+2 : 𝑋𝛼+2 → 𝐷 be the unique morphism satisfying the following
equation:

𝑓𝛼+2 ∘ 𝑞𝛼+1 = 𝛿 ∘ 𝐽𝑓𝛼+1

Note that such a morphism exists because the diagrams below commute,

𝐽𝑋𝛼 𝐽𝐽𝑋𝛼

𝑋𝛼+1 𝐽𝑋𝛼+1

𝐷 𝐽𝐷

𝐷

𝑞𝛼

𝐽𝑋𝛼

𝐽𝑞𝛼

𝑓𝛼+1

𝐽𝑋𝛼+1

𝐽𝑓𝛼+1

id

𝐴

𝛿

𝐽𝑋𝛼 𝐽𝐷 𝐽𝐷

𝐽𝐽𝑋𝛼 𝐽𝐽𝐷

𝐽𝑋𝛼+1 𝐽𝐷 𝐷

𝐽 𝑋𝛼

𝐽𝑓𝛼

𝐽 𝐷

𝛿

𝐽𝑞𝛼

𝐽𝐽𝑓𝛼

𝐽𝛿

𝐽𝑓𝛼+1 𝛿

i.e. because the equation below holds,

(𝛿 ∘ 𝐽𝑓𝛼+1) ∘ (𝐽𝑞𝛼 ∘ 𝐽𝑋𝛼) = (𝛿 ∘ 𝐽𝑓𝛼+1) ∘ (𝐽𝑞𝛼 ∘ 𝐽 𝑋𝛼)

and 𝑞𝛼+1 : 𝐽𝑋𝛼+1 → 𝑋𝛼+2 is the coequaliser of 𝐽𝑞𝛼 ∘ 𝐽𝑋𝛼
and 𝐽𝑞𝛼 ∘ 𝐽 𝑋𝛼

.

• Given a limit ordinal 𝛽 ≤ , we define 𝑓𝛽 : 𝑋𝛽 → 𝐷 be the unique
morphism such that 𝑓𝛽 ∘ 𝑋𝛼→𝛽 = 𝑓𝛼 for all ordinals 𝛼 < 𝛽; we may do this
because the following equation holds:

𝑓𝛼+1 ∘ 𝑋𝛼→𝛼+1 = 𝑓𝛼+1 ∘ 𝑞𝛼 ∘ 𝑋𝛼+1
= 𝛿 ∘ 𝐽𝑓𝛼 ∘ 𝑋𝑖+1

= 𝛿 ∘ 𝐷 ∘ 𝑓𝛼 = 𝑓𝛼
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Furthermore,

(𝛿 ∘ 𝐽𝑓𝛽) ∘ 𝐽𝑋𝛼→𝛽 = 𝛿 ∘ 𝐽𝑓𝛼 = 𝑓𝛼+1 ∘ 𝑞𝛼

so there exists a unique morphism 𝑓𝛽+1 : 𝑋𝛽+1 → 𝐷 such that 𝑓𝛽+1 ∘ 𝑞𝛽 =
𝛿 ∘ 𝐽𝑓𝛽 and 𝑓𝛽+1 ∘ 𝑋𝛼→𝛽+1 = 𝑓𝛼 for all ordinals 𝛼 < 𝛽.

Now observe that, for all ordinals 𝛼 < ,

𝛿 ∘ 𝐽𝑓 ∘ 𝐽𝑋𝛼→ = 𝛿 ∘ 𝐽𝑓𝛼

= 𝑓𝛼+1 ∘ 𝑞𝛼

= 𝑓 ∘ 𝑋𝛼+1→ ∘ 𝑞𝛼

= 𝑓 ∘ 𝛾𝑋 ∘ 𝐽𝑋𝛼→

and {𝐽𝑋𝛼→ | 𝛼 < } is a jointly epimorphic family, so 𝛿 ∘ 𝐽𝑓 = 𝑓 ∘ 𝛾𝑋 , i.e. 𝑓
is a (𝐽 , )-algebra homomorphism (𝑋 , 𝛾𝑋) → (𝐷, 𝛿). Finally, notice that, for
any homomorphism ̄𝑓 : (𝑋 , 𝛾𝑋) → (𝐷, 𝛿) such that ̄𝑓 ∘ 𝑋 = 𝑓0, then,

𝛿 ∘ 𝐽( ̄𝑓 ∘ 𝑋𝛼→ ) = ̄𝑓 ∘ 𝛾𝑋 ∘ 𝐽𝑋𝛼→ = ( ̄𝑓 ∘ 𝑋𝛼+1→ ) ∘ 𝑞𝛼

hence we must have ̄𝑓 = 𝑓 , by transfinite induction.
The above argument shows that the comma category (𝑋 ↓ 𝑈) has an initial

object, and it is well known that 𝑈 has a left adjoint if and only if each comma
category (𝑋 ↓ 𝑈) has an initial object, so this completes the proof of claim (i).
For claim (ii), we simply observe that 𝐊𝐔(u�) is closed under colimits for -small
diagrams in u� (by lemma 0.2.18), so the above construction can be carried out
entirely in 𝐊𝐔(u�). ■

Theorem 0.3.40 (The category of algebras for a accessible pointed endofunctor).
Let u� be a -accessible 𝐔-category, let 𝐽 : u� → u� be a ( , 𝐔)-accessible functor,
let : idu� ⇒ 𝐽 be a natural transformation, and let u�(𝐽 , ) be the category of
algebras for the pointed endofunctor (𝐽 , ).

(i) The forgetful functor 𝑈 : u�(𝐽 , ) → u� creates colimits for 𝐔-small -filtered
diagrams; and if u� is 𝐔-complete, then 𝑈 : u�(𝐽 , ) → u� also creates limits
for all 𝐔-small diagrams.

(ii) u�(𝐽 , ) is an accessible 𝐔-category.

(iii) If u� has pushouts and colimits for chains of length ≤ , then 𝑈 : u�(𝐽 , ) → u�
is a monadic functor.

51



0. Foundations

Proof. (i). This is well-known: cf. Propositions 4.3.1 and 4.3.2 in [Borceux,
1994b].

(ii). We may construct u�(𝐽 , ) using inserters and equifiers, as in the proof of
Theorem 2.78 in [LPAC].

(iii). Since -chains are 𝐔-small -filtered diagrams, the hypotheses of the-
orem 0.3.39 are satisfied, and so the forgetful functor 𝑈 : u�(𝐽 , ) → u� has a left
adjoint. It is not hard to check that the other hypotheses of Beck’s monadicity
theorem are satisfied, so 𝑈 is indeed a monadic functor. □

Theorem 0.3.41 (The category of algebras for a strongly accessible pointed en-
dofunctor). Let u� be a locally -presentable 𝐔-category, let 𝐽 : u� → u� be a
functor of 𝐔-rank ≤ , let : idu� ⇒ 𝐽 be a natural transformation, let u�(𝐽 , ) be
the category of algebras for the pointed endofunctor (𝐽 , ), and let 𝗧 = (𝑇 , , )
be the induced monad on u�. If 𝐽 : u� → u� is a strongly ( , 𝐔)-accessible functor
and < , then:

(i) The functor 𝑇 : u� → u� has 𝐔-rank ≤ and is strongly ( , 𝐔)-accessible.

(ii) u�(𝐽 , ) is a locally -presentable 𝐔-category.

(iii) The forgetful functor 𝑈 : u�(𝐽 , ) → u� is a strongly ( , 𝐔)-accessible functor.

Proof. (i). We know that the forgetful functor 𝑈 : u�(𝐽 , ) → u� creates colimits
for 𝐔-small -filtered diagrams when 𝐽 : u� → u� has 𝐔-rank ≤ , so 𝑇 : u� → u�
must also have 𝐔-rank ≤ . Moreover, theorem 0.3.39 implies 𝑇 : u� → u� is
strongly ( , 𝐔)-accessible if 𝐽 : u� → u� is.

(ii). Apply theorem 0.3.35.

(iii). Apply theorem 0.3.37. ■

0.4 Change of universe
Prerequisites. §§0.1, 0.2, a.1, a.5.

Having introduced universes into our ontology, it becomes necessary to ask
whether an object with some universal property retains that property when we
enlarge the universe. Though it sounds inconceivable, there do exist examples of
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badly-behaved constructions that are not stable under change-of-universe; for ex-
ample, Waterhouse [1975] defined a functor 𝐹 : 𝐂𝐑𝐢𝐧𝐠 → 𝐒𝐞𝐭+, where 𝐂𝐑𝐢𝐧𝐠
is the category of commutative rings in a universe 𝐔 and 𝐒𝐞𝐭+ is the category
of 𝐔+-sets for some universe 𝐔+ with 𝐔 ∈ 𝐔+, such that the value of 𝐹 at any
given commutative ring in 𝐔 does not depend on 𝐔, and yet the value of the fpqc
sheaf associated with 𝐹 at the field ℚ depends on the size of 𝐔.

Definition 0.4.1. Let be a regular cardinal in a universe 𝐔, and let 𝐔+ be a
universe with 𝐔 ⊆ 𝐔+. A ( , 𝐔, 𝐔+)-accessible extension is a ( , 𝐔)-accessible
functor 𝑖 : u� → u�+ such that

• u� is a -accessible 𝐔-category,

• u�+ is a -accessible 𝐔+-category,

• 𝑖 sends ( , 𝐔)-compact objects in u� to ( , 𝐔+)-compact objects in u�+, and

• the functor 𝐊𝐔(u�) → 𝐊𝐔+
(u�+) so induced by 𝑖 is fully faithful and essen-

tially surjective on objects.

Remark 0.4.2. Let 𝔹 be a 𝐔-small category in which idempotents split. Then the
( , 𝐔)-accessible functor 𝐈𝐧𝐝𝐔(𝔹) → 𝐈𝐧𝐝𝐔+(𝔹) obtained by extending the em-
bedding 𝛾+ : 𝔹 → 𝐈𝐧𝐝𝐔+(𝔹) along 𝛾 : 𝔹 → 𝐈𝐧𝐝𝐔(𝔹) is a ( , 𝐔, 𝐔+)-accessible
extension, by proposition 0.2.25. The classification theorem (0.2.29) implies all
examples of ( , 𝐔, 𝐔+)-accessible extensions are essentially of this form.

Proposition 0.4.3. Let 𝑖 : u� → u�+ be a ( , 𝐔, 𝐔+)-accessible extension.

(i) u� is a locally -presentable 𝐔-category if and only if u�+ is a locally -pre-
sentable 𝐔+-category.

(ii) The functor 𝑖 : u� → u�+ is fully faithful.

(iii) If 𝐵 : u� → u� is any diagram (not necessarily 𝐔-small) and u� has a limit
for 𝐵, then 𝑖 preserves this limit.

Proof. (i). If u� is a locally -presentable 𝐔-category, then 𝐊𝐔(u�) has colimits
for all -small diagrams, so 𝐊𝐔+

(u�+) also has colimits for all -small diagrams.
The classification theorem (0.2.29) then implies u�+ is a locally -presentable
𝐔+-category. Reversing this argument proves the converse.
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(ii). Let 𝐴 : 𝕀 → u� and 𝐵 : 𝕁 → u� be two 𝐔-small -filtered diagrams of
( , 𝐔)-compact objects in u�. Then,

u�(lim−−→
𝕀

𝐴, lim−−→
𝕁

𝐵) ≅ lim←−−
𝕀

lim−−→
𝕁

u�(𝐴, 𝐵) ≅ lim←−−
𝕀

lim−−→
𝕁

u�+(𝑖𝐴, 𝑖𝐵)

≅ u�+
(lim−−→

𝕀
𝑖𝐴, lim−−→

𝕁
𝑖𝐵) ≅ u�+

(𝑖 lim−−→
𝕀

𝐴, 𝑖 lim−−→
𝕁

𝐵)

because 𝑖 is ( , 𝐔)-accessible and is fully faithful on the subcategory 𝐊𝐔(u�), and
therefore 𝑖 : u� → u�+ itself is fully faithful. Note that this hinges crucially on
theorem 0.1.31.

(iii). Let 𝐵 : u� → u� be any diagram. We observe that, for any ( , 𝐔)-compact
object 𝐶 in u�,

u�+

(
𝑖𝐶, 𝑖 lim←−−

u�
𝐵

)
≅ u�

(
𝐶, lim←−−

u�
𝐵

)
because 𝑖 is fully faithful

≅ lim←−−
u�

u�(𝐶, 𝐵) by definition of limit

≅ lim←−−
u�

u�+(𝑖𝐶, 𝑖𝐵) because 𝑖 is fully faithful

but we know the restricted Yoneda embedding u�+ → [𝐊𝐔(u�)op, 𝐒𝐞𝐭+] is fully
faithful, so this is enough to conclude that 𝑖 lim←−−u�

𝐵 is the limit of 𝑖𝐵 in u�+. ■

Remark 0.4.4. Similar methods show that any fully faithful functor u� → u�+ sat-
isfying the four bulleted conditions in the definition above is necessarily ( , 𝐔)-
accessible.

Lemma 0.4.5. Let 𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+, and let be a regular
cardinal in 𝐔. Suppose:

• u� and u� are locally -presentable 𝐔-categories.

• u�+ and u�+ are locally -presentable 𝐔+-categories.

• 𝑖 : u� → u�+ and 𝑗 : u� → u�+ are ( , 𝐔, 𝐔+)-accessible extensions.
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0.4. Change of universe

Given a strictly commutative diagram of the form below,

u� u�+

u� u�+

𝐺

𝑗

𝐺+

𝑖

where 𝐺 is ( , 𝐔)-accessible, 𝐺+ is ( , 𝐔+)-accessible, if both have left adjoints,
then the diagram satisfies the left Beck–Chevalley condition.

Proof. Let 𝐶 be a ( , 𝐔)-compact object in u�. Inspecting the proof of the-
orem 0.2.50, we see that the functor (𝐶 ↓ 𝐺) → (𝑖𝐶 ↓ 𝐺+) induced by 𝑗 pre-
serves initial objects. Lemma a.1.10 says the component at 𝐶 of the left Beck–
Chevalley natural transformation 𝐹 +𝑖 ⇒ 𝑗𝐹 is an isomorphism; but u� is gen-
erated by 𝐊𝐔(u�) and the functors 𝐹 , 𝐹 +, 𝑖, 𝑗 all preserve colimits for 𝐔-small

-filtered diagrams, so in fact 𝐹 +𝑖 ⇒ 𝑗𝐹 is a natural isomorphism. ■

Proposition 0.4.6. If 𝑖 : u� → u�+ is a ( , 𝐔, 𝐔+)-accessible extension and u�
is a locally -presentable 𝐔-category, then 𝑖 preserves colimits for all 𝐔-small
diagrams in u�.

Proof. It is well-known that a functor preserves colimits for all 𝐔-small diagrams
if and only if it preserves coequalisers for all parallel pairs and coproducts for
all 𝐔-small families, but coproducts for 𝐔-small families can be constructed in
a uniform way using coproducts for -small families and colimits for 𝐔-small

-filtered diagrams. It is therefore enough to show that 𝑖 : u� → u�+ preserves all
colimits for -small diagrams, since 𝑖 is already ( , 𝐔)-accessible.

Let 𝔻 be a -small category. Recalling proposition 0.1.12, our problem amounts
to showing that the diagram

u� u�+

[𝔻, u�] [𝔻, u�+]

Δ

𝑖

Δ+

𝑖∗

satisfies the left Beck–Chevalley condition. It is clear that 𝑖∗ is fully faithful.
Colimits for 𝐔-small diagrams in [𝔻, u�] and in [𝔻, u�+] are computed compon-
entwise, so Δ and 𝑖∗ are certainly ( , 𝐔)-accessible, and Δ+ is ( , 𝐔+)-accessible.
Using proposition 0.2.47, we see that 𝑖∗ is also a ( , 𝐔, 𝐔+)-accessible extension,
so we apply the lemma above to conclude that the left Beck–Chevalley condition
is satisfied. ■
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Theorem 0.4.7 (Stability of accessible adjoint functors). Let 𝐔 and 𝐔+ be uni-
verses, with 𝐔 ∈ 𝐔+, and let and be regular cardinals in 𝐔, with ≤ .
Suppose:

• u� is a locally -presentable 𝐔-category.

• u� is a locally -presentable 𝐔-category.

• u�+ is a locally -presentable 𝐔+-category.

• u�+ is a locally -presentable 𝐔+-category.

Let 𝑖 : u� → u�+ be a ( , 𝐔, 𝐔+)-accessible extension and let 𝑗 : u� → u�+ be a
fully faithful functor.

(i) Given a strictly commutative diagram of the form below,

u� u�+

u� u�+

𝐺

𝑗

𝐺+

𝑖

where 𝐺 is ( , 𝐔)-accessible and 𝐺+ is ( , 𝐔+)-accessible, if both have
left adjoints and 𝑗 is a ( , 𝐔, 𝐔+)-accessible extension, then the diagram
satisfies the left Beck–Chevalley condition.

(ii) Given a strictly commutative diagram of the form below,

u� u�+

u� u�+

𝐹

𝑖

𝐹 +

𝑗

if both 𝐹 and 𝐹 + have right adjoints, then the diagram satisfies the right
Beck–Chevalley condition.

Proof. (i). The proof is essentially the same as lemma 0.4.5, though we have to
use proposition 0.4.6 to ensure that 𝑗 preserves colimits for all 𝐔-small -filtered
diagrams in u�.

(ii). Let 𝐷 be any object in u�. Inspecting the proof of theorem 0.2.50, we
see that our hypotheses, plus the fact that 𝑖 preserves colimits for all 𝐔-small dia-
grams in u�, imply that the functor (𝐹 ↓ 𝐷) → (𝐹 + ↓ 𝑗𝐷) induced by 𝑖 preserves
terminal objects. Thus, lemma a.1.10 implies that the diagram satisfies the right
Beck–Chevalley condition. ■
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Theorem 0.4.8. Let 𝑖 : u� → u�+ be a ( , 𝐔, 𝐔+)-accessible extension and let u�
be a locally -presentable 𝐔-category.

(i) If is a regular cardinal in 𝐔 and ≤ , then 𝑖 : u� → u�+ is also a
( , 𝐔, 𝐔+)-accessible extension.

(ii) If is the cardinality of 𝐔, then 𝑖 : u� → u�+ factors through the inclu-
sion 𝐊𝐔+

(u�+) ↪ u�+ as functor u� → 𝐊𝐔+
(u�+) that is (fully faithful and)

essentially surjective on objects.

(iii) The ( , 𝐔+)-accessible functor 𝐈𝐧𝐝𝐔+(u�) → u�+ induced by 𝑖 : u� → u�+ is
fully faithful and essentially surjective on objects.

Proof. (i). Since 𝑖 : u� → u�+ is a ( , 𝐔)-accessible functor, it is certainly also
( , 𝐔)-accessible, by lemma 0.2.38. It is therefore enough to show that 𝑖 restricts
to a functor 𝐊𝐔(u�) → 𝐊𝐔+

(u�+) that is (fully faithful and) essentially surjective
on objects.

Proposition 0.2.46 says 𝐊𝐔(u�) is the smallest replete full subcategory of u�
that contains 𝐊𝐔(u�) and is closed in u� under colimits for -small diagrams, there-
fore the replete closure of the image of 𝐊𝐔(u�) must be the smallest replete full
subcategory of u�+ that contains 𝐊𝐔+

(u�+) and is closed in u�+ under colimits for
-small diagrams, since 𝑖 is fully faithful and preserves colimits for all 𝐔-small

diagrams. This proves the claim.

(ii). Since every object in u� is ( , 𝐔)-compact for some regular cardinal < ,
claim (i) implies that the image of 𝑖 : u� → u�+ is contained in 𝐊𝐔+

(u�). To
show 𝑖 is essentially surjective onto 𝐊𝐔+

(u�), we simply have to observe that the
inaccessibility of (proposition 0.1.36) and proposition 0.2.46 imply that, for
𝐶′ any ( , 𝐔+)-compact object in u�+, there exists a regular cardinal < such
that 𝐶′ is also a ( , 𝐔+)-compact object, which reduces the question to claim (i).

(iii). This is an immediate corollary of claim (ii) and the classification theorem
(0.2.29) applied to u�+, considered as a ( , 𝐔+)-accessible category. ■

Remark 0.4.9. Although the fact 𝑖 : u� → u�+ that preserves limits and colimits
for all 𝐔-small diagrams in u� is a formal consequence of the theorem above (via
e.g. corollary a.5.30), it is not clear whether the theorem can be proved without
already knowing this.
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Corollary 0.4.10. If 𝔹 is a 𝐔-small category and has colimits for all -small
diagrams, and is the cardinality of 𝐔, then the canonical ( , 𝐔+)-accessible
functor 𝐈𝐧𝐝𝐔+(𝐈𝐧𝐝𝐔(𝔹)) → 𝐈𝐧𝐝𝐔+(𝔹) is fully faithful and essentially surjective
on objects. ■

Proposition 0.4.11. Let 𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+, and let and
be regular cardinals in 𝐔. Suppose:

• u� is a locally -presentable 𝐔-category.

• u� is a locally -presentable 𝐔-category.

• u�+ is a locally -presentable 𝐔+-category.

• u�+ is a locally -presentable 𝐔+-category.

Let 𝐹 : u� → u� and 𝐺 : u� → u� be functors, let 𝑖 : u� → u�+ be a ( , 𝐔, 𝐔+)-ac-
cessible extension, and let 𝑗 : u� → u�+ be a ( , 𝐔, 𝐔+)-accessible extension.
Consider the following (not necessarily commutative) diagram:

u� u� u�+

u�

u�+

𝐹

𝐺 𝑗

𝑖

𝐻

𝐻+

(i) If 𝐻 is a pointwise right Kan extension of 𝐺 along 𝐹 , then 𝑗𝐻 is a point-
wise right Kan extension of 𝑗𝐺 along 𝐹 , and if 𝐻+ is a pointwise right Kan
extension of 𝑗𝐻 along 𝑖, then 𝐻+ is also a pointwise right Kan extension
of 𝑗𝐺 along 𝑖𝐹 .

(ii) Assuming u� is 𝐔-small, if 𝐻 is a pointwise left Kan extension of 𝐺 along
𝐹 , then 𝑗𝐻 is a pointwise left Kan extension of 𝑗𝐺 along 𝐹 , and if 𝐻+ is
a pointwise left Kan extension of 𝑗𝐻 along 𝑖, then 𝐻+ is also a pointwise
left Kan extension of 𝑗𝐺 along 𝑖𝐹 .

Proof. Use theorem a.5.20 and the fact that 𝑖 and 𝑗 preserve limits for all dia-
grams and colimits for 𝐔-small diagrams. ■
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0.5 Small object arguments
Prerequisites. §§0.1, 0.2, 0.3, 0.4, a.3, a.5.

The small object argument is a recurring construction in homotopical alge-
bra, originally due to Quillen [1967, Ch. II, §3] but refined by many authors
since—notably by Garner [2009]. Roughly speaking, the small object argument
shows that, under certain hypotheses, starting from a small set ℐ of morphisms in
a cocomplete category u�, one can define the notions of ‘relative ℐ-cell complex’
and ‘ℐ-fibration’ so that every morphism in u� factors as a relative ℐ-cell complex
followed by an ℐ-fibration.

In this section, we will study the small object argument with a view toward
questions of stability under change-of-universe.

Definition 0.5.1. Let u� be a category, and let ℐ be a subset of mor u�. A present-
ation for a relative ℐ-cell complex in u� consists of the following data:

• An ordinal 𝛼. (We say the presentation is indexed over 𝛼.)

• A colimit-preserving functor 𝑋• : [𝛼] → u�, where [𝛼] is the well-ordered
set {0, … , 𝛼} considered as a preorder category.

• For each ordinal 𝛽 < 𝛼, a (possibly empty) indexing set 𝑇𝛽 ; and for each
element 𝑗 of 𝑇𝛽 , a commutative diagram of the form below,

𝑈𝛽,𝑗 𝑋𝛽

𝑉𝛽,𝑗 𝑋𝛽+1

𝑒𝛽,𝑗

𝑢𝛽,𝑗

𝑋𝛽→𝛽+1

𝑣𝛽,𝑗

where 𝑒𝛽,𝑗 : 𝑈𝛽,𝑗 → 𝑉𝛽,𝑗 is a morphism in ℐ.

These data are moreover required to satisfy the following condition:

• For each ordinal 𝛽 < 𝛾 , the coproducts ∐𝑗∈𝑇𝛽
𝑆𝛽,𝑗 and ∐𝑗∈𝑇𝛽

𝐷𝛽,𝑗 exist in
u�, and the induced diagram

∐𝑗∈𝑇𝛽
𝑈𝛽,𝑗 𝑋𝛽

∐𝑗∈𝑇𝛽
𝑉𝛽,𝑗 𝑋𝛽+1

∐𝑗∈𝑇𝛽
𝑒𝛽,𝑗

𝑢𝛽

𝑋𝛽→𝛽+1

𝑣𝛽

is a pushout square in u�.
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The presentation is said to be 𝐔-small (resp. -small for a regular cardinal ) if
𝛼 is an ordinal in 𝐔 (resp. |𝛼| < ) and the disjoint union ∐𝛽<𝛼 𝑇𝛽 is in 𝐔 (resp.
has cardinality less than ). A sequential presentation is one where each 𝑇𝛽 is
a singleton, in which case we suppress the index 𝑗 in 𝑒𝛽,𝑗 , 𝑢𝛽,𝑗 , and 𝑣𝛽,𝑗 .

A relative ℐ-cell complex in u� is a morphism 𝑓 : 𝑋 → 𝑌 in u� for which there
exists a presentation as above with 𝑓 equal to 𝑋0 → 𝑋𝛼. Given an initial object
0 in u�, an ℐ-cell complex in u� is an object 𝑌 for which the unique morphism
0 → 𝑌 is a relative ℐ-cell complex.

Remark 0.5.2. For any object 𝑋 in u� and any subset ℐ ⊆ mor u�, the morphism
id : 𝑋 → 𝑋 is a relative ℐ-cell complex in u� (with the obvious presentation
indexed over 0). More generally, every isomorphism in u� is a relative ℐ-cell
complex, with a presentation indexed over 1 (and 𝑇0 = ∅); but in order to get a
sequential presentation, one must assume that there is an isomorphism in ℐ.

Proposition 0.5.3. Let u� be a category, let ℐ be a subset of mor u�, let be a
regular cardinal, and let cellℐ, u� be the set of relative ℐ-cell complexes in u� that
admit a -small presentation.

(i) Every morphism in ℐ is also in cellℐ, u�.

(ii) For each object 𝑋 in u�, the morphism id : 𝑋 → 𝑋 is in cellℐ, u�.

(iii) If 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are both in cellℐ, u�, then so is 𝑔 ∘ 𝑓 .

(iv) Let 𝛼 be an ordinal and let 𝑋• : 𝛼 → u� be a colimit-preserving functor.
If |𝛼| < and is a colimiting cocone from 𝑋• to 𝑌 and, for 𝛽 ≤ 𝛾 < 𝛼,
the morphism 𝑋𝛽→𝛾 : 𝑋𝛽 → 𝑋𝛾 is in cellℐ, u�, then each component 𝛽 :
𝑋𝛽 → 𝑌 is also in cellℐ, u�.

(v) Given a pushout diagram of the form below in u�,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

if 𝑔 is in cellℐ, u� and u� has colimits for all -small diagrams, then 𝑓 is
also in cellℐ, u�.
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Proof. (i). Given any morphism 𝑒 : 𝑈 → 𝑉 in ℐ, we have the following pushout
diagram:

𝑈 𝑈

𝑉 𝑉

𝑒

id

𝑒

id

Thus 𝑒 : 𝑈 → 𝑉 is in cellℐ u�.

(ii). See remark 0.5.2.

(iii). It is clear that appending any -small presentation for 𝑔 to any -small
presentation for 𝑓 yields a -small presentation of 𝑔 ∘ 𝑓 .

(iv). The case 𝛼 = 0 falls under claim (ii). If 𝛼 = 𝛾 + 1, then the component
𝛾 : 𝑋𝛾 → 𝑌 must be an isomorphism, and thus 𝛽 = 𝛾 ∘𝑋𝛽→𝛾 is also in cellℐ u�;

and if 𝛼 is a positive limit ordinal, since every terminal segment of 𝛼 is cofinal in
𝛼, it is clear that concatenating -small presentations for 𝑋𝛾→𝛾+1 for 𝛽 ≤ 𝛾 < 𝛼
yields a -small presentation for 𝛽 : 𝑋𝛽 → 𝑌 .

(v). Fix a -small presentation of 𝑔 : 𝑍 → 𝑊 . By the pushout pasting lemma,
given a commutative diagram of the form below,

∐𝑗∈𝑇𝛽
𝑈𝛽,𝑗 𝑍𝛽 𝑋𝛽

∐𝑗∈𝑇𝛽
𝑉𝛽,𝑗 𝑍𝛽+1 𝑋𝛽+1

∐𝑗∈𝑇𝛽
𝑒𝛽,𝑗

𝑢𝛽

𝑍𝛽→𝛽+1 𝑋𝛽→𝛽+1

𝑣𝛽

if both squares are pushout diagrams, then the outer rectangle is a pushout dia-
gram as well. Since pushout along 𝑧 : 𝑍 → 𝑋 is the left adjoint of the evident
functor 𝑧∗ : 𝑋∕u� → 𝑍∕u�, it preserves all colimits, and thus we obtain a -small
presentation of 𝑓 : 𝑋 → 𝑌 . ■

Definition 0.5.4. Let u� be a category and let ℐ be a subset of mor u�. An ℐ-in-
jective morphism in u� is a morphism that has the right lifting property with
respect to every morphism in ℐ.[10] An ℐ-cofibration in u� is a morphism that
has the left lifting property with respect to every ℐ-injective morphism.

[10] Equivalently, it is a morphism 𝑓 : 𝑋 → 𝑌 in u� that is an ℐ-injective object in the slice category
u�∕𝑌 .
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Proposition 0.5.5. Let u� be a category, let ℐ be a subset of mor u�, and let
cellℐ u�, injℐ u�, and cofℐ u� be the set of relative ℐ-cell complexes, ℐ-injections,
and ℐ-cofibrations in u�, respectively.

(i) We have ℐ ⊆ cellℐ u� ⊆ cofℐ u�.

(ii) A morphism is in injℐ u� if and only if it has the right lifting property with
respect to every ℐ-cofibration.

(iii) In particular, a morphism is in injℐ u� if and only if it has the right lifting
property with respect to every relative ℐ-cell complex.

Proof. (i). Follows immediately from the definition of ‘relative ℐ-cell complex’
and proposition a.3.17.

(ii) and (iii). See proposition a.3.3. ■

Some authors define ‘relative ℐ-cell complex’ so that every such morphism
admits a sequential presentation. The following lemma and its corollary show
that there is no loss of generality in doing so.

Lemma 0.5.6. Let be a regular cardinal, let u� be a category with colimits for
all -small diagrams, and let 𝛼 be an ordinal of cardinality less than . For each
ordinal 𝛽 < 𝛼, let 𝑒𝛽 : 𝑈𝛽 → 𝑉𝛽 be a morphism in u�, and for each ordinal 𝛽 ≤ 𝛼,
let

𝐶𝛽 =
(∐

𝛾<𝛽
𝑉𝛾)

⨿
( ∐

𝛽≤𝛾<𝛼
𝑈𝛾)

be a coproduct in u� with coproduct insertions 𝑢𝛾,𝛽 : 𝑈𝛾 → 𝐶𝛽 (for 𝛽 ≤ 𝛾 < 𝛼)
and 𝑣𝛾,𝛽 : 𝑉𝛾 → 𝐶𝛽 (for 𝛾 < 𝛽).

Given ordinals 𝛽 < 𝛽′ ≤ 𝛼, there is a unique morphism 𝐶𝛽 → 𝐶𝛽′ such that,
for < 𝛽 ≤ ′ < 𝛽′ ≤ ″, the following diagrams commute:

𝑉 𝐶𝛽

𝑉 𝐶𝛽′

id

𝑣𝜁,𝛽

𝑣𝜁,𝛽′

𝑈 ′ 𝐶𝛽

𝑉 ′ 𝐶𝛽′

𝑒𝜁′

𝑢𝜁′,𝛽

𝑣𝜁′,𝛽′

𝑈 ″ 𝐶𝛽

𝑈 ″ 𝐶𝛽′

id

𝑢𝜁″,𝛽

𝑢𝜁″,𝛽′
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This yields a functor 𝐶• : [𝛼] → u�, and it preserves colimits. Moreover, the
diagrams below are pushout squares for all ordinals 𝛽 < 𝛼:

𝑈𝛽 𝐶𝛽

𝑉𝛽 𝐶𝛽+1

𝑒𝛽

𝑢𝛽,𝛽

𝑣𝛽,𝛽+1

Proof. This is a straightforward exercise. See Proposition 10.2.7 in [Hirschhorn,
2003]. □

Corollary 0.5.7. Let be a regular cardinal, let u� be a category with colimits
for -small diagrams, and let ℐ be a subset of mor u�. If 𝑓 : 𝑋 → 𝑌 is a relative
ℐ-cell complex in u� that admits a -small presentation, and either

• 𝑋 = 𝑌 and 𝑓 = id𝑋 , or

• 𝑓 is an isomorphism and ℐ contains an isomorphism, or

• 𝑓 is not an isomorphism,

then 𝑓 also admits a -small sequential presentation.

Proof. We have already commented on the first two cases in remark 0.5.2. The
third case is proven by transfinite induction, where in the induction step we may
assume that 𝑓 is presented by just one pushout diagram:

∐𝑗∈𝑇 𝑈𝑗 𝑋

∐𝑗∈𝑇 𝑉𝑗 𝑌

∐𝑗∈𝑇 𝑒𝑗

𝑢

𝑓

𝑣

By decomposing the morphism ∐𝑗∈𝑇 𝑒𝑗 : ∐𝑗∈𝑇 𝑈𝑗 → ∐𝑗∈𝑇 𝑉𝑗 as in the earlier
lemma and applying the pushout pasting lemma, we obtain a sequential present-
ation of 𝑓 , which is -small precisely if |𝑇 | < . ■

Definition 0.5.8. Let 𝐔 be a universe, let u� be a category, let ℐ be a subset of
mor u�, and let cellℐ,𝐔 u� be the set of relative ℐ-cell complexes in u� that have
a 𝐔-small presentation. We say (ℐ, u�) is admissible for the 𝐔-small object
argument when the following conditions are satisfied:
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• ℐ is a 𝐔-set.

• u� be a locally 𝐔-small category with colimits for all 𝐔-small diagrams.

• There is a regular cardinal in 𝐔 such that, for every morphism 𝑒 : 𝑈 → 𝑉
in ℐ, every ordinal 𝛼 in 𝐔, and every functor 𝑋• : 𝛼 → u�, if |𝛼| ≥ , and
the morphism 𝑋𝛽→𝛾 : 𝑋𝛽 → 𝑋𝛾 is in cellℐ,𝐔 u� for all ordinals 𝛽 ≤ 𝛾 < 𝛼,
then the canonical comparison map lim−−→𝛽<𝛼

u�(𝑈, 𝑋𝛽) → u�(𝑈, lim−−→𝛽<𝛼
𝑋𝛽)

is a bijection.

The sequential 𝐔-rank of ℐ in u� is the least cardinal with the above property.

Remark 0.5.9. Notice that, if |𝛼| ≥ , then 𝛼 is a -directed preorder. Thus, for
any locally presentable 𝐔-category u� and any 𝐔-subset ℐ ⊆ mor u� whatsoever,
(ℐ, u�) is admissible for the 𝐔-small object argument.

Definition 0.5.10. Let 𝐔 be a universe. A 𝐔-cofibrantly generated factor-
isation system on a category u� on is a weak factorisation system on u� that is
cofibrantly generated by some 𝐔-subset of mor u�.

Lemma 0.5.11. Let u� be a -accessible 𝐔-category, let 𝐴 be a ( , 𝐔)-compact
object in u�, and let 𝐵 be a ( , 𝐔)-compact object in u�. If the hom-set u�(𝐴, 𝐴′)
is -small for all ( , 𝐔)-compact objects 𝐴′ in u� and ⊲ , then the hom-set
u�(𝐴, 𝐵) has cardinality < max { , }.

Proof. By proposition 0.2.45, there is a -small -filtered diagram 𝑌 : u� → u�
with each vertex ( , 𝐔)-compact in u� and 𝐵 ≅ lim−−→u�

𝑌 . Since 𝐴 is a ( , 𝐔)-compact
object in u�, we have

u�(𝐴, 𝐵) ≅ lim−−→u�
u�(𝐴, 𝑌 )

and the RHS is a set of cardinality < max { , } by lemma 0.2.18. ■

Theorem 0.5.12 (Quillen’s small object argument). Let 𝐔 be a universe, let u�
be a locally 𝐔-small category with colimits for all 𝐔-small diagrams, and let ℐ
be a 𝐔-subset of mor u�.

(i) There exist a functor 𝑀 : [𝟚, u�] → u� and two natural transformations
𝑖 : dom ⇒ 𝑀 , 𝑝 : 𝑀 ⇒ codom such that, for all morphisms 𝑓 : 𝑋 → 𝑌
in u�, the morphism 𝑖𝑓 : 𝑋 → 𝑀(𝑓) is in cellℐ,𝐔 u�, and we have 𝑓 = 𝑝𝑓 ∘𝑖𝑓 .
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(ii) If (ℐ, u�) is moreover admissible for the 𝐔-small object argument, then we
may choose 𝑀 , 𝑖, and 𝑝 so that, for all morphisms 𝑓 : 𝑋 → 𝑌 in u�, the
morphism 𝑝𝑓 : 𝑀(𝑓) → 𝑌 in injℐ u�.

(iii) In particular, if (ℐ, u�) is admissible for the 𝐔-small object argument, then
(cofℐ u�, injℐ u�) is a 𝐔-cofibrantly generated factorisation system on u� and
extends to a functorial weak factorisation system.

Proof. (i). Let be any regular cardinal, and let 𝛼 be the least ordinal of cardin-
ality .[11] For each morphism 𝑓 : 𝑋 → 𝑌 in u�, we construct by transfin-
ite recursion a colimit-preserving functor 𝑀•(𝑓 ) : [𝛼] → u� and a cocone
𝑝𝑓;• : 𝑀•(𝑓 ) → 𝑌 satisfying the following conditions:

• 𝑀0(𝑓 ) = 𝑋, 𝑝𝑓;0 = 𝑝.

• For each ordinal 𝛽 < 𝛼, if 𝑇𝛽(𝑓 ) is the set of all commutative diagrams in
u� of the form below,

𝑈𝛽,𝑗 𝑀𝛽(𝑓 )

𝑉𝛽,𝑗 𝑌

𝑒𝛽,𝑗

𝑢𝛽,𝑗

𝑝𝑓;𝛽

𝑣𝛽,𝑗

where 𝑒𝛽,𝑗 : 𝑈𝛽,𝑗 → 𝑉𝛽,𝑗 is in ℐ, then 𝑇𝛽(𝑓 ) is a 𝐔-set (because ℐ is a 𝐔-set
and u� is a locally 𝐔-small category), and we have a pushout square of the
following form,

∐𝑗∈𝑇𝛽(𝑓 ) 𝑈𝛽,𝑗 𝑀𝛽(𝑓 )

∐𝑗∈𝑇𝛽(𝑓 ) 𝑉𝛽,𝑗 𝑀𝛽+1(𝑓 )

∐𝑗∈𝑇𝛽(𝑓) 𝑒𝛽,𝑗

𝑢𝛽

𝑋𝛽→𝛽+1

̄𝑣𝛽

where 𝑢𝛽 : ∐𝑗∈𝑇𝛽(𝑓 ) 𝑈𝛽,𝑗 → 𝑀𝛽(𝑓 ) is the evident morphism induced by
the universal property of coproducts. Observe that there is then a unique
morphism 𝑝𝑓;𝛽+1 : 𝑀𝛽+1(𝑓 ) → 𝑌 such that

𝑝𝑓;𝛽+1 ∘ 𝑀𝛽→𝛽+1(𝑓 ) = 𝑝𝛽

𝑝𝑓;𝛽+1 ∘ ̄𝑣𝛽,𝑗 = 𝑣𝛽,𝑗and

for all 𝑗 in 𝑇𝛽(𝑓 ), where ̄𝑣𝛽,𝑗 : 𝑉𝛽,𝑗 → 𝑀𝛽+1(𝑓 ) is the evident component
of ̄𝑣𝛽 : ∐𝑗∈𝑇𝛽(𝑓 ) 𝑉𝛽,𝑗 → 𝑀𝛽+1(𝑓 ).

[11] In particular, we could take = 0, but then the factorisation so obtained is trivial.
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• For limit ordinals 𝛾 ≤ 𝛼, 𝑀𝛾(𝑓 ) = lim−−→𝛽<𝛾
𝑀𝛽(𝑓 ), and 𝑝𝛾 : 𝑀𝛾(𝑓 ) → 𝑌 is

defined by the universal property of 𝑋𝛾 .

It is not hard to see that the functor 𝑀•(𝑓 ) : [𝛼] → u� so defined is itself functorial
in 𝑓 ; in particular, defining 𝑀(𝑓) = 𝑀𝛼(𝑓 ), 𝑖𝑓 = 𝑀0→𝛼(𝑓 ), 𝑝𝑓 = 𝑝𝑓;𝛼, we
obtain a functor 𝑀 : [𝟚, u�] → u� with two natural transformations 𝑖 : 𝑀 ⇒ dom
and 𝑝 : 𝑀 ⇒ codom; by construction, we have 𝑓 = 𝑝𝑓 ∘ 𝑖𝑓 , and 𝑖𝑓 : 𝑋 → 𝑀(𝑓)
is in cellℐ,𝐔 u�.

(ii). Now, take to be a regular cardinal as in definition 0.5.8. We wish to show
that the morphism 𝑝𝑓 constructed above has the right lifting property with respect
to all morphisms in ℐ. Consider a lifting problem of the form below,

𝑈 𝑀(𝑓)

𝑉 𝑌

𝑒

𝑢

𝑝𝑓

𝑣

where 𝑒 : 𝑈 → 𝑉 is in ℐ. Since ℐ is admissible, there must exist an ordinal
𝛽 < 𝛼 and a morphism 𝑢′ : 𝑈 → 𝑀𝛽(𝑓 ) such that 𝑢 = 𝑀𝛽→𝛼(𝑓 ) ∘ 𝑢′. We then
obtain the following commutative diagram:

𝑈 𝑀𝛽(𝑓 )

𝑉 𝑌

𝑒

𝑢′

𝑝𝑓;𝛽

𝑣

Since this is one of the diagrams in the set 𝑇𝛽(𝑓 ), it must embed in a commutative
diagram of the form below,

𝑈 𝑀𝛽(𝑓 ) 𝑀𝛼(𝑓 )

𝑉 𝑀𝛽+1(𝑓 )

𝑉 𝑌

𝑒

𝑢′

𝑝𝑓;𝛼

𝑣

and thus we have the required lift 𝑉 → 𝑀(𝑓).

(iii). Finally, apply proposition 0.5.5 and theorem a.3.35. ■
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Corollary 0.5.13. With other notation in the theorem, a morphism 𝑔 : 𝑍 → 𝑊
is in cofℐ u� if and only if there exists a commutative diagram of the following
form in u�,

𝑍 𝑊 ′

𝑊 𝑊

𝑔

𝑖

id

where 𝑖 : 𝑍 → 𝑊 ′ is in cellℐ,𝐔 u�.

Proof. (i). If 𝑔 : 𝑍 → 𝑊 is in cofℐ u�, then 𝑔 has the left lifting property with
respect to 𝑝𝑔 : 𝑀(𝑔) → 𝑊 , and so there exists a commutative diagram of the
required form. Conversely, suppose we have 𝑔 = 𝑝 ∘ 𝑖, 𝑖 = 𝑗 ∘ 𝑔, and id𝑊 = 𝑝 ∘ 𝑗
for some 𝑖 : 𝑍 → 𝑊 ′ in cellℐ,𝐔 u� and some 𝑗 : 𝑊 → 𝑊 ′ in u�. Then 𝑔 is a
retract of 𝑖,

𝑍 𝑍 𝑍

𝑊 𝑊 ′ 𝑊

𝑔

id

𝑖

id

𝑔

id

𝑗 𝑝

but proposition 0.5.5 says 𝑖 is in cofℐ u�, so by proposition a.3.17, 𝑔 is also in
cofℐ u�. ■

Corollary 0.5.14. Let be a regular cardinal in a universe 𝐔, let u� be a loc-
ally -presentable 𝐔-category, and let ℐ be a 𝐔-small subset of mor u�. If the
morphisms that are in ℐ are ( , 𝐔)-compact as objects in [𝟚, u�], then there exist
a ( , 𝐔)-accessible functor 𝑀 : [𝟚, u�] → u� and two natural transformations
𝑖 : dom ⇒ 𝑀 and 𝑝 : 𝑀 ⇒ codom such that, for all objects 𝑓 in [𝟚, u�]:

• 𝑓 = 𝑝𝑓 ∘ 𝑖𝑓 .

• 𝑖𝑓 is in cellℐ,𝐔 u�.

• 𝑝𝑓 is in injℐ u�.

Moreover, if is a regular cardinal in 𝐔 such that every hom-set of 𝐊𝐔(u�)
is -small, ℐ is -small, and ⊲ , then 𝑀 : [𝟚, u�] → u� is also strongly
( , 𝐔)-accessible.
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Proof. As observed in remark 0.5.9, under these hypotheses, (ℐ, u�) is admiss-
ible for the 𝐔-small object argument and the sequential 𝐔-rank of ℐ is ≤ . By
tracing the construction of the functor 𝑀 in theorem 0.5.12, we see that 𝑀 pre-
serves colimits for -filtered 𝐔-small diagrams, so we are done. Similarly, ap-
plying proposition 0.2.47 and lemmas 0.2.18 and 0.5.11 shows that 𝑀 is strongly
( , 𝐔)-accessible. ■

Corollary 0.5.15. Let be a regular cardinal in a universe 𝐔, let u� be a loc-
ally -presentable 𝐔-category, and let ℐ be a 𝐔-small subset of mor u�. If the
morphisms that are in ℐ are ( , 𝐔)-compact as objects in [𝟚, u�], then there exists
a ( , 𝐔)-accessible functor 𝐿 : [𝟚, u�] → [𝟚, u�] such that cofℐ u� is the closure of
the full subcategory of [𝟚, u�] spanned by the image of 𝐿 under the splitting of
idempotent endomorphisms.

Proof. Take 𝐿 to be the functor that sends a morphism in u� (considered as an
object in [𝟚, u�]) to the left half of its (cellℐ, u�, injℐ u�)-factorisation, and then
apply theorem a.3.35. ■

Lemma 0.5.16. Let u� be a full subcategory of a category u�+, let ℐ be a subset
of mor u�, and let be a regular cardinal. If u� is closed in u�+ under colimits for
all -small diagrams, then cellℐ, u� = cellℐ, u�+ ∩ mor u�.

Proof. Obvious. ⧫

Theorem 0.5.17 (Stability of cofibrantly generated factorisation systems). Let
𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+. Suppose:

• u� is a locally 𝐔-small and 𝐔-cocomplete category.

• u�+ is a locally 𝐔+-small and 𝐔+-cocomplete category.

• The inclusion u� ↪ u�+ preserves colimits for all 𝐔-small diagrams.

• ℐ is a 𝐔-subset of mor u�.

• (ℐ, u�) is admissible for the 𝐔-small object argument, and (𝐿, 𝑅) is the
functorial factorisation system on u� constructed by Quillen’s small object
argument argument.

• (ℐ, u�+) is admissible for the 𝐔+-small object argument, and (𝐿+, 𝑅+) is
the functorial factorisation system on u�+ constructed by Quillen’s small
object argument argument.
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Under these hypotheses, if the sequential 𝐔-rank of ℐ in u� is equal to the sequen-
tial 𝐔+-rank of ℐ in u�+, then:

(i) For each morphism 𝑓 : 𝑋 → 𝑌 in u�, we have a commutative diagram of
the following form in u�+,

𝑀+(𝑓 )

𝑋 𝑌

𝑀(𝑓)

≅

𝑅+𝑓𝐿+𝑓

𝐿𝑓 𝑅𝑓

and the isomorphism 𝑀+(𝑓 ) → 𝑀(𝑓) is moreover canonical and natural
in 𝑓 .

(ii) We have cellℐ,𝐔 u� ⊆ cellℐ,𝐔 u�+ ⊆ cellℐ,𝐔+ u�+.

(iii) (cofℐ u�+, injℐ u�+) is an extension of (cofℐ u�, injℐ u�).

Proof. (i). This can be seen by examining the explicit construction in the proof
of theorem 0.5.12.

(ii). This is implied by the lemma.

(iii). Since (cofℐ u�, injℐ u�) and (cofℐ u�+, injℐ u�+) are both cofibrantly generated
by ℐ, by proposition a.3.25, we have injℐ u� ⊆ injℐ u�+ and so cofℐ u� ⊇ cofℐ u�+ ∩
mor u�. It remains to be shown that cofℐ u� ⊆ cofℐ u�+, but this is implied by
corollary 0.5.13 applied to claim (ii). ■

Remark 0.5.18. Let be a regular cardinal in 𝐔, let ℬ be a 𝐔-small category with
colimits for all -small diagrams, let u� = 𝐈𝐧𝐝𝐔(ℬ), and let u�+ = 𝐈𝐧𝐝𝐔+(ℬ). Then
u� is a locally -presentable 𝐔-category, the inclusion u� ↪ u�+ is an accessible
( , 𝐔, 𝐔+) extension, and any 𝐔-subset ℐ ⊆ mor u� whatsoever will satisfy the
hypotheses of the theorem.

Proposition 0.5.19. Let 𝐹 ⊣ 𝑈 : u� → u� be an adjunction of categories, let
ℐ ⊆ mor u�, and let u� = {𝐹 𝑓 | 𝑓 ∈ ℐ}.

(i) 𝐹 sends relative ℐ-cell complexes in u� to relative u� -cell complexes in u�.

(ii) 𝑈 sends u� -injective morphisms in u� to ℐ-injective morphisms in u�.
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(iii) 𝐹 sends ℐ-cofibrations in u� to u� -cofibrations in u�.

Proof. (i). This is a corollary of the fact that 𝐹 preserves all colimits.

(ii). As in the proof of proposition a.3.26, a morphism 𝑓 : 𝑋 → 𝑌 in u� has
the right lifting property with respect to all morphisms in u� if and only if 𝑈𝑓 :
𝑈𝑋 → 𝑈𝑌 has the right lifting property with respect to all morphisms in ℐ.

(iii). Similarly, a morphism 𝑔 : 𝑍 → 𝑊 in u� has the left lifting property with
respect to all morphisms of the form 𝑈𝑓 : 𝑈𝑋 → 𝑈𝑌 where 𝑓 : 𝑋 → 𝑌 is a
u� -injective morphism 𝑓 : 𝑋 → 𝑌 in u� if and only if 𝐹 𝑔 : 𝐹 𝑍 → 𝐹 𝑊 is a
u� -cofibration in u�; but we know that 𝑈 sends u� -injective morphisms in u� to
ℐ-injective morphisms in u�, so 𝐹 must send ℐ-cofibrations in u� to u� -cofibrations
in u�. ■

Proposition 0.5.20. Let 𝐔 be a universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, let
𝔹 be a 𝐔-small category, let u� = [𝔹op, 𝐒𝐞𝐭], and let ℐ be the subset of mor u�
consisting of all monomorphisms 𝑒 : 𝑈 → 𝑉 in u� where 𝑉 is a quotient of a
representable presheaf.

(i) (cofℐ u�, injℐ u�) is a 𝐔-cofibrantly generated weak factorisation system.

(ii) cellℐ,𝐔 u� is precisely the class of all monomorphisms in u�.

(iii) cofℐ u� = cellℐ u�.

Proof. (i). Since 𝔹 is small and u� is well-powered and well-copowered, the
full subcategory of [𝟚, u�] spanned by ℐ is essentially 𝐔-small. We know that
u� is locally finitely presentable, thus, taking a 𝐔-set of representatives of the
isomorphism classes in ℐ, and recalling remark 0.5.9, Quillen’s small object ar-
gument (theorem 0.5.12) implies (cofℐ u�, injℐ u�) is indeed a 𝐔-cofibrantly gen-
erated weak factorisation system.

(ii). It is clear that the class of injective maps is closed under pushout and
transfinite composition in 𝐒𝐞𝐭, so the same must be true of monomorphisms in
u�, since colimits in u� are computed componentwise. Thus every morphism in
cellℐ u� is a monomorphism.

Conversely, suppose 𝑓 : 𝑋 → 𝑌 is a monomorphism. Fix an ordinal 𝛼
and a bijection 𝑦• : 𝛼 → ∐𝐵∈ob 𝔹 𝑌 (𝐵), and write 𝐵𝛽 for the object in 𝔹 such
that 𝑦𝛽 ∈ 𝑌 (𝐵𝛽). We will construct a 𝐔-small presentation for 𝑓 by transfinite
recursion on 𝛼.
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• To begin, put 𝑋0 = 𝑋 and 𝑓0 = 𝑓 .

• For each ordinal 𝛽 < 𝛼, the Yoneda lemma implies there is a unique
morphism 𝑎𝛽 : h𝐵𝛽

→ 𝑌 in u� such that 𝑎𝛽(id𝐵𝛽 ) = 𝑦𝛽 ; let ̄𝑣𝛽 : 𝑉𝛽 → 𝑌 be
the image of 𝑎𝛽 , and let 𝑒𝛽 : 𝑈𝛽 → 𝑉𝛽 and 𝑢𝛽 : 𝑈𝛽 → 𝑉𝛽 be defined by the
pullback square shown below:

𝑈𝛽 𝑋𝛽

𝑉𝛽 𝑌

𝑒𝛽

𝑢𝛽

𝑓𝛽

̄𝑣𝛽

Since 𝑓𝛽 is a monomorphism, 𝑒𝛽 must also be a monomorphism and hence
is in ℐ. There is then a commutative diagram in u� of the following form,

𝑈𝛽 𝑋𝛽

𝑉𝛽 𝑋𝛽+1

𝑌

𝑒𝛽

𝑢𝛽

𝑓𝛽

𝑣𝛽

̄𝑣𝛽
𝑓𝛽+1

where 𝑓𝛽+1 : 𝑋𝛽+1 → 𝑌 is the union of 𝑓𝛽 : 𝑋𝛽 → 𝑌 and ̄𝑣𝛽 : 𝑉𝛽 → 𝑌
considered as subobjects of 𝑌 ; note that the inner square of the diagram is
then a pushout square.

• Finally, for limit ordinals 𝛾 < 𝛼, we take 𝑓𝛾 : 𝑋𝛾 → 𝑌 to be the union
⋃𝛽<𝛾 𝑓𝛽 .

This completes the presentation of 𝑓 : 𝑋 → 𝑌 as a relative ℐ-cell complex in u�,
and it is clearly 𝐔-small.

(iii). Corollary 0.5.13 implies that each morphism in cofℐ u� is a retract of some
morphism in cellℐ,𝐔 u�, but the class of monomorphisms is closed under retracts,
so in this case we must have cofℐ u� = cellℐ,𝐔 u�. Since cellℐ,𝐔 u� ⊆ cellℐ u� ⊆
cofℐ u�, we also deduce that cellℐ,𝐔 u� = cellℐ u�. ■

We now turn our attention to Garner’s small object argument.
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Lemma 0.5.21. Let be a regular cardinal in a universe 𝐔, let u� be a locally
𝐔-small category, let 𝐹 : u� → u� be a functor, and let 𝐺 : u� → u� be (the
functor part of) a pointwise left Kan extension of 𝐹 along itself. If each 𝐹 𝐴 is a
( , 𝐔)-compact object in u�, then:

(i) 𝐺 : u� → u� preserves colimits for 𝐔-small -filtered diagrams.

(ii) In addition, if u� is a -accessible 𝐔-category, is a regular cardinal in 𝐔
such that every hom-set of 𝐊𝐔(u�) is -small, u� is a -small category, and

⊲ , then 𝐺 : u� → u� is strongly ( , 𝐔)-accessible.

Proof. (i). Theorem a.5.15 says there is a natural bijection of the form below:

u�(𝐺𝑋, 𝐶) ≅ [u�op, 𝐒𝐞𝐭](u�(𝐹 −, 𝑋), u�(𝐹 −, 𝐶))

Since colimits are computed componentwise in [u�op, 𝐒𝐞𝐭], the hypothesis im-
plies u�(𝐹 , −) : u� → [u�op, 𝐒𝐞𝐭] preserves colimits for 𝐔-small -filtered dia-
grams. By the Yoneda lemma, the functors u�(−, 𝐶) : u� op → 𝐒𝐞𝐭 jointly reflect
limits, so it follows that 𝐺 : u� → u� preserves colimits for 𝐔-small -filtered
diagrams.

(ii). Now suppose 𝑋 is a ( , 𝐔)-compact object in u�. Lemma 0.5.11 then says
each hom-set u�(𝐹 𝐴, 𝑋) is -small, and since u� is a -small category, this shows
that the comma category (𝐹 ↓ 𝑋) is also -small. Thus, 𝐺𝑋 is a colimit for a
-small diagram of ( , 𝐔)-compact objects in u�, and so we may use lemma 0.2.18

to deduce that it is a ( , 𝐔)-compact object in u�. ■

Proposition 0.5.22. Let u� be a category with pushouts and let 𝑈 : ℐ → [𝟚, u�]
be a functor. Suppose a pointwise left Kan extension of 𝑈 along itself exists.

(i) 𝐑𝐋𝐏(𝑈) is isomorphic as a category over [𝟚, u�] to the category of algebras
for a pointed endofunctor (𝐽 , ) on [𝟚, u�].

(ii) Moreover, if (the functor part of) the pointwise left Kan extension of 𝑈
along itself is a ( , 𝐔)-accessible functor (resp. strongly ( , 𝐔)-accessible
functor), then so is 𝐽 .

Proof. Let 𝐺 : [𝟚, u�] → [𝟚, u�] be (the functor part of) a pointwise left Kan
extension of 𝑈 along itself and let 𝛼 : 𝑈 ⇒ 𝐺𝑈 be the unit. Then there is
a unique natural transformation : 𝐺 ⇒ idℰ such that 𝑈 ∙ 𝛼 = id[𝟚,u�]. Let
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𝑓 : 𝑋 → 𝑌 be a morphism in u�. By theorem a.5.15, there is a natural bijection
of the form below:

[𝟚, u�](𝐺𝑓 , 𝑔) ≅ [ℐop, 𝐒𝐞𝐭]([𝟚, u�](𝑈−, 𝑓), [𝟚, u�](𝑈−, 𝑔))

It is not hard to see that a coherent choice Φ of right liftings for 𝑓 with respect
to 𝑈 : ℐ → [𝟚, u�] is the same thing as a natural transformation [𝟚, u�](𝑈−, 𝑓) ⇒
[𝟚, u�](𝑈−, id𝑋) making the following diagram commute for all objects 𝑒 in ℐ,

[𝟚, u�](𝑈𝑒, id𝑋)

[𝟚, u�](𝑈𝑒, 𝑓 ) [𝟚, u�](𝑈𝑒, 𝑓 )
id

where the map [𝟚, u�](𝑈𝑒, id𝑋) → [𝟚, u�](𝑈𝑒, 𝑓 ) is the one induced by the morph-
ism (id𝑋 , 𝑓) : id𝑋 → 𝑓 in [𝟚, u�]. We may therefore identity choices Φ with
morphisms 𝑙 : 𝑑0(𝐺𝑓) → 𝑋 in u� making the diagram below commute:

(∗)
• 𝑋 𝑋

• 𝑋 𝑌

𝐺𝑓

𝑑1( 𝑓 )

id

id

𝑓

𝑑0( 𝑓 )

𝑙 𝑓

Now, define functors 𝐽 , 𝐾 : [𝟚, u�] → [𝟚, u�] so the square in the following
diagram is a natural pushout square in u�:

• 𝑋

• 𝑀𝑓

𝑌

𝐺𝑓

𝑑1( 𝑓 )

𝐾𝑓
𝑓

𝑑0( 𝑓 )

𝐽𝑓

We then have a natural transformation : id[𝟚,u�] ⇒ 𝐽 where 𝑓 = (id𝑋 , 𝐾𝑓), and
the universal property of pushouts yields a natural bijection between morphisms
𝑙 : 𝑑0(𝐺𝑓) → 𝑋 making the diagram (∗) commute and morphisms ̃𝑙 : 𝑀𝑓 → 𝑋
such that ̃𝑙 ∘ 𝐾𝑓 = id𝑋 and 𝐽𝑓 = 𝑓 ∘ ̃𝑙, i.e. coalgebra structures on 𝑓 for the
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pointed endofunctor (𝐽 , ). The naturality of these identifications then ensures
that 𝐑𝐋𝐏(𝑈) is indeed isomorphic to [𝟚, u�](𝐽 , ) as categories over [𝟚, u�]. This
proves claim (i).

For claim (ii), simply observe that pushouts preserve all colimits, so 𝐽 :
[𝟚, u�] → [𝟚, u�] is ( , 𝐔)-accessible if 𝐺 : [𝟚, u�] → [𝟚, u�] is, and lemmas 0.2.18
and 0.3.21 imply 𝐽 is strongly ( , 𝐔)-accessible if 𝐺 is. ■

Proposition 0.5.23. Let u� be a locally -presentable 𝐔-category, let ℐ be a
𝐔-small category, and let 𝑈 : ℐ → [𝟚, u�] be a functor. If each 𝑈𝑒 is a ( , 𝐔)-compact
object in [𝟚, u�], then:

(i) The forgetful functor 𝐑𝐋𝐏(𝑈) → [𝟚, u�] is ( , 𝐔)-accessible and monadic.

(ii) In addition, if is a regular cardinal in 𝐔 such that each hom-set in 𝐊𝐔(u�)
is -small, ℐ is a -small category, and ⊲ , then the forgetful functor
𝐑𝐋𝐏(𝑈) → [𝟚, u�] is strongly ( , 𝐔)-accessible.

Proof. Use theorems 0.3.40 and 0.3.41, lemma 0.5.21, and proposition 0.5.22.
■

Theorem 0.5.24 (Garner’s small object argument). Let u� be a locally present-
able 𝐔-category, let ℐ be a 𝐔-small category, and let 𝑈 : ℐ → [𝟚, u�] be a
functor.

(i) There exists a free algebraic factorisation system (𝗟, 𝗥) on u� cofibrantly
generated by 𝑈 : ℐ → [𝟚, u�].

(ii) (𝗟, 𝗥) is (part of) an algebraically free natural weak factorisation system
on u� cofibrantly generated by 𝑈 : ℐ → [𝟚, u�].

(iii) In particular, if ℐ is discrete, then there exists a functorial weak factorisa-
tion system on u� cofibrantly generated by the image of ob ℐ → mor u�.

Proof. (i). See Theorem 4.4 in [Garner, 2009].

(ii). See Theorem 5.4 in [Garner, 2009].

(iii). This is proposition a.3.49. □
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Lemma 0.5.25. Let u� be a category and let ℐ be a subset of mor u�. If is a
regular cardinal in a universe 𝐔 such that the domains of morphisms in ℐ are
( , 𝐔)-compact in u�, then the class of ℐ-injective objects in u� is closed under
colimits for 𝐔-small -filtered diagrams in u�.

Proof. Let 𝔻 be a 𝐔-small -filtered category and let 𝑋 : 𝔻 → u� be a diagram
such that each 𝑋𝑑 is an ℐ-injective object in u�. Suppose �̄� is a colimit for 𝑋 in
u� with colimiting cocone : 𝑋 ⇒ Δ�̄�. Let 𝑔 : 𝑍 → 𝑊 be in ℐ, and consider
the induced hom-set map 𝑔∗ : u�(𝑊 , �̄�) → u�(𝑍, �̄�); we must show that it is
surjective. Since 𝑍 is a ( , 𝐔)-compact object in u�, the canonical comparison
lim−−→𝔻

u�(𝑍, 𝑋) → u�(𝑍, �̄�) is a bijection, and so every morphism 𝑍 → �̄� factors
through 𝑑 : 𝑋𝑑 → 𝑋 for some 𝑑 in 𝔻. By hypothesis 𝑋𝑑 is ℐ-injective, so we
obtain an extension of 𝑍 → 𝑋𝑑 along 𝑔 : 𝑍 → 𝑊 , and hence, an extension of
𝑍 → �̄� along 𝑔. Thus 𝑋 is also ℐ-injective. ■

Lemma 0.5.26. Let u� be a category and let 𝑔 : 𝑍 → 𝑊 be a morphism in
u�. A morphism 𝑓 : 𝑋 → 𝑌 has the left lifting property with respect to 𝑔 if
and only if 𝑓 is injective as an object in [𝟚, u�] with respect to the singleton set
{(𝑔, id𝑊 ) : 𝑔 → id𝑊 }. ■

Corollary 0.5.27. Let u� be a category and let ℐ be a subset of mor u�. If the
domains and codomains of morphisms in ℐ are ( , 𝐔)-compact in u�, then injℐ u�
is closed under colimits for 𝐔-small -filtered diagrams in [𝟚, u�].

Proof. Apply proposition 0.2.47 and the two lemmas above. ■

Proposition 0.5.28. Let u� be a locally presentable 𝐔-category, let (𝐿, 𝑅) be a
functorial weak factorisation system on u�, and let : id[𝟚,u�] ⇒ 𝑅 be the natural
transformation whose component at an object 𝑓 in [𝟚, u�] corresponds to the
following commutative square in u�:

• •

• •
𝑓

𝐿𝑓

𝑅𝑓

Let ℛ be the full subcategory of [𝟚, u�] spanned by the morphisms in u� that are
in the right class of the induced weak factorisation system.

(i) ℛ is also the full subcategory of [𝟚, u�] spanned by the image of the forgetful
functor [𝟚, u�](𝑅, ) → [𝟚, u�], where [𝟚, u�](𝑅, ) is the category of algebras for
the pointed endofunctor (𝑅, ).
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(ii) If 𝑅 : [𝟚, u�] → [𝟚, u�] is an accessible functor, then [𝟚, u�](𝑅, ) is a locally
presentable 𝐔-category, and the forgetful functor [𝟚, u�](𝑅, ) → [𝟚, u�] is
monadic.

(iii) If 𝑅 : [𝟚, u�] → [𝟚, u�] is strongly (𝜋, 𝐔)-accessible and has 𝐔-rank < 𝜋,
and ℛ is closed under colimits for 𝐔-small 𝜋-filtered diagrams in [𝟚, u�],
then ℛ is a 𝜋-accessible 𝐔-subcategory of [𝟚, u�].

Proof. (i). This is proposition a.3.37.

(ii). Apply theorem 0.3.40.

(iii). By theorem 0.3.41, [𝟚, u�](𝑅, ) is a locally 𝜋-presentable 𝐔-category, and
the forgetful functor [𝟚, u�](𝑅, ) → [𝟚, u�] is moreover strongly (𝜋, 𝐔)-accessible.
Thus, we may apply proposition 0.3.31 to claim (i) and deduce that ℛ is a 𝜋-accessible
𝐔-subcategory. ■

Proposition 0.5.29. Let u� be a locally presentable 𝐔-category, and let ℐ be a
𝐔-subset of mor u�. Then injℐ u�, considered as a full subcategory of [𝟚, u�], is an
accessible 𝐔-subcategory.

Proof. Combine corollary 0.5.14 and proposition 0.5.28. ■

Lemma 0.5.30. Let u� be a -accessible 𝐔-category and let ℛ be a -accessible
full subcategory of [𝟚, u�]. If 𝑔 : 𝑍 → 𝑊 is a morphism in u� and 𝑍 and 𝑊 are
( , 𝐔)-compact objects in u�, then:

(i) Given a morphism 𝑓 : 𝑋 → 𝑌 in u� that is in ℛ, any morphism 𝑔 → 𝑓
in [𝟚, u�] admits a factorisation of the form 𝑔 → 𝑓 ′ → 𝑓 where 𝑓 ′ is in
𝐊𝐔(ℛ).

(ii) The morphism 𝑔 : 𝑍 → 𝑊 has the left lifting property with respect to ℛ
if and only if it has the left lifting property with respect to 𝐊𝐔(ℛ).

Proof. (i). Proposition 0.2.47 says that 𝑔 is a ( , 𝐔)-compact object in [𝟚, u�]; but
every object in ℛ is the colimit of a 𝐔-small -filtered diagram of ( , 𝐔)-compact
objects in ℛ, and the inclusion ℛ ↪ [𝟚, u�] is ( , 𝐔)-accessible, so any morphism
𝑔 → 𝑓 must factor through some ( , 𝐔)-compact object in ℛ.

(ii). If 𝑔 has the left lifting property with respect to ℛ, then it certainly has the left
lifting property with respect to 𝐊𝐔(ℛ). Conversely, by factorising morphisms
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𝑔 → 𝑓 as in claim (i), we see that 𝑔 has the left lifting property with respect to
ℛ as soon as it has the left lifting property with respect to 𝐊𝐔(ℛ). ■

Lemma 0.5.31. Let u� be a category, let 𝑔 : 𝑍 → 𝑊 be a morphism in u�, and
suppose we have a pushout diagram in u� of the form below:

𝑍 𝑊

𝑊 𝑊 ∪𝑍 𝑊

𝑔

𝑔

𝑗1

𝑗0

Let 𝑒 : 𝑊 ∪𝑍 𝑊 → 𝑊 be the unique morphism such that 𝑒 ∘ 𝑗0 = 𝑒 ∘ 𝑗1 = id𝑊 .
The following are equivalent for a morphism 𝑓 : 𝑋 → 𝑌 in u�:

(i) 𝑓 : 𝑋 → 𝑌 is right orthogonal to 𝑔 : 𝑍 → 𝑊 .

(ii) 𝑓 : 𝑋 → 𝑌 has the right lifting property with respect to 𝑔 : 𝑍 → 𝑊 and
𝑒 : 𝑊 ∪𝑍 𝑊 → 𝑊 .

Proof. Let ℛ = {𝑔}⊥ and let ℒ = ⊥ℛ.

(i) ⇒ (ii). By proposition a.3.17, 𝑗1 : 𝑊 → 𝑊 ∪𝑍 𝑊 and id : 𝑊 → 𝑊 are in ℒ;
so by proposition a.3.18, 𝑒 : 𝑊 ∪𝑍 𝑊 → 𝑊 is also in ℒ. But proposition a.3.3
says that ℛ = ℒ⊥ and ℒ⊥ ⊆ ℒ⧄, so if 𝑓 : 𝑋 → 𝑌 is right orthogonal to
𝑔 : 𝑍 → 𝑊 , then 𝑓 : 𝑋 → 𝑌 indeed has the right lifting property with respect
to 𝑔 : 𝑍 → 𝑊 and 𝑒 : 𝑊 ∪𝑍 𝑊 → 𝑊 .

(ii) ⇒ (i). Suppose 𝑓 : 𝑋 → 𝑌 has the right lifting property with respect to
𝑔 : 𝑍 → 𝑊 and 𝑒 : 𝑊 ∪𝑍 𝑊 → 𝑊 . Consider a lifting problem in u� of the
form below:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

By hypothesis, there is at least one ℎ : 𝑊 → 𝑋 in u� such that ℎ ∘ 𝑔 = 𝑧 and
𝑓 ∘ ℎ = 𝑤. Suppose 𝑘 : 𝑊 → 𝑋 is another. Then there is a unique morphism
𝑙 : 𝑊 ∪𝑍 𝑊 → 𝑋 such that 𝑙 ∘ 𝑗0 = ℎ and 𝑙 ∘ 𝑗1 = 𝑘, and by construction,
𝑓 ∘ 𝑙 = 𝑤 ∘ 𝑒, so there is at least one morphism 𝑚 : 𝑊 → 𝑋 such that 𝑚 ∘ 𝑒 = 𝑙
(and 𝑓 ∘ 𝑚 = 𝑤). But that implies 𝑚 = ℎ = 𝑘, so 𝑓 : 𝑋 → 𝑌 is indeed right
orthogonal to 𝑔 : 𝑊 → 𝑍. ■
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0. Foundations

Theorem 0.5.32. Let 𝐔 be a universe, let u� be a locally 𝐔-small category with
colimits for all 𝐔-small diagrams, and let u� be a 𝐔-subset of mor u�.

(i) There is a 𝐔-subset ℐ ⊆ mor u� such that ℐ⧄ = u� ⊥.

(ii) If (ℐ, u�) is admissible for the 𝐔-small object argument, then (cofℐ u�, u� ⊥)
is a 𝐔-cofibrantly generated orthogonal factorisation system on u�.

Proof. (i). Apply lemma 0.5.31.

(ii). This is a special case of Quillen’s small object argument (theorem 0.5.12).
■

Corollary 0.5.33. Let 𝐔 be a universe, let u� be a locally presentable 𝐔-category,
let u� be a 𝐔-subset of mor u�, and let u� is the full subcategory of u� spanned by
those objects 𝑋 such that the unique morphism 𝑋 → 1 is right orthogonal to u� .

(i) u� is a reflective subcategory of u�.

(ii) u� is a locally presentable 𝐔-category and the inclusion u� ↪ u� is an
accessible functor.

(iii) If is a regular cardinal in 𝐔 such that u� is a locally -presentable
𝐔-category and every morphism in u� has ( , 𝐔)-compact domain and
codomain, then u� is also a locally -presentable 𝐔-category and the in-
clusion u� ↪ u� is a ( , 𝐔)-accessible functor.

Proof. (i). We must show that the inclusion u� ↪ u� admits a left adjoint, so it
suffices to verify the following: for every object 𝑋 in u�, the functor

u�(𝑋, −) : u� → 𝐒𝐞𝐭

is representable in u�. Let ℛ = u� ⊥ and ℒ = ⊥ℛ. By theorem 0.5.12, there exists
a morphism 𝑋 : 𝑋 → �̂� such that �̂� is in u� and 𝑋 : 𝑋 → �̂� is in ℒ; but if 𝐷
in an object in u� and 𝑔 : 𝑍 → 𝑊 is in ℒ, then

u�(𝑔, 𝐷) : u�(𝑊 , 𝐷) → u�(𝑍, 𝐷)

is a bijection, so we deduce that �̂� represents u�(𝑋, −) : u� → 𝐒𝐞𝐭.

(ii) and (iii). By corollary 0.5.14, the endofunctor 𝑋 ↦ �̂� is ( , 𝐔)-accessible, so
u� is isomorphic to the category of algebras for a monad on u� whose underlying
endofunctor is ( , 𝐔)-accessible. We may then apply theorem 0.3.35. ■
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0.5. Small object arguments

Theorem 0.5.34. Let 𝐔 be a universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, let u� be
a 𝐔-small category, let be a regular cardinal in 𝐔, let u� be a 𝐔-set of cocones
under -small diagrams in u�, and let u� be the full subcategory of [u�op, 𝐒𝐞𝐭]
spanned by those 𝑀 : u�op → 𝐒𝐞𝐭 that send the cocones that are in u� to limiting
cones in 𝐒𝐞𝐭.

(i) u� is a reflective subcategory of [u�op, 𝐒𝐞𝐭].

(ii) u� is a locally -presentable 𝐔-category.

(iii) For each object 𝑎 in u�, the functor u� → 𝐒𝐞𝐭 defined by 𝑀 ↦ 𝑀𝑎 is
representable, say by 𝐹 𝑎, and the resulting functor 𝐹 : u� → u� sends
cocones that are in u� to colimiting cocones.

Proof. (i) and (ii). For each cocone 𝑘 : 𝐴 ⇒ Δ𝑎 that is in u�, let 𝑓𝑘 : lim−−→ h𝐴 → h𝑎
be the induced morphism in [u�op, 𝐒𝐞𝐭]. The Yoneda lemma then implies that a
functor 𝑀 : u�op → 𝐒𝐞𝐭 sends the cocone 𝑘 : 𝐴 ⇒ Δ𝑎 to a limiting cone in 𝐒𝐞𝐭
if and only if the induced map

[u�op, 𝐒𝐞𝐭](𝑓𝑘, 𝑀) : [u�op, 𝐒𝐞𝐭](h𝑎, 𝑀) → [u�op, 𝐒𝐞𝐭](lim−−→ h𝐴, 𝑀)

is a bijection, and by lemma a.3.2, this happens if and only if the unique morph-
ism 𝑀 → 1 is right orthogonal with respect to 𝑓𝑘 : lim−−→ h𝐴 → h𝑎. Moreover, each
𝐴 is a -small diagram, so by proposition 0.2.46, lim−−→ h𝐴 is a ( , 𝐔)-compact ob-
ject in [u�op, 𝐒𝐞𝐭]. Thus we may apply corollary 0.5.33.

(iii). By the Yoneda lemma, we may take 𝐹 𝑎 to be the reflection of h𝑎 in u�. Let
𝑘 : 𝐴 ⇒ Δ𝑎 be a cocone that is in u� and let 𝑀 be any object in u�. Then,

u�(𝐹 𝑎, 𝑀) ≅ 𝑀𝑎 ≅ lim←−− 𝑀𝐴 ≅ lim←−− u�(𝐹 𝐴, 𝑀)

so 𝐹 𝑘 : 𝐹 𝐴 ⇒ Δ𝐹 𝑎 is indeed a colimiting cocone in u�. ■
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I

Simplicial sets

Simplicial sets, like simplicial complexes, are combinatorial models for spaces
built up by gluing standard 𝑛-simplices together; unlike simplicial complexes,
an 𝑛-simplex in a simplicial set need not be uniquely determined by its vertices.
It is for this reason that simplicial sets were once known by the unwieldy name
‘complete semi-simplicial (c.s.s.) complex’.

In the 1960s, it was discovered that one can mimic the definitions and con-
structions of classical homotopy theory by combinatorial means using simplicial
sets, and that the resulting theory is moreover equivalent to the classical theory
in a natural, functorial way. More recently, it has been shown that the homotopy
theory of simplicial sets is universal in a precise sense,[1] so it seems fitting that
we begin here.

1.1 Basics
Definition 1.1.1. The simplex category is the category 𝚫 whose objects are the
positive finite ordinals and whose morphisms are the monotone maps. We use
the geometer’s convention: [𝑛] denotes the ordinal {0, 1, … , 𝑛}.

Definition 1.1.2. A simplicial object in a category u� is a functor 𝚫op → u�,
and a morphism of simplicial objects in u� is a natural transformation of such
functors. The category of simplicial objects in u� is the functor category [𝚫op, u�]
and is denoted by 𝐬u�.

[1] See [Dugger, 2001a].

81



I. Simplicial sets

Definition 1.1.3. The coface maps in 𝚫 are the morphisms 𝛿𝑖
𝑛 : [𝑛 − 1] → [𝑛],

where 𝛿𝑖
𝑛 is the unique injective monotone map that misses 𝑖; and the codegen-

eracy maps in 𝚫 are the morphisms 𝜎𝑖
𝑛 : [𝑛 + 1] → [𝑛], where 𝜎𝑖

𝑛 is the unique
surjective monotone map with 𝜎𝑖

𝑛(𝑖) = 𝜎𝑖
𝑛(𝑖 + 1) = 𝑖.

Theorem 1.1.4 (Cosimplicial identities). The following equations hold in 𝚫:

𝛿𝑗+1
𝑛+1 ∘ 𝛿𝑖

𝑛 = 𝛿𝑖
𝑛+1 ∘ 𝛿𝑗

𝑛 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝜎𝑗
𝑛 ∘ 𝜎𝑖

𝑛+1 = 𝜎𝑖
𝑛 ∘ 𝜎𝑗+1

𝑛+1 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝜎𝑗+1
𝑛+1 ∘ 𝛿𝑖

𝑛+1 = 𝛿𝑖
𝑛 ∘ 𝜎𝑗

𝑛 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝛿𝑗+1
𝑛 ∘ 𝜎𝑖

𝑛 = 𝜎𝑖
𝑛+1 ∘ 𝛿𝑗+2

𝑛+1 if 0 ≤ 𝑖 < 𝑗 < 𝑛
𝜎𝑖

𝑛 ∘ 𝛿𝑖
𝑛 = id if 0 ≤ 𝑖 ≤ 𝑛

𝜎𝑖+1
𝑛 ∘ 𝛿𝑖

𝑛 = id if 0 ≤ 𝑖 < 𝑛

Equivalently, the following diagrams commute:

[𝑛 − 1] [𝑛]

[𝑛] [𝑛 + 1]

𝛿𝑖

𝛿𝑗 𝛿𝑗+1

𝛿𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛 + 1] [𝑛]

[𝑛] [𝑛 − 1]

𝜎𝑖

𝜎𝑗+1 𝜎𝑗

𝜎𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛] [𝑛 + 1]

[𝑛 − 1] [𝑛]

𝛿𝑖

𝜎𝑗 𝜎𝑗+1

𝛿𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛] [𝑛 − 1]

[𝑛 + 1] [𝑛]

𝜎𝑖

𝛿𝑗+2 𝛿𝑗+1

𝜎𝑖

for 0 ≤ 𝑖 < 𝑗 < 𝑛

[𝑛 − 1] [𝑛]

[𝑛] [𝑛 − 1]

𝛿𝑖

𝛿𝑖 id
𝜎𝑖+1

𝜎𝑖

for 0 ≤ 𝑖 ≤ 𝑛
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1.1. Basics

Moreover, every morphism [𝑛] → [𝑚] in 𝚫 is uniquely a composite of the form

𝛿𝑗1
𝑚 ∘ ⋯ ∘ 𝛿𝑗𝑚−𝑘

𝑘 ∘ 𝜎𝑖𝑛−𝑘
𝑘 ∘ ⋯ ∘ 𝜎𝑖1

𝑛

where 𝑘 ≤ min {𝑛, 𝑚}, and

0 ≤ 𝑖𝑛−𝑘 ≤ ⋯ ≤ 𝑖1 ≤ 𝑛
0 ≤ 𝑗𝑚−𝑘 ≤ ⋯ ≤ 𝑗1 ≤ 𝑚

The category 𝚫 is uniquely characterised by these properties.

Proof. See [May, 1967, §2], [GZ, Ch. II, §2], or [Weibel, 1994, §8.1]. □

Definition 1.1.5. Let 𝐴 be a simplicial object in a category u�. A face operator
for 𝐴 is a morphism of the form 𝐴(𝛿𝑖

𝑛) : 𝐴([𝑛]) → 𝐴([𝑛 − 1]), and a degeneracy
operator for 𝐴 is a morphism of the form 𝐴(𝜎𝑖

𝑛) : 𝐴([𝑛]) → 𝐴([𝑛 + 1]). For
brevity, we will usually write 𝐴𝑛 instead of 𝐴([𝑛]), 𝑑𝑛

𝑖 instead of 𝐴(𝛿𝑖
𝑛), and 𝑠𝑛

𝑖
instead of 𝐴(𝜎𝑖

𝑛).

Corollary 1.1.6 (Simplicial identities). The face and degeneracy operators of a
simplicial object satisfy the formal duals of the equations in theorem 1.1.4. ■

Corollary 1.1.7. A simplicial object 𝐴 is uniquely determined by the sequence
of objects 𝐴0, 𝐴1, 𝐴2, … together with the face and degeneracy operators. Con-
versely, any sequence of objects equipped with face and degeneracy operators
satisfying the simplicial identities defined a simplicial object. ■

Observe that there is an identity-on-objects automorphism (−)op : 𝚫 → 𝚫
that sends coface maps 𝛿𝑖

𝑛 : [𝑛 − 1] → [𝑛] to 𝛿𝑛−𝑖
𝑛 : [𝑛 − 1] → [𝑛] and codegener-

acy maps 𝜎𝑖
𝑛 : [𝑛] → [𝑛 + 1] to 𝜎𝑛−𝑖

𝑛 : [𝑛] → [𝑛 + 1] for all 𝑛 ≥ 0 and 0 ≤ 𝑖 ≤ 𝑛.
This in turn induces an automorphism on the category of simplicial objects.

Definition 1.1.8. The opposite of a simplicial object 𝐴 in a category u� is the
simplicial object 𝐴op obtained by composing 𝑋 : 𝚫op → u� with (−)op : 𝚫 → 𝚫.

Remark 1.1.9. Although (−)op : 𝚫 → 𝚫 acts as the identity on objects, the
functor (−)op is not isomorphic to id𝚫. More generally, a simplicial object 𝐴 may
be isomorphic to its opposite 𝐴op, but the functor (−)op : 𝐬u� → 𝐬u� is usually not
isomorphic to id : 𝐬u� → 𝐬u�.

Definition 1.1.10. A simplicial set is a simplicial object in 𝐒𝐞𝐭, and the category
of simplicial sets is denoted by 𝐬𝐒𝐞𝐭.
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I. Simplicial sets

Lemma 1.1.11.
(i) Limits (resp. colimits) in 𝐬𝐒𝐞𝐭 are constructed degreewise: a cone (resp.

cocone) in 𝐬𝐒𝐞𝐭 over a diagram is limiting (resp. colimiting) if and only if
it is so in every degree.

(ii) A morphism of 𝐬𝐒𝐞𝐭 is monic (resp. epic) if and only if it is degreewise
injective (resp. surjective).

Proof. These are standard facts about functor categories. □

Definition 1.1.12. The standard 𝑛-simplex in 𝐬𝐒𝐞𝐭, denoted by Δ𝑛, is the repre-
sentable presheaf 𝚫(−, [𝑛]).

Theorem 1.1.13. Let Δ• : 𝚫 → 𝐬𝐒𝐞𝐭 be the functor [𝑛] ↦ Δ𝑛.

(i) For any simplicial set 𝑋, the map 𝐬𝐒𝐞𝐭(Δ𝑛, 𝑋) → 𝑋𝑛 defined by 𝑓 ↦
𝑓𝑛(id[𝑛]) is a bijection and is moreover natural in [𝑛] and 𝑋.

(ii) 𝐬𝐒𝐞𝐭 has limits and colimits for all small diagrams, every epimorphism is
effective, and for all morphisms 𝑓 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭, the pullback functor
𝑓 ∗ : 𝐬𝐒𝐞𝐭∕𝑌 → 𝐬𝐒𝐞𝐭∕𝑋 preserves colimits.

(iii) Δ• : 𝚫 → 𝐬𝐒𝐞𝐭 is a dense functor, i.e. for any simplicial set 𝑋, the tau-
tological cocone[2] from the canonical diagram (Δ• ↓ 𝑋) → 𝐬𝐒𝐞𝐭 to 𝑋 is
colimiting.

(iv) Let ℰ be a locally small category with colimits for all small diagrams. If
𝐹 : 𝐬𝐒𝐞𝐭 → ℰ is a functor that preserves small colimits, then it is left
adjoint to the functor ℰ → 𝐬𝐒𝐞𝐭 defined by 𝐸 ↦ ℰ(𝐹 Δ•, 𝐸).

(v) With ℰ as above, the functor 𝐹 ↦ 𝐹 Δ• from the category of colimit-
preserving functors 𝐬𝐒𝐞𝐭 → ℰ to the category of all functors 𝚫 → ℰ is
fully faithful and essentially surjective on objects.

Proof. Claim (i) is just the Yoneda lemma, claim (ii) follows from the lemma
above, and claims (iii)–(v) are just facts about dense functors, pointwise left Kan
extensions, weighted colimits: see proposition a.5.25, theorem a.5.15, and pro-
position a.6.15. ■

[2] See definition a.5.7.
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Definition 1.1.14. Let 𝑋 be a simplicial set. An 𝑛-simplex of 𝑋 is an element
of 𝑋𝑛; a vertex is a 0-simplex, and an edge is a 1-simplex. This is justified by
statement (i) in the above theorem. Given an edge 𝑓 of 𝑋, the source of 𝑓 is
the vertex 𝑑1(𝑓 ), and the target of 𝑓 is the vertex 𝑑0(𝑓 ); we write 𝑓 : 𝑥 → 𝑦 to
mean 𝑑1(𝑓 ) = 𝑥 and 𝑑0(𝑓 ) = 𝑦.

Definition 1.1.15. A degenerate 𝑛-simplex of a simplicial set 𝑋 is an 𝑛-simplex
𝛼 for which there exist an (𝑛 − 1)-simplex 𝛽 and 0 ≤ 𝑖 < 𝑛 such that 𝑠𝑖(𝛽) = 𝛼.
A non-degenerate 𝑛-simplex of 𝑋 is an 𝑛-simplex that is not degenerate.

Remark 1.1.16. An 𝑛-simplex of 𝑋 can be non-degenerate even when the corres-
ponding morphism Δ𝑛 → 𝑋 is not a monomorphism! Similarly, it is possible for
all the proper faces of a non-degenerate simplex to be degenerate.

Definition 1.1.17. A finite simplicial set is a simplicial set that has only finitely
many non-degenerate simplices.

Proposition 1.1.18. Let 𝑋 be a simplicial set. The following are equivalent:

(i) 𝑋 is a finite simplicial set.

(ii) 𝑋 is an ℵ0-compact object in 𝐬𝐒𝐞𝐭.[3]

(iii) 𝑋 is in the smallest full subcategory of 𝐬𝐒𝐞𝐭 that contains the standard
simplices and is closed in 𝐬𝐒𝐞𝐭 under (isomorphisms and) colimits for finite
diagrams.

Proof. (i) ⇒ (ii). A morphism 𝑓 : 𝑋 → 𝑌 is determined uniquely by the images
of the non-degenerate simplices of 𝑋, and the faces of any particular simplex can
only satisfy finitely many equations, so if 𝑋 is a finite simplicial set and 𝑌 is a
colimit for a small filtered diagram of simplicial sets, then 𝑓 must factor through
one of the components of the colimiting cocone. It is straightforward to check
that the factorisation of 𝑓 is unique up to the appropriate equivalence relation,
and we may then deduce that 𝑋 is an ℵ0-compact object.

(ii) ⇒ (iii). Let u� be the indicated full subcategory of 𝐬𝐒𝐞𝐭, and consider the
comma category (u� ↓ 𝑋). Let 𝑃 : (u� ↓ 𝑋) → 𝐬𝐒𝐞𝐭 be the projection, and let

: 𝑃 ⇒ Δ𝑋 be the tautological cocone.[4] It is not hard to check that is a

[3] See definition 0.2.14.
[4] See definition a.5.7.
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I. Simplicial sets

colimiting cocone. Since u� has colimits for finite diagrams, (u� ↓ 𝑋) is filtered;
and it is clear that u� is essentially small, so we deduce that 𝑋 is a retract of
an object in u� if 𝑋 is ℵ0-compact. Noting that u� is closed under retracts, we
conclude that 𝑋 is in u� if it is ℵ0-compact.

(iii) ⇒ (i). Now, let u�′ be the full subcategory of 𝐬𝐒𝐞𝐭 spanned by the finite
simplicial sets. It is easy to see that u�′ is closed in 𝐬𝐒𝐞𝐭 under (isomorphisms
and) finite colimits, and the standard simplices are all in u�′, so we must have
u� ⊆ u�′, as required. ■

Definition 1.1.19. The standard 𝑛-simplex in 𝐓𝐨𝐩, denoted by |Δ𝑛|, is the to-
pological space

|Δ𝑛| = {(𝑥0, … , 𝑥𝑛) ∈ [0, 1]𝑛+1 | 𝑥0 + ⋯ + 𝑥𝑛 = 1}

where [0, 1] is the closed unit interval with the standard metric. The functor
|Δ•| : 𝚫 → 𝐓𝐨𝐩 sends [𝑛] to |Δ𝑛| and is defined on morphisms by linearly
interpolating the obvious map of vertices.

Corollary 1.1.20. There exists an adjunction

|−| ⊣ S : 𝐓𝐨𝐩 → 𝐬𝐒𝐞𝐭

extending the functor |Δ•| : 𝚫 → 𝐓𝐨𝐩 defined above, and this adjunction is
unique up to unique isomorphism. Explicitly, we may take

S(𝑌 )𝑛 = 𝐓𝐨𝐩(|Δ𝑛|, 𝑌 )

with the evident face and degeneracy operators induced by the coface and code-
generacy maps in 𝚫. ■

Definition 1.1.21. The geometric realisation of a simplicial set 𝑋 is the topo-
logical space |𝑋|, and the singular set of a topological space 𝑌 is the simplicial
set S(𝑌 ).

Remark 1.1.22. The geometric realisation |𝑋| is stable under universe enlarge-
ment, by theorem a.5.20.

Theorem 1.1.23. Let 𝐂𝐆𝐇𝐚𝐮𝐬 be the category of compactly generated Haus-
dorff spaces[5] and continuous maps.

[5] See definition a.2.26.
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1.2. Nerves, skeletons, and coskeletons

(i) The topological standard 𝑛-simplex |Δ𝑛| is a compact Hausdorff space.

(ii) For any simplicial set 𝑋, the geometric realisation |𝑋| is a compactly
generated Hausdorff space.

(iii) The previously-constructed adjunction |−| ⊣ S : 𝐓𝐨𝐩 → 𝐬𝐒𝐞𝐭 restricts
to an adjunction between 𝐂𝐆𝐇𝐚𝐮𝐬 and 𝐬𝐒𝐞𝐭, and moreover the functor
|−| : 𝐬𝐒𝐞𝐭 → 𝐂𝐆𝐇𝐚𝐮𝐬 preserves finite limits and reflects isomorphisms.

Proof. Claim (i) is a standard fact, while claims (ii) and (iii) are proven in [GZ,
Ch. III, §3]. □

1.2 Nerves, skeletons, and coskeletons
Prerequisites. §§1.1, a.2.

Definition 1.2.1. The nerve of a small category ℂ is the simplicial set N(ℂ)
defined by the following formula,

N(ℂ)𝑛 = Fun([𝑛], ℂ)

where [𝑛] here denotes the preorder category {0 → ⋯ → 𝑛}.

Proposition 1.2.2. Let N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 be the nerve functor.

(i) N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 has a left adjoint 𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 such that 𝜏1Δ𝑛 = [𝑛].

(ii) The functor N is fully faithful and exhibits 𝐂𝐚𝐭 as a reflective subcategory
of 𝐬𝐒𝐞𝐭.

(iii) N(−)op and N((−)op) are isomorphic as functors 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭.

(iv) N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 is a cartesian closed functor.

(v) The functor 𝜏1 preserves finite products.

Proof. (i). Apply theorem 1.1.13.

(ii). A functor is entirely determined by its action on objects, arrows, and com-
posable strings of arrows, so N is fully faithful.
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(iii). It is clear that there is a canonical isomorphism N(ℂ)op and N(ℂop) for all
small categories ℂ, and it is straightforward to verify naturality.

(iv). N preserves binary products, so we have the following natural bijections:

𝐬𝐒𝐞𝐭(Δ𝑛, N([ℂ, 𝔻])) ≅ Fun([𝑛], [ℂ, 𝔻])
≅ Fun([𝑛] × ℂ, 𝔻)
≅ 𝐬𝐒𝐞𝐭(N([𝑛] × ℂ), N(𝔻))
≅ 𝐬𝐒𝐞𝐭(N([𝑛]) × N(ℂ), N(𝔻))
≅ 𝐬𝐒𝐞𝐭(N([𝑛]), [N(ℂ), N(𝔻)])
≅ 𝐬𝐒𝐞𝐭(Δ𝑛, [N(ℂ), N(𝔻)])

Thus, by the Yoneda lemma, the canonical morphism N([ℂ, 𝔻]) → [N(ℂ), N(𝔻)]
is an isomorphism.

(v). It is clear that 𝜏1 preserves terminal objects. Let 𝑋 and 𝑌 be simplicial sets.
We wish to show that the canonical morphism 𝜏1(𝑋 × 𝑌 ) → 𝜏1𝑋 × 𝜏1𝑌 is an
isomorphism; but since 𝜏1 is a left adjoint and both 𝐬𝐒𝐞𝐭 and 𝐂𝐚𝐭 are cartesian
closed, it is enough to check the claim for 𝑌 = Δ𝑛, because 𝐬𝐒𝐞𝐭 is generated
under colimits by {Δ𝑛 | 𝑛 ∈ ℕ}. We have the following natural bijections:

Fun(𝜏1(𝑋 × Δ𝑛), ℂ) ≅ 𝐬𝐒𝐞𝐭(𝑋 × Δ𝑛, N(ℂ))
≅ 𝐬𝐒𝐞𝐭(𝑋, N(ℂ)Δ𝑛

)
≅ 𝐬𝐒𝐞𝐭(𝑋, N([[𝑛], ℂ]))
≅ Fun(𝜏1𝑋, [[𝑛], ℂ])
≅ Fun(𝜏1𝑋 × [𝑛], ℂ)
≅ Fun(𝜏1𝑋 × 𝜏1Δ𝑛, ℂ)

The claim follows by the Yoneda lemma. ■

Definition 1.2.3. The fundamental category of a simplicial set 𝑋 is the small
category 𝜏1𝑋.

Remark 1.2.4. Given a simplicial set 𝑋, the fundamental category 𝜏1𝑋 admits
the following presentation by generators and relations: the objects are the ver-
tices of 𝑋, and the arrows are generated by the edges of 𝑋, modulo the relation
𝑑0(𝛼) ∙ 𝑑2(𝛼) = 𝑑1(𝛼) for all 2-simplices 𝛼 in 𝑋. This shows that 𝜏1𝑋 is stable
under universe enlargement.
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Definition 1.2.5. An inner horn is a simplicial subset of the form Λ𝑛
𝑘 ⊆ Δ𝑛,

where 𝑛 ≥ 2 and 0 < 𝑘 < 𝑛, where Λ𝑛
𝑘 is the union of the faces of Δ𝑛 that include

the 𝑘-th vertex. (See also definition 1.3.24.)

Lemma 1.2.6. If Λ𝑛
𝑘 ↪ Δ𝑛 is an inner horn inclusion, then its image under

𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 is an isomorphism.

Proof. By the Yoneda lemma and proposition 1.2.2, it suffices to verify that the
induced maps

𝐬𝐒𝐞𝐭(Δ𝑛, N(ℂ)) → 𝐬𝐒𝐞𝐭(Λ𝑛
𝑘, N(ℂ))

are bijections for all small categories ℂ. The claim is clear for 𝑛 = 2: this is
simply the assertion that for any morphisms 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 in ℂ, there
is unique commutative diagram in ℂ of the form below:

𝑦

𝑥 𝑧

𝑔

𝑓

More generally, we observe that a morphism Δ𝑛 → N(ℂ) is the same thing as
a composable sequence of morphisms in ℂ of length 𝑛, so the claim for 𝑛 > 2
follows by an inductive argument. ■

Proposition 1.2.7. Let disc : 𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be the functor defined by the formula

(disc 𝑌 )𝑛 = 𝑌

with id𝑌 for all the face and degeneracy maps.

(i) disc : 𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 has a left adjoint 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 such that 𝜋0Δ𝑛 = 1.

(ii) The functor disc is fully faithful and exhibits 𝐒𝐞𝐭 as a reflective subcategory
of 𝐬𝐒𝐞𝐭.

(iii) The functor 𝜋0 preserves products.

(iv) disc : 𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a cartesian closed functor.

Proof. (i). We could apply theorem 1.1.13, but it is also fairly straightforward to
check that this explicit construction works: for each simplicial set 𝑋, we define
𝜋0𝑋 by the coequaliser diagram in 𝐒𝐞𝐭 shown below,

𝑋1 𝑋0 𝜋0𝑋
𝑑0

𝑑1
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I. Simplicial sets

and for each morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭, we define 𝜋0𝑓 to be the unique
morphism making the evident diagram commute.

(ii). It is clear that disc is fully faithful.

(iii). By remark a.5.35, 𝚫op is a sifted category, and 𝜋0 ≅ lim−−→𝚫op
, so we may

apply theorem a.5.36.

(iv). Use proposition a.2.13. ■

Definition 1.2.8. The set of connected components of a simplicial set 𝑋 is the
set 𝜋0𝑋, and a discrete simplicial set is one that is isomorphic to disc 𝑌 for some
set 𝑌 .

¶ 1.2.9. We will usually not distinguish between 𝑌 and disc 𝑌 notationally.

Proposition 1.2.10. Let N : 𝐆𝐫𝐩𝐝 → 𝐬𝐒𝐞𝐭 be the functor defined by the formula

N(𝔾)𝑛 = Fun(𝐈[𝑛], 𝔾)

where 𝐈[𝑛] here denotes the groupoid obtained by freely inverting the arrows in
the preorder category [𝑛].

(i) For any groupoid 𝔾, the nerve N(𝔾) is the same (up to isomorphism)
whether computed for 𝔾 as a groupoid or 𝔾 as a category.

(ii) N : 𝐆𝐫𝐩𝐝 → 𝐬𝐒𝐞𝐭 has a left adjoint 𝜋1 : 𝐬𝐒𝐞𝐭 → 𝐆𝐫𝐩𝐝 such that 𝜋1Δ𝑛 =
𝐈[𝑛].

(iii) The functor N is fully faithful and exhibits 𝐆𝐫𝐩𝐝 as a reflective subcat-
egory of 𝐬𝐒𝐞𝐭.

(iv) N : 𝐆𝐫𝐩𝐝 → 𝐬𝐒𝐞𝐭 is a cartesian closed functor.

(v) The functor 𝜋1 preserves finite products.

Proof. (i). By the universal property of 𝐈[𝑛], there is a natural bijection

Fun(𝐈[𝑛], 𝔾) ≅ Fun([𝑛], 𝔾)

for all groupoids 𝔾, so the two nerve constructions do indeed agree.

(ii) and (iii). These are proven in exactly the same way as in proposition 1.2.2.

(iv) and (v). These are proven in exactly the same way as in proposition 1.2.7.
■

90



1.2. Nerves, skeletons, and coskeletons

Definition 1.2.11. The fundamental groupoid of a simplicial set 𝑋 is the small
groupoid 𝜋1𝑋.

Remark 1.2.12. Given a simplicial set 𝑋, the fundamental groupoid 𝜋1𝑋 admits
a presentation of the same kind as the fundamental category 𝜏1𝑋, and in fact 𝜋1𝑋
is isomorphic to the groupoid obtained by freely inverting the arrows in 𝜏1𝑋:

Fun(𝜋1𝑋, 𝔾) ≅ 𝐬𝐒𝐞𝐭(𝑋, N(𝔾)) ≅ Fun(𝜏1𝑋, 𝔾)

This shows that 𝜋1𝑋 is stable under universe enlargement.

Definition 1.2.13. Let 𝑛 be a natural number, and let 𝚫≤𝑛 be the full subcategory
of 𝚫 spanned by the objects [0], … , [𝑛]. An 𝑛-truncated simplicial set is a func-
tor 𝚫≤𝑛

op → 𝐒𝐞𝐭, and we write 𝐬𝐒𝐞𝐭≤𝑛 for the category of 𝑛-truncated simplicial
sets. The brutal 𝑛-truncation of a simplicial set 𝑋 is the 𝑛-truncated simplicial
set 𝑋≤𝑛 defined by the evident reduct:

𝑋≤𝑛([𝑚]) = 𝑋([𝑚])

Proposition 1.2.14. Let 𝑛 be a natural number, and let 𝑗 : 𝚫≤𝑛 → 𝚫 be the
inclusion.

(i) The functor 𝑗∗ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭≤𝑛 has a left adjoint Lan𝑗 : 𝐬𝐒𝐞𝐭≤𝑛 → 𝐬𝐒𝐞𝐭.

(ii) The unit id ⇒ 𝑗∗ Lan𝑗 is a natural isomorphism.

(iii) Lan𝑗 : 𝐬𝐒𝐞𝐭≤𝑛 → 𝐬𝐒𝐞𝐭 is a fully faithful functor.

(i′) The functor 𝑗∗ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭≤𝑛 has a right adjoint Ran𝑗 : 𝐬𝐒𝐞𝐭≤𝑛 → 𝐬𝐒𝐞𝐭.

(ii′) The counit 𝑗∗ Ran𝑗 ⇒ id is a natural isomorphism.

(iii′) Ran𝑗 : 𝐬𝐒𝐞𝐭≤𝑛 → 𝐬𝐒𝐞𝐭 is a fully faithful functor.

Proof. (i) and (i′). Use theorem a.5.15.

(ii) and (ii′). The inclusion 𝑗 : 𝚫≤𝑛 → 𝚫 is fully faithful, so the unit id ⇒ 𝑗∗ Lan𝑗
and the counit 𝑗∗ Ran𝑗 ⇒ id are natural isomorphisms, by corollary a.5.19.

(iii) and (iii′). Use proposition a.1.3. ■
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Definition 1.2.15. For each natural number 𝑛, with notation as above, let sk𝑛 :
𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be the composite Lan𝑗 𝑗∗, and let cosk𝑛 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be the
composite Ran𝑗 𝑗∗.

• The 𝑛-skeleton of a simplicial set 𝑋 is the simplicial set sk𝑛(𝑋).

• The 𝑛-coskeleton of a simplicial set is the simplicial set cosk𝑛(𝑋).

• An 𝑛-skeletal simplicial set is one that is isomorphic to the 𝑛-skeleton of
some simplicial set.

• An 𝑛-coskeletal simplicial set is one that is isomorphic to the 𝑛-coskeleton
of some simplicial set.

Remark 1.2.16. In the special case 𝑛 = 0, Lan𝑗 may be identified with the func-
tor disc : 𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 defined in proposition 1.2.7. Thus, 0-skeletal simpli-
cial sets are precisely the discrete simplicial sets. On the other hand, given a
set 𝑋, Ran𝑗 𝑋 can be identified with the simplicial set whose 𝑚-simplices are
(𝑚 + 1)-tuples of elements of 𝑋, with face and degeneracy maps induced by the
appropriate projections.

Proposition 1.2.17. Let 𝑛 be a natural number.

(i) The full subcategory of 𝑛-skeletal simplicial sets is a coreflective subcat-
egory of 𝐬𝐒𝐞𝐭, with coreflector sk𝑛.

(ii) sk𝑛 is the underlying endofunctor of an idempotent comonad on 𝐬𝐒𝐞𝐭.

(iii) A simplicial set 𝑋 is 𝑛-skeletal if and only if the counit sk𝑛(𝑋) → 𝑋 is an
isomorphism.

(iv) If 𝑚 ≥ 𝑛, then any 𝑛-skeletal simplicial set is also 𝑚-skeletal.

(i′) The full subcategory of 𝑛-coskeletal simplicial sets is a reflective subcat-
egory of 𝐬𝐒𝐞𝐭, with reflector cosk𝑛.

(ii′) cosk𝑛 is the underlying endofunctor of an idempotent monad on 𝐬𝐒𝐞𝐭.

(iii′) A simplicial set 𝑋 is 𝑛-coskeletal if and only if the unit 𝑋 → cosk𝑛(𝑋) is
an isomorphism.

(iv′) If 𝑚 ≥ 𝑛, then any 𝑛-coskeletal simplicial set is also 𝑚-coskeletal.
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Proof. All straightforward from the definitions. ⧫

Proposition 1.2.18. Let 𝑛 be a natural number, and let 𝑋 be a simplicial set.

(i) We have the following adjunction:

sk𝑛 ⊣ cosk𝑛 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

(ii) The counit sk𝑛(𝑋) → 𝑋 is a monomorphism, and 𝑋 is 𝑛-skeletal if and
only if all 𝑚-simplices of 𝑋 are degenerate for 𝑚 > 𝑛.

(iii) 𝑋 is 𝑛-coskeletal if and only if, for all natural numbers 𝑚, the map

𝑋𝑚 ≅ 𝐬𝐒𝐞𝐭(Δ𝑚, 𝑋) → 𝐬𝐒𝐞𝐭(sk𝑛(Δ𝑚), 𝑋)

induced by the counit sk𝑛(Δ𝑚) → Δ𝑚 is a bijection.

Proof. (i). Immediate from the definition of sk𝑛 and cosk𝑛.

(ii). The most straightforward way of seeing this is to construct sk𝑛(𝑋) explicitly
as the smallest simplicial subset of 𝑋 containing all of its 𝑛-simplices.

(iii). Apply the Yoneda lemma in conjunction with claim (i). ■

Corollary 1.2.19. For any small category ℂ, the nerve N(ℂ) is a 2-coskeletal
simplicial set.

Proof. By definition, an 𝑚-simplex of N(ℂ) is just a functor [𝑚] → ℂ, but the
property of being a functor can be detected by only inspecting the vertices, edges,
and 2-cells; thus, the claim follows as an application of proposition 1.2.18. ■

Proposition 1.2.20. The following full subcategories are exponential ideals of
𝐬𝐒𝐞𝐭:

(i) Discrete simplicial sets.

(ii) Simplicial sets isomorphic to the nerve of some category.

(iii) Simplicial sets isomorphic to the nerve of some groupoid.

(iv) 𝑛-coskeletal simplicial sets for some natural number 𝑛.
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Proof. Apply proposition a.2.13 to propositions 1.2.7, 1.2.2, 1.2.10, and 1.2.17.
■

Definition 1.2.21. The boundary of Δ𝑛 is the simplicial subset 𝜕Δ𝑛 ⊆ Δ𝑛 gener-
ated by the images of 𝛿0

𝑛 , … , 𝛿𝑛
𝑛 : Δ𝑛−1 → Δ𝑛.

Remark 1.2.22. The boundary 𝜕Δ𝑛 may be identified with sk𝑛−1Δ𝑛.

Proposition 1.2.23 (Relative skeletal filtration). Let 𝑓 : 𝑋 → 𝑌 be a mono-
morphism in 𝐬𝐒𝐞𝐭. There exist simplicial sets 𝑌 (0), 𝑌 (1), 𝑌 (2), … and a chain of
monomorphisms

𝑋 = 𝑌 (−1) 𝑌 (0) 𝑌 (1) 𝑌 (2) ⋯𝑖(0) 𝑖(1) 𝑖(2)

such that the following conditions are satisfied:

• There is a colimiting cocone from the above chain to 𝑌 where the compon-
ent 𝑌 (−1) → 𝑌 is 𝑓 : 𝑋 → 𝑌 .

• For each natural number 𝑛, there is a pushout diagram of the form below,

𝐼𝑛 ⊙ 𝜕Δ𝑛 𝐼𝑛 ⊙ Δ𝑛

𝑌 (𝑛−1) 𝑌 (𝑛)
𝑖(𝑛)

where 𝐼𝑛 ⊆ 𝑌𝑛 is the set of non-degenerate 𝑛-simplices of 𝑌 that are not in
the image of 𝑓 : 𝑋 → 𝑌 , 𝐼𝑛 ⊙ 𝜕Δ𝑛 ↪ 𝐼𝑛 ⊙ Δ𝑛 is induced by the boundary
inclusion 𝜕Δ𝑛 ↪ Δ𝑛, and 𝐼𝑛 ⊙ Δ𝑛 → 𝑌 (𝑛) is the tautological morphism
induced by the inclusion 𝐼𝑛 ↪ 𝑌𝑛.

In particular, if 𝑌 is a finite simplicial set, then there is a natural number 𝑑 such
that 𝑖(𝑛) : 𝑌 (𝑛−1) → 𝑌 (𝑛) is an isomorphism for all 𝑛 > 𝑑.

Proof. We may assume without loss of generality that 𝑓 : 𝑋 → 𝑌 is the inclu-
sion of a simplicial subset of 𝑌 . Let 𝑌 (𝑛) be the union of 𝑋 and the image of
counit sk𝑛(𝑌 ) → 𝑌 , i.e. the smallest simplicial subset of 𝑌 containing 𝑋 and
all the 𝑛-simplices of 𝑌 , and let 𝑖(𝑛) : 𝑌 (𝑛−1) → 𝑌 (𝑛) be the inclusion. Then 𝐼𝑛
is precisely the set of 𝑛-simplices of 𝑌 (𝑛) that are not in 𝑌 (𝑛−1), so we have the
desired pushout diagram for each 𝑛. It is clear that the inclusions 𝑌 (𝑛−1) ↪ 𝑌
define the required colimiting cocone. ■
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In the language of §0.5, what we have shown is that every monomorphism in
𝐬𝐒𝐞𝐭 is a relative ℐ-cell complex, where ℐ = {𝜕Δ𝑛 ↪ Δ𝑛 | 𝑛 ≥ 0}. Since the class
of monomorphisms is closed under retracts, the following definition is justified:

Definition 1.2.24. A cofibration of simplicial sets is a monomorphism in 𝐬𝐒𝐞𝐭.

Remark 1.2.25. Cofibrations of simplicial sets have a homotopy extension prop-
erty, albeit one that is weaker than what one might expect from the homotopy
theory of topological spaces: see theorem 1.3.25.

1.3 Intrinsic homotopy
Prerequisites. §§1.2, 3.1, a.4.

Definition 1.3.1. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in 𝐬𝐒𝐞𝐭.
An intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 is an edge of the exponential object [𝑋, 𝑌 ]
such that 𝑑1(𝛼) = 𝑓0 and 𝑑0(𝛼) = 𝑓1. (Note the subscripts!) We say 𝑓0 and 𝑓1 are
intrisically homotopic if there is a zigzag of intrinsic homotopies connecting 𝑓0
and 𝑓1, and we write 𝑓0 ∼ 𝑓1 in this case.

Remark 1.3.2. By the Yoneda lemma,

[𝑋, 𝑌 ]1 ≅ 𝐬𝐒𝐞𝐭(Δ1, [𝑋, 𝑌 ]) ≅ 𝐬𝐒𝐞𝐭(Δ1 × 𝑋, 𝑌 )

so an intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 is essentially the same thing as a morphism
�̃� : Δ1 × 𝑋 → 𝑌 such that �̃� ∘ (𝛿1 × id𝑌 ) = 𝑓0 and �̃� ∘ (𝛿0 × id𝑌 ) = 𝑓1 (where
we have suppressed the canonical isomorphism 𝑋 ≅ Δ0 × 𝑋), just as in classical
homotopy theory. Also,

𝐬𝐒𝐞𝐭(Δ1 × 𝑋, 𝑌 ) ≅ 𝐬𝐒𝐞𝐭(𝑋, [Δ1, 𝑌 ])

so intrinsic homotopies 𝛼 : 𝑓0 ⇒ 𝑓1 correspond to morphisms �̂� : 𝑋 → [Δ1, 𝑌 ]
such that [𝛿1, 𝑌 ] ∘ �̂� = 𝑓0 and [𝛿0, 𝑌 ] ∘ �̂� = 𝑓1 (where we have suppressed the
canonical isomorphism [Δ0, 𝑌 ] ≅ 𝑌 ).
Remark 1.3.3. The notion of intrinsic homotopy is not well behaved for general
simplicial sets 𝑌 . For example, the existence of an intrinsic homotopy 𝑓0 ⇒ 𝑓1
does not guarantee the existence of an “inverse” intrinsic homotopy 𝑓1 ⇒ 𝑓0,
and even if we have intrinsic homotopies 𝑓0 ⇒ 𝑓1 and 𝑓1 ⇒ 𝑓2, there need not
be an intrinsic homotopy 𝑓0 ⇒ 𝑓2.
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¶ 1.3.4. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms and let 𝛼 : 𝑓0 ⇒
𝑓1 be an intrinsic homotopy.

• Given a morphism 𝑔 : 𝑊 → 𝑋, the intrinsic homotopy 𝛼𝑔 : 𝑓0 ∘𝑔 ⇒ 𝑓1 ∘𝑔
is the image of 𝛼 under the induced morphism [𝑔, 𝑌 ] : [𝑋, 𝑌 ] → [𝑊 , 𝑋].

• Given a morphism 𝑔 : 𝑌 → 𝑍, the intrinsic homotopy 𝑔𝛼 : 𝑔 ∘ 𝑓0 ⇒ 𝑔 ∘ 𝑓1
is the image of 𝛼 under the induced morphism [𝑋, 𝑔] : [𝑋, 𝑌 ] → [𝑋, 𝑍].

Lemma 1.3.5. The relation of intrinsic homotopy is a congruence on 𝐬𝐒𝐞𝐭, i.e.
given morphisms 𝑓0, 𝑓1 : 𝑋 → 𝑌 and 𝑔0, 𝑔1 : 𝑌 → 𝑍, if 𝑓0 ∼ 𝑓1 and 𝑔0 ∼ 𝑔1,
then 𝑔0 ∘ 𝑓0 ∼ 𝑔1 ∘ 𝑓1. ■

Definition 1.3.6. The intrinsic homotopy category of simplicial sets is the
category HoΔ1 𝐬𝐒𝐞𝐭 obtained by taking the quotient of 𝐬𝐒𝐞𝐭 with respect to the
congruence of intrinsic homotopy.

Remark 1.3.7. A parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭 are intrinsically homotopic
if and only if they are in the same connected component of [𝑋, 𝑌 ]. In particular,
we have a bijection of the form below,

HoΔ1 𝐬𝐒𝐞𝐭(𝑋, 𝑌 ) ≅ 𝜋0[𝑋, 𝑌 ]

and it is natural as 𝑋 and 𝑌 vary in 𝐬𝐒𝐞𝐭.
Remark 1.3.8. The set 𝜋0[𝑋, 𝑌 ] can be very far from what one expects geomet-
rically. For instance, 𝜋0[𝜕Δ2, 𝜕Δ2] contains only two elements, while the set of
homotopy classes of continuous endomaps of the circle is countably infinite!

Lemma 1.3.9. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in 𝐬𝐒𝐞𝐭.
Given an intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1, for each simplicial set 𝑍, there is an
induced intrinsic homotopy [𝛼, 𝑍] : [𝑓0, 𝑍] ⇒ [𝑓1, 𝑍].

Proof. Let �̃� : Δ1 × 𝑋 → 𝑌 be the morphism corresponding to 𝛼 : 𝑓0 ⇒ 𝑓1.
Then we have a morphism [�̃�, 𝑍] : [𝑌 , 𝑍] → [Δ1 × 𝑋, 𝑍]. Proposition a.2.11
says there is a natural isomorphism

[Δ1 × 𝑋, 𝑍] ≅ [Δ1, [𝑋, 𝑍]]

so [�̃�, 𝑍] corresponds to an intrinsic homotopy [𝛼, 𝑍] between two morphisms
of type [𝑌 , 𝑍] → [𝑋, 𝑍]; it is not hard to check that it is an intrinsic homotopy
of type [𝑓0, 𝑍] ⇒ [𝑓1, 𝑍]. ■
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Lemma 1.3.10. Let 𝑋 be a simplicial set, let 𝔻 be a small category, let 𝑓0, 𝑓1 :
𝑋 → N(𝐷) be a parallel pair of morphisms, and let 𝐹0, 𝐹1 : 𝜏1𝑋 → 𝔻 be
their left adjoint transposes. Then there is a natural bijection between intrinsic
homotopies 𝑓0 ⇒ 𝑓1 and natural transformations 𝐹0 ⇒ 𝐹1.

Proof. Propositions 1.2.2 and a.2.13 give a natural isomorphism [𝑋, N(𝔻)] ≅
N([𝜏1𝑋, 𝔻]), and the claim is an immediate consequence. ■

Corollary 1.3.11. If 𝐹 ⊣ 𝐺 : ℂ → 𝔻 is an adjunction of small categories, then
the induced morphisms in HoΔ1 𝐬𝐒𝐞𝐭 are mutually inverse. ■

Definition 1.3.12. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭.

• An intrinsic homotopy left inverse for 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋 such
that 𝑔 ∘ 𝑓 and id𝑋 are intrinsically homotopic.

• An intrinsic homotopy right inverse for 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋
such that 𝑓 ∘ 𝑔 and id𝑌 are intrinsically homotopic.

Definition 1.3.13. An intrinsic homotopy equivalence in 𝐬𝐒𝐞𝐭 is a pair (𝑓 , 𝑔)
where 𝑔 (resp. 𝑓 ) is both an intrinsic homotopy left inverse and an intrinsic ho-
motopy right inverse for 𝑓 (resp. 𝑔).

Remark 1.3.14. The pair (𝜎0
0 , 𝛿0

1) is an intrinsic homotopy equivalence between
the standard simplices Δ0 and Δ1. Multiplying by id𝑋 , we deduce that 𝑋 and
Δ1 × 𝑋 are naturally isomorphic in HoΔ1 𝐬𝐒𝐞𝐭.

Proposition 1.3.15. Let 𝛾 : 𝐬𝐒𝐞𝐭 → HoΔ1 𝐬𝐒𝐞𝐭 be the functor that sends each
morphism to its intrinsic homotopy class. For any functor 𝐹 : 𝐬𝐒𝐞𝐭 → u�, the
following are equivalent:

(i) For all simplicial sets 𝑋, 𝐹 (𝛿0
1 × id𝑋) : 𝐹 (Δ0 × 𝑋) → 𝐹 (Δ1 × 𝑋) is an

isomorphism in u�.

(ii) For all simplicial sets 𝑋, 𝐹 (𝛿1
1 × id𝑋) : 𝐹 (Δ0 × 𝑋) → 𝐹 (Δ1 × 𝑋) is an

isomorphism in u�.

(iii) For all simplicial sets 𝑋, 𝐹 (𝜎0
0 × id𝑋) : 𝐹 (Δ1 × 𝑋) → 𝐹 (Δ0 × 𝑋) is an

isomorphism in u�.

(iv) For all parallel pairs 𝑓0, 𝑓1 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭, if 𝑓0 ∼ 𝑓1, then 𝐹 𝑓0 = 𝐹 𝑓1.
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(v) 𝐹 : 𝐬𝐒𝐞𝐭 → u� factors through 𝛾 : 𝐬𝐒𝐞𝐭 → HoΔ1 𝐬𝐒𝐞𝐭.

Moreover, the factorisation is unique if it exists.

Proof. (i) ⇔ (iii), (ii) ⇔ (iii). Let 𝑒 ∈ {0, 1}. The simplicial identity 𝜎0
0 ∘ 𝛿𝑒

1 = id
implies that 𝐹 (𝜎0

0 × id𝑋) is an isomorphism in u� if and only if 𝐹 (𝛿𝑒
0 × id𝑋) is

an isomorphism in u�.

(iii) ⇒ (iv). It suffices to show that 𝐹 𝑓0 = 𝐹 𝑓1 whenever there is an intrinsic
homotopy 𝛼 : 𝑓0 ⇒ 𝑓1, where 𝑓0, 𝑓1 : 𝑋 → 𝑌 are an arbitrary parallel pair of
morphisms in 𝐬𝐒𝐞𝐭. Let �̃� : Δ1 × 𝑋 → 𝑌 be the morphism corresponding to
𝛼 : 𝑓0 ⇒ 𝑓1. Since 𝐹 (𝜎0

0 × id𝑋) is an isomorphism, the uniqueness of inverses
implies 𝐹 (𝛿0

1 × id𝑋) = 𝐹 (𝛿1
1 × id𝑋); so, suppressing the canonical isomorph-

ism Δ0 × 𝑋 ≅ 𝑋, we obtain the required equation:

𝐹 𝑓0 = 𝐹 �̃� ∘ 𝐹 (𝛿1
1 × id𝑋) = 𝐹 �̃� ∘ 𝐹 (𝛿0

1 × id𝑋) = 𝐹 𝑓1

(iv) ⇔ (v). This is the universal property of the quotient by the congruence of
intrinsic homotopy.

(v) ⇒ (iii). Since 𝜎0
0 × id𝑋 : Δ1 × 𝑋 → Δ0 × 𝑋 is (half of) an intrinsic homotopy

equivalence, 𝛾(𝜎0
0 × id𝑋) is an isomorphism in HoΔ1 𝐬𝐒𝐞𝐭. Hence, if the functor

𝐹 : 𝐬𝐒𝐞𝐭 → u� factors through 𝛾 : 𝐬𝐒𝐞𝐭 → HoΔ1 𝐬𝐒𝐞𝐭, 𝐹 (𝜎0
0 × id𝑋) must be an

isomorphism in u�. ■

Corollary 1.3.16. The functor 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 factors through 𝛾 : 𝐬𝐒𝐞𝐭 →
HoΔ1 𝐬𝐒𝐞𝐭.

Proof. By proposition 1.2.7, 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves finite products; but
𝜋0Δ1 ≅ 𝜋0Δ0 ≅ 1, so 𝜋0(𝜎0

0 × id𝑋) : 𝜋0(Δ1 × 𝑋) → 𝜋0(Δ0 × 𝑋) is a bijection
for any simplicial set 𝑋. ■

Definition 1.3.17. A contractible simplicial set is a simplicial set that is iso-
morphic to Δ0 in HoΔ1 𝐬𝐒𝐞𝐭.

Example 1.3.18. It is not hard to verify that each Δ𝑛 is a contractible simplicial
set: indeed, we may apply corollary 1.3.11.
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Definition 1.3.19. Let 𝑋 be a simplicial set.

• A forward contracting homotopy for 𝑋 consists of a set 𝑋−1 and maps
𝑟 : 𝑋0 → 𝑋−1, 𝑠 : 𝑋−1 → 𝑋0, and ℎ𝑛 : 𝑋𝑛 → 𝑋𝑛+1 satisfying these
identities:

𝑟 ∘ 𝑑1
1 = 𝑟 ∘ 𝑑1

0

𝑟 ∘ 𝑠 = id
𝑑1

0 ∘ ℎ0 = 𝑠 ∘ 𝑟
𝑑1

1 ∘ ℎ0 = id
𝑑𝑛+1

𝑖 ∘ ℎ𝑛 = ℎ𝑛−1 ∘ 𝑑𝑛
𝑖 if 0 ≤ 𝑖 ≤ 𝑛

𝑑𝑛+1
𝑛+1 ∘ ℎ𝑛 = id

ℎ𝑛+1 ∘ 𝑠𝑛
𝑖 = 𝑠𝑛+1

𝑖 ∘ ℎ𝑛 if 0 ≤ 𝑖 ≤ 𝑛
ℎ𝑛+1 ∘ ℎ𝑛 = 𝑠𝑛+1

𝑛+1 ∘ ℎ𝑛

• A backward contracting homotopy for 𝑋 consists of a set 𝑋−1 and maps
𝑟 : 𝑋0 → 𝑋−1, 𝑠 : 𝑋−1 → 𝑋0, and ℎ𝑛 : 𝑋𝑛 → 𝑋𝑛+1 satisfying these
identities:

𝑟 ∘ 𝑑1
1 = 𝑟 ∘ 𝑑1

0

𝑟 ∘ 𝑠 = id
𝑑1

0 ∘ ℎ0 = id
𝑑1

1 ∘ ℎ0 = 𝑠 ∘ 𝑟
𝑑𝑛+1

0 ∘ ℎ𝑛 = id
𝑑𝑛+1

𝑖+1 ∘ ℎ𝑛 = ℎ𝑛−1 ∘ 𝑑𝑛
𝑖 if 0 ≤ 𝑖 ≤ 𝑛

ℎ𝑛+1 ∘ ℎ𝑛 = 𝑠𝑛+1
0 ∘ ℎ𝑛

ℎ𝑛+1 ∘ 𝑠𝑛
𝑖 = 𝑠𝑛+1

𝑖+1 ∘ ℎ𝑛 if 0 ≤ 𝑖 ≤ 𝑛

Proposition 1.3.20. Let 𝑋 be a simplicial set.

• Given a forward contracting homotopy for 𝑋, say 𝑟 : 𝑋0 → 𝑋−1, 𝑠 :
𝑋−1 → 𝑋0, and ℎ𝑛 : 𝑋𝑛 → 𝑋𝑛+1, there are unique morphisms ̃𝑟 : 𝑋 →
disc 𝑋−1 and ̃𝑠 : disc 𝑋−1 → 𝑋 defined in degree 0 by 𝑟 and 𝑠 respectively,
and we have ̃𝑟 ∘ ̃𝑠 = iddisc 𝑋−1

and an intrinsic homotopy id𝑋 ⇒ ̃𝑠 ∘ ̃𝑟;
moreover, the canonical map 𝜋0𝑋 → 𝑋−1 is a bijection.
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• Given a backward contracting homotopy for 𝑋, say 𝑟 : 𝑋0 → 𝑋−1, 𝑠 :
𝑋−1 → 𝑋0, and ℎ𝑛 : 𝑋𝑛 → 𝑋𝑛+1, there are unique morphisms ̃𝑟 : 𝑋 →
disc 𝑋−1 and ̃𝑠 : disc 𝑋−1 → 𝑋 defined in degree 0 by 𝑟 and 𝑠 respectively,
and we have ̃𝑟 ∘ ̃𝑠 = iddisc 𝑋−1

and an intrinsic homotopy ̃𝑠 ∘ ̃𝑟 ⇒ id𝑋;
moreover, the canonical map 𝜋0𝑋 → 𝑋−1 is a bijection.

Proof. The two claims are formally dual; we will prove the first version.
Observe that the definition implies that we have the following absolute co-

equaliser diagram:

𝑋1 𝑋0 𝑋−1

𝑑1
1

𝑑1
0

ℎ0

𝑟

𝑠

Thus, as remarked in the proof of proposition 1.2.7, 𝜋0𝑋 ≅ 𝑋−1. As always,
there is a unique morphism ̃𝑠 : disc 𝑋−1 → 𝑋 whose degree 0 component is
𝑠 : 𝑋−1 → 𝑋0, and the above observation ensures that there also exists a unique
morphism ̃𝑟 : 𝑋 → disc 𝑋−1 whose degree 0 component is 𝑟 : 𝑋0 → 𝑋−1.

Clearly, ̃𝑟 ∘ ̃𝑠 = iddisc 𝑋−1
; we must show that ̃𝑠 ∘ ̃𝑟 ∼ id𝑋 . Let 𝜒 𝑖

𝑛 : [𝑛] → [1]
denote the map in 𝚫 defined below:

𝜒 𝑖
𝑛(𝑗) =

{
0 if 𝑗 < 𝑖
1 if 𝑗 ≥ 𝑖

It is not hard to see that 𝚫([𝑛], [1]) = {𝜒 𝑖
𝑛 | 0 ≤ 𝑖 ≤ 𝑛 + 1}, and moreover we

have the following identities:

𝜒 𝑖
𝑛+1 ∘ 𝛿𝑗

𝑛+1 = 𝜒 𝑖
𝑛 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 + 1

𝜒 𝑗
𝑛+1 ∘ 𝛿𝑖

𝑛+1 = 𝜒 𝑗−1
𝑛 if 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 2

𝜒 𝑖
𝑛 ∘ 𝜎𝑗

𝑛 = 𝜒 𝑖
𝑛+1 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝜒 𝑗
𝑛 ∘ 𝜎𝑖

𝑛 = 𝜒 𝑗+1
𝑛+1 if 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1

We construct by recursion a sequence of maps 𝐻𝑛 : 𝑋𝑛 × 𝚫([𝑛], [1]) → 𝑋𝑛:

• For all 𝑥 in 𝑋0:

𝐻0(𝑥, 𝜒1
0 ) = 𝑥

𝐻0(𝑥, 𝜒0
0 ) = 𝑠(𝑟(𝑥))
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• For each 𝑥 in 𝑋𝑛+1:

𝐻𝑛+1(𝑥, 𝜒𝑛+2
𝑛+1 ) = 𝑥

𝐻𝑛+1(𝑥, 𝜒𝑛+1
𝑛+1 ) = ℎ𝑛(𝑑𝑛+1

𝑛+1 (𝑥))

𝐻𝑛+1(𝑥, 𝜒 𝑗
𝑛+1) = 𝑠𝑛

𝑛(𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛)) for 0 ≤ 𝑗 ≤ 𝑛

It is straightforward to check that these equations hold,

𝑑1
0 ∘ 𝐻1 = 𝐻0 ∘ 𝑑1

0 𝑑1
1 ∘ 𝐻1 = 𝐻0 ∘ 𝑑1

1 𝑠0
0 ∘ 𝐻0 = 𝐻1 ∘ 𝑠0

0

so we assume for induction that these identities hold for some 𝑛 > 0:

𝑑𝑘
𝑖 ∘ 𝐻𝑘 = 𝐻𝑘−1 ∘ 𝑑𝑘

𝑖 for 0 < 𝑘 ≤ 𝑛, 0 ≤ 𝑖 ≤ 𝑘
𝑠𝑘

𝑖 ∘ 𝐻𝑘 = 𝐻𝑘+1 ∘ 𝑠𝑘
𝑖 for 0 ≤ 𝑘 < 𝑛, 0 ≤ 𝑖 ≤ 𝑘

Then, for 0 ≤ 𝑖 ≤ 𝑛 + 1,

𝑑𝑛+1
𝑖 (𝐻𝑛+1(𝑥, 𝜒𝑛+2

𝑛+1 )) = 𝑑𝑛+1
𝑖 (𝑥)
= 𝐻𝑛(𝑑𝑛+1

𝑖 (𝑥), 𝜒𝑛+1
𝑛 ) = 𝐻𝑛(𝑑𝑛+1

𝑖 (𝑥), 𝜒𝑛+2
𝑛+1 ∘ 𝛿𝑖

𝑛+1)

and, for 0 ≤ 𝑖 ≤ 𝑛,

𝑑𝑛+1
𝑖 (𝐻𝑛+1(𝑥, 𝜒𝑛+1

𝑛+1 )) = 𝑑𝑛+1
𝑖 (ℎ𝑛(𝑑𝑛+1

𝑛+1 (𝑥)))
= ℎ𝑛−1(𝑑𝑛

𝑖 (𝑑𝑛+1
𝑛+1 (𝑥))) = ℎ𝑛−1(𝑑𝑛

𝑛(𝑑𝑛+1
𝑖 (𝑥)))

= 𝐻𝑛(𝑑𝑛+1
𝑖 (𝑥), 𝜒𝑛

𝑛 ) = 𝐻𝑛(𝑑𝑛+1
𝑖 (𝑥), 𝜒𝑛

𝑛 ∘ 𝛿𝑖
𝑛+1)

while, for 𝑖 = 𝑛 + 1:

𝑑𝑛+1
𝑛+1(𝐻𝑛+1(𝑥, 𝜒𝑛+1

𝑛+1 )) = 𝑑𝑛+1
𝑛+1(ℎ𝑛(𝑑𝑛+1

𝑛+1 (𝑥)))
= 𝑑𝑛+1

𝑛+1 (𝑥) = 𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒𝑛+1

𝑛 ) = 𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒𝑛+1

𝑛+1 ∘ 𝛿𝑛+1
𝑛+1)

Similarly, for 0 ≤ 𝑗 < 𝑛,

𝑑𝑛+1
𝑛+1(𝐻𝑛+1(𝑥, 𝜒 𝑗

𝑛+1)) = 𝑑𝑛+1
𝑛+1(𝑠𝑛

𝑛(𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛)))

= 𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛)𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛+1 ∘ 𝛿𝑛+1
𝑛+1)
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𝑑𝑛+1
𝑛 (𝐻𝑛+1(𝑥, 𝜒 𝑗

𝑛+1)) = 𝑑𝑛+1
𝑛 (𝑠𝑛

𝑛(𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛))) = 𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛)

= 𝑠𝑛−1
𝑛−1(𝐻𝑛−1(𝑑𝑛

𝑛(𝑑𝑛+1
𝑛+1 (𝑥)), 𝜒 𝑗

𝑛−1)) = 𝑠𝑛−1
𝑛−1(𝐻𝑛−1(𝑑𝑛

𝑛(𝑑𝑛+1
𝑛 (𝑥)), 𝜒 𝑗

𝑛−1))

= 𝐻𝑛(𝑑𝑛+1
𝑛 (𝑥), 𝜒 𝑗

𝑛) = 𝐻𝑛(𝑑𝑛+1
𝑛 (𝑥), 𝜒 𝑗

𝑛+1 ∘ 𝛿𝑛
𝑛+1)

and for 0 ≤ 𝑖 < 𝑛, we have:

𝑑𝑛+1
𝑖 (𝐻𝑛+1(𝑥, 𝜒 𝑗

𝑛+1)) = 𝑑𝑛+1
𝑖 (𝑠𝑛

𝑛(𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛)))

= 𝑠𝑛−1
𝑛−1(𝑑𝑛

𝑖 (𝐻𝑛(𝑑𝑛+1
𝑛+1 (𝑥), 𝜒 𝑗

𝑛))) = 𝑠𝑛−1
𝑛−1(𝐻𝑛−1(𝑑𝑛

𝑖 (𝑑𝑛+1
𝑛+1 (𝑥)), 𝜒 𝑗

𝑛 ∘ 𝛿𝑖
𝑛))

= 𝑠𝑛−1
𝑛−1(𝐻𝑛−1(𝑑𝑛

𝑛(𝑑𝑛+1
𝑖 (𝑥)), 𝜒 𝑗

𝑛 ∘ 𝛿𝑖
𝑛)) = 𝐻𝑛(𝑑𝑛+1

𝑖 (𝑥), 𝜒 𝑗
𝑛+1 ∘ 𝛿𝑖

𝑛+1)

On the other hand, for 0 ≤ 𝑖 ≤ 𝑛,

𝑠𝑛
𝑖 (𝐻𝑛(𝑥, 𝜒𝑛+1

𝑛 )) = 𝑠𝑛
𝑖 (𝑥) = 𝐻𝑛+1(𝑠𝑛

𝑖 (𝑥), 𝜒𝑛+2
𝑛+1 ) = 𝐻𝑛+1(𝑠𝑛

𝑖 (𝑥), 𝜒𝑛+1
𝑛 ∘ 𝜎𝑖

𝑛)

and for 0 ≤ 𝑖 < 𝑛,

𝑠𝑛
𝑖 (𝐻𝑛(𝑥, 𝜒𝑛

𝑛 )) = 𝑠𝑛
𝑖 (ℎ𝑛−1(𝑑𝑛

𝑛 (𝑥)))
= ℎ𝑛(𝑠𝑛−1

𝑖 (𝑑𝑛
𝑛 (𝑥))) = ℎ𝑛(𝑑𝑛+1

𝑛+1(𝑠𝑛
𝑖 (𝑥)))

= 𝐻𝑛+1(𝑠𝑛
𝑖 (𝑥), 𝜒𝑛+1

𝑛+1 ) = 𝐻𝑛+1(𝑠𝑛
𝑖 (𝑥), 𝜒𝑛

𝑛 ∘ 𝜎𝑖
𝑛)

while for 𝑖 = 𝑛, we have:

𝑠𝑛
𝑛(𝐻𝑛(𝑥, 𝜒𝑛

𝑛 )) = 𝑠𝑛
𝑛(𝐻𝑛(𝑑𝑛+1

𝑛+1(𝑠𝑛
𝑛(𝑥)), 𝜒𝑛

𝑛 ))
= 𝐻𝑛+1(𝑠𝑛

𝑛(𝑥), 𝜒𝑛
𝑛+1) = 𝐻𝑛+1(𝑠𝑛

𝑛(𝑥), 𝜒𝑛
𝑛 ∘ 𝜎𝑛

𝑛)

Finally, for 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 < 𝑛:

𝑠𝑛
𝑖 (𝐻𝑛(𝑥, 𝜒 𝑗

𝑛)) = 𝑠𝑛
𝑖 (𝑠𝑛−1

𝑛−1(𝐻𝑛−1(𝑑𝑛
𝑛 (𝑥), 𝜒 𝑗

𝑛−1)))

= 𝑠𝑛
𝑛(𝑠𝑛−1

𝑖 (𝐻𝑛−1(𝑑𝑛
𝑛 (𝑥), 𝜒 𝑗

𝑛−1))) = 𝑠𝑛
𝑛(𝐻𝑛(𝑠𝑛−1

𝑖 (𝑑𝑛
𝑛 (𝑥)), 𝜒 𝑗

𝑛−1 ∘ 𝜎𝑖
𝑛−1))

= 𝑠𝑛
𝑛(𝐻𝑛(𝑑𝑛+1

𝑛+1(𝑠𝑛
𝑖 (𝑥)), 𝜒 𝑗

𝑛−1 ∘ 𝜎𝑖
𝑛−1)) = 𝐻𝑛+1(𝑠𝑛

𝑖 (𝑥), 𝜒 𝑗
𝑛 ∘ 𝜎𝑖

𝑛)

We therefore have a morphism 𝐻 : 𝑋 × Δ1 → 𝑋 such that 𝐻 ∘ (id𝑋 × 𝛿0
1) =

̃𝑠 ∘ ̃𝑟 and 𝐻 ∘ (id𝑋 × 𝛿1
1) = id𝑋 . By remark 1.3.2, this is the required intrinsic

homotopy. ■
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Corollary 1.3.21. A simplicial set 𝑋 is contractible if the unique morphism 𝑋 →
Δ0 admits a forward or backward contracting homotopy. ■

Definition 1.3.22. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in 𝐬𝐒𝐞𝐭.

• 𝑓 has the forward homotopy lifting property with respect to 𝑔 if, for
every commutative diagram of the following form,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧0

𝑓
ℎ0

𝑤0

given intrinsic homotopies 𝛼 : 𝑤0 ⇒ 𝑤1 and 𝛽 : 𝑧0 ⇒ 𝑧1 such that
𝛼𝑔 = 𝑓𝛽, there exist a morphism ℎ1 : 𝑊 → 𝑋 and an intrinsic homotopy
𝛾 : ℎ0 ⇒ ℎ1 such that 𝑓 ∘ ℎ1 = 𝑤1, ℎ1 ∘ 𝑔 = 𝑧1, 𝑓𝛾 = 𝛼, and 𝛾𝑔 = 𝛽.

• 𝑓 has the backward homotopy lifting property with respect to 𝑔 if, for
every commutative diagram of the following form,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧1

𝑓
ℎ1

𝑤1

given intrinsic homotopies 𝛼 : 𝑤0 ⇒ 𝑤1 and 𝛽 : 𝑧0 ⇒ 𝑧1 such that
𝛼 ∘ id𝑔 = id𝑓 ∘ 𝛽, there exist a morphism ℎ0 : 𝑊 → 𝑋 and an intrinsic
homotopy 𝛾 : ℎ0 ⇒ ℎ1 such that 𝑓 ∘ ℎ0 = 𝑤0, ℎ0 ∘ 𝑔 = 𝑧0, 𝑓𝛾 = 𝛼, and
𝛾𝑔 = 𝛽.

• 𝑓 has the intrinsic homotopy lifting property with respect to 𝑔 if 𝑓 has
both the forward and backward homotopy lifting properties with respect
to 𝑔.

• 𝑓 has the forward (resp. backward, intrinsic) homotopy lifting prop-
erty with respect to the object 𝑊 if 𝑓 has the forward (resp. backward,
intrinsic) homotopy lifting property with respect to the unique morphism
0 → 𝑊 .

• 𝑔 has the forward (resp. backward, intrinsic) homotopy extension prop-
erty with respect to 𝑓 if 𝑓 has the forward (resp. backward, intrinsic) ho-
motopy lifting property with respect to 𝑔.
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• 𝑔 has the forward (resp. backward, intrinsic) homotopy extension prop-
erty with respect to the object 𝑋 if 𝑔 has the forward (resp. backward, in-
trinsic) homotopy extension property with respect to the unique morphism
𝑋 → 1.

Proposition 1.3.23. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in 𝐬𝐒𝐞𝐭,
and suppose we have a commutative diagram

[𝑊 , 𝑋]

𝐿(𝑔, 𝑓 ) [𝑍, 𝑋]

[𝑊 , 𝑌 ] [𝑍, 𝑌 ]

[𝑊 ,𝑓]

[𝑔,𝑋]
𝑞

[𝑍,𝑓]

[𝑔,𝑌 ]

where the square in the lower right is a pullback square. The following are equi-
valent:

(i) 𝑓 has the forward homotopy lifting property with respect to 𝑔.

(ii) The morphism 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑔, 𝑓 ) has the right lifting property with
respect to the horn inclusion Λ1

0 ↪ Δ1.

(iii) Suppose we have a commutative diagram

Λ1
0 × 𝑍 Δ1 × 𝑍

Λ1
0 × 𝑊 𝑉0(𝑔)

Δ1 × 𝑊

idΛ1
0
×𝑔

idΔ1×𝑔

𝑗

where the square in the upper left is a pushout square. Then the morphism
𝑗 : 𝑉0(𝑔) → Δ1×𝑊 has the left lifting property with respect to 𝑓 : 𝑋 → 𝑌 .

Symmetrically, the following are equivalent:

(i′) 𝑓 has the backward homotopy lifting property with respect to 𝑔.

(ii′) The morphism 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑔, 𝑓 ) has the right lifting property with
respect to the horn inclusion Λ1

1 ↪ Δ1.
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(iii′) Suppose we have a commutative diagram

Λ1
1 × 𝑍 Δ1 × 𝑍

Λ1
1 × 𝑊 𝑉1(𝑔)

Δ1 × 𝑊

idΛ1
1
×𝑔

idΔ1×𝑔

𝑗

where the square in the upper left is a pushout square. Then the morphism
𝑗 : 𝑉1(𝑔) → Δ1×𝑊 has the left lifting property with respect to 𝑓 : 𝑋 → 𝑌 .

Proof. This is a special case of proposition 5.5.1: use remark 1.3.2 and the ex-
ponential adjunction. ■

Definition 1.3.24. A horn is a simplicial subset of the form Λ𝑛
𝑘 ⊆ Δ𝑛, where Λ𝑛

𝑘
is the union of the images of 𝛿0

𝑛 , … , 𝛿𝑘−1
𝑛 , 𝛿𝑘+1

𝑛 , … , 𝛿𝑛
𝑛 : Δ𝑛−1 → Δ𝑛 in 𝐬𝐒𝐞𝐭. In

other words, Λ𝑛
𝑘 is the union of all the faces of Δ𝑛 that include the 𝑘-th vertex.

Theorem 1.3.25. Let 𝑝 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭. The following are
equivalent:

(i) 𝑝 : 𝑋 → 𝑌 has the right lifting property with respect to the horn inclusions
Λ𝑛

𝑘 ↪ Δ𝑛 (for all 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛).

(ii) 𝑝 : 𝑋 → 𝑌 has the intrinsic homotopy lifting property with respect to the
boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛 (for all 𝑛 ≥ 0).

(iii) 𝑝 : 𝑋 → 𝑌 has the intrinsic homotopy lifting property with respect to any
monomorphism in 𝐬𝐒𝐞𝐭.

Proof. Combine propositions 1.3.23 and a.3.17 with either Theorem 2.1 in [GZ,
Ch. IV] or Proposition 4.2 in [GJ, Ch. I]. □

Remark. The analogous theorem for cubical sets was announced as Theorem 2
in [Kan, 1955].
Remark 1.3.26. Let 𝐵𝑛 be the closed unit ball in the euclidean space ℝ𝑛, let
𝜕𝐵𝑛 be its boundary, and let 𝐼 be the closed unit interval [0, 1]. It is not hard
to see that the inclusion 𝐵𝑛 × {0} ↪ 𝐵𝑛 × 𝐼 is isomorphic to the inclusion
𝐵𝑛 × {0} ∪ 𝜕𝐵𝑛 × 𝐼 ↪ 𝐵𝑛 × 𝐼 . Thus, a continuous map 𝑝 : 𝑋 → 𝑌 has the
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homotopy lifting property with respect to all 𝐵𝑛 if and only if it has the homotopy
lifting property with respect to all boundary inclusions 𝜕𝐵𝑛 ↪ 𝐵𝑛.

Unfortunately, 𝐬𝐒𝐞𝐭 does not have the analogous property. Indeed, for any
simplicial set 𝑋, the unique morphism 𝑋 → 1 has the intrinsic homotopy lifting
property with respect to the 𝑛-simplices Δ𝑛, but it need not have the intrinsic right
lifting property with respect to all boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛.

Lemma 1.3.27. Let 𝑝 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭.

(i) If 𝑝 : 𝑋 → 𝑌 has the right lifting property with respect to the boundary
inclusion 𝜕Δ0 ↪ Δ0, then 𝑝0 : 𝑋0 → 𝑌0 is surjective.

(ii) If 𝑝 : 𝑋 → 𝑌 has the right lifting property with respect to the boundary
inclusions 𝜕Δ0 ↪ Δ0 and 𝜕Δ1 ↪ Δ1, then 𝑝 : 𝑋 → 𝑌 has the intrinsic
homotopy lifting property with respect to Δ0, and 𝜋0𝑝 : 𝜋0𝑋 → 𝜋0𝑌 is a
bijection.

Proof. (i). Let 𝑦 be a vertex of 𝑌 . Then the right lifting property of 𝑝 : 𝑋 → 𝑌
with respect to the boundary inclusion 𝜕Δ0 ↪ Δ0 yields a vertex 𝑥 of 𝑋 such that
𝑝0(𝑥) = 𝑦, as required.

(ii). By proposition 1.3.23, 𝑝 : 𝑋 → 𝑌 has the intrinsic homotopy lifting property
with respect to Δ0 if and only if it has the right lifting property with respect to
the horn inclusions Λ1

0 ↪ Δ1 and Λ1
1 ↪ Δ1. Since Δ1 is 1-skeletal, we may apply

propositions 1.2.23 and a.3.17 to deduce that 𝑝 : 𝑋 → 𝑌 does indeed have the
aforementioned right lifting properties.

It remains to be shown that 𝜋0 : 𝜋0𝑋 → 𝜋0𝑌 is a bijection. We already
know that 𝜋0𝑝 : 𝜋0𝑋 → 𝜋0𝑌 is a surjection, so it suffices to show that it is also
injective. Let 𝑥0 and 𝑥1 be vertices of 𝑋 such that 𝑦0 = 𝑝(𝑥0) and 𝑦1 = 𝑝(𝑥1)
are in the same connected component. We proceed by induction on the length of
the shortest path (i.e. zigzag of edges) in 𝑌 connecting 𝑦0 and 𝑦1.

If 𝑦0 and 𝑦1 are connected by an edge of 𝑌 , then we may use the right lifting
property of 𝑝 : 𝑋 → 𝑌 with respect to the boundary inclusion 𝜕Δ1 ↪ Δ1 to find
an edge of 𝑋 connecting 𝑥0 and 𝑥1. Otherwise, we use the intrinsic homotopy
lifting property of 𝑝 : 𝑋 → 𝑌 with respect to Δ0 to reduce to the case where 𝑦0
and 𝑦1 are connected by a strictly shorter path. ■

Definition 1.3.28. An anodyne extension of simplicial sets is a member of the
smallest class u� ⊂ 𝐬𝐒𝐞𝐭 satisfying the following conditions:
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• Every horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is in u�.

• u� is closed under pushouts, i.e. given a pushout diagram in 𝐬𝐒𝐞𝐭 of the
form below,

𝑍′ 𝑍

𝑊 ′ 𝑊

𝑔′ 𝑔

if 𝑔′ : 𝑍′ → 𝑊 ′ is in u�, then so is 𝑔 : 𝑍 → 𝑊 .

• u� is closed under (finite and) transfinite composition, i.e. given an ordinal
𝛼 and a colimit-preserving functor 𝑋 : 𝛼 → 𝐬𝐒𝐞𝐭 such that the morphisms
𝑋(𝛽) → 𝑋(𝛾) are in u�, the induced morphism 𝑋(0) → lim−−→𝛽<𝛼

𝑋(𝛽) is
also in u�.

• u� is closed under retracts, i.e. given a commutative diagram in 𝐬𝐒𝐞𝐭 of the
form below,

𝑍′ 𝑍 𝑍′

𝑊 ′ 𝑊 𝑊 ′

𝑔′
𝑖𝑍

id

𝑔
𝑟𝑍

𝑔′

id

𝑖𝑊 𝑟𝑊

if 𝑔 : 𝑍 → 𝑊 is in u�, then so is 𝑔′ : 𝑍′ → 𝑊 ′.

Lemma 1.3.29. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be monomorphisms in 𝐬𝐒𝐞𝐭.
Suppose the square in the diagram below is a pushout square in 𝐬𝐒𝐞𝐭:

𝑋 × 𝑍 𝑋 × 𝑊

𝑌 × 𝑍 (𝑋 × 𝑊 ) ∪𝑋×𝑍 (𝑌 × 𝑍)

𝑌 × 𝑊

𝑓×id𝑍

id𝑋×𝑔

𝑓×id𝑊

id𝑌 ×𝑔

𝑓◲𝑔

(i) The morphism 𝑓 ◲ 𝑔 : (𝑋 × 𝑊 ) ∪𝑋×𝑍 (𝑌 × 𝑍) → 𝑌 × 𝑊 is a mono-
morphism.

(ii) If at least one of 𝑓 : 𝑋 → 𝑌 or 𝑔 : 𝑍 → 𝑊 is an anodyne extension, then
so is 𝑓 ◲ 𝑔 : (𝑋 × 𝑊 ) ∪𝑋×𝑍 (𝑌 × 𝑍) → 𝑌 × 𝑊 .
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Proof. (i). Using the fact that limits and colimits in 𝐬𝐒𝐞𝐭 can be calculated de-
greewise, this reduces to a well-known fact about 𝐒𝐞𝐭.

(ii). See Proposition 2.2 in [GZ], or Corollary 4.6 in [GJ, Ch. I]. □

Definition 1.3.30. Let 𝐿 be any simplicial set, let 𝐾 be a simplicial subset of
𝐿, and let 𝑓0, 𝑓1 : 𝐿 → 𝑌 be a parallel pair of morphisms in 𝐬𝐒𝐞𝐭. An intrinsic
homotopy 𝑓0 ⇒ 𝑓1 relative to 𝐾 is an intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 such
that the image of 𝛼 under morphism [𝐿, 𝑌 ] → [𝐾, 𝑌 ] (induced by the inclusion
𝐾 ↪ 𝐿) is a degenerate edge. (In particular, the restrictions of 𝑓0 and 𝑓1 along
𝐾 ↪ 𝐿 must be equal.) We write 𝜋(𝐿,𝐾)(𝑌 , 𝑦) for the set of morphisms 𝐿 → 𝑌
whose restriction along 𝐾 ↪ 𝐿 is 𝑦 : 𝐾 → 𝑌 , modulo the equivalence relation
generated by intrinsic homotopy relative to 𝐾 .

Remark 1.3.31. For fixed 𝐿 and 𝐾 , the assignment (𝑌 , 𝑦) ↦ 𝜋(𝐿,𝐾)(𝑌 , 𝑦) is
clearly the object part of a functor 𝐾∕𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭. Indeed, we may construct
it as follows: given 𝑦 : 𝐾 → 𝑌 , form the following pullback square in 𝐬𝐒𝐞𝐭,

[𝐿, 𝑌 ]𝑦 [𝐿, 𝑌 ]

Δ0 [𝐾, 𝑌 ]

where the morphism [𝐿, 𝑌 ] → [𝐾, 𝑌 ] is induced by the inclusion 𝐾 ↪ 𝐿 and
the morphism Δ0 → [𝐾, 𝑌 ] corresponds to 𝑦 (considered as a vertex of [𝐾, 𝑌 ]);
then 𝜋(𝐿,𝐾)(𝑌 , 𝑦) can be identified with 𝜋0[𝐿, 𝑌 ]𝑦.

Definition 1.3.32. Let 𝐿 be any simplicial set and let 𝐾 be a simplicial subset
of 𝐿. The relative cylinder on (𝐿, 𝐾) is the simplicial set 𝐶(𝐿, 𝐾) defined by
the following pushout diagram,

𝐾 × Δ1 𝐿 × Δ1

𝐾 𝐶(𝐿, 𝐾)

𝑞

where 𝐾 × Δ1 → 𝐾 is the projection and 𝐾 × Δ1 ↪ 𝐿 × Δ1 is induced by the
inclusion 𝐾 ↪ 𝐿.
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Remark 1.3.33. Let 𝑗0, 𝑗1 : 𝐿 → 𝐶(𝐿, 𝐾) be the morphisms obtained by com-
posing with 𝑞 : 𝐿 × Δ1 → 𝐶(𝐿, 𝐾) the two morphisms 𝐿 → 𝐿 × Δ1 induced
by the two vertex inclusions Δ0 → Δ1. There is a natural bijection between the
set of intrinsic homotopies 𝑓0 ⇒ 𝑓1 relative to 𝐾 and the set of morphisms
ℎ : 𝐶(𝐿, 𝐾) → 𝑌 such that ℎ ∘ 𝑗0 = 𝑓0 and ℎ ∘ 𝑗1 = 𝑓1.

Definition 1.3.34. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭. With other notation
as above, we say that 𝑓 has the homotopical right lifting property with respect
to 𝐾 ↪ 𝐿 if, for each commutative diagram the form below,

𝐾 𝑋

𝐿 𝑌

𝜕𝑥

𝑓

𝑦

there exist a morphism 𝑥 : 𝐿 → 𝑋 and a homotopy 𝛼 : 𝑦 ⇒ 𝑓 ∘ 𝑥 relative to
𝐾 , or equivalently, morphisms 𝑥 : 𝐿 → 𝑋 and ℎ : 𝐶(𝐿, 𝐾) → 𝑌 making the
following diagram commute:

𝐾 𝐿 𝑋

𝐿 𝐶(𝐿, 𝐾) 𝑌

𝜕𝑥

𝑗1

𝑥

𝑓

𝑗0

𝑦

ℎ

Proposition 1.3.35. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭 and let u� be the
class of pairs (𝐿, 𝐾) such that 𝑓 has the homotopical right lifting property with
respect to 𝐾 ↪ 𝐿.

(i) u� is closed under coproducts for small families.

(ii) u� is closed under pushout.

(iii) u� is closed under retracts.

Proof. See Lemma 3.4 in [Dugger and Isaksen, 2004]. □
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I. Simplicial sets

1.4 Kan complexes
Prerequisites. §§1.3, 3.1, 3.7, a.4.

We have seen in the previous section that the notion of intrinsic homotopy
is not well behaved for general simplicial sets. To remedy this, we shall (tem-
porarily) restrict our attention to Kan complexes. These are simplicial sets with
the so-called “extension property”, and they are named in honour of Kan [1955],
who first observed the importance of the aforementioned property.

Definition 1.4.1. A Kan fibration is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭 that has
the right lifting property with respect to the horn inclusions Λ𝑛

𝑘 ↪ Δ𝑛, where
𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛. A Kan complex is a simplicial set 𝑋 such that the unique
morphism 𝑋 → 1 is a Kan fibration.

Remark 1.4.2. In other words, a Kan complex is a simplicial set 𝑋 satisfying
the Kan condition: every horn 𝛼′ : Λ𝑛

𝑘 → 𝑋 has a filler, i.e. a morphism
𝛼 : Δ𝑛 → 𝑋 (equivalently, an 𝑛-simplex of 𝑋) such that 𝛼′ is the restriction
along the inclusion Λ𝑛

𝑘 ↪ Δ𝑛.

Proposition 1.4.3. Let 𝑋 be a simplicial set. The following are equivalent:

(i) 𝑋 is a Kan complex.

(ii) 𝑋 has the intrinsic homotopy extension property with respect to the bound-
ary inclusions 𝜕Δ𝑛 ↪ Δ𝑛.

(iii) 𝑋 has the intrinsic homotopy extension property with respect to any mono-
morphism in 𝐬𝐒𝐞𝐭.

Proof. This is a special case of theorem 1.3.25. ■

Lemma 1.4.4. If 𝑋 is a Kan complex, then the fundamental category 𝜏1𝑋 is a
groupoid, and the unit 𝑋 : 𝑋 → N(𝜏1𝑋) is an epimorphism.

Proof. Let 𝑥, 𝑦, and 𝑧 be vertices in 𝑋, and let 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 be
edges in 𝑋.[6] Then the pair (𝑓 , 𝑔) defines a horn Λ2

1 → 𝑋, and so by the Kan
condition, there exists a 2-simplex 𝛼 of 𝑋 such that 𝑑2(𝛼) = 𝑓 and 𝑑0(𝛼) = 𝑔.
By remark remark 1.2.4, the composite 𝑔 ∙ 𝑓 defined in 𝜏1𝑋 must correspond
to the edge 𝑑1(𝛼). Since the arrows in 𝜏1𝑋 are generated by the edges of 𝑋, we

[6] Recall definition 1.1.14.
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1.4. Kan complexes

conclude by induction that 𝑋 : 𝑋 → N(𝜏1𝑋) is a surjection on vertices and
edges.

Similarly, given an edge 𝑓 : 𝑥 → 𝑦, the Kan condition ensures that there
exist two 2-simplices 𝛽 and 𝛾 such that

𝑑2(𝛼) = 𝑓 𝑑1(𝛼) = id𝑥

𝑑0(𝛼) = 𝑓 𝑑1(𝛼) = id𝑦

where id𝑥 : 𝑥 → 𝑥 is the edge 𝑠0(𝑥), and id𝑦 : 𝑦 → 𝑦 is the edge 𝑠0(𝑦). Together
with the argument in the previous paragraph, this shows that 𝜏1𝑋 is a groupoid.

Finally, to show that 𝑋 : 𝑋 → N(𝜏1𝑋) is a surjection on 𝑛-simplices for
𝑛 ≥ 2, we simply observe that an 𝑛-simplex of N(𝜏1𝑋) is just a string of 𝑛
composable edges of 𝑋, so we may appeal to the Kan condition again to obtain
the corresponding 𝑛-simplex of 𝑋. ■

Corollary 1.4.5. If 𝑋 is a Kan complex, then the unit 𝑋 : 𝑋 → N(𝜋1𝑋) is an
epimorphism.

Proof. Since 𝜏1𝑋 is already a groupoid, the canonical functor 𝜏1𝑋 → 𝜋1𝑋 must
be an isomorphism. (See remark 1.2.12.) ■

Proposition 1.4.6. Let 𝑋 be a Kan complex and let 𝛼0, 𝛼1 : 𝑥0 → 𝑥1 be edges in
𝑋. The following are equivalent:

(i) 𝛼0 = 𝛼1 in the fundamental groupoid 𝜋1𝑋.

(ii) There exists a 2-simplex 𝜎 of 𝑋 such that 𝑑0(𝜎) = 𝑠0(𝑥1), 𝑑1(𝜎) = 𝛼1, and
𝑑2(𝜎) = 𝛼0.

(iii) There exists an edge 𝛽 : 𝛼0 → 𝛼1 in the exponential object [Δ1, 𝑋] such
that [𝛿1, 𝑋](𝛽) = 𝑠0(𝑥0) and [𝛿0, 𝑋](𝛽) = 𝑠0(𝑥1).

Proof. (i) ⇔ (ii). See Proposition 1.2.3.9 in [HTT].

(i) ⇔ (iii). See paragraph 5.2 in [GZ]. □

Proposition 1.4.7. Let ℐ and ℐ′ be the following subsets of mor 𝐬𝐒𝐞𝐭:

ℐ = {𝜕Δ𝑛 ↪ Δ𝑛 | 𝑛 ≥ 0}
ℐ′ = {Λ𝑛

𝑘 ↪ Δ𝑛 | 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛}
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(i) There exist a pair of functorial factorisation systems on 𝐬𝐒𝐞𝐭, one indu-
cing a weak factorisation system cofibrantly generated by ℐ, and the other
inducing a weak factorisation system cofibrantly generated by ℐ′.

(ii) A morphism is ℐ′-injective if and only if it is a Kan fibration, and every
ℐ′-cofibration is a monomorphism (but not vice versa).

(iii) A morphism is a ℐ-cofibration if and only if it is a monomorphism, and
every ℐ-injective morphism is a Kan fibration (but not vice versa).

Proof. (i). Since 𝐬𝐒𝐞𝐭 is a locally finitely presentable category, we may apply
Quillen’s small object argument (theorem 0.5.12).

(ii). The definition of ‘Kan fibration’ is exactly the definition of ‘ℐ-injective
morphism’; on the other hand, the class of monomorphisms is closed under push-
out, transfinite composition, and retracts in 𝐒𝐞𝐭, so the same is true for 𝐬𝐒𝐞𝐭, and
thus, by corollary 0.5.13, every ℐ-cofibration must be a monomorphism.

(iii). To prove that injℐ u� ⊇ injℐ′
u�, it is enough to check that ℐ ⊆ cofℐ′ u�.

Since every morphism in ℐ is a monomorphism, it will suffice to show that
cellℐ′ u� contains all monomorphisms; but this is an immediate corollary of pro-
position 1.2.23. ■

Corollary 1.4.8. Let 𝑖 : 𝑍 → 𝑊 be a morphism in 𝐬𝐒𝐞𝐭. The following are
equivalent:

(i) 𝑖 : 𝑍 → 𝑊 is an anodyne extension.

(ii) 𝑖 : 𝑍 → 𝑊 has the left lifting property with respect to any Kan fibration.

(iii) 𝑖 : 𝑍 → 𝑊 is a retract of a relative ℐ′-cell complex.

Proof. (i) ⇒ (ii). Apply proposition a.3.17.

(ii) ⇒ (iii). This is a special case of corollary 0.5.13.

(iii) ⇒ (i). By definition, the class of anodyne extensions is closed under pushout,
transfinite composition, and retracts. ■

Definition 1.4.9. A trivial Kan fibration is a morphism in 𝐬𝐒𝐞𝐭 that has the
right lifting property with respect to the boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛, where
𝑛 ≥ 0.
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1.4. Kan complexes

Remark 1.4.10. Proposition 1.4.7 implies that a trivial Kan fibration is the same
thing as as morphism in 𝐬𝐒𝐞𝐭 that has the right lifting property with respect to
any monomorphism. In particular, trivial Kan fibrations are Kan fibrations.

Proposition 1.4.11. If 𝑝 : 𝑋 → 𝑌 is a trivial Kan fibration, then 𝑝 : 𝑋 → 𝑌 is
fibrewise contractible, i.e. there exist a morphism 𝑠 : 𝑌 → 𝑋 and an intrinsic
homotopy 𝛼 : id𝑋 ⇒ 𝑠 ∘ 𝑝 satisfying the following conditions:

• 𝑝 ∘ 𝑠 = id𝑌 .

• 𝛼𝑠 is the trivial homotopy 𝑠 ⇒ 𝑠.

• 𝑝𝛼 is the trivial homotopy 𝑝 ⇒ 𝑝.

Moreover, given a monomorphism 𝑖 : 𝑌 ′ → 𝑌 and any morphism 𝑠′ : 𝑌 ′ → 𝑌
such that 𝑝 ∘ 𝑠′ = 𝑖′, the morphism 𝑠 : 𝑌 → 𝑋 given above may be chosen so
that 𝑠 ∘ 𝑖 = 𝑠′.

Proof. Since 𝑖 : 𝑌 ′ → 𝑌 is a monomorphism, the right lifting property of 𝑝 :
𝑋 → 𝑌 yields a morphism 𝑠 : 𝑌 → 𝑋 such that 𝑝 ∘ 𝑠 = id𝑌 and 𝑠 ∘ 𝑖 = 𝑠′. We
then obtain a commutative diagram of the form below,

𝑋 ∪𝑌 𝑋 𝑋

𝐶(𝑋, 𝑌 ) 𝑌

⦅𝑗0,𝑗1⦆

⦅id𝑋 ,𝑠∘𝑝⦆

𝑝

𝑝∘𝑟

where 𝐶(𝑋, 𝑌 ) is the relative cylinder, 𝑋 ∪𝑌 𝑋 is the pushout of 𝑠 : 𝑌 → 𝑋
along itself, the morphisms 𝑗0, 𝑗1 : 𝑋 → 𝐶(𝑋, 𝑌 ) are defined as in remark 1.3.33,
and 𝑟 : 𝐶(𝑋, 𝑌 ) → 𝑋 is defined by the following commutative diagram:

𝑌 × Δ1 𝑋 × Δ1

𝑌 𝐶(𝑋, 𝑌 )

𝑋

proj

𝑠×idΔ1

proj

𝑠

𝑟

It is not hard to see that ⦅𝑗0, 𝑗1⦆ : 𝑋 ∪𝑌 𝑋 → 𝐶(𝑋, 𝑌 ) is a monomorphism, so
there must exist ℎ : 𝐶(𝑋, 𝑌 ) → 𝑌 making the evident triangles commute. The
corresponding intrinsic homotopy id𝑋 ⇒ 𝑠 ∘ 𝑝 is then the desired 𝛼. ■
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Proposition 1.4.12. Let u� be the full subcategory of 𝐬𝐒𝐞𝐭 spanned by the finite
simplicial sets.

(i) The class of monomorphisms that are in u� is the smallest class containing
the boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛 that is closed under composition and
pushouts.

(ii) The class of anodyne extensions that are in u� is the smallest class con-
taining the horn inclusions Λ𝑛

𝑘 ↪ Δ𝑛 that is closed under composition,
pushouts, and retracts.

Proof. (i). This is a corollary of proposition 1.2.23.

(ii). Corollary 1.4.8 says that every anodyne extension in 𝐬𝐒𝐞𝐭 is a retract of a re-
lative ℐ′-cell complex, where ℐ′ is the set of all horn inclusions. More precisely,
if 𝑔 : 𝑍 → 𝑊 is an anodyne extension, then there is a commutative diagram in
𝐬𝐒𝐞𝐭 of the form below,

𝑍 𝑍 𝑍

𝑊 𝑊 ′ 𝑊

𝑔

id

𝑖

id

𝑔

id

𝑖𝑊 𝑟𝑊

where 𝑖 : 𝑍 → 𝑊 ′ is a relative ℐ′-cell complex. Suppose 𝑊 is a finite simpli-
cial set. Proposition 1.1.18 says that finite simplicial sets are ℵ0-compact objects
in 𝐬𝐒𝐞𝐭, so by considering a sequential presentation for 𝑖 : 𝑍 → 𝑊 ′, we see
that 𝑔 : 𝑍 → 𝑊 is a retract of some relative ℐ′-cell complex that admits an
ℵ0-small presentation. In particular, if 𝑍 is a finite simplicial set, then so is 𝑊 ′

(by lemma 0.2.18). Hence, the class of anodyne extensions in u� is the smallest
class containing ℐ′ that is closed under composition, pushouts, and retracts. ■

Proposition 1.4.13. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭 and, for each
𝑛-simplex 𝛼 : Δ𝑛 → 𝑌 , let 𝑓𝛼 : 𝑋𝛼 → Δ𝑛 be defined by the pullback diagram in
𝐬𝐒𝐞𝐭 shown below:

𝑋𝛼 𝑋

Δ𝑛 𝑌

𝑓𝛼 𝑓

𝛼
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(i) 𝑓 : 𝑋 → 𝑌 is a Kan fibration if and only if each 𝑓𝛼 : 𝑋𝛼 → Δ𝑛 is a Kan
fibration.

(ii) 𝑓 : 𝑋 → 𝑌 is a trivial Kan fibration if and only if each 𝑓𝛼 : 𝑋𝛼 → Δ𝑛 is a
trivial Kan fibration.

Proof. This is a straightforward exercise. ◊

Corollary 1.4.14.
(i) Let (𝑋𝑖 | 𝑖 ∈ 𝐼) be a small family of simplicial sets. The coproduct ∐𝑖∈𝐼 𝑋𝑖

is a Kan complex if and only if each 𝑋𝑖 is a Kan complex.

(ii) Let (𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 | 𝑖 ∈ 𝐼) be a small family of morphisms of simplicial
sets. The coproduct ∐𝑖∈𝐼 𝑓𝑖 : ∐𝑖∈𝐼 𝑋𝑖 → ∐𝑖∈𝐼 𝑌𝑖 is a Kan fibration if
and only if each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 is a Kan fibration.

(iii) Let (𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 | 𝑖 ∈ 𝐼) be a small family of morphisms of simplicial
sets. The coproduct ∐𝑖∈𝐼 𝑓𝑖 : ∐𝑖∈𝐼 𝑋𝑖 → ∐𝑖∈𝐼 𝑌𝑖 is a trivial Kan fibration
if and only if each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 is a trivial Kan fibration.

Proof. Given the previous proposition and the fact that coproducts in 𝐬𝐒𝐞𝐭 are
disjoint and stable under pullback, it suffices to observe that any Δ𝑛 → ∐𝑖∈𝐼 𝑌𝑖
must factor through one of the coproduct insertions 𝑌𝑗 → ∐𝑖∈𝐼 𝑌𝑖. ■

Proposition 1.4.15. Let 𝑖 : 𝑍 → 𝑊 be a cofibration in 𝐬𝐒𝐞𝐭 and let 𝑝 : 𝑋 → 𝑌
be a Kan fibration. Suppose we have a commutative diagram

[𝑊 , 𝑋]

𝐿(𝑖, 𝑝) [𝑍, 𝑋]

[𝑊 , 𝑌 ] [𝑍, 𝑌 ]

[𝑊 ,𝑝]

[𝑖,𝑋]
𝑞

[𝑍,𝑝]

[𝑖,𝑌 ]

where the square in the lower right is a pullback square.

(i) The unique morphism 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝) making the diagram commute
is a Kan fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension, then 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝) is a
trivial Kan fibration.
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(iii) If 𝑝 : 𝑍 → 𝑊 is a trivial Kan fibration, then so is 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝).

Proof. This is a special case of proposition 5.5.1: use lemma 1.3.29 and the ex-
ponential adjunction. ■

Corollary 1.4.16.
(i) If 𝑝 : 𝑋 → 𝑌 is a Kan fibration (resp. trivial Kan fibration), then for all

simplicial sets 𝑊 , the morphism [𝑊 , 𝑝] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] is also a
Kan fibration (resp. trivial Kan fibration).

(ii) If 𝑖 : 𝑍 → 𝑊 is a monomorphism (resp. anodyne extension) of simplicial
sets and 𝑋 is a Kan complex, then the morphism [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋]
is a Kan fibration (resp. trivial Kan fibration).

(iii) If 𝑊 is any simplicial set and 𝑋 is a Kan complex, then [𝑊 , 𝑋] is also a
Kan complex.

Proof. (i). Take 𝑍 = ∅; noting that the canonical morphism ∅ → 𝑊 is a
cofibration, and that [∅, 𝑝] : [∅, 𝑋] → [∅, 𝑌 ] is an isomorphism, the proposition
above then implies [𝑊 , 𝑝] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] is a Kan fibration (resp. trivial
Kan fibration).

(ii). Take 𝑌 = 1; since [𝑊 , 1] → [𝑍, 1] is an isomorphism, the proposition
above implies [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋] is a Kan fibration (resp. trivial Kan
fibration).

(iii). Noting that [∅, 𝑋] is a terminal object in 𝐬𝐒𝐞𝐭, we apply claim (ii) to the
case 𝑍 = ∅ to obtain the desired conclusion. ■

Proposition 1.4.17. For any simplicial set 𝑋 and any Kan complex 𝑌 , the rela-
tion ⇝ on 𝐬𝐒𝐞𝐭(𝑋, 𝑌 ) defined by

𝑓0 ⇝ 𝑓1 if and only if there exists an intrinsic homotopy 𝑓0 ⇒ 𝑓1

is an equivalence relation.

Proof. The relation ⇝ is certainly reflexive whether or not 𝑌 is a Kan complex.
By corollary 1.4.16, the exponential object [𝑋, 𝑌 ] is a Kan complex; so recalling
lemma 1.4.4, the transitivity of ⇝ may be deduced from the fact that the unit

[𝑋,𝑌 ] : [𝑋, 𝑌 ] → N(𝜏1[𝑋, 𝑌 ]) is an epimorphism, and the symmetry of ⇝
corresponds to the fact that 𝜏1[𝑋, 𝑌 ] is a groupoid. ■
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Proposition 1.4.18. Let 𝑋 and 𝑌 be Kan complexes. If 𝑖 : 𝑋 → 𝑌 is an anodyne
extension, then there exist a morphism 𝑟 : 𝑌 → 𝑋 and an intrisic homotopy
𝛼 : id𝑌 ⇒ 𝑖 ∘ 𝑟 satisfying the the following conditions:

• 𝑟 ∘ 𝑖 = id𝑋 .

• 𝛼𝑖 is the trivial homotopy 𝑖 ⇒ 𝑖.

Proof. By hypothesis, the unique morphism 𝑋 → 1 is a Kan fibration, so corol-
lary 1.4.8 implies there is a morphism 𝑟 : 𝑌 → 𝑋 such that 𝑟 ∘ 𝑖 = id𝑋 . We then
obtain the following commutative diagram,

𝑋 [Δ1, 𝑌 ]

𝑌 𝑌 × 𝑌

𝑖

𝑐∘𝑖

⟨𝑝0,𝑝1⟩

⟨id𝑌 ,𝑖∘𝑟⟩

where 𝑝0, 𝑝1 : [Δ1, 𝑌 ] → 𝑌 are the morphisms induced by the coface morph-
isms 𝛿1

0 , 𝛿0
0 : Δ0 → Δ1 (respectively) and 𝑐 : 𝑌 → [Δ1, 𝑌 ] is induced by the

codegeneracy morphism 𝜎0
0 : Δ1 → Δ0. Supressing a canonical isomorphism

[𝜕Δ1, 𝑌 ] ≅ 𝑌 ×𝑌 , we see that corollary 1.4.16 implies ⟨𝑝0, 𝑝1⟩ : [Δ1, 𝑌 ] → 𝑌 ×𝑌
is a Kan fibration. Thus, there exists a morphism ℎ : 𝑌 → [Δ1, 𝑌 ] making the
evident triangles commute, and the corresponding intrinsic homotopy id𝑌 ⇒ 𝑖∘𝑟
is then the desired 𝛼. ■

We will now define the homotopy groups of a Kan complex.

Definition 1.4.19. Let 𝑛 be a positive integer and let 𝑋 be a Kan complex.

• The based 𝑛-loop fibration on 𝑋 is the Kan fibration Ω𝑛(𝑋) → 𝑋 defined
by the following pullback diagram in 𝐬𝐒𝐞𝐭,

Ω𝑛(𝑋) [Δ𝑛, 𝑋]

𝑋 [𝜕Δ𝑛, 𝑋]

where [Δ𝑛, 𝑋] → [𝜕Δ𝑛, 𝑋] is the Kan fibration induced by the boundary
inclusion 𝜕Δ𝑛 ↪ Δ𝑛 and 𝑋 → [𝜕Δ𝑛, 𝑋] is the morphism induced by 𝜕Δ𝑛 →
Δ0.
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• Let 𝑥 be a vertex of 𝑋. The based 𝑛-loop space of (𝑋, 𝑥) is the Kan
complex Ω𝑛(𝑋, 𝑥) defined by the following pullback diagram in 𝐬𝐒𝐞𝐭,

Ω𝑛(𝑋, 𝑥) Ω𝑛(𝑋)

Δ0 𝑋

where Δ0 → 𝑋 is the morphism corresponding to the vertex 𝑥. The 𝑛-th
homotopy group of (𝑋, 𝑥) is defined by 𝜋𝑛(𝑋, 𝑥) = 𝜋0Ω𝑛(𝑋, 𝑥).

Remark 1.4.20. In other words, 𝜋𝑛(𝑋, 𝑥) is the set of morphisms Δ𝑛 → 𝑋 whose
restriction along 𝜕Δ𝑛 ↪ Δ𝑛 factors through the morphism Δ0 → 𝑋 corresponding
to 𝑥, modulo the equivalence relation that identifies two morphisms Δ𝑛 → 𝑋 if
they are intrinsically homotopic relative to 𝜕Δ𝑛.

Proposition 1.4.21. Let 𝑛 be a positive integer.

(i) The assignment (𝑋, 𝑥) ↦ 𝜋𝑛(𝑋, 𝑥) extends to a functor 𝜋𝑛 : Δ0∕𝐊𝐚𝐧 →
𝐆𝐫𝐩, and 𝜋𝑛(𝑋, 𝑥) is abelian for 𝑛 > 1.

(ii) The functor 𝜋𝑛 : Δ0∕𝐊𝐚𝐧 → 𝐆𝐫𝐩 preserves finite products and colimits for
small filtered diagrams.

(iii) Let (𝑋, 𝑥) and (𝑌 , 𝑦) be pointed Kan complexes. If 𝑓0, 𝑓1 : (𝑋, 𝑥) →
(𝑌 , 𝑦) are a parallel pair of morphisms for which there exists an intrinsic
homotopy 𝑓0 ⇒ 𝑓1 relative to 𝑥 (considered as a subcomplex of 𝑋), then
𝜋𝑛𝑓0 = 𝜋𝑛𝑓1.

Proof. (i). See Lemma 7.1 and Theorem 7.2 in [GJ, Ch. I]. Functoriality is
straightforward.

(ii). It is not hard to check that the functor Ω𝑛 : Δ0∕𝐊𝐚𝐧 → 𝐬𝐒𝐞𝐭 preserves all lim-
its and colimits for small filtered diagrams, and 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves finite
products and all colimits by proposition 1.2.7, so 𝜋𝑛 : Δ0∕𝐊𝐚𝐧 → 𝐒𝐞𝐭 preserves
finite products and colimits for small filtered diagrams. But the forgetful functor
𝐆𝐫𝐩 → 𝐒𝐞𝐭 creates finite products and colimits for small filtered diagrams, so
the claim follows.

(iii). Use paragraph 1.3.4 and remark 1.4.20. □
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Definition 1.4.22. The homotopy category of Kan complexes is the full sub-
category 𝐇 ⊆ HoΔ1 𝐬𝐒𝐞𝐭 spanned by the Kan complexes.

Proposition 1.4.23. Let 𝐊𝐚𝐧 be the full subcategory of 𝐬𝐒𝐞𝐭 spanned by the
Kan complexes and let 𝛑 : 𝐊𝐚𝐧 → 𝐇 be the functor that sends each morphism
to its intrinsic homotopy class. For any functor 𝐹 : 𝐊𝐚𝐧 → u�, the following are
equivalent:

(i) For all Kan complexes 𝑋, 𝐹 [𝛿0
1 , 𝑋] : 𝐹 [Δ1, 𝑋] → 𝐹 [Δ0, 𝑋] is an iso-

morphism in u�.

(ii) For all Kan complexes 𝑋, 𝐹 [𝛿1
1 , 𝑋] : 𝐹 [Δ1, 𝑋] → 𝐹 [Δ0, 𝑋] is an iso-

morphism in u�.

(iii) For all simplicial sets 𝑋, 𝐹 [𝜎0
0 , 𝑋] : 𝐹 [Δ1, 𝑋] → 𝐹 [Δ0, 𝑋] is an iso-

morphism in u�.

(iv) For all parallel pairs 𝑓0, 𝑓1 : 𝑋 → 𝑌 in 𝐊𝐚𝐧, if 𝑓0 ∼ 𝑓1, then 𝐹 𝑓0 = 𝐹 𝑓1.

(v) 𝐹 : 𝐊𝐚𝐧 → u� factors through 𝛑 : 𝐊𝐚𝐧 → 𝐇.

Moreover, the factorisation is unique if it exists.

Proof. The proof is similar to that of proposition 1.3.15. (Use corollary 1.4.16 to
deduce that [Δ1, 𝑋] is a Kan complex if 𝑋 is.) ◊

Proposition 1.4.24. Let 𝛑 : 𝐊𝐚𝐧 → 𝐇 be the functor that sends a morphism of
Kan complexes to its intrinsic homotopy class.

(i) The functor 𝛑 is full, surjective on objects, and preserves finite products
and finite coproducts.

(ii) 𝐊𝐚𝐧 is closed under products for all small families in 𝐬𝐒𝐞𝐭, and 𝐇 has
products for finite families.

(iii) 𝐊𝐚𝐧 and 𝐇 are cartesian closed categories, and 𝛑 : 𝐊𝐚𝐧 → 𝐇 is a
cartesian closed functor.

(iv) A morphism 𝑓 : 𝑋 → 𝑌 in 𝐊𝐚𝐧 admits an intrinsic homotopy inverse if
and only if 𝛑𝑓 : 𝛑𝑋 → 𝛑𝑌 is an isomorphism in 𝐇.
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Proof. (i). The construction of 𝐇 as 𝜋0[𝐊𝐚𝐧] ensures that 𝛑 is indeed a functor.

(ii). It is clear from the construction of 𝜋0𝑍 as a coequaliser that 𝜒𝑍 : 𝑍0 → 𝜋0𝑍
is a surjection; thus 𝛑 is a full functor. It is obviously surjective on objects,
and it preserves finite products and finite coproducts because 𝜋0 preserves finite
products.

(iii). By proposition a.3.17, the class of Kan fibrations is closed under products
for small families, so 𝐊𝐚𝐧 is as well. By claim (ii), 𝐇 inherits finite products
from 𝐊𝐚𝐧.

(iv). By proposition 1.4.15, [𝑌 , 𝐾] is a Kan complex whenever 𝐾 is, which com-
bined with claim (iii) implies 𝐊𝐚𝐧 is cartesian closed. Proposition a.2.11 says
we have natural isomorphisms [𝑋 × 𝑌 , 𝐾] ≅ [𝑋, [𝑌 , 𝐾]], so it follows that we
have natural bijections

𝜋0[𝑋 × 𝑌 , 𝐾] ≅ 𝜋0[𝑋, [𝑌 , 𝐾]]

for all 𝑋, 𝑌 , and 𝐾 in 𝐊𝐚𝐧, and this descends along 𝛑 to make 𝐇 cartesian
closed.

(v). The definition says 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if and
only if 𝜋0[𝑓 , 𝐾] : 𝜋0[𝑌 , 𝐾] → 𝜋0[𝑋, 𝐾] is a bijection for all Kan complexes 𝐾;
but this is natural in 𝐾 , so the Yoneda lemma implies this happens if and only if
𝛑𝑓 : 𝛑𝑋 → 𝛑𝑌 is an isomorphism in 𝐇. ■

Definition 1.4.25. Let 𝑛 be an integer, 𝑛 ≥ −2. An 𝑛-connected morphism of
Kan complexes is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭, where 𝑋 and 𝑌 are Kan
complexes, such that the following conditions are satisfied:

• If 𝑛 ≥ −1, then 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is a surjection.

• If 𝑛 ≥ 0, then 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is a bijection and, for all vertices 𝑥 of 𝑋,
the homomorphism 𝜋1𝑓 : 𝜋1(𝑋, 𝑥) → 𝜋1(𝑌 , 𝑓 (𝑥)) is a surjection.

• If 𝑛 ≥ 1, then for all 1 ≤ 𝑚 ≤ 𝑛 and all vertices 𝑥 of 𝑋, the homo-
morphism 𝜋𝑚𝑓 : 𝜋𝑚(𝑋, 𝑥) → 𝜋𝑚(𝑌 , 𝑓 (𝑥)) is an isomorphism, and 𝜋𝑛𝑓 :
𝜋𝑛+1(𝑋, 𝑥) → 𝜋𝑛+1(𝑌 , 𝑓 (𝑥)) is a surjection.

An ∞-connected morphism of Kan complexes is one that is 𝑛-connected for all
𝑛 ≥ −2.
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Proposition 1.4.26. The class of ∞-connected morphisms of Kan complexes has
the 2-out-of-3 and 2-out-of-6 properties.[7]

Proof. This is a straightforward check (using lemma a.4.14). ⧫

Theorem 1.4.27. Let 𝑝 : 𝑋 → 𝑌 be a Kan fibration. If 𝑋 and 𝑌 are Kan
complexes, then the following are equivalent:

(i) 𝑝 : 𝑋 → 𝑌 is a trivial Kan fibration.

(ii) 𝑝 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes.

Proof. (i) ⇒ (ii). Lemma 1.3.27 says 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is a bijection. Fix
a positive integer 𝑛 and a vertex 𝑥 of 𝑋. Then proposition 1.4.11 implies that
there exist a morphism 𝑠 : 𝑌 → 𝑋 such that 𝑝 ∘ 𝑠 = id𝑌 and an intrinsic ho-
motopy 𝛼 : id𝑋 ⇒ 𝑠 ∘ 𝑝 relative to 𝑥 (considered as a subcomplex of 𝑋), so we
may apply proposition 1.4.21 to deduce that 𝜋𝑛𝑝 : 𝜋𝑛(𝑋, 𝑥) → 𝜋𝑛(𝑌 , 𝑝(𝑥)) is an
isomorphism.

(ii) ⇒ (i). See Theorem 7.10 in [GJ, Ch. I]. □

Corollary 1.4.28. Let 𝑋 and 𝑌 be Kan complexes. If 𝑓0, 𝑓1 : 𝑋 → 𝑌 are
intrinsically homotopic, then for all positive integers 𝑛 and all vertices 𝑥, there
exists a commutative diagram of the form below:

𝜋𝑛(𝑋, 𝑥) 𝜋𝑛(𝑌 , 𝑓0(𝑥))

𝜋𝑛(𝑋, 𝑥) 𝜋𝑛(𝑌 , 𝑓1(𝑥))

𝜋𝑛𝑓0

≅

𝜋𝑛𝑓1

Proof. We may assume without loss of generality that there is an intrinsic ho-
motopy 𝛼 : 𝑓0 ⇒ 𝑓1. Let ℎ : 𝑋 → [Δ1, 𝑌 ] be the corresponding morphism. It is
clear that the coface morphisms 𝛿𝑒

0 : Δ0 → Δ1 are isomorphic to the horn inclu-
sions Λ1

𝑘 ↪ Δ1 (where 𝑘 = 0 if 𝑒 = 1 and 𝑘 = 1 if 𝑒 = 0), so by corollary 1.4.16,
the morphisms [𝛿𝑒

0, 𝑋] : [Δ1, 𝑌 ] → [Δ0, 𝑌 ] are trivial Kan fibrations. Thus, we

[7] See definition a.4.13.
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have the following commutative diagram,

𝜋𝑛(𝑋, 𝑥) 𝜋𝑛(𝑌 , 𝑓0(𝑥))

𝜋𝑛(𝑋, 𝑥) 𝜋𝑛([Δ1, 𝑌 ], ℎ(𝑥))

𝜋𝑛(𝑋, 𝑥) 𝜋𝑛(𝑌 , 𝑓1(𝑥))

𝜋𝑛𝑓0

𝜋𝑛ℎ

𝜋𝑛𝑝0

𝜋𝑛𝑝1

𝜋𝑛𝑓1

where 𝑝0, 𝑝1 : [Δ1, 𝑌 ] → 𝑌 are the morphisms induced by 𝛿1
0 , 𝛿0

0 : Δ0 → Δ1

(respectively). But theorem 1.4.27 implies that 𝜋𝑛𝑝0 and 𝜋𝑛𝑝1 are isomorphisms,
so we are done. ■

The homotopy groups of a Kan complex are a complete homotopy invari-
ant. More precisely, we have the following analogue of a theorem of Whitehead
[1949]:

Theorem 1.4.29 (Whitehead). Let 𝑋 and 𝑌 be Kan complexes. For any morph-
ism 𝑓 : 𝑋 → 𝑌 , the following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 admits an intrinsic homotopy inverse.

(ii) 𝑓 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes.

(iii) 𝑓 : 𝑋 → 𝑌 admits a factorisation of the form 𝑞 ∘ 𝑗, where 𝑗 is an anodyne
extension and 𝑞 is a trivial Kan fibration.

Proof. (i) ⇒ (ii). By corollary 1.3.16, 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is a bijection, and
using corollary 1.4.28, it is not hard to see that 𝜋𝑛𝑓 : 𝜋𝑛(𝑋, 𝑥) → 𝜋𝑛(𝑌 , 𝑓 (𝑥)) is
an isomorphism for all positive integers 𝑛 and all vertices 𝑥 of 𝑋.

(ii) ⇒ (iii). Proposition 1.4.7 says we may factor 𝑓 as 𝑝 ∘ 𝑗, where 𝑗 is an ano-
dyne extension and 𝑝 is a Kan fibration; note that the domain of 𝑝 is automat-
ically a Kan complex. By proposition 1.4.18, anodyne extensions of Kan com-
plexes admit homotopy inverses, so 𝑖 is an ∞-connected morphism of Kan com-
plexes; hence, applying proposition 1.4.26, we may deduce that 𝑝 is ∞-connected
morphism if (and only if) 𝑓 : 𝑋 → 𝑌 is ∞-connected. But theorem 1.4.27 says
𝑝 is ∞-connected if and only if it is a trivial Kan fibration, so we are done.
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(iii) ⇒ (i). Propositions 1.4.11 and 1.4.18 say that both 𝑝 and 𝑖 admits intrinsic
homotopy inverses, so the same is true for 𝑓 = 𝑝 ∘ 𝑖. ■

Corollary 1.4.30. Let 𝑖 : 𝑋 → 𝑌 be a monomorphism. If 𝑋 and 𝑌 are Kan
complexes, then the following are equivalent:

(i) 𝑖 : 𝑋 → 𝑌 is an anodyne extension.

(ii) 𝑖 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes.

Proof. (i) ⇒ (ii). Apply theorem 1.4.29.

(ii) ⇒ (i). If 𝑖 is an ∞-connected morphism of Kan complexes, then 𝑖 admits a
factorisation of the form 𝑞 ∘ 𝑗, where 𝑗 is an anodyne extension and 𝑞 is a trivial
Kan fibration. The right lifting property of 𝑞 implies there is a morphism ℎ such
that 𝑝∘ℎ = id𝑌 and ℎ∘𝑖 = 𝑗; in particular, 𝑖 is a retract of 𝑗. Thus, 𝑖 is an anodyne
extension. ■

Theorem 1.4.31. Let 𝐊𝐚𝐧 be the category of Kan complexes. Then 𝐊𝐚𝐧 is a
category of fibrant objects, where

• the weak equivalences are the ∞-connected morphisms,

• the fibrations are the Kan fibrations, and

• the trivial fibrations are the trivial Kan fibrations.

Moreover, this makes 𝐊𝐚𝐧 a saturated homotopical category.

Proof. First, note that theorem 1.4.27 and Whitehead’s theorem (1.4.29) imply
that the fibrations that are weak equivalences are precisely the trivial Kan fibra-
tions. Thus, we may apply proposition a.3.17 to deduce that axioms B and C
are satisfied. Axiom E is satisfied by definition. Axiom A is proposition 1.4.26;
moreover, 𝐊𝐚𝐧 is a saturated homotopical category, by proposition 1.4.24 and
lemma 3.1.8. Finally, using corollary 1.4.16, it is not hard to see that [Δ1, 𝑋] is
(the object part of) a path object for 𝑋 (provided 𝑋 is a Kan complex), so axiom
D is also satisfied. ■
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Proposition 1.4.32. Let 𝑝 : 𝑋 → 𝑌 and 𝑝′ : 𝑋′ → 𝑌 ′ be Kan fibrations. Given
a pullback diagram in 𝐬𝐒𝐞𝐭 of the form below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑝′

𝑓

𝑝

𝑔

if 𝑔 : 𝑌 ′ → 𝑌 is an ∞-connected morphism of Kan complexes, then so is 𝑓 :
𝑋′ → 𝑋.

Proof. In view of theorem 1.4.31, this is a special case of proposition 3.7.15. ■

Lemma 1.4.33. Let 𝑖 : 𝑍 → 𝑊 be a monomorphism of simplicial sets and let
𝑓 : 𝑋 → 𝑌 be a morphism of Kan complexes. Consider the following commut-
ative diagram in 𝐬𝐒𝐞𝐭,

[𝑊 , 𝑋]

𝐿(𝑖, 𝑓 ) [𝑍, 𝑋]

[𝑊 , 𝑌 ] [𝑍, 𝑌 ]

[𝑊 ,𝑓]

[𝑖,𝑋]
𝑞

[𝑍,𝑓]

[𝑖,𝑌 ]

where the square in the lower right is a pullback square.

(i) If 𝑓 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes, then so is
𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑓 ).

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension of simplicial sets, then 𝑞 : [𝑊 , 𝑋] →
𝐿(𝑖, 𝑓 ) is an ∞-connected morphism of Kan complexes.

Proof. Since 𝑋 and 𝑌 are Kan complexes, proposition 1.4.15 (plus proposi-
tion a.3.17) implies that every object in the commutative diagram is a Kan com-
plex and that [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋] and [𝑖, 𝑌 ] : [𝑊 , 𝑌 ] → [𝑍, 𝑌 ] are Kan
fibrations.

(i). Suppose 𝑓 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes. Re-
calling paragraph 1.3.4, we see that theorem 1.4.27 and Whitehead’s theorem
(1.4.29) imply that [𝑊 , 𝑓] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] and [𝑍, 𝑓] : [𝑍, 𝑋] → [𝑍, 𝑌 ]
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are also ∞-connected. Proposition 1.4.32 then says that the morphism 𝐿(𝑖, 𝑓 ) →
[𝑊 , 𝑌 ] is also ∞-connected, so we may use the 2-out-of-3 property (proposi-
tion 1.4.26) to deduce that 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑓 ) is indeed ∞-connected.

(ii). Suppose 𝑖 : 𝑍 → 𝑊 is an anodyne extension of simplicial sets. Then
proposition 1.4.15 says [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋] and [𝑖, 𝑌 ] : [𝑊 , 𝑌 ] →
[𝑍, 𝑌 ] are trivial Kan fibrations, and proposition a.3.17 says that the morph-
ism 𝐿(𝑖, 𝑓 ) → [𝑍, 𝑋] is also a trivial Kan fibration. Thus, theorem 1.4.27 and
proposition 1.4.26 imply that 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑓 ) is indeed ∞-connected. ■

Lemma 1.4.34. Let 𝑓 : 𝑋 → 𝑌 be a morphism be a morphism in 𝐬𝐒𝐞𝐭, let 𝐿 be
a simplicial set, and let 𝐾 ⊆ 𝐿 and 𝐽 ⊆ 𝐾 be simplicial subsets. If 𝑌 is a Kan
complex and 𝑓 : 𝑋 → 𝑌 has the homotopical right lifting property with respect
to both 𝐽 ↪ 𝐾 and 𝐾 ↪ 𝐿, then 𝑓 : 𝑋 → 𝑌 also has the homotopical right
lifting property with respect to 𝐽 ↪ 𝐿.

Proof. See Lemma 3.4 in [Dugger and Isaksen, 2004]. □

Theorem 1.4.35. Let 𝑓 : 𝑋 → 𝑌 be a morphism of Kan complexes. The fol-
lowing are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is an ∞-connected morphism of Kan complexes.

(ii) 𝑓 : 𝑋 → 𝑌 has the homotopical right lifting property with respect to all
monomorphisms between finite simplicial sets.

(iii) 𝑓 : 𝑋 → 𝑌 has the homotopical right lifting property with respect to all
boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛.

Proof. See Proposition 4.1 in [Dugger and Isaksen, 2004]. □

1.5 The Kan–Quillen model structure
Prerequisites. §§1.3, 1.4, 3.7, 4.1, 5.2, a.3.

In [1967], Quillen constructed an axiomatic framework for doing homotopy
theory in abstract categories, which he called ‘closed model categories’, and
showed that 𝐬𝐒𝐞𝐭 can be endowed with a model structure such that the result-
ing homotopy theory is equivalent in a strong sense to the homotopy theory of
topological spaces.
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The following characterisation of weak homotopy equivalences appears in
[Quillen, 1967, Ch. II, §3]; we follow Joyal and Tierney [2008] in taking it as
our definition. Recalling that 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 from proposition 1.2.7 is the
functor sending a simplicial set 𝑋 to the set 𝜋0 of its connected components,

Definition 1.5.1. A weak homotopy equivalence of simplicial sets is a morph-
ism 𝑓 : 𝑊 → 𝑍 such that, for every Kan complex 𝐾 , the induced map

𝜋0[𝑓 , 𝐾] : 𝜋0[𝑍, 𝐾] → 𝜋0[𝑊 , 𝐾]

is a bijection of sets.

Lemma 1.5.2. 𝐬𝐒𝐞𝐭, with the class of weak homotopy equivalences, is a saturated
homotopical category. In particular, the class of weak homotopy equivalences
of simplicial sets has the 2-out-of-3 property and is closed under retracts.

Proof. Apply lemma 3.1.8. ■

Lemma 1.5.3. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be morphisms in 𝐬𝐒𝐞𝐭. Assuming 𝑓0 ∼ 𝑓1,
𝑓0 is a weak homotopy equivalence if and only if 𝑓1 is a weak equivalence.

Proof. If 𝑓0 ∼ 𝑓1, then [𝑓0, 𝐾] ∼ [𝑓1, 𝐾] (by lemma 1.3.9), so 𝜋0[𝑓0, 𝐾] =
𝜋0[𝑓1, 𝐾] (by corollary 1.3.16), and therefore one is a bijection if and only if the
other is. ■

Proposition 1.5.4 (Formal Whitehead theorem).
(i) If a morphism in 𝐬𝐒𝐞𝐭 admits an intrinsic homotopy left inverse and an

intrinsic homotopy right inverse, then it is a weak homotopy equivalence.

(ii) A morphism in 𝐊𝐚𝐧 is a weak homotopy equivalence if and only if it admits
an intrinsic homotopy inverse.

Proof. (i). If 𝑓 : 𝑋 → 𝑌 admits an intrinsic homotopy left inverse (resp. an
intrinsic homotopy right inverse), then 𝜋0[𝑓 , 𝐾] : 𝜋0[𝑌 , 𝐾] → 𝜋0[𝑋, 𝐾] is in-
jective (resp. surjective) for all simplicial sets 𝐾 . In particular, 𝑓 : 𝑋 → 𝑌 is
a weak homotopy equivalence as soon as it has both an intrinsic homotopy left
inverse and an intrinsic homotopy right inverse.

(ii). Let 𝑓 : 𝑋 → 𝑌 be a weak homotopy equivalence of Kan complexes.
The definition says 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if and only
if 𝜋0[𝑓 , 𝐾] : 𝜋0[𝑌 , 𝐾] → 𝜋0[𝑋, 𝐾] is a bijection for all Kan complexes 𝐾 ,
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so (recalling remark 1.3.7) we may obtain an intrinsic homotopy left inverse for
𝑓 : 𝑋 → 𝑌 by taking 𝐾 = 𝑋, say 𝑔 : 𝑌 → 𝑋. By naturality, the following
diagram commutes:

𝜋0[𝑌 , 𝑌 ] 𝜋0[𝑋, 𝑌 ]

𝜋0[𝑌 , 𝑋] 𝜋0[𝑋, 𝑋]

𝜋0[𝑌 , 𝑌 ] 𝜋0[𝑋, 𝑌 ]

𝜋0[𝑌 ,𝑔]

𝜋0[𝑓 ,𝑌 ]

𝜋0[𝑌 ,𝑔]

𝜋0[𝑌 ,𝑓 ]

𝜋0[𝑓 ,𝑋]

𝜋0[𝑋,𝑓]

𝜋0[𝑓 ,𝑌 ]

Thus, by chasing the homotopy class of id𝑌 , we deduce that 𝑔 : 𝑌 → 𝑋 is also
an intrinsic homotopy right inverse for 𝑓 : 𝑋 → 𝑌 , as required. ■

Corollary 1.5.5. Let 𝐹 : 𝐬𝐒𝐞𝐭 → u� be a functor. If 𝐹 sends weak homotopy
equivalences to isomorphisms in u�, then for any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in
𝐬𝐒𝐞𝐭, 𝑓0 ∼ 𝑓1 implies 𝐹 𝑓0 ∼ 𝐹 𝑓1.

Proof. Apply propositions 1.3.15 and 1.5.4 to remark 1.3.14. ■

Lemma 1.5.6. Anodyne extensions are weak homotopy equivalences.

Proof. If 𝑖 : 𝑋 → 𝑌 is an anodyne extension, then [𝑖, 𝐾] : [𝑌 , 𝐾] → [𝑋, 𝐾] is
a trivial Kan fibration for all Kan complexes 𝐾 , by corollary 1.4.16. Applying
lemma 1.3.27, we then deduce that 𝑖 : 𝑋 → 𝑌 is a weak homotopy equivalence.

■

Proposition 1.5.7. There exist a functor 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and a natural trans-
formation 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 satisfying the following condition:

• For all simplicial sets 𝑋, 𝑅𝑋 is a Kan complex and 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an
anodyne extension.

Moreover, any such functor 𝑅 preserves and reflects weak homotopy equival-
ences.

Proof. Such (𝑅, 𝑖) can be constructed using Quillen’s small object argument
(theorem 0.5.12); see also proposition 4.1.24. Given any such (𝑅, 𝑖), consider
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the following commutative diagram in 𝐬𝐒𝐞𝐭:

𝑋 𝑅𝑋

𝑌 𝑅𝑌

𝑓

𝑖𝑋

𝑅𝑓

𝑖𝑌

Using proposition 1.5.12 and the 2-out-of-3 property of weak homotopy equival-
ences, we see that 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if and only if
𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 is a weak homotopy equivalence. ■

Definition 1.5.8. A weakly contractible simplicial set is a simplicial set 𝑋 for
which the unique morphism 𝑋 → Δ0 in 𝐬𝐒𝐞𝐭 is a weak homotopy equivalence.

Remark 1.5.9. Proposition 1.5.4 implies that every contractible simplicial set is
also weakly contractible.

Proposition 1.5.10. Let 𝑋 be a Kan complex. The following are equivalent:

(i) 𝑋 is contractible (as a simplicial set).

(ii) 𝑋 is weakly contractible (as a simplicial set).

(iii) 𝑋 → Δ0 is a trivial Kan fibration.

Proof. (i) ⇒ (ii). Apply proposition 1.5.4.

(ii) ⇒ (iii). Use theorem 1.4.27.

(iii) ⇒ (i). This is a special case of proposition 1.4.11. ■

Remark 1.5.11. Not all weak homotopy equivalences admit an intrinsic homo-
topy inverse. For instance, if 𝑋 is the nerve of the following category,

• • • • • • ⋯

then every morphism Δ0 → 𝑋 is an anodyne extension (because the class of ano-
dyne extensions is closed under pushout and transfinite composition), but none
of them admit an intrinsic homotopy right inverse. In particular, 𝑋 is weakly
contractible but not contractible.
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Proposition 1.5.12.
(i) A Kan fibration 𝑝 : 𝑋 → 𝑌 is trivial if and only if it is a weak homotopy

equivalence.

(ii) A monomorphism 𝑖 : 𝑍 → 𝑊 is an anodyne extension if and only if it is
a weak homotopy equivalence.

Proof. (i). See Proposition 3.4.1 in [Joyal and Tierney, 2008].

(ii). See Lemma 7 in [Quillen, 1967, Ch. II, §3] or Proposition 3.4.2 in [Joyal
and Tierney, 2008]. □

Theorem 1.5.13. 𝐬𝐒𝐞𝐭, regarded as a 𝐬𝐒𝐞𝐭-enriched category via its cartesian
closed structure, is a simplicial[8] strongly (ℵ0, ℵ1)-combinatorial model cat-
egory where

• the cofibrations are the monomorphisms in 𝐬𝐒𝐞𝐭,

• the fibrations are the Kan fibrations, and

• the weak equivalences are the weak homotopy equivalences.

This is the Kan–Quillen model structure on simplicial sets.

Proof. It is clear that there exist countable sets of generating cofibrations and
generating trivial cofibrations whose domains and codomains are finite simpli-
cial sets, and it is not hard to see that there are only finitely many morphisms
between any two finite simplicial sets. Thus it suffices to verify that 𝐬𝐒𝐞𝐭 is a
simplicial model category.

We know 𝐬𝐒𝐞𝐭 has limits and colimits for all small diagrams and is a cartesian
closed category, so it satisfies axioms CM1 and SM0. Using the definition of
weak homotopy equivalence given above, lemma 1.5.2 implies axiom CM2 is
satisfied. Proposition 1.4.7 plus theorem 4.1.12 then shows that the announced
cofibrations, fibrations, and weak equivalences do indeed constitute a model
structure on 𝐬𝐒𝐞𝐭. Finally, we note that proposition 1.4.15 is precisely the condi-
tion required by axiom SM7. ■

Proposition 1.5.14. Let u� be the full subcategory of [𝟚, 𝐬𝐒𝐞𝐭] spanned by the
weak homotopy equivalences. Then u� is closed under colimits for small filtered
diagrams in [𝟚, 𝐬𝐒𝐞𝐭].

[8] See definition 2.4.1.
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Proof. Since 𝐬𝐒𝐞𝐭 is a strongly (ℵ0, ℵ1)-combinatorial model category, we may
apply corollary 5.2.16. ■

Corollary 1.5.15. Let u� be the full subcategory of [𝟚, 𝐬𝐒𝐞𝐭] spanned by the ano-
dyne extensions. Then u� is closed under colimits for small filtered diagrams in
[𝟚, 𝐬𝐒𝐞𝐭].

Proof. Theorem 0.2.13 implies that the full subcategory of [𝟚, 𝐬𝐒𝐞𝐭] spanned by
the monomorphisms is closed under colimits for small filtered diagrams, so the
claim is a consequence of propositions 1.5.12 and 1.5.14. ■

Proposition 1.5.16. Let (𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 | 𝑖 ∈ 𝐼) be a small family of morphisms
of simplicial sets. The following are equivalent:

(i) Each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 is a weak homotopy equivalence.

(ii) The coproduct ∐𝑖∈𝐼 𝑓𝑖 : ∐𝑖∈𝐼 𝑋𝑖 → ∐𝑖∈𝐼 𝑌𝑖 is a weak homotopy equival-
ence.

Proof. Proposition 1.4.7 says we can factor each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 as an anodyne
extension followed by a Kan fibration, and since the class of anodyne extensions
is closed under coproducts, by lemma 1.5.2 and proposition 1.5.12, it suffices to
prove the claim in the special case where each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖 is a Kan fibration;
but this was shown by corollary 1.4.14. ■

Proposition 1.5.17. Let 𝑓 : 𝑊 → 𝑍 be a weak homotopy equivalence of sim-
plicial sets and let 𝑋 be any simplicial set.

(i) The morphism 𝑓 ×id𝑋 : 𝑊 ×𝑋 → 𝑍 ×𝑋 is a weak homotopy equivalence.

(ii) If 𝑋 is a Kan complex, then [𝑓 , 𝑋] : [𝑍, 𝑋] → [𝑊 , 𝑋] is a weak homo-
topy equivalence.

(iii) If 𝑊 and 𝑍 are Kan complexes, then [𝑋, 𝑓] : [𝑋, 𝑊 ] → [𝑋, 𝑍] is a weak
homotopy equivalence.

Proof. (i). We must show that, for all Kan complexes 𝐾 , the induced map

𝜋0[𝑓 × id𝑋 , 𝐾] : 𝜋0[𝑍 × 𝑋, 𝐾] → 𝜋0[𝑊 × 𝑋, 𝐾]
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is a bijection. However, we have a commutative diagram

𝜋0[𝑍 × 𝑋, 𝐾] 𝜋0[𝑊 × 𝑋, 𝐾]

𝜋0[𝑍, [𝑋, 𝐾]] 𝜋0[𝑊 , [𝑋, 𝐾]]

≅

𝜋0[id𝑋×𝑓,𝐾]

≅

𝜋0[𝑓 ,[𝑋,𝐾]]

and (by corollary 1.4.16) [𝑋, 𝐾] is a Kan complex, so 𝜋0[𝑓 , [𝑋, 𝐾]] is a bijection;
hence, 𝜋0[𝑓 × id𝑋 , 𝐾] is indeed a bijection for all Kan complexes 𝐾 .

(ii). If 𝑋 is a Kan complex, then corollary 1.4.16 says that [−, 𝑋] is a right
Quillen functor; but every simplicial set is cofibrant, so Ken Brown’s lemma
(4.3.6) implies [−, 𝑋] preserves weak homotopy equivalences.

(iii). Similarly, for any simplicial set 𝑋, [𝑋, −] is a right Quillen functor, and
so Ken Brown’s lemma implies [𝑋, −] preserves weak homotopy equivalences
between Kan complexes. ■

Theorem 1.5.18. 𝐬𝐒𝐞𝐭 op is a category of fibrant objects, where

• the weak equivalences are the weak homotopy equivalences,

• the fibrations are the monomorphisms in 𝐬𝐒𝐞𝐭, and

• the trivial fibrations are anodyne extensions.

Proof. Recall that proposition 1.5.4 says the anodyne extensions are precisely the
monomorphisms (in 𝐬𝐒𝐞𝐭) that are weak homotopy equivalences. Thus, we may
apply proposition a.3.17 to deduce that axioms B and C are satisfied. It is easy
to verify axiom E. Axiom A is lemma 1.5.2. Finally, using proposition 1.5.17, it
is not hard to see that Δ1 × 𝑋 (in 𝐬𝐒𝐞𝐭) is (the object part of) a path object for 𝑋
(in 𝐬𝐒𝐞𝐭 op), so axiom D is also satisfied. ■

Lemma 1.5.19. Given a commutative diagram in 𝐬𝐒𝐞𝐭 of the form below,

𝑌0 𝑋0 𝑇0

𝑌1 𝑋1 𝑇1

𝑔 𝑓

𝑖0 𝑡0

ℎ

𝑖1 𝑡1
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if 𝑖0 : 𝑋0 → 𝑌0 and 𝑖1 : 𝑋1 → 𝑌1 are monomorphisms, 𝑓 : 𝑋0 → 𝑋1 and
𝑔 : 𝑌0 → 𝑌1 are anodyne extensions, and ℎ : 𝑇0 → 𝑇1 is a weak homotopy
equivalence, then the induced morphism

𝑇0 ∪𝑋0 𝑌0 → 𝑇1 ∪𝑋1 𝑌1

is a weak homotopy equivalence.

Proof. In view of theorem 1.5.18, this is (the formal dual of) lemma 3.7.29. ■

Proposition 1.5.20.
(i) Equipping 𝐒𝐞𝐭 with the discrete model structure,[9] the adjunction

𝜋0 ⊣ disc : 𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

is a Quillen adjunction.[10]

(ii) For every map 𝑓 : 𝑋 → 𝑌 , the morphism disc 𝑓 : disc 𝑋 → disc 𝑌 is a
Kan fibration.

(iii) The functor 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 sends weak homotopy equivalences to bijec-
tions.

Proof. (i). Since every map is a cofibration in the discrete model structure on
𝐒𝐞𝐭, it is enough (by proposition 4.3.2) to show that 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 sends
anodyne extensions in 𝐬𝐒𝐞𝐭 to bijections; and by proposition 1.4.12, it suffices to
show that the maps 𝜋0Λ𝑛

𝑘 → 𝜋0Δ𝑛 induced by the horn inclusions Λ𝑛
𝑘 ↪ Δ𝑛. But

this is an immediate consequence of the fact that each Λ𝑛
𝑘 and Δ𝑛 is connected.

(ii). Every map is a fibration in the discrete model structure on 𝐒𝐞𝐭, and disc :
𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a right Quillen functor, so each disc 𝑓 : disc 𝑋 → disc 𝑌 is indeed
a Kan fibration.

(iii). Every simplicial set is cofibrant, so this is a consequence of Ken Brown’s
lemma (4.3.6). ■

[9] See example 4.1.5.
[10] See definition 4.3.1.
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Proposition 1.5.21. Let u� be a subcategory of 𝐬𝐒𝐞𝐭 that satisfies these condi-
tions:

• Every identity morphism in 𝐬𝐒𝐞𝐭 is in u� .

• u� has the 2-out-of-3 property in 𝐬𝐒𝐞𝐭.

• For every simplicial set 𝑋, the projection 𝑝𝑋 : 𝑋 × Δ1 → 𝑋 is in u� .

Then:

(i) Given a parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭 and an intrinsic homotopy
𝛼 : 𝑓0 ⇒ 𝑓1, the morphism 𝑓0 is in u� if and only if 𝑓1 is in u� .

(ii) If u� has the special 2-out-of-4 property, then every trivial Kan fibration
is in u� .

(iii) If u� is closed under retracts or has the 2-out-of-6 property in 𝐬𝐒𝐞𝐭, then
every trivial Kan fibration is in u� .

Proof. (i). This follows from remark 1.3.2.

(ii). This is a special case of proposition 5.4.34.

(iii). Apply lemma a.4.17. ■

Lemma 1.5.22. Let u� be a subcategory of 𝐬𝐒𝐞𝐭 that satisfies these conditions:

(a) The class of monomorphisms that are in u� is closed under pushout, com-
position, and retracts.

(b) u� has the 2-out-of-3 property in 𝐬𝐒𝐞𝐭, and for all finite simplicial sets 𝑋,
the morphism id : 𝑋 → 𝑋 is in u� .

(c) For all natural numbers 𝑛, the unique morphism Δ𝑛 → Δ0 is in u� .

Then every horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is in u� .

Proof. We proceed by induction on 𝑛. For 𝑛 = 1, observe that conditions (a)
and (b) together imply that every isomorphism of finite simplicial sets is in u� ,
and so we may use the 2-out-of-3 property to deduce that the horn inclusions
Λ1

0 ↪ Δ1 and Λ1
1 ↪ Δ1 are in u� .
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Now, suppose that the horn inclusions Λ𝑚
𝑘 ↪ Δ𝑚 are in u� for all 𝑚 < 𝑛.

It is not hard to see that the horn Λ𝑛
𝑙 can be constructed by adjoining 𝑚 copies

of Δ𝑚 along various horn inclusions (for 0 < 𝑚 < 𝑛), so conditions (a) and (b)
imply that the 𝑙-th vertex Δ0 → Λ𝑛

𝑙 is in u� . Condition (c) says that the unique
morphism Δ𝑛 → Δ0 is in u� , so we can then use the 2-out-of-3 property to deduce
that the horn inclusion Λ𝑛

𝑙 ↪ Δ𝑛 is in u� . ■

Proposition 1.5.23. Let u� be a subcategory of 𝐬𝐒𝐞𝐭 that satisfies these condi-
tions:

(a) The class of monomorphisms that are in u� is closed under pushout, transfin-
ite composition, and retracts.

(b) u� has the 2-out-of-3 property in 𝐬𝐒𝐞𝐭, and for all simplicial sets 𝑋, the
morphism id : 𝑋 → 𝑋 is in u� .

(c) For all natural numbers 𝑛, the unique morphism Δ𝑛 → Δ0 is in u� .

Then every weak homotopy equivalence is in u� .

Proof. Lemma 1.5.22 says that the horn inclusions are in u� , so condition (a)
implies that all anodyne extensions are in u� . Notice that, if 𝑝 : 𝑋 → 𝑌 is a trivial
Kan fibration, then there is a morphism 𝑠 : 𝑌 → 𝑋 such that 𝑝 ∘ 𝑠 = id𝑌 , and
by proposition 1.5.12, 𝑠 : 𝑌 → 𝑋 is an anodyne extension. Hence, condition (b)
implies that all trivial Kan fibrations are in u� as well. But every weak homotopy
equivalence factors as an anodyne extension followed by a trivial Kan fibration
(by proposition 1.5.12), so every weak homotopy equivalence is in u� . ■

Corollary 1.5.24. The subcategory of weak homotopy equivalences in 𝐬𝐒𝐞𝐭 is
the smallest subcategory satisfying the conditions in the proposition.

Proof. Proposition 1.5.12 says that the class of monomorphisms that are weak
homotopy equivalences is precisely the class of anodyne extensions, which has
the required closure properties by definition. Thus, the class of weak homotopy
equivalences satisfies condition (a), and the remaining conditions are easily veri-
fied. ■

Corollary 1.5.25. Let ℳ be a derivable category. If 𝐹 : 𝐬𝐒𝐞𝐭 → ℳ is a functor
that preserves cofibrations and colimits for small diagrams, then the following
are equivalent:
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(i) 𝐹 : 𝐬𝐒𝐞𝐭 → ℳ preserves trivial cofibrations.

(ii) 𝐹 : 𝐬𝐒𝐞𝐭 → ℳ preserves weak equivalences.

(iii) For each natural number 𝑛, the morphism 𝐹 (Δ𝑛) → 𝐹 (Δ0) is a weak equi-
valence in ℳ.

Proof. (i) ⇒ (ii). This is Ken Brown’s lemma (4.3.6).

(ii) ⇒ (iii). The unique morphism Δ𝑛 → Δ0 is a weak homotopy equivalence, so
its image under 𝐹 : 𝐬𝐒𝐞𝐭 → ℳ must be a weak equivalence in ℳ.

(iii) ⇒ (i). Let u� be the subcategory of 𝐬𝐒𝐞𝐭 consisting of those morphisms that
are sent to weak equivalences by 𝐹 : 𝐬𝐒𝐞𝐭 → ℳ. Since monomorphisms are
sent to cofibrations in 𝐬𝐒𝐞𝐭, proposition a.3.17 implies that the class of mono-
morphisms that are in u� is closed under pushout, transfinite composition, and
retracts. Axiom CM2 (for ℳ) and lemma a.4.14 imply that u� has the 2-out-of-3
property, and it is clear that every isomorphism in 𝐬𝐒𝐞𝐭 is also in u� . Thus, the
conditions of proposition 1.5.23 are satisfied. ■

Proposition 1.5.26. Let 𝐇 be the homotopy category of Kan complexes.

(i) For each simplicial set 𝑋, the functor 𝜋0[𝑋, −] : 𝐊𝐚𝐧 → 𝐒𝐞𝐭 factors
through 𝛑 : 𝐊𝐚𝐧 → 𝐇 as a representable functor on 𝐇.

(ii) The functor 𝛑 : 𝐊𝐚𝐧 → 𝐇 extends to a functor 𝛑 : 𝐬𝐒𝐞𝐭 → 𝐇 that sends
weak homotopy equivalences to isomorphisms, and this extension is unique
up to unique isomorphism.

Proof. (i). Given 𝑖 : 𝑋 → 𝑅𝑋 as in proposition 1.5.7, the maps 𝜋0[𝑖, 𝐾] :
𝜋0[𝑅𝑋, 𝐾] → 𝜋0[𝑋, 𝐾] are bijections (natural in 𝐾), so we may as well assume
𝑋 is a Kan complex. Proposition 1.4.23 and remark 1.3.7 then imply that the
functor 𝜋0[𝑋, −] : 𝐊𝐚𝐧 → 𝐒𝐞𝐭 factors through 𝛑 : 𝐊𝐚𝐧 → 𝐇 and the resulting
functor 𝐇 → 𝐒𝐞𝐭 is isomorphic to 𝐇(𝛑𝑋, −).

(ii). Formally, what we seek is a functor 𝐹 : 𝐬𝐒𝐞𝐭 → 𝐇 such that, for all Kan
complexes 𝑌 and 𝐾 ,

𝐇(𝐹 𝑌 , 𝛑𝐾) = 𝜋0[𝑌 , 𝐾]

and, for all weak homotopy equivalences 𝑓 : 𝑋 → 𝑌 in 𝐬𝐒𝐞𝐭, the induced
hom-set map 𝐇(𝐹 𝑓, 𝛑𝐾) : 𝐇(𝐹 𝑌 , 𝛑𝐾) → 𝐇(𝐹 𝑋, 𝛑𝐾) is a bijection for all
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Kan complexes 𝐾 . Clearly, for any such 𝐹 and any simplicial set 𝑋, there must
be bijections

𝐇(𝐹 𝑋, 𝛑𝐾) ≅ 𝜋0[𝑋, 𝐾]

that are natural in 𝐾 , but by claim (i), this is representable as a functor 𝐇 → 𝐒𝐞𝐭
for each 𝑋, so we can certainly construct such a functor 𝐹 , and it is unique up
to unique isomorphism.

(iii). This is a special case of proposition 5.5.16; but see also proposition 1.7.16.
■

Corollary 1.5.27. The inclusion 𝐇 ↪ HoΔ1 𝐬𝐒𝐞𝐭 admits a left adjoint. ■

Remark 1.5.28. Fixing a fibrant replacement functor 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 as in
proposition 1.5.7, we have the following explicit construction of Ho 𝐬𝐒𝐞𝐭 (i.e. the
localisation of 𝐬𝐒𝐞𝐭 with respect to weak homotopy equivalences):

• The objects are simplicial sets.

• For any two simplicial sets 𝑋 and 𝑌 , Ho 𝐬𝐒𝐞𝐭(𝑋, 𝑌 ) = 𝜋0[𝑅𝑋, 𝑅𝑌 ].

• Composition and identity morphisms are constructed as in 𝐇.

• The localising functor 𝛾 : 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭 inverting weak homotopy
equivalences is the one sending 𝑓 : 𝑋 → 𝑌 to the homotopy class of
𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 .

The homotopy category of simplicial sets is the category Ho 𝐬𝐒𝐞𝐭. Of course,
it is equivalent to 𝐇.

Definition 1.5.29. Two simplicial sets have the same weak homotopy type if
they are isomorphic in Ho 𝐬𝐒𝐞𝐭.

Remark 1.5.30. Freyd [1970] proved that 𝐇 is not a concrete category, i.e. that
there does not exist a faithful functor 𝐇 → 𝐒𝐞𝐭; in particular, 𝐇 cannot be an
accessible category. Nonetheless, the notion of weak homotopy type is stable
under universe enlargement in the following sense:

(i) The property of being a weak homotopy equivalence is universe-independ-
ent: indeed, it is clear that the property of being a trivial Kan fibration
is universe-independent, so we may apply remark 0.5.18 to the (trivial
cofibration, Kan fibration) factorisation system to test whether or not a
morphism is a weak homotopy equivalence in a universe-independent way.
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(ii) Moreover, the property of being a Kan complex is universe-independent,
and 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 is a left adjoint between locally presentable categor-
ies, so the hom-set 𝐇(𝐾, 𝐿) depends only on the choice of Kan complexes
𝐾 and 𝐿 and does not depend on the choice of universe. Similarly, whether
or not 𝐾 and 𝐿 have the same homotopy type is universe-independent.

(iii) Thus, for any two simplicial sets 𝑋 and 𝑌 , the hom-set Ho 𝐬𝐒𝐞𝐭(𝑋, 𝑌 ) is
well-defined up to natural bijection independently of the choice of uni-
verse, and whether or not 𝑋 and 𝑌 have the same weak homotopy type is
also universe-indepdent.

1.6 Bisimplicial sets and cosimplicial simplicial sets
Prerequisites. §§1.1, 1.3, 1.5, 4.3, 4.6, 5.2, a.5, a.6.

Definition 1.6.1. A bisimplicial set is a simplicial object in 𝐬𝐒𝐞𝐭, i.e. a functor
𝚫op → 𝐬𝐒𝐞𝐭, and a morphism of bisimplicial sets is a natural transformation of
such functors. We write 𝐬𝐬𝐒𝐞𝐭 for the category of bisimplicial sets.

Definition 1.6.2. Let 𝑋• be a bisimplicial set and let 𝑛 be a natural number. The
𝑛-th column of 𝑋• is the simplicial set (𝑋𝑛)•, and the 𝑚-th row of 𝑋• is the
simplicial set (𝑋•)𝑚.

Definition 1.6.3. A Reedy weak homotopy equivalence of bisimplicial sets is
a morphism in 𝐬𝐬𝐒𝐞𝐭 that is a weak homotopy equivalence in each column, i.e.
𝑓• : 𝑋• → 𝑌• such that each 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 is a weak homotopy equivalence of
simplicial sets.

Theorem 1.6.4. 𝐬𝐬𝐒𝐞𝐭 is a combinatorial model category where

• the cofibrations are the monomorphisms in 𝐬𝐬𝐒𝐞𝐭,

• the fibrations are the Reedy fibrations, and

• the weak equivalences are the Reedy weak homotopy equivalences.

This is the Reedy model structure on bisimplicial sets.

Proof. Given theorem 4.6.15, it suffices to verify the following:

(i) The Reedy model structure is cofibrantly generated.
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(ii) The Reedy cofibrations are precisely the monomorphisms in 𝐬𝐬𝐒𝐞𝐭.

For this, see Theorems 15.7.6 and 15.8.7 in [Hirschhorn, 2003]. □

Corollary 1.6.5. The Reedy model structure on 𝐬𝐬𝐒𝐞𝐭 is the injective model struc-
ture on the functor category [𝚫op, 𝐬𝐒𝐞𝐭]. ■

Definition 1.6.6. The realisation of a bisimplicial set 𝑋• is the simplicial set
|𝑋•| defined by the following coend in 𝐬𝐒𝐞𝐭:

|𝑋•| = ∫
[𝑛]:𝚫

Δ𝑛 × 𝑋𝑛

Lemma 1.6.7. Let 𝑋• be a bisimplicial set. There is a canonical comparison
morphism

|𝑋•| → lim−−→
𝚫op

𝑋•

and it is natural in 𝑋•.

Proof. The unique natural transformation Δ• ⇒ Δ1 induces a natural morphism

∫
[𝑛]:𝚫

Δ𝑛 × 𝑋𝑛 → ∫
[𝑛]:𝚫

1 × 𝑋𝑛

and it is not hard to verify that there is a natural isomorphism

∫
[𝑛]:𝚫

1 × 𝑋𝑛 ≅ lim−−→
𝚫op

𝑋•

so we are done. ■

Lemma 1.6.8. Let 𝑋• be a bisimplicial set.

(i) There is an isomorphism

|𝑋•| ≅ diag 𝑋

where diag 𝑋 is the simplicial set defined by (diag 𝑋)𝑛 = (𝑋𝑛)𝑛, and this
isomorphism is natural in 𝑋•.

(ii) In particular, there is a canonical morphism

𝑋0 → |𝑋•|

and this is natural in 𝑋•.
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Proof. The Yoneda lemma for coends (proposition a.6.18) yields natural bijec-
tions of the form below:

∫
[𝑛]:𝚫

𝚫([𝑚], [𝑛]) × (𝑋𝑛)𝑚 ≅ (𝑋𝑚)𝑚

Thus, |𝑋•| ≅ diag 𝑋. ■

Corollary 1.6.9.
(i) If 𝑋• is a bisimplicial set whose columns are discrete,[11] then the realisa-

tion |𝑋•| is naturally isomorphic to the simplicial set (𝑋•)0.

(ii) If 𝑋• is a bisimplicial set whose rows are discrete, then the realisation |𝑋•|
is naturally isomorphic to the simplicial set (𝑋0)•. ■

Theorem 1.6.10.
(i) The functor |−| : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 has left and right adjoints.

(ii) |−| sends Reedy weak homotopy equivalences in 𝐬𝐬𝐒𝐞𝐭 to weak homotopy
equivalences in 𝐬𝐒𝐞𝐭.

(iii) Equipping 𝐬𝐬𝐒𝐞𝐭 with the Reedy model structure and 𝐬𝐒𝐞𝐭 with the Kan–
Quillen model structure, |−| : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a left Quillen functor.

Proof. (i). Using the isomorphism 𝐬𝐬𝐒𝐞𝐭 ≅ [𝚫op × 𝚫op, 𝐒𝐞𝐭] and lemma 1.6.8,
we may identify |−| as the functor 𝛿∗ induced by the diagonal embedding 𝛿 :
𝚫 → 𝚫 × 𝚫, and corollary a.5.17 says 𝛿∗ has left and right adjoints.

(ii). See Theorem 15.11.11 in [Hirschhorn, 2003], or Proposition 1.7 in [GJ,
Ch. IV].

(iii). From claims (i) and (ii) it follows that |−| is a left Quillen functor; altern-
atively, see Proposition 3.6 in [GJ, Ch. VII]. □

Corollary 1.6.11. If 𝑋• is a bisimplicial set such that every face and degeneracy
operator is a weak homotopy equivalence, then the canonical morphism 𝑋0 →
|𝑋•| is a weak homotopy equivalence.

[11] Recall definition 1.2.8.

139



I. Simplicial sets

Proof. Let 𝑇• be the bisimplicial set defined by 𝑇• = 𝑋0, so that the rows of 𝑇•
are discrete simplicial sets. Then there is a unique morphism 𝑇• → 𝑋• whose
component in degree 0 is id : 𝑋0 → 𝑋0, and the hypothesis (plus the 2-out-
of-3 property) implies that it is a weak homotopy equivalence. We then apply
corollary 1.6.9 and theorem 1.6.10. ■

The following result is useful for constructing subdivision functors.

Proposition 1.6.12. Let 𝐷• : 𝚫 → 𝐬𝐒𝐞𝐭 be a diagram, let 𝜌• : 𝐷• ⇒ Δ•

be a natural transformation, let 𝐸 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be the functor defined by
𝐸(𝑋)𝑛 = 𝐬𝐒𝐞𝐭(𝐷𝑛, 𝑋), and let 𝑖𝑋 : 𝑋 → 𝐸(𝑋) be the natural morphism defined
by (𝑖𝑋)𝑛 = 𝐬𝐒𝐞𝐭(𝜌𝑛, 𝑋) (where we have identified 𝐬𝐒𝐞𝐭(Δ𝑛, 𝑋) with 𝑋𝑛 via the
Yoneda lemma).

(i) Given a parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 of morphisms in 𝐬𝐒𝐞𝐭, if 𝑓0 ∼ 𝑓1,
then 𝐸(𝑓0) ∼ 𝐸(𝑓1) as well.

(ii) If each 𝐷𝑛 is a contractible simplicial set, then 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝐸 is a natural
weak homotopy equivalence.

Proof. (i). We may assume (by induction) that we have an intrinsic homotopy
𝑓0 ⇒ 𝑓1: let ℎ : Δ1 ×𝑋 → 𝑌 be any morphism such that ℎ∘(𝛿1

1 × id𝑋) = 𝑓0 and
ℎ ∘ (𝛿0

1 × id𝑋) = 𝑓1 (suppressing comparison isomorphisms). Since 𝜌• : 𝐷• ⇒
Δ• is a natural transformation, the following diagram commutes:

𝐷0 Δ0

𝐷1 Δ1

𝐷0 Δ0

𝛿1
1

𝜌0

𝛿1
1

𝜌1

𝛿0
1

𝜌0

𝛿0
1

Thus, 𝐸(Δ1) has an edge connecting the vertices 𝛿1
1 ∘ 𝜌0 : 𝐷0 → Δ1 and 𝛿0

1 ∘ 𝜌0 :
𝐷0 → Δ1. It is not hard to see that 𝐸 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves products, so by
considering 𝐸(ℎ) : 𝐸(Δ1) × 𝐸(𝑋) → 𝐸(𝑌 ), we see that there is an intrinsic
homotopy 𝐸(𝑓0) ⇒ 𝐸(𝑓1), as required.

(ii). The following is a generalisation of the proof of Proposition 2.3.19 in [Cis-
inski, 2006].
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Consider the following commutative diagram in 𝐒𝐞𝐭,

(∗)
𝐬𝐒𝐞𝐭(Δ𝑛, 𝑋) 𝐬𝐒𝐞𝐭(Δ𝑛 × Δ𝑚, 𝑋) 𝐬𝐒𝐞𝐭(Δ𝑚, 𝑋)

𝐬𝐒𝐞𝐭(Δ𝑛, 𝑋) 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝐷𝑚, 𝑋) 𝐬𝐒𝐞𝐭(𝐷𝑚, 𝑋)

𝐬𝐒𝐞𝐭(idΔ𝑛×𝜌𝑚) 𝐬𝐒𝐞𝐭(𝜌𝑚,𝑋)

where the horizontal arrows are induced by the evident projections. The diagram
is natural in 𝑛 and 𝑚, so defines a commutative diagram in 𝐬𝐬𝐒𝐞𝐭, which (by
the Yoneda lemma) in the 𝑛-th column can be identified with the commutative
diagram in 𝐬𝐒𝐞𝐭 shown below,

disc 𝑋𝑛 [Δ𝑛, 𝑋] 𝑋

disc 𝑋𝑛 𝐸([Δ𝑛, 𝑋]) 𝐸(𝑋)

𝑖[Δ𝑛,𝑋] 𝑖𝑋

and in the 𝑚-th row can be identified with the following commutative diagram
in 𝐬𝐒𝐞𝐭:

𝑋 [Δ𝑚, 𝑋] disc 𝑋𝑚

𝑋 [𝐷𝑚, 𝑋] disc 𝐸(𝑋)𝑚

[𝜌𝑚,𝑋] disc(𝑖𝑋)𝑚

Since Δ𝑚 (resp. 𝐷𝑚) is contractible by corollary 1.3.11 (resp. by hypothesis) and
the functor [−, 𝑋] : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves intrinsic homotopy equivalences, the
horizontal arrows in the left half of (∗) define row-wise weak homotopy equival-
ences of bisimplicial sets. Similarly, since 𝐸 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 respects intrinsic
homotopy, the horizontal arrows in the right half of (∗) are column-wise weak
homotopy equivalences of bisimplicial sets.

Now, apply the realisation functor |−| : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 to the diagram in 𝐬𝐬𝐒𝐞𝐭
defined by (∗). By lemma 1.6.8, we obtain a commutative diagram in 𝐬𝐒𝐞𝐭 of the
form below,

𝑋 𝑌 𝑋

𝑋 𝑍 𝐸(𝑋)

𝑖𝑋

and by theorem 1.6.10, every horizontal arrow in the above diagram is a weak
homotopy equivalence. We may then use the 2-out-of-3 property of weak homo-
topy equivalences to deduce that 𝑖𝑋 : 𝑋 → 𝐸(𝑋) is a weak homotopy equival-
ence. ■
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Definition 1.6.13. A cosimplicial simplicial set is a cosimplicial object in 𝐬𝐒𝐞𝐭,
i.e. a functor 𝚫 → 𝐬𝐒𝐞𝐭, and a morphism of cosimplicial simplicial sets is a
natural transformation of such functors. We write 𝐜𝐬𝐒𝐞𝐭 for the category of
cosimplicial simplicial sets.

Definition 1.6.14. Let 𝑋• be a cosimplicial simplicial set and let 𝑛 be a natural
number. The 𝑛-th column of 𝑋• is the simplicial set (𝑋𝑛)•, and the 𝑛-th row of
𝑋• is the cosimplicial set (𝑋•)𝑛.

Definition 1.6.15. A Reedy weak homotopy equivalence of cosimplicial sim-
plicial sets is a morphism in 𝐜𝐬𝐒𝐞𝐭 that is a weak homotopy equivalence of sim-
plicial sets in each column, i.e. a morphism 𝑓 • : 𝑋• → 𝑌 • such that each
𝑓 𝑛 : 𝑋𝑛 → 𝑌 𝑛 is a weak homotopy equivalence.

Lemma 1.6.16. Let 𝑋• be a cosimplicial simplicial set. The limit lim←−−𝚫
𝑋• in

𝐬𝐒𝐞𝐭 can be computed as the equaliser of the coface operators 𝛿0, 𝛿1 : 𝑋0 → 𝑋1.

Proof. This is a straightforward exercise. ◊

Definition 1.6.17. The maximal augmentation of a cosimplicial simplicial set
𝑋• is the limit lim←−−𝚫

𝑋•.

Theorem 1.6.18. 𝐜𝐬𝐒𝐞𝐭 is a combinatorial model category where

• the cofibrations are the monomorphisms in 𝐜𝐬𝐒𝐞𝐭 that induce isomorph-
isms of maximal augmentations,

• the fibrations are the Reedy fibrations, and

• the weak equivalences are the Reedy weak homotopy equivalences.

This is the Reedy model structure on cosimplicial simplicial sets.

Proof. Given theorem 4.6.15, it suffices to verify the following:

(i) The Reedy model structure is cofibrantly generated.

(ii) The Reedy cofibrations are precisely the announced ones.

For this, see Theorems 15.7.6 and 15.9.9 in [Hirschhorn, 2003]. □

Corollary 1.6.19. The standard simplex functor Δ• : 𝚫 → 𝐬𝐒𝐞𝐭 is a Reedy-
cofibrant cosimplicial simplicial set.
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Proof. The maximal augmentation of Δ• is empty, so by theorem 1.6.18, Δ• is
Reedy-cofibrant. ■

Definition 1.6.20. The totalisation of a cosimplicial simplicial set 𝑋• is the
simplicial set Tot 𝑋• defined by the following end in 𝐬𝐒𝐞𝐭:

Tot 𝑋• = ∫[𝑛]:𝚫
[Δ𝑛, 𝑋𝑛]

Lemma 1.6.21. Let 𝑋• be a cosimplicial simplicial set. There is a canonical
comparison morphism

lim←−−
𝚫

𝑋• → Tot 𝑋•

and it is natural in 𝑋•.

Proof. The unique natural transformation Δ• ⇒ Δ1 induces a natural morphism

∫[𝑛]:𝚫
[1, 𝑋𝑛] → ∫[𝑛]:𝚫

[Δ𝑛, 𝑋𝑛]

and it is not hard to verify that there is a natural isomorphism

∫
[𝑛]:𝚫

1 × 𝑋𝑛 ≅ lim←−−
𝚫

𝑋•

so we are done. ■

Lemma 1.6.22. Let 𝑌 • be a cosimplicial simplicial set. There is a bijection

𝐬𝐒𝐞𝐭(𝑋, Tot 𝑌 •) ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, (𝑌 𝑚)𝑚)

for each simplicial set 𝑋, and this bijection is natural in 𝑋 and 𝑌 .

Proof. Using remark a.6.5, the interchange law for ends (theorem a.6.17), and
Yoneda lemma for ends (proposition a.6.18), we obtain the following natural
bijections:

𝐬𝐒𝐞𝐭(𝑋, ∫[𝑛]:𝚫
[Δ𝑛, 𝑌 𝑛]) ≅ ∫[𝑛]:𝚫

𝐬𝐒𝐞𝐭(𝑋, [Δ𝑛, 𝑌 𝑛])

≅ ∫[𝑛]:𝚫
𝐬𝐒𝐞𝐭(𝑋 × Δ𝑛, 𝑌 𝑛)
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≅ ∫[𝑛]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚 × 𝚫([𝑚], [𝑛]), (𝑌 𝑛)𝑚)

≅ ∫[𝑛]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, 𝐒𝐞𝐭(𝚫([𝑚], [𝑛]), (𝑌 𝑛)𝑚))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, ∫[𝑛]:𝚫

𝐒𝐞𝐭(𝚫([𝑚], [𝑛]), (𝑌 𝑛)𝑚))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, (𝑌 𝑚)𝑚) ■

Lemma 1.6.23. Let 𝑌 • be a cosimplicial simplicial set. If the coface and code-
generacy operators of 𝑌 • are isomorphisms (of simplicial sets), then

Tot 𝑌 • ≅ 𝑌 0

naturally in 𝑌 •.

Proof. Recalling remark a.6.5,

(Tot 𝑌 •)𝑛 ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, (𝑌 𝑚)𝑚)

and since the coface and codegeneracy operators of 𝑌 • are isomorphisms, we
may as well replace (𝑌 𝑚)𝑚 with (𝑌 0)𝑚; but then the Yoneda lemma for ends
(proposition a.6.18) gives a natural bijection

∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, (𝑌 0)𝑚) ≅ (𝑌 0)𝑛

so we are done. ■

Lemma 1.6.24. Let 𝑌 • be a cosimplicial simplicial set. If each 𝑌 𝑛 is discrete as
a simplicial set, then Tot 𝑌 • is also discrete.

Proof. Recalling remark a.6.5, it suffices to verify that the sets

𝐻𝑛 = ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, (𝑌 𝑚)𝑚)

do not depend on 𝑛 (in the evident sense). Since each 𝑌 𝑚 is discrete, we may as
well replace (𝑌 𝑚)𝑚 with (𝑌 𝑚)0; but

∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, (𝑌 𝑚)0) ≅ lim←−−
[𝑚]:𝚫

𝐒𝐞𝐭(Δ𝑛
𝑚, (𝑌 𝑚)0)
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and 𝚫op is sifted (by remark a.5.35), so theorem a.5.36 implies that the diagonal
functor Δ : 𝚫 → 𝚫 × 𝚫 is coinitial, thus:

𝐻𝑛 ≅ lim←−−
[𝑚]:𝚫

𝐒𝐞𝐭(Δ𝑛
𝑚, (𝑌 𝑚)0)

≅ lim←−−
[𝑙]:𝚫

lim←−−
[𝑚]:𝚫

𝐒𝐞𝐭(Δ𝑛
𝑚, (𝑌 𝑙)0)

≅ lim←−−
[𝑙]:𝚫

𝐒𝐞𝐭
(

lim−−→
[𝑚]:𝚫op

Δ𝑛
𝑚, (𝑌 𝑙)0)

Hence, by proposition 1.2.7,

𝐻𝑛 ≅ lim←−−
[𝑙]:𝚫

(𝑌 𝑙)0

and this is natural in 𝑛, so Tot 𝑌 • is indeed discrete. ■

Lemma 1.6.25. Let 𝑋• be a bisimplicial set and let 𝑌 be a simplicial set. Then
there is a canonical isomorphism

[|𝑋•|, 𝑌 ] ≅ Tot [𝑋•, 𝑌 ]

and it is natural in 𝑋• and 𝑌 .

Proof. By proposition a.6.11, we have the following natural isomorphisms:

[|𝑋•|, 𝑌 ] = [∫
[𝑛]:𝚫

Δ𝑛 × 𝑋𝑛, 𝑌 ]

≅ ∫[𝑛]:𝚫
[Δ𝑛 × 𝑋𝑛, 𝑌 ]

≅ ∫[𝑛]:𝚫
[Δ𝑛, [𝑋𝑛, 𝑌 ]]

= Tot [𝑋•, 𝑌 ] ■

Theorem 1.6.26.
(i) The functor Tot : 𝐜𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 has a left adjoint.

(ii) For each simplicial set 𝑋 and each cosimplicial simplicial set 𝑌 •, the ca-
nonical comparison morphism Tot [𝑋, 𝑌 •] → [𝑋, Tot 𝑌 •] is an isomorph-
ism.
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(iii) Equipping 𝐜𝐬𝐒𝐞𝐭 with the Reedy model structure and 𝐬𝐒𝐞𝐭 with the Kan–
Quillen model structure, Tot : 𝐜𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a right Quillen functor.

Proof. (i). It is straightforward to check that the functor sending a simplicial
set 𝑋 to the cosimplicial simplicial set Δ• × 𝑋 is a left adjoint for Tot; see also
proposition a.6.15.

(ii). By proposition a.6.11, we have the following natural isomorphisms:

[𝑋, Tot 𝑌 •] = [𝑋, ∫[𝑛]:𝚫
[Δ𝑛, 𝑌 𝑛]]

≅ ∫[𝑛]:𝚫
[𝑋, [Δ𝑛, 𝑌 𝑛]]

≅ ∫[𝑛]:𝚫
[Δ𝑛, [𝑋, 𝑌 𝑛]]

= Tot [𝑋, 𝑌 •]

(iii). See Theorem 18.6.7 in [Hirschhorn, 2003]. □

1.7 Subdivision and extension
Prerequisites. §§1.1, 1.2, 1.3, 1.4, 1.5, 1.6.

¶ 1.7.1. Let 𝑃 𝑛 be the partially ordered set of non-empty subsets of [𝑛] and,
for each monotone map 𝑓 : [𝑛] → [𝑚], let 𝑓∗ : 𝑃 𝑛 → 𝑃 𝑚 be the map induced
by taking images. Taking nerves, this defines a functor N(𝑃 •) : 𝚫 → 𝐬𝐒𝐞𝐭.
Note that there is a natural surjective monotone map max : 𝑃 𝑛 → [𝑛], each
with a canonical (but not natural!) splitting, so we get a natural transformation
N(max) : N(𝑃 •) ⇒ Δ• whose components are split epimorphisms.

Definition 1.7.2. The extension of a simplicial set 𝑋 is the simplicial set Ex(𝑋)
defined by the formula below:

Ex(𝑋)𝑛 = 𝐬𝐒𝐞𝐭(N(𝑃 𝑛), 𝑋)

The canonical embedding is the morphism 𝑖𝑋 : 𝑋 → Ex(𝑋) induced by
N(max) : N(𝑃 •) ⇒ Δ•; note that 𝑖𝑋 is a monomorphism in 𝐬𝐒𝐞𝐭.
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Remark 1.7.3. Every simplex of N(𝑃 𝑛) is uniquely determined by its vertices
and 𝑃 𝑛 has only finitely many elements, so N(𝑃 𝑛) is a finite simplicial set. In
particular, each Ex(𝑋)𝑛 is a finite weighted limit of the diagram 𝑋 : 𝚫op → 𝐒𝐞𝐭.

¶ 1.7.4. Let Sd : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be (the functor part of) a left Kan extension of
N(max) : 𝚫 → 𝐬𝐒𝐞𝐭 along Δ• : 𝚫 → 𝐬𝐒𝐞𝐭. Using the formulas of theorem a.5.15,
we see there is a natural bijection of the form below:

𝐬𝐒𝐞𝐭(Sd(𝑋), 𝑌 ) ≅ 𝐬𝐒𝐞𝐭(𝑋, Ex(𝑌 ))

In other words, we have the following adjunction:

Sd ⊣ Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

Definition 1.7.5. The subdivision of a simplicial set 𝑋 is the simplicial set
Sd(𝑋) defined above. The last vertex projection is the left adjoint transpose

𝑋 : Sd(𝑋) → 𝑋 of the canonical embedding 𝑖𝑋 : 𝑋 → Ex(𝑋).

Lemma 1.7.6. Let 𝑋 be a simplicial set. For each morphism 𝑧 : Λ𝑛
𝑘 → Ex(𝑋),

there exists a morphism 𝑤 : Δ𝑛
𝑘 → Ex(Ex(𝑋)) making the diagram below com-

mute:
Λ𝑛

𝑘 Ex(𝑋)

Δ𝑛 Ex(Ex(𝑋))

𝑧

𝑖Ex(𝑋)

𝑤

Proof. See Lemma 3.2 in [Kan, 1957], or Lemma 4.7 in [GJ, Ch. III]. □

Lemma 1.7.7. The functor Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves Kan fibrations. In
particular, if 𝑋 is a Kan complex, then so is Ex(𝑋).

Proof. See Lemma 3.4 in [Kan, 1957], or Lemma 4.5 in [GJ, Ch. III], or Corol-
lary 2.1.27 in [Cisinski, 2006]. □

Lemma 1.7.8. For any simplicial set 𝑋, the canonical embedding 𝑖𝑋 : 𝑋 →
Ex(𝑋) is bijective on vertices.

Proof. It is clear that max : 𝑃 0 → [0] is an isomorphism of partially ordered
sets; thus 𝑖𝑋 : 𝑋 → Ex(𝑋) is bijective on vertices. ■

Lemma 1.7.9. For any simplicial set 𝑋, the canonical embedding 𝑖𝑋 : 𝑋 →
Ex(𝑋) is a weak homotopy equivalence.
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Proof. By corollary 1.3.11, each Sd(Δ𝑛) is contractible, so the claim is a special
case of proposition 1.6.12. ■

Corollary 1.7.10. The functor Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves trivial Kan fibra-
tions.

Proof. Combine proposition 1.5.12 with lemmas 1.7.7 and 1.7.9. ■

Corollary 1.7.11. We have the following Quillen equivalence:

Sd ⊣ Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

Proof. Lemma 1.7.7 and corollary 1.7.10 say Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a right Quillen
functor, so (by proposition 4.3.2) the indicated adjunction is indeed a Quillen
adjunction. Consider the derived adjunction:

𝐋Sd ⊣ 𝐑Ex : Ho 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭

By proposition 1.5.12 and lemma 1.7.9, Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a homotopical
functor, so Ho Ex : Ho 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭 is well defined and isomorphic to both
id and 𝐑Ex. Hence, 𝐋Sd is also isomorphic to id, and (recalling lemma 1.5.2)
we may apply theorem 4.3.13 to deduce that we have a Quillen equivalence. ■

Proposition 1.7.12.
(i) There is a unique natural isomorphism Sd(Δ•) ≅ Sd((Δ•)op).

(ii) There is a unique natural isomorphism Sd(−) ≅ Sd((−)op).

(iii) For each simplicial set 𝑋, there is a diagram of the form below,

𝑋 Sd(𝑋) 𝑋 op

where the arrows are weak homotopy equivalences that are natural in 𝑋.

(iv) There is a Quillen equivalence of the following form:

(−)op ⊣ (−)op : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

(v) The induced automorphism Ho (−)op : Ho 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭 is isomorphic
to idHo 𝐬𝐒𝐞𝐭 .

148



1.7. Subdivision and extension

Proof. (i). It is not hard to see that there is a unique isomorphism Δ𝑛 ≅ (Δ𝑛)op,
namely the one that sends the 𝑘-th vertex to the (𝑛 − 𝑘)-th vertex. These iso-
morphisms are not natural, in the sense that they are incompatible with the
coface and codegeneracy maps; nonetheless, these isomorphisms enable us to
identify each Sd((Δ𝑛)op) with N(𝑃 𝑛) as objects. In turn, we may identify each
Sd((𝛿𝑖

𝑛)
op

) : Sd((Δ𝑛−1)
op

) → Sd((Δ𝑛)op) with the morphism 𝛿𝑛−𝑖
𝑛 : N(𝑃 𝑛−1) →

N(𝑃 𝑛), and similarly for the codegeneracy maps. It is then clear that there is a
unique natural isomorphism Sd(Δ•) ≅ Sd((Δ•)op).

(ii). Since (−)op : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and Sd : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 both preserve colim-
its, theorem 1.1.13 implies that there is a unique natural isomorphism Sd(−) ≅
Sd((−)op) extending the (unique) natural isomorphism Sd(Δ•) ≅ Sd((Δ•)op) dis-
cussed above.

(iii). Given the (unique) natural isomorphism Sd(−) ≅ Sd((−)op), it suffices
to give a natural weak homotopy equivalence Sd ⇒ id𝐬𝐒𝐞𝐭 . But lemma 1.7.9
says that 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ Ex is a natural weak homotopy equivalence, so by co-
rollary 1.7.11, its left adjoint transpose is a natural weak homotopy equivalence
𝑟 : Sd ⇒ id𝐬𝐒𝐞𝐭 , as desired.

(iv). Since (−)op : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is an automorphism, we have an adjunction of
the required form. It is clear that (−)op preserves monomorphisms, anodyne ex-
tensions, Kan fibrations, and trivial Kan fibrations, so the adjunction is a Quillen
adjunction. We may also deduce that (−)op preserves weak homotopy equival-
ences, and hence that the Quillen equivalence condition is satisfied.

(v). We have a zigzag of natural weak homotopy equivalences connecting id𝐬𝐒𝐞𝐭
to (−)op, and it immediately follows that idHo 𝐬𝐒𝐞𝐭 is isomorphic to Ho (−)op. ■

¶ 1.7.13. For each simplicial set 𝑋, we define Ex∞(𝑋) to be the colimit of
the diagram below:

𝑋 Ex(𝑋) Ex2(𝑋) Ex3(𝑋) ⋯
𝑖𝑋 𝑖Ex(𝑋) 𝑖Ex2(𝑋)

The above defines a functor Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and a natural transformation
𝑖∞ : id𝐬𝐒𝐞𝐭 ⇒ Ex∞.

Theorem 1.7.14.
(i) For all simplicial sets 𝑋, the morphism 𝑖∞

𝑋 : 𝑋 → Ex∞(𝑋) is an anodyne
extension and bijective on vertices.
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(ii) For all simplicial sets 𝑋, the simplicial set Ex∞(𝑋) is a Kan complex.

(iii) The functor Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves Kan fibrations, trivial Kan
fibrations, and finite limits.

Proof. (i). Recalling proposition 1.5.12 and lemma 1.7.9, we see that the canon-
ical embedding 𝑖𝑋 : 𝑋 → Ex(𝑋) is an anodyne extension for all simplicial sets
𝑋; but proposition a.3.17 implies that the class of anodyne extensions is closed
under transfinite composition, and 𝑖∞

𝑋 : 𝑋 → Ex∞(𝑋) is a transfinite composite
of these canonical embeddings, so 𝑖∞

𝑋 is also an anodyne extension. A similar ar-
gument using lemma 1.7.8 shows that 𝑖∞

𝑋 : 𝑋 → Ex∞(𝑋) is bijective on vertices.

(ii). Since horns are finite simplicial sets, any horn Λ𝑛
𝑘 → Ex∞(𝑋) must factor

as Λ𝑛
𝑘 → Ex𝑚(𝑋) → Ex∞(𝑋) for some 𝑚. We then apply lemma 1.7.6 to deduce

that Ex∞(𝑋) is a Kan complex.

(iii). Similar reasoning applied to lemma 1.7.7 (resp. corollary 1.7.10) shows that
Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves Kan fibrations (resp. trivial Kan fibrations). On
the other hand, since Ex : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves finite limits and Ex∞ is a
filtered colimit of iterations of Ex, corollary 0.2.27 implies Ex∞ also preserves
finite limits. ■

Remark 1.7.15. Neither 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 nor Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserve in-
finite products. Indeed, let 𝑋 the simplicial set defined in remark 1.5.11. We
know 𝑋 is weakly contractible, so the unique morphism Ex∞(𝑋) → Δ0 must
be a trivial Kan fibration (by theorem 1.4.27). However, for any infinite set 𝐼 ,
the simplicial set 𝑋𝐼 is not connected, i.e. 𝜋0(𝑋𝐼) is not a singleton. Nonethe-
less, Ex∞(𝑋)𝐼 → Δ0 is a trivial Kan fibration (because the class of trivial Kan
fibrations is closed under products); so the canonical morphism Ex∞(𝑋𝐼) →
Ex∞(𝑋)𝐼 cannot be a weak homotopy equivalence, let alone an isomorphism!

Proposition 1.7.16. There exist a functor 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and a natural trans-
formation 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 satisfying the following conditions:

• For all simplicial sets 𝑋, 𝑅𝑋 is a Kan complex and 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an
anodyne extension.

• 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves Kan fibrations and trivial Kan fibrations.

• 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves finite limits.

150



1.7. Subdivision and extension

Moreover, any such functor 𝑅 preserves and reflects weak homotopy equival-
ences.

Proof. By theorem 1.7.14, we may take (𝑅, 𝑖) to be (Ex∞, 𝑖∞). Given any such
(𝑅, 𝑖), consider the following commutative diagram in 𝐬𝐒𝐞𝐭:

𝑋 𝑅𝑋

𝑌 𝑅𝑌

𝑓

𝑖𝑋

𝑅𝑓

𝑖𝑌

Using proposition 1.5.12 and the 2-out-of-3 property of weak homotopy equival-
ences, we see that 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence if and only if
𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 is a weak homotopy equivalence. ■

Remark 1.7.17. We may construct a different functor satisfying the conditions
of the above proposition by using an appropriate geometric realisation functor:
see Proposition 2.4 and Proposition 10.10 in [GJ, Ch. I].

Theorem 1.7.18. The Kan–Quillen model structure on 𝐬𝐒𝐞𝐭 is proper.

Proof. Since every simplicial set is cofibrant, we may apply proposition 5.1.9 to
deduce that 𝐬𝐒𝐞𝐭 is a left proper model category. On the other hand, by propos-
ition 1.7.16, the right properness of 𝐬𝐒𝐞𝐭 can be reduced to the right properness
of 𝐊𝐚𝐧, which was established by proposition 1.4.32. ■

Proposition 1.7.19. Let 𝑝 : 𝑋 → 𝑌 be a Kan fibration. The following are
equivalent:

(i) The morphism 𝑝 : 𝑋 → 𝑌 is a trivial Kan fibration.

(ii) For every 𝑛-simplex 𝛼 : Δ𝑛 → 𝑌 and any pullback diagram in 𝐬𝐒𝐞𝐭 of the
form below,

𝑋𝛼 𝑋

Δ𝑛 𝑌

𝑝𝛼 𝑝

𝛼

the simplicial set 𝑋𝛼 is weakly contractible.

(iii) For every vertex 𝑦 of 𝑌 , the fibre of 𝑝 : 𝑋 → 𝑌 over 𝑦 is a contractible
Kan complex.
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Proof. (i) ⇔ (ii). Recalling lemma 1.5.2 and proposition 1.5.12, this is just pro-
position 1.4.13.

(ii) ⇒ (iii). The class of Kan fibrations is closed under pullback (by proposi-
tion a.3.17), so the fibre of a Kan fibration over a vertex of the base is indeed a
Kan complex. Thus, we may apply proposition 1.5.10.

(iii) ⇒ (ii). Fix an 𝑛-simplex 𝛼 : Δ𝑛 → 𝑌 , a pullback diagram as above, and a
vertex 𝑦 of 𝑌 that is contained in 𝛼. We then have the following pullback square
in 𝐬𝐒𝐞𝐭,

𝑋𝑦 𝑋𝛼

Δ0 Δ𝑛

𝑝𝛼

where 𝑝𝛼 : 𝑋𝛼 → Δ𝑛 is a Kan fibration. Since Δ0 and Δ𝑛 are both contractible, the
2-out-of-3 property implies that every morphism Δ0 → Δ𝑛 is a weak homotopy
equivalence; thus, by theorem 1.7.18, the top horizontal arrow in the diagram
above is also a weak homotopy equivalence. Hence, 𝑋𝛼 is a weakly contractible
simplicial set. ■

1.8 Bar and cobar complexes
Prerequisites. §§1.1, 1.3, 1.6, 4.5, a.5, a.6.

Definition 1.8.1. Let ℂ be a small category.
The bar complex for a diagram 𝐹 : ℂ → 𝐒𝐞𝐭 weighted by 𝐺 : ℂop → 𝐒𝐞𝐭 is

the simplicial set B•(𝐺, ℂ, 𝐹 ), where

B𝑛(𝐺, ℂ, 𝐹 ) = ∐
(𝑐0,…,𝑐𝑛)

(𝐺𝑐𝑛 × ℂ(𝑐𝑛−1, 𝑐𝑛) × ⋯ × ℂ(𝑐0, 𝑐1) × 𝐹 𝑐0)

with (𝑐0, … , 𝑐𝑛) ranging over (𝑛 + 1)-tuples of objects in ℂ, face maps defined
by the following formulae,

𝑑𝑛
0(𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝑦, 𝑓𝑛, … , 𝑓2, 𝐹 (𝑓1)(𝑥))

𝑑𝑛
𝑖 (𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝑦, 𝑓𝑛, … , 𝑓𝑖+1 ∘ 𝑓𝑖, … , 𝑓1, 𝑥)

𝑑𝑛
𝑛(𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝐺(𝑓𝑛)(𝑦), 𝑓𝑛−1, … , 𝑓1, 𝑥)

152



1.8. Bar and cobar complexes

and degeneracy maps defined as below:

𝑠𝑛
0(𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝑦, 𝑓𝑛, … , 𝑓1, id𝑐0

, 𝑥)
𝑠𝑛

𝑖 (𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝑦, 𝑓𝑛, … , 𝑓𝑖+1, id𝑐𝑖
, 𝑓𝑖, … , 𝑓1, 𝑥)

𝑠𝑛
𝑛(𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) = (𝑦, id𝑐𝑛

, 𝑓𝑛, … , 𝑓1, 𝑥)

The cobar complex for a diagram 𝐹 : ℂ → 𝐒𝐞𝐭 weighted by 𝐺 : ℂ → 𝐒𝐞𝐭
is the cosimplicial set C•(𝐺, ℂ, 𝐹 ), where

C𝑛(𝐺, ℂ, 𝐹 ) = ∏
(𝑐0,…,𝑐𝑛)

[𝐺𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0]

with (𝑐0, … , 𝑐𝑛) ranging over (𝑛 + 1)-tuples of objects in ℂ, coface maps defined
by the following formulae,

𝛿0
𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝐹 (𝑓1)(𝑥(𝑐1,…,𝑐𝑛)(𝑦, 𝑓𝑛, … , 𝑓2)))

𝛿𝑖
𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥(…,𝑐𝑖,…)(𝑦, 𝑓𝑛, … , 𝑓𝑖 ∘ 𝑓𝑖+1, … , 𝑓1))

𝛿𝑛
𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥(𝑐0,…,𝑐𝑛−1)(𝐺(𝑓𝑛)(𝑦), 𝑓𝑛−1, … , 𝑓1))

and codegeneracy maps defined as below:

𝜎0
𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥𝑐0,𝑐0,…,𝑐𝑛(𝑦, 𝑓𝑛, … , 𝑓1, id𝑐0))

𝜎𝑖
𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥…,𝑐𝑖,𝑐𝑖,…(𝑦, 𝑓𝑛, … , 𝑓𝑖+1, id𝑐𝑖

, 𝑓𝑖, … , 𝑓1))
𝜎𝑛

𝑛(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥𝑐0,…,𝑐𝑛,𝑐𝑛(𝑦, id𝑐𝑛
, 𝑓𝑛, … , 𝑓1))

Remark 1.8.2. It is clear that B•(𝐺, ℂ, 𝐹 ) is covariantly functorial in both 𝐹 and
𝐺, while C•(𝐺, ℂ, 𝐹 ) is contravariantly functorial in 𝐺 and covariantly functorial
in 𝐹 . One may also verify that there are bijections

𝐒𝐞𝐭(B𝑛(𝐺, ℂ, 𝐹 ), 𝑋) ≅ C𝑛(𝐺, ℂop, 𝐒𝐞𝐭(𝐹 , 𝑋))

that are natural in 𝑛, 𝐹 , 𝐺, and 𝑋: this is one sense in which the bar complex
and cobar complex are formally dual.
Remark 1.8.3. There is another duality principle for bar complexes, namely the
following natural isomorphism:

B•(𝐺, ℂ, 𝐹 )op ≅ B•(𝐹 , ℂop, 𝐺)

Unfortunately, there is no such statement for cobar complexes.
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Remark 1.8.4. The nerve N(ℂ) of a small category ℂ is isomorphic to the bar
complex B•(Δ1, ℂ, Δ1), so there is a canonical morphism B•(𝐺, ℂ, 𝐹 ) → N(ℂ)
for any 𝐹 : ℂ → 𝐒𝐞𝐭 and any 𝐺 : ℂop → 𝐒𝐞𝐭.
Remark 1.8.5. More generally, the bar complex B•(𝐺, ℂ, 𝐹 ) is isomorphic to the
nerve of the following category 𝐆(𝐺, ℂ, 𝐹 ):

• The objects are tuples (𝑦, 𝑐, 𝑥), where 𝑐 is an object in ℂ, 𝑥 is an element
of 𝐹 𝑐, and 𝑦 is an element of 𝐺𝑐.

• The morphisms (𝑦, 𝑐, 𝑥) → (𝑦′, 𝑐′, 𝑥′) are morphisms 𝑓 : 𝑐 → 𝑐′ in ℂ such
that 𝐹 (𝑓)(𝑥) = 𝑥′ and 𝐺(𝑓)(𝑦′) = 𝑦.

• Composition and identities are inherited from ℂ.

In particular, given a functor 𝑈 : ℂ → 𝔻, B•(Δ1, ℂ, 𝑈 ∗h𝑑) may be identified
with the nerve of the comma category (𝑑 ↓ 𝑈), and B•(𝑈 ∗h𝑑 , ℂ, Δ1) with the
nerve of the comma category (𝑈 ↓ 𝑑).

Definition 1.8.6. Let ℂ be a small category and let ℳ be a locally small category.

• A bar complex for a diagram 𝐹 : ℂ → ℳ weighted by 𝐺 : ℂop → 𝐒𝐞𝐭 is
a simplicial object B•(𝐺, ℂ, 𝐹 ) in ℳ with bijections

ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀) ≅ C𝑛(𝐺, ℂop, ℳ(𝐹 , 𝑀))

that are natural in both 𝑛 and 𝑀 .

• A cobar complex for a diagram 𝐹 : ℂ → ℳ weighted by 𝐺 : ℂ → 𝐒𝐞𝐭 is
a cosimplicial object C•(𝐺, ℂ, 𝐹 ) in ℳ with bijections

ℳ(𝑀, C𝑛(𝐺, ℂ, 𝐹 )) ≅ C𝑛(𝐺, ℂ, ℳ(𝑀, 𝐹 ))

that are natural in both 𝑛 and 𝑀 .

Remark 1.8.7. Of course, this definition agrees with the previous one (up to iso-
morphism) in the special case ℳ = 𝐒𝐞𝐭, and it is clear that a cobar complex in
ℳ for a diagram 𝐹 : ℂ → ℳ weighted by 𝐺 : ℂ → 𝐒𝐞𝐭 becomes a bar complex
in ℳop for 𝐹 op : ℂop → ℳop weighted by the same 𝐺 : ℂ → 𝐒𝐞𝐭, and vice
versa.
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Remark 1.8.8. By general considerations about the representability of limits, we
see that bar complexes exist for all small diagrams and weights if ℳ has co-
products for small families of objects, while cobar complexes exist for all small
diagrams and weights if ℳ has products for small families of objects.

Lemma 1.8.9. Let ℂ be a small category. For each diagram 𝐹 : ℂ → 𝐒𝐞𝐭 and
each weight 𝐺 : ℂ → 𝐒𝐞𝐭, we have a bijection

[ℂ, 𝐒𝐞𝐭](𝐺, 𝐹 ) ≅ lim←−−
𝚫

C•(𝐺, ℂ, 𝐹 )

that is natural in both 𝐹 and 𝐺.

Proof. It is not hard to see that the (non-full) subcategory {[0] ⇉ [1]} is coinitial
in 𝚫, so it suffices to show that there is an equaliser diagram of the following
form,

[ℂ, 𝐒𝐞𝐭](𝐺, 𝐹 ) C0(𝐺, ℂ, 𝐹 ) C1(𝐺, ℂ, 𝐹 )
𝛿0

𝛿1

However, if we take the map [ℂ, 𝐒𝐞𝐭](𝐺, 𝐹 ) → C0(𝐺, ℂ, 𝐹 ) to be the one send-
ing a natural transformation 𝛼 : 𝐺 ⇒ 𝐹 to its underlying family of maps
(𝛼𝑐 : 𝐺𝑐 → 𝐹 𝑐 | 𝑐 ∈ ob ℂ), then it is clear that the diagram is indeed an equal-
iser. ■

Proposition 1.8.10. Let ℂ be a small category and let ℳ be a locally small
category.

• If B•(𝐺, ℂ, 𝐹 ) is a bar complex in ℳ, then the colimit lim−−→𝚫op
B•(𝐺, ℂ, 𝐹 )

exists in ℳ if and only if the weighted colimit 𝐺 ⋆ℂ 𝐹 exists in ℳ, and
the two are isomorphic:

𝐺 ⋆ℂ 𝐹 ≅ lim−−→
𝚫op

B•(𝐺, ℂ, 𝐹 )

• If C•(𝐺, ℂ, 𝐹 ) is a cobar complex in ℳ, then the limit lim←−−𝚫
C•(𝐺, ℂ, 𝐹 )

exists in ℳ if and only if the weighted limit {𝐺, 𝐹 }ℂ exists in ℳ, and the
two are isomorphic:

{𝐺, 𝐹 }ℂ ≅ lim←−−
𝚫

B•(𝐺, ℂ, 𝐹 )
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Proof. The two claims are formally dual; we will prove the first version.
Let 𝑀 be any object in ℳ. Using lemma a.5.12, proposition a.5.13, and

lemma 1.8.9, we obtain the following natural bijections:

{𝐺, ℳ(𝐹 , 𝑀)}ℂop
≅ [ℂop, 𝐒𝐞𝐭](𝐺, ℳ(𝐹 , 𝑀))
≅ lim←−−

𝚫

C•(𝐺, ℂop, ℳ(𝐹 , 𝑀))

≅ lim←−−
𝚫

ℳ(B•(𝐺, ℂ, 𝐹 ), 𝑀)

It follows by the Yoneda lemma that 𝐺 ⋆ℂ 𝐹 ≅ lim−−→𝚫op
B•(𝐺, ℂ, 𝐹 ). ■

Lemma 1.8.11. Let ℂ be a small category.

(i) For each natural number 𝑛 and each weight 𝐺 : ℂ → 𝐒𝐞𝐭, the functor
C𝑛(𝐺, ℂ, −) : [ℂ, 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves limits, weighted limits, and ends.

(ii) For each natural number 𝑛 and each diagram 𝐹 : ℂ → 𝐒𝐞𝐭, the functor
C𝑛(−, ℂ, 𝐹 ) : [ℂ, 𝐒𝐞𝐭]op → 𝐒𝐞𝐭 sends colimits to limits, weighted colimits
to weighted limits, and coends to ends.

Proof. Obvious. ⧫

Proposition 1.8.12. Let ℂ be a small category and let ℳ be a locally small
category. If ℳ has coproducts for small families of objects, then:

(i) For each natural number 𝑛 and each weight 𝐺 : ℂop → 𝐒𝐞𝐭, the functor
B𝑛(𝐺, ℂ, −) : [ℂ, ℳ] → ℳ preserves colimits, weighted colimits, and
coends.

(ii) For each natural number 𝑛 and each diagram 𝐹 : ℂ → ℳ, the functor
B𝑛(−, ℂ, 𝐹 ) : [ℂ, 𝐒𝐞𝐭] → ℳ preserves colimits, weighted colimits, and
coends.

Dually, if ℳ has products for small families of objects, then:

(i) For each natural number 𝑛 and each weight 𝐺 : ℂ → 𝐒𝐞𝐭, the functor
C𝑛(𝐺, ℂ, −) : [ℂ, 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves limits, weighted limits, and ends.

(ii) For each natural number 𝑛 and each diagram 𝐹 : ℂ → 𝐒𝐞𝐭, the functor
C𝑛(−, ℂ, 𝐹 ) : [ℂ, 𝐒𝐞𝐭]op → 𝐒𝐞𝐭 sends colimits to limits, weighted colimits
to weighted limits, and coends to ends.
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Proof. We may use the Yoneda lemma to reduce the claims to the case in the
previous lemma. ■

Lemma 1.8.13. Let ℂ be a small category.

• Let 𝐹 : ℂ → 𝐒𝐞𝐭 be a diagram and let 𝐺 : ℂop → 𝐒𝐞𝐭 be a weight. For all
sets 𝑋, we have bijections

B𝑛(𝐺 × 𝑋, ℂ, 𝐹 ) ≅ 𝑋 × B𝑛(𝐺, ℂ, 𝐹 ) ≅ B𝑛(𝐺, ℂ, 𝑋 × 𝐹 )

that are natural in 𝑋, 𝐹 , and 𝐺.

• Let 𝐹 : ℂ → 𝐒𝐞𝐭 be a diagram and let 𝐺 : ℂ → 𝐒𝐞𝐭 be a weight. For all
sets 𝑋, we have bijections

C𝑛(𝑋 × 𝐺, ℂ, 𝐹 ) ≅ [𝑋, C𝑛(𝐺, ℂ, 𝐹 )] ≅ C𝑛(𝐺, ℂ, [𝑋, 𝐹 ])

that are natural in 𝑋, 𝐹 , and 𝐺.

Proof. Obvious. ⧫

Proposition 1.8.14. Let ℂ be a small category and let ℳ be a locally small
category. If ℳ has coproducts for small families of objects, then:

(i) Let 𝐹 : ℂ → ℳ be a diagram, let 𝐺 : ℂop → 𝐒𝐞𝐭 be a weight and let 𝑀
be any object in ℳ. We then have bijections

ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

that are natural in 𝑛, 𝐹 , 𝐺, and 𝑀 .

(ii) If ℳ is cotensored, then for each natural number 𝑛 and each weight 𝐺 :
ℂop → 𝐒𝐞𝐭, the functor B𝑛(𝐺, ℂ, −) : [ℂ, ℳ] → ℳ has a right ad-
joint, namely the functor that sends an object 𝑀 to the diagram 𝑐 ↦
B𝑛(𝐺, ℂop, h𝑐) ⋔ 𝑀 .

(iii) For each natural number 𝑛 and each diagram 𝐹 : ℂ → ℳ, the functor
B𝑛(−, ℂ, 𝐹 ) : [ℂ, 𝐒𝐞𝐭] → ℳ has a right adjoint, namely the functor that
sends an object 𝑀 to the weight 𝑐 ↦ C𝑛(h𝑐, ℂop, ℳ(𝐹 , 𝑀)).
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Dually, if ℳ has products for small families of objects, then:

(i′) Let 𝐹 : ℂ → ℳ be a diagram, let 𝐺 : ℂ → 𝐒𝐞𝐭 be a weight, and let 𝑀 be
an object in ℳ. We then have bijections

ℳ(𝑀, C𝑛(𝐺, ℂ, 𝐹 )) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(𝑀, 𝐺𝑐′ ⋔ 𝐹 𝑐))

that are natural in 𝑛, 𝐹 , 𝐺, and 𝑀 .

(ii′) If ℳ is tensored, then for each natural number 𝑛 and each weight 𝐺 : ℂ →
𝐒𝐞𝐭, the functor C𝑛(𝐺, ℂ, −) : [ℂ, ℳ] → ℳ has a left adjoint, namely the
functor that sends an object 𝑀 to the diagram 𝑐 ↦ B𝑛(𝐺, ℂop, h𝑐) ⊙ 𝑀 .

(iii′) For each natural number 𝑛 and each diagram 𝐹 : ℂ → ℳ, the functor
C𝑛(−, ℂ, 𝐹 ) : [ℂ, 𝐒𝐞𝐭]op → ℳ has a left adjoint, namely the functor that
sends an object 𝑀 to the weight 𝑐 ↦ C𝑛(h 𝑐, ℂ, ℳ(𝑀, 𝐹 )).

Proof. The two sets of claims are formally dual; we will prove the first version.

(i). Using the interchange law for ends (theorem a.6.17), the Yoneda lemma for
ends (proposition a.6.18), and proposition 1.8.12, we obtain the following natural
bijections:

∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

≅ ∫(𝑐′,𝑐):ℂop×ℂ
C𝑛(h𝑐′, ℂop, 𝐒𝐞𝐭(h 𝑐, ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀)))

≅ ∫𝑐′:ℂ ∫𝑐:ℂ
C𝑛(h𝑐′, ℂop, 𝐒𝐞𝐭(h 𝑐, ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀)))

≅ ∫𝑐′:ℂ
C𝑛

(h𝑐′, ℂop, ∫𝑐:ℂ
𝐒𝐞𝐭(h 𝑐, ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀)))

≅ ∫𝑐′:ℂ
C𝑛(h𝑐′, ℂop, ℳ(𝐺𝑐′ ⊙ 𝐹 , 𝑀))

≅ ∫𝑐′:ℂ
C𝑛(𝐺𝑐′ × h𝑐′, ℂop, ℳ(𝐹 , 𝑀))

≅ C𝑛
(∫

𝑐′:ℂ
𝐺𝑐′ × h𝑐′, ℂop, ℳ(𝐹 , 𝑀))

≅ C𝑛(𝐺, ℂop, ℳ(𝐹 , 𝑀))
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≅ ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀)

(ii). Similarly, we have the following natural bijections:

ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀) ≅ C𝑛(𝐺, ℂop, ℳ(𝐹 , 𝑀))

≅ C𝑛
(𝐺, ℂop, ∫𝑐:ℂ

𝐒𝐞𝐭(h 𝑐, ℳ(𝐹 𝑐, 𝑀)))

≅ ∫𝑐:ℂ
C𝑛(𝐺, ℂop, 𝐒𝐞𝐭(h 𝑐, ℳ(𝐹 𝑐, 𝑀)))

≅ ∫𝑐:ℂ
𝐒𝐞𝐭(B𝑛(𝐺, ℂ, h 𝑐), ℳ(𝐹 𝑐, 𝑀))

≅ ∫𝑐:ℂ
ℳ(𝐹 𝑐, B𝑛(𝐺, ℂ, h 𝑐) ⋔ 𝑀)

Now apply remark a.6.5.

(iii). Along the same lines:

ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀) ≅ C𝑛(𝐺, ℂop, ℳ(𝐹 , 𝑀))

≅ C𝑛
(∫

𝑐:ℂ
𝐺𝑐 × h𝑐, ℂop, ℳ(𝐹 , 𝑀))

≅ ∫𝑐:ℂ
C𝑛(𝐺𝑐 × h𝑐, ℂop, ℳ(𝐹 , 𝑀))

≅ ∫𝑐:ℂ
C𝑛(𝐺𝑐 × h𝑐, ℂop, ℳ(𝐹 , 𝑀))

≅ ∫𝑐:ℂ
𝐒𝐞𝐭(𝐺𝑐, C𝑛(h𝑐, ℂop, ℳ(𝐹 , 𝑀)))

Note that in the last step we are appealing to lemma 1.8.13. ■

Remark 1.8.15. The above proposition shows that bar complexes are a certain
kind of weighted colimit, while cobar complexes are a certain kind of weighted
limit.
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Definition 1.8.16. Let ℂ be a small category, let u� be any category and let ℳ
be a locally small category.

• Given ⊙ : u� × ℳ → ℳ, a bar complex for a diagram 𝐹 : ℂ → ℳ
weighted by 𝐺 : ℂop → u� is a simplicial object B•(𝐺, ℂ, 𝐹 ) equipped
with bijections

ℳ(B𝑛(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

that are natural in both 𝑛 and 𝑀 .

• Given ⋔ : u�op × ℳ → ℳ, a cobar complex for a diagram 𝐹 : ℂ → ℳ
weighted by 𝐺 : ℂ → u� is a cosimplicial object C•(𝐺, ℂ, 𝐹 ) equipped
with bijections

ℳ(𝑀, C𝑛(𝐺, ℂ, 𝐹 )) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(𝑀, 𝐺𝑐′ ⋔ 𝐹 𝑐))

that are natural in both 𝑛 and 𝑀 .

Remark 1.8.17. Although the definition given here is stated using an end, one can
also state a version that only uses products. Thus these generalised bar (resp. co-
bar) complexes exist in a locally small category ℳ as soon as ℳ has coproducts
(resp. products) for small families of objects.
Remark 1.8.18. In the case where u� = ℳ = 𝐬𝐒𝐞𝐭, we will almost always take
𝐴 ⊙ 𝑀 = 𝐴 × 𝑀 and 𝐴 ⋔ 𝑀 = [𝐴, 𝑀]. With this choice, the formulae of
definition 1.8.1 (understood appropriately) can be applied verbatim.

Proposition 1.8.19. Let ℂ be a small category, let u� be any category, and let
ℳ be a locally small category.

• Given ⊙ : u� × ℳ → ℳ, a weight 𝐺 : ℂop → u�, and a diagram 𝐹 : ℂ →
ℳ, if B•(𝐺, ℂ, 𝐹 ) is a bar complex in ℳ, then

∫
𝑐:ℂ

𝐺𝑐 ⊙ 𝐹 𝑐 ≅ lim−−→
𝚫op

B•(𝐺, ℂ, 𝐹 )

where the LHS coend exists in ℳ if and only if the RHS colimit exists in
ℳ.
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• Given ⋔ : u�op × ℳ → ℳ, a weight 𝐺 : ℂ → u�, and a diagram 𝐹 : ℂ →
ℳ, if C•(𝐺, ℂ, 𝐹 ) is a cobar complex in ℳ, then

∫𝑐:ℂ
𝐺𝑐 ⋔ 𝐹 𝑐 ≅ lim←−−

𝚫

B•(𝐺, ℂ, 𝐹 )

where the LHS end exists in ℳ if and only if the RHS limit exists in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑀 be an object in ℳ. Then,

lim←−−
𝚫

ℳ(B•(𝐺, ℂ, 𝐹 ), 𝑀) ≅ lim←−−
𝚫

∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B•(h𝑐′, ℂ, h 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(lim−−→𝚫op

B•(h𝑐′, ℂ, h 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

where in the last step we have used proposition a.6.11. By proposition 1.8.10,

lim−−→
𝚫op

B•(h𝑐′, ℂ, h 𝑐) ≅ ℂ(𝑐, 𝑐′)

and the interchange law for ends (theorem a.6.17) implies

∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(ℂ(𝑐′, 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

≅ ∫𝑐:ℂ ∫𝑐′:ℂ
𝐒𝐞𝐭(ℂ(𝑐′, 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀))

but by the Yoneda lemma for ends (proposition a.6.18),

∫𝑐′:ℂ
𝐒𝐞𝐭(ℂ(𝑐′, 𝑐), ℳ(𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀)) ≅ ℳ(𝐺𝑐 ⊙ 𝐹 𝑐, 𝑀)

so we deduce that

lim←−−
𝚫

ℳ(B•(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫𝑐:ℂ
ℳ(𝐺𝑐 ⊙ 𝐹 𝑐, 𝑀)

naturally in 𝑀 . Hence,

∫
𝑐:ℂ

𝐺𝑐 ⊙ 𝐹 𝑐 ≅ lim−−→
𝚫op

B•(𝐺, ℂ, 𝐹 )

where the LHS exists in ℳ if and only if the RHS exists in ℳ. ■
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Lemma 1.8.20. Let 𝑈 : ℂ → 𝔻 be a functor between small categories. There is
a natural transformation C•(−, 𝔻, −) ⇒ C•(−𝑈, ℂ, −𝑈) such that the following
diagram of cosimplicial sets commutes for all weights 𝐺 : 𝔻 → 𝐒𝐞𝐭 and all
diagrams 𝐹 : 𝔻 → 𝐒𝐞𝐭,

disc [𝔻, 𝐒𝐞𝐭](𝐺, 𝐹 ) C•(𝐺, 𝔻, 𝐹 )

disc [ℂ, 𝐒𝐞𝐭](𝐺𝑈, 𝐹 𝑈) C•(𝐺𝑈, ℂ, 𝐹 𝑈)

𝑈 ∗

where the horizontal arrows are the maximal augmentations.[12]

Proof. By definition,

C𝑛(𝐺, 𝔻, 𝐹 ) = ∏
(𝑑0,…,𝑑𝑛)

[𝐺𝑑𝑛 × 𝔻(𝑑𝑛, 𝑑𝑛−1) × ⋯ × 𝔻(𝑑1, 𝑑0), 𝐹 𝑑0]

C𝑛(𝐺𝑈, ℂ, 𝐹 𝑈) = ∏
(𝑐0,…,𝑐𝑛)

[𝐺𝑈𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑈𝑐0]

so the maps 𝑈 : ℂ(𝑐, 𝑐′) → 𝔻(𝑈𝑐, 𝑈𝑐′) induce a morphism of cobar complexes
with the required properties. ■

Proposition 1.8.21. Let 𝑈 : ℂ → 𝔻 be a functor between small categories and
let ℳ be a locally small category.

• Let ⊙ : u� × ℳ → ℳ be given and assume ℳ has products for small
families of objects. There is a natural transformation

B•(−𝑈, ℂ, −𝑈) ⇒ B•(−, 𝔻, −)

of functors [𝔻op, u�] × [𝔻, ℳ] → 𝐜ℳ, and when ℳ is cocomplete, the
following diagram in ℳ commutes for all weights 𝐺 : 𝔻 → u� and all
diagrams 𝐹 : 𝔻 → ℳ,

lim−−→𝚫op
B•(𝐺𝑈, ℂ, 𝐹 𝑈) ∫𝑐:ℂ 𝐺𝑈𝑐 ⊙ 𝐹 𝑈𝑐

lim−−→𝚫op
B•(𝐺, 𝔻, 𝐹 ) ∫𝑑:𝔻 𝐺𝑑 ⊙ 𝐹 𝑑

≅

≅

where the horizontal arrows are the canonical isomorphisms[13] and the
right vertical arrow is the canonical comparison morphism.

[12] Recall definition 1.6.17 and lemma 1.8.9.
[13] See proposition 1.8.19.
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• Let ⋔ : u�op × ℳ → ℳ be given and assume ℳ has coproducts for small
families of objects. There is a natural transformation

C•(−, 𝔻, −) ⇒ C•(−𝑈, ℂ, −𝑈)

of functors [𝔻, u�]op×[𝔻, ℳ] → 𝐜ℳ, and when ℳ is complete, the follow-
ing diagram in ℳ commutes for all weights 𝐺 : 𝔻 → u� and all diagrams
𝐹 : 𝔻 → ℳ,

∫𝑑:𝔻 𝐺𝑑 ⋔ 𝐹 𝑑 lim←−−𝚫
C•(𝐺, 𝔻, 𝐹 )

∫𝑐:ℂ 𝐺𝑈𝑐 ⋔ 𝐹 𝑈𝑐 lim←−−𝚫
C•(𝐺𝑈, ℂ, 𝐹 𝑈)

≅

≅

where the horizontal arrows are the canonical isomorphisms and the left
vertical arrow is the canonical comparison morphism.

Proof. The two claims are formally dual; we will prove the first version.
Recalling proposition 1.8.14, it not hard to see that

B•(𝑈 ∗h𝑑′, ℂ, 𝑈 ∗h𝑑) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝔻(𝑈𝑐′, 𝑑′) × B•(h𝑐′, ℂ, h 𝑐) × 𝔻(𝑑, 𝑈𝑐)

and thus, applying the interchange law (theorem a.6.17) and the Yoneda lemma
for coends (proposition a.6.18):

ℳ(B•(𝐺𝑈, ℂ, 𝐹 𝑈), 𝑀)

≅ ∫(𝑑′,𝑑):𝔻op×𝔻
𝐒𝐞𝐭(B•(𝑈 ∗h𝑑′, ℂ, 𝑈 ∗h𝑑), ℳ(𝐺𝑑′ ⊙ 𝐹 𝑑, 𝑀))

Similarly,

ℳ(∫
𝑐:ℂ

𝐺𝑈𝑐 ⊙ 𝐹 𝑈𝑐, 𝑀)

≅ ∫(𝑑′,𝑑):𝔻op×𝔻
𝐒𝐞𝐭(𝑈 ∗h𝑑′ ⋆ℂ 𝑈 ∗h𝑑 , ℳ(𝐺𝑑′ ⊙ 𝐹 𝑑, 𝑀))

so it suffices to verify that there is a natural commutative diagram of the form
below in 𝐒𝐞𝐭:

lim−−→𝚫op
B•(𝑈 ∗h𝑑′, ℂ, 𝑈 ∗h𝑑) 𝑈 ∗h𝑑′ ⋆ℂ 𝑈 ∗h𝑑

lim−−→𝚫op
B•(h𝑑′, 𝔻, h𝑑) h𝑑′ ⋆𝔻 h𝑑

≅

≅
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In particular, it is enough to prove the original claim in the special case where
u� = ℳ = 𝐒𝐞𝐭 and ⊙ = ×; but this can in turn be reduced to lemma 1.8.20 by
considering the Yoneda embedding 𝐒𝐞𝐭 op → [𝐒𝐞𝐭, 𝐒𝐞𝐭], so we are done. ■

Lemma 1.8.22. Let 𝑈 : ℂ → 𝔻 be a functor between small categories, let
𝐹 : 𝔻 → 𝐒𝐞𝐭 be a diagram, and let 𝐺 : 𝔻op → 𝐒𝐞𝐭 be a weight. Then we have
the following pullback diagram in 𝐬𝐒𝐞𝐭,

B•(𝐺 ∘ 𝑈, ℂ, 𝐹 ∘ 𝑈) B•(𝐺, 𝔻, 𝐹 )

B•(Δ1, ℂ, Δ1) B•(Δ1, 𝔻, Δ1)

where the vertical arrows are induced by the unique natural transformations
𝐹 ⇒ Δ1 and 𝐺 ⇒ Δ1 and the horizontal arrows are the canonical comparison
morphisms of proposition 1.8.21.

Proof. This is a straightforward exercise. ◊

Corollary 1.8.23. Let 𝑈 : ℂ → 𝔻 be a functor between small categories, let
𝐹 : 𝔻 → 𝐬𝐒𝐞𝐭 be a diagram, and let 𝐺 : 𝔻op → 𝐬𝐒𝐞𝐭 be a weight. Then we have
the following pullback diagram in 𝐬𝐒𝐞𝐭,

B(𝐺 ∘ 𝑈, ℂ, 𝐹 ∘ 𝑈) B(𝐺, 𝔻, 𝐹 )

B(Δ1, ℂ, Δ1) B(Δ1, 𝔻, Δ1)

where the vertical arrows are induced by the unique natural transformations
𝐹 ⇒ Δ1 and 𝐺 ⇒ Δ1 and the horizontal arrows are the canonical comparison
morphisms of proposition 1.8.21.

Proof. By lemma 1.6.8, it suffices to verify that the corresponding diagram of bar
complexes is a pullback square in 𝐬𝐒𝐞𝐭, but that follows by applying lemma 1.8.22
degreewise. ■

Theorem 1.8.24. Let ℂ and 𝔻 be two small categories, let u� and ℳ be two
locally small categories, and let ⊗ : u� × u� → u�, ⊙ : u� × ℳ → ℳ, ⋔ :
u�op × ℳ → ℳ, and ℳ : ℳop × ℳ → u� be functors. Suppose u� has
coproducts for small families of objects, that there are bijections

ℳ(𝐴 ⊙ 𝑀, 𝑁) ≅ u�(𝐴, ℳ(𝑀, 𝑁)) ≅ ℳ(𝑀, 𝐴 ⋔ 𝑁)
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that are natural in 𝐴, 𝑀 , and 𝑁 , and that there are isomorphisms

(𝐴 ⊗ 𝐵) ⊙ 𝑀 ≅ 𝐴 ⊙ (𝐵 ⊙ 𝑀)
(𝐴 ⊗ 𝐵) ⋔ 𝑀 ≅ 𝐴 ⋔ (𝐵 ⋔ 𝑀)

that are natural in 𝐴, 𝐵, and 𝑀 .

• Let 𝐹 : ℂ → ℳ be a diagram, let 𝐺 : 𝔻op → u� be a weight, and let
𝐻 : ℂop × 𝔻 → u� be a functor. If ℳ has coproducts for small families of
objects, then there is an isomorphism

B𝑚(B𝑛(𝐺, 𝔻, 𝐻), ℂ, 𝐹 ) ≅ B𝑛(𝐺, 𝔻, B𝑚(𝐻, ℂ, 𝐹 ))

that is natural in 𝑚, 𝑛, 𝐹 , 𝐺, and 𝐻 .

• Let 𝐹 : ℂ → ℳ be a diagram, let 𝐺 : 𝔻 → u� be a weight, and let
𝐻 : 𝔻op × ℂ → u� be a functor. If ℳ has products for small families of
objects, then there is an isomorphism

C𝑚(B𝑛(𝐺, 𝔻op, 𝐻), ℂ, 𝐹 ) ≅ C𝑛(𝐺, 𝔻, C𝑚(𝐻, ℂ, 𝐹 ))

that is natural in 𝑚, 𝑛, 𝐹 , 𝐺, and 𝐻 .

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑀 be any object in ℳ and let 𝐾 : 𝔻op × ℂop × 𝔻 × ℂ → 𝐒𝐞𝐭 be the

functor defined below:

𝐾(𝑑′, 𝑐′, 𝑑, 𝑐) = u�(𝐺𝑑′ ⊗ 𝐻(𝑐′, 𝑑), ℳ(𝐹 𝑐, 𝑀))

Notice that we have the following natural bijections:

𝐾(𝑑′, 𝑐′, 𝑑, 𝑐) ≅ ℳ((𝐺𝑑′ ⊗ 𝐻(𝑐′, 𝑑)) ⊙ 𝐹 𝑐, 𝑀)
≅ ℳ(𝐺𝑑′ ⊙ (𝐻(𝑐′, 𝑑) ⊙ 𝐹 𝑐), 𝑀)
≅ ℳ(𝐻(𝑐′, 𝑑) ⊙ 𝐹 𝑐, 𝐺𝑑′ ⋔ 𝑀)

Now, using the definition of the generalised bar complex, we obtain the natural
bijections shown below:

ℳ(B𝑚(B𝑛(𝐺, 𝔻, 𝐻), ℂ, 𝐹 ), 𝑀)

≅ ∫(𝑐′,𝑐)
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ℳ(B𝑚(𝐺, 𝔻, 𝐻(𝑐′, −)) ⊙ 𝐹 𝑐, 𝑀))
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≅ ∫(𝑐′,𝑐)
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), u�(B𝑚(𝐺, 𝔻, 𝐻(𝑐′, −)), ℳ(𝐹 𝑐, 𝑀)))

≅ ∫(𝑐′,𝑐)
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), ∫(𝑑′,𝑑)

𝐒𝐞𝐭(B𝑚(h𝑑′, 𝔻, h𝑑), 𝐾(𝑑′, 𝑐′, 𝑑, 𝑐)))

≅ ∫(𝑐′,𝑐) ∫(𝑑′,𝑑)
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐) × B𝑚(h𝑑′, 𝔻, h𝑑), 𝐾(𝑑′, 𝑐′, 𝑑, 𝑐))

On the other hand,

ℳ(B𝑛(𝐺, 𝔻, B𝑚(𝐻, ℂ, 𝐹 )), 𝑀)

≅ ∫(𝑑′,𝑑)
𝐒𝐞𝐭(B𝑛(h𝑑′, 𝔻, h𝑑), ℳ(𝐺𝑑′ ⊙ B𝑚(𝐻(−, 𝑑), ℂ, 𝐹 ), 𝑀))

≅ ∫(𝑑′,𝑑)
𝐒𝐞𝐭(B𝑛(h𝑑′, 𝔻, h𝑑), ℳ(B𝑚(𝐻(−, 𝑑), ℂ, 𝐹 ), 𝐺𝑑′ ⋔ 𝑀))

≅ ∫(𝑑′,𝑑)
𝐒𝐞𝐭(B𝑛(h𝑑′, 𝔻, h𝑑), ∫(𝑐′,𝑐)

𝐒𝐞𝐭(B𝑚(h𝑐′, ℂ, h 𝑐), 𝐾(𝑑′, 𝑐′, 𝑑, 𝑐)))

≅ ∫(𝑑′,𝑑) ∫(𝑐′,𝑐)
𝐒𝐞𝐭(B𝑛(h𝑑′, 𝔻, h𝑑) × B𝑚(h𝑐′, ℂ, h 𝑐), 𝐾(𝑑′, 𝑐′, 𝑑, 𝑐))

and so, applying the interchange law for ends (theorem a.6.17), we obtain a nat-
ural bijection

ℳ(B𝑚(B𝑛(𝐺, 𝔻, 𝐻), ℂ, 𝐹 ), 𝑀) ≅ ℳ(B𝑛(𝐺, 𝔻, B𝑚(𝐻, ℂ, 𝐹 )), 𝑀)

and the claim follows by the Yoneda lemma. ■

Definition 1.8.25. Let ℂ be a small category.

• Given ⊙ : u� × 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭, the bar construction for a diagram 𝐹 : ℂ →
𝐬𝐒𝐞𝐭 weighted by a functor 𝐺 : ℂop → u� is the following coend:

B(𝐺, ℂ, 𝐹 ) = ∫
[𝑛]:𝚫

Δ𝑛 × B𝑛(𝐺, ℂ, 𝐹 )

In other words, B(𝐺, ℂ, 𝐹 ) is the realisation |B•(𝐺, ℂ, 𝐹 )|.

• Given ⋔ : u�op × 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭, the cobar construction for a diagram
𝐹 : ℂ → 𝐬𝐒𝐞𝐭 weighted by a functor 𝐺 : ℂ → u� is the following end:

C(𝐺, ℂ, 𝐹 ) = ∫[𝑛]:𝚫
[Δ𝑛, B𝑛(𝐺, ℂ, 𝐹 )]

In other words, C(𝐺, ℂ, 𝐹 ) is the totalisation Tot C•(𝐺, ℂ, 𝐹 ).
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Lemma 1.8.26. Let ℂ be a small category, let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, and
let 𝐺 : ℂop → 𝐬𝐒𝐞𝐭 be a weight. We then have bijections

(B(𝐺, ℂ, 𝐹 ))𝑛 ≅ B𝑛(𝐺𝑛, ℂ, 𝐹𝑛)

that are natural in 𝑛.

Proof. Apply lemma 1.6.8 to remark 1.8.18. ■

Corollary 1.8.27. Let ℂ be a small category, let 𝐹 : ℂ → 𝐒𝐞𝐭 be a diagram,
and let 𝐺 : ℂ → 𝐒𝐞𝐭 be weight. Then the bar construction B(disc 𝐺, ℂ, disc 𝐹 )
is isomorphic to the bar complex B•(𝐺, ℂ, 𝐹 ). ■

Corollary 1.8.28. Let ℂ be a small category, let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram,
and let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be weight. Then the bar construction B(𝐹 , ℂop, 𝐺) is
isomorphic to B(𝐺, ℂ, 𝐹 )op. ■

Lemma 1.8.29. Let ℂ be a small category, let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, and
let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be a weight. We then have bijections

(C𝑛(𝐺, ℂ, 𝐹 ))𝑚 ≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , C𝑛(𝐺𝑙, ℂ, 𝐹𝑙))

that are natural in 𝑛, 𝑚, 𝐹 , and 𝐺.

Proof. By remark 1.8.18,

C𝑛(𝐺, ℂ, 𝐹 ) ≅ ∏
(𝑐0,…,𝑐𝑛)

[𝐺𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0]

so (by the Yoneda lemma) we have the following natural bijection in degree 𝑚:

(C𝑛(𝐺, ℂ, 𝐹 ))𝑚 ≅ ∏
(𝑐0,…,𝑐𝑛)

𝐬𝐒𝐞𝐭(Δ𝑚 × 𝐺𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0)

Moreover, by remark a.6.5,

𝐬𝐒𝐞𝐭(Δ𝑚 × 𝐺𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0)

≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 × 𝐺𝑙𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹𝑙𝑐0)

≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , 𝐒𝐞𝐭(𝐺𝑙𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹𝑙𝑐0))

and the claim follows. ■
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Lemma 1.8.30. Let ℂ be a small category, let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, and
let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be a weight. We then have bijections

𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂ, 𝐹 )) ≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂ, 𝐹𝑛))

that are natural in 𝑋.

Proof. Lemma 1.6.22 says,

𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂ, 𝐹 )) ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺, ℂ, 𝐹 )𝑚)

and by lemma 1.8.29,

C𝑚(𝐺, ℂ, 𝐹 )𝑚 ≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑛, C𝑚(𝐺𝑛, ℂ, 𝐹𝑛))

so the interchange law for ends (theorem a.6.17) and the Yoneda lemma for ends
(proposition a.6.18), we obtain the following natural bijections:

𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂ, 𝐹 )) ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, ∫[𝑛]:𝚫

𝐒𝐞𝐭(Δ𝑚
𝑛, C𝑚(𝐺𝑛, ℂ, 𝐹𝑛)))

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑚, 𝐒𝐞𝐭(Δ𝑚

𝑛, C𝑚(𝐺𝑛, ℂ, 𝐹𝑛)))

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑛, 𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑛, ℂ, 𝐹𝑛)))

≅ ∫[𝑛]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑛, 𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑛, ℂ, 𝐹𝑛)))

≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂ, 𝐹𝑛)) ■

Lemma 1.8.31. Let ℂ be a small category. For any diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, any
weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, and any simplicial set 𝑌 , there is an isomorphism

[B(𝐺, ℂ, 𝐹 ), 𝑌 ] ≅ C(𝐺, ℂop, [𝐹 , 𝑌 ])

and it is natural in 𝐹 , 𝐺, and 𝑌 .

Proof. The Yoneda lemma implies it is enough to show that there is a bijection

𝐬𝐒𝐞𝐭(𝑋, [B(𝐺, ℂ, 𝐹 ), 𝑌 ]) ≅ 𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂop, [𝐹 , 𝑌 ]))
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that is natural in 𝐹 , 𝐺, 𝑋, and 𝑌 . Now,

𝐬𝐒𝐞𝐭(𝑋, [B(𝐺, ℂ, 𝐹 ), 𝑌 ]) ≅ 𝐬𝐒𝐞𝐭(𝑋 × B(𝐺, ℂ, 𝐹 ), 𝑌 )

and by remark a.6.5 and lemma 1.8.26:

𝐬𝐒𝐞𝐭(𝑋 × B(𝐺, ℂ, 𝐹 ), 𝑌 ) ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚 × B𝑚(𝐺𝑚, ℂ, 𝐹𝑚), 𝑌𝑚)

On the other hand, by lemma 1.8.30:

𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂop, [𝐹 , 𝑌 ])) ≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, [𝐹 , 𝑌 ]𝑛))

and by the Yoneda lemma,

[𝐹 𝑐, 𝑌 ]𝑛 ≅ 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝐹 𝑐, 𝑌 ) ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝐹𝑚𝑐, 𝑌𝑚)

thus,

𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, [𝐹 , 𝑌 ]𝑛))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, 𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝐹𝑚, 𝑌𝑚)))

but we know that

𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝐹𝑚, 𝑌𝑚)))

≅ 𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, 𝐒𝐞𝐭(𝐹𝑚, 𝐒𝐞𝐭(Δ𝑛
𝑚, 𝑌𝑚))))

≅ 𝐒𝐞𝐭(𝑋𝑛, 𝐒𝐞𝐭(B𝑛(𝐺𝑛, ℂ, 𝐹𝑚), 𝐒𝐞𝐭(Δ𝑛
𝑚, 𝑌𝑚)))

≅ 𝐒𝐞𝐭(Δ𝑛
𝑚, 𝐒𝐞𝐭(𝑋𝑛 × B𝑛(𝐺𝑛, ℂ, 𝐹𝑚), 𝑌𝑚))

and so, by the Yoneda lemma for ends (proposition a.6.18),

∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂop, 𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝐹𝑚, 𝑌𝑚)))

≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, 𝐒𝐞𝐭(𝑋𝑛 × B𝑛(𝐺𝑛, ℂ, 𝐹𝑚), 𝑌𝑚))

≅ 𝐒𝐞𝐭(𝑋𝑚 × B𝑛(𝐺𝑚, ℂ, 𝐹𝑚), 𝑌𝑚)

thus an application of the interchange law for ends (theorem a.6.17) completes
the proof. ■
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Corollary 1.8.32. Let ℂ be a small category. For any diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭,
any weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, and any simplicial set 𝑌 , there is an isomorphism

𝐬𝐒𝐞𝐭(B(𝐺, ℂ, 𝐹 ), 𝑌 ) ≅ ∫[𝑛]:𝚫
C𝑛(𝐺𝑛, ℂop, 𝐒𝐞𝐭(𝐹𝑛, 𝑌𝑛))

and it is natural in 𝐹 , 𝐺, and 𝑌 .

Proof. The Yoneda lemma implies

𝐬𝐒𝐞𝐭(B(𝐺, ℂ, 𝐹 ), 𝑌 ) ≅ [B(𝐺, ℂ, 𝐹 ), 𝑌 ]0

and by lemma 1.8.31,

[B(𝐺, ℂ, 𝐹 ), 𝑌 ]0 ≅ (C(𝐺, ℂop, [𝐹 , 𝑌 ]))0

but lemma 1.8.30 implies

(C(𝐺, ℂop, [𝐹 , 𝑌 ]))0 ≅ ∫[𝑚]:𝚫
C𝑚(𝐺𝑚, ℂop, [𝐹 , 𝑌 ]𝑚)

and using remark a.6.5 and the fact that C𝑚(𝐺𝑚, ℂop, −) preserves limits, we
obtain:

∫[𝑚]:𝚫
C𝑚(𝐺𝑚, ℂop, [𝐹 , 𝑌 ]𝑚) ≅ ∫[𝑚]:𝚫

C𝑚(𝐺𝑚, ℂop, 𝐬𝐒𝐞𝐭(Δ𝑚 × 𝐹 , 𝑌 ))

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
C𝑚(𝐺𝑚, ℂop, 𝐒𝐞𝐭(Δ𝑚

𝑛 × 𝐹𝑛, 𝑌𝑛))

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, C𝑚(𝐺𝑚, ℂop, 𝐒𝐞𝐭(𝐹𝑛, 𝑌𝑛)))

Applying the interchange law (theorem a.6.17) and the Yoneda lemma for ends
(proposition a.6.18) then yields the required natural bijection. ■

Proposition 1.8.33. Let ℂ be a small category and let u� be any category.

• Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, let 𝐺 : ℂop → u� be a weight, and let 𝑀
be a simplicial set. Given ⊙ : u� × 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭, we have bijections

𝐬𝐒𝐞𝐭(B(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐬𝐒𝐞𝐭(B•(h𝑐′, ℂ, h 𝑐), [𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀])

that are natural in 𝐹 , 𝐺, and 𝑀 .
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• Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, let 𝐺 : ℂ → u� be a weight, and let 𝑀
be a simplicial set. Given ⋔ : u�op × 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭, we have bijections

𝐬𝐒𝐞𝐭(𝑀, C(𝐺, ℂ, 𝐹 )) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐬𝐒𝐞𝐭(B•(h𝑐′, ℂ, h 𝑐), [𝑀, 𝐺𝑐′ ⋔ 𝐹 𝑐])

that are natural in 𝐹 , 𝐺, and 𝑀 .

Proof. We will prove the first claim; the second can be proved in a similar way.
By definition, we have the natural bijection

𝐬𝐒𝐞𝐭(B(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫[𝑛]:𝚫
𝐬𝐒𝐞𝐭(Δ𝑛 × B𝑛(𝐺, ℂ, 𝐹 ), 𝑀)

and furthermore, we also have the following:

𝐬𝐒𝐞𝐭(Δ𝑛 × B𝑛(𝐺, ℂ, 𝐹 ), 𝑀)
≅ 𝐬𝐒𝐞𝐭(B𝑛(𝐺, ℂ, 𝐹 ), [Δ𝑛, 𝑀])

≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), 𝐬𝐒𝐞𝐭(𝐺𝑐′ ⊙ 𝐹 𝑐, [Δ𝑛, 𝑀]))

≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐒𝐞𝐭(B𝑛(h𝑐′, ℂ, h 𝑐), 𝐬𝐒𝐞𝐭(Δ𝑛, [𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀]))

≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐬𝐒𝐞𝐭(disc B𝑛(h𝑐′, ℂ, h 𝑐) × Δ𝑛, [𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀])

Thus, applying the interchange law for ends (theorem a.6.17) and corollary 1.6.9,
we obtain

𝐬𝐒𝐞𝐭(B(𝐺, ℂ, 𝐹 ), 𝑀) ≅ ∫(𝑐′,𝑐):ℂop×ℂ
𝐬𝐒𝐞𝐭(B•(h𝑐′, ℂ, h 𝑐), [𝐺𝑐′ ⊙ 𝐹 𝑐, 𝑀])

as required. ■

Proposition 1.8.34. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• There is a natural transformation

B(−𝑈, ℂ, −𝑈) ⇒ B(−, 𝔻, −)

of functors [𝔻op, 𝐬𝐒𝐞𝐭] × [𝔻, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 such that the following diagram
in 𝐬𝐒𝐞𝐭 commutes for all weights 𝐺 : 𝔻op → 𝐬𝐒𝐞𝐭 and all diagrams 𝐹 :
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𝔻 → 𝐬𝐒𝐞𝐭,

B(𝐺𝑈, ℂ, 𝐹 𝑈) ∫𝑐:ℂ 𝐺𝑈𝑐 × 𝐹 𝑈𝑐

B(𝐺, 𝔻, 𝐹 ) ∫𝑑:𝔻 𝐺𝑑 × 𝐹 𝑑

where the horizontal arrows and the right vertical arrow are the canonical
comparison morphisms.[14]

• There is a natural transformation

C(−, 𝔻, −) ⇒ C(−𝑈, ℂ, −𝑈)

of functors [𝔻, 𝐬𝐒𝐞𝐭]op × [𝔻, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 such that the following diagram
in 𝐬𝐒𝐞𝐭 commutes for all weights 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 and all diagrams 𝐹 : 𝔻 →
𝐬𝐒𝐞𝐭,

∫𝑑:𝔻 [𝐺𝑑, 𝐹 𝑑] C(𝐺, 𝔻, 𝐹 )

∫𝑐:ℂ [𝐺𝑈𝑐, 𝐹 𝑈𝑐] C(𝐺𝑈, ℂ, 𝐹 𝑈)

where the horizontal arrows and the right vertical arrow are the canonical
comparison morphisms.[15]

Proof. In view of the functoriality of |−| (resp. Tot (−)), this is an immediate
consequence of proposition 1.8.19. ■

¶ 1.8.35. Let ℂ be a small category. Extending the notation used previously,
we make the following definitions:

• Given a functor 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, B(𝐺, ℂ, ℂ) : ℂop → 𝐬𝐒𝐞𝐭 is the functor
defined by 𝑐 ↦ B(𝐺, ℂ, disc h 𝑐).

• Given a functor 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, B(ℂ, ℂ, 𝐹 ) : ℂ → 𝐬𝐒𝐞𝐭 is the functor
defined by 𝑐 ↦ B(disc h𝑐, ℂ, 𝐹 ).

• Given a functor 𝐺 : ℂ → 𝐬𝐒𝐞𝐭, C(𝐺, ℂ, ℂ) : ℂop → 𝐬𝐒𝐞𝐭 is the functor
defined by 𝑐 ↦ C(𝐺, ℂ, disc h 𝑐).

[14] See lemma 1.6.7.
[15] See lemma 1.6.21.
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• Given a functor 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, C(ℂ, ℂ, 𝐹 ) : ℂop → 𝐬𝐒𝐞𝐭 is the functor
defined by 𝑐 ↦ C(disc h 𝑐, ℂ, 𝐹 ).

Proposition 1.8.36. Let ℂ be a small category.

(i) For each weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, we have an adjunction of the form below:

B(𝐺, ℂ, −) ⊣ [B(𝐺, ℂ, ℂ), −] : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭]

(ii) For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, we have an adjunction of the form below:

B(−, ℂ, 𝐹 ) ⊣ C(ℂop, ℂop, [𝐹 , −]) : 𝐬𝐒𝐞𝐭 → [ℂop, 𝐬𝐒𝐞𝐭]

(iii) For each simplicial set 𝑋, there are isomorphisms

B(𝑋 × 𝐺, ℂ, 𝐹 ) ≅ 𝑋 × B(𝐺, ℂ, 𝐹 ) ≅ B(𝐺, ℂ, 𝑋 × 𝐹 )

that are natural in 𝑋, 𝐹 , and 𝐺.

Dually:

(i′) For each weight 𝐺 : ℂ → 𝐬𝐒𝐞𝐭, we have an adjunction of the form below:

B(𝐺, ℂop, ℂop) × (−) ⊣ C(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭

(ii′) For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, we have an adjunction of the form below:

C(ℂ, ℂ, [−, 𝐹 ]) ⊣ C(−, ℂ, 𝐹 ) : [ℂ, 𝐬𝐒𝐞𝐭]op → 𝐬𝐒𝐞𝐭

(iii′) For each simplicial set 𝑋, there are isomorphisms

C(𝑋 × 𝐺, ℂ, 𝐹 ) ≅ [𝑋, C(𝐺, ℂ, 𝐹 )] ≅ C(𝐺, ℂ, [𝑋, 𝐹 ])

that are natural in 𝑋, 𝐹 , and 𝐺.

Proof. (i). Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram and let 𝑌 be a simplicial set. By
remark a.6.5, we have the following natural bijection,

[ℂ, 𝐬𝐒𝐞𝐭](𝐹 , [B(𝐺, ℂ, ℂ), 𝑌 ]) ≅ ∫𝑐:ℂ
𝐬𝐒𝐞𝐭(𝐹 𝑐, [B(𝐺, ℂ, disc h 𝑐), 𝑌 ])

and by definition,

𝐬𝐒𝐞𝐭(𝐹 𝑐, [B(𝐺, ℂ, disc h 𝑐), 𝑌 ]) ≅ 𝐬𝐒𝐞𝐭(𝐹 𝑐 × B(𝐺, ℂ, disc h 𝑐), 𝑌 )
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so it suffices to show that there is a natural isomorphism of the form below:

B(𝐺, ℂ, 𝐹 ) ≅ ∫
𝑐:ℂ

𝐹 𝑐 × B(𝐺, ℂop, disc h 𝑐)

Since limits and colimits in 𝐬𝐒𝐞𝐭 can be computed degreewise, by lemma 1.8.26,
this amounts to showing that there are natural bijections

B𝑛(𝐺𝑛, ℂ, 𝐹𝑛) ≅ ∫
𝑐:ℂ

𝐹𝑛𝑐 × B𝑛(𝐺𝑛, ℂop, h𝑐)

and (after expanding the definition of B𝑛(𝐺𝑛, ℂop, h𝑐)) this is a straightforward
consequence of the Yoneda lemma for coends (proposition a.6.18).

(ii). Corollary 1.8.28 then implies we have an adjunction of the form below,

B(−, ℂ, 𝐹 ) ⊣ [B(ℂ, ℂ, 𝐹 ), −] : 𝐬𝐒𝐞𝐭 → [ℂop, 𝐬𝐒𝐞𝐭]

but lemma 1.8.31 says there is a natural isomorphism

[B(ℂ, ℂ, 𝐹 ), 𝑌 ] ≅ C(ℂop, ℂop, [𝐹 , 𝑌 ])

so we are done.

(iii). This is an immediate consequence of lemmas 1.8.13 and 1.8.26.

(i′). Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram and let 𝑋 be a simplicial set. By re-
mark a.6.5, we have the following natural bijection,

[ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop) × 𝑋, 𝐹 ) ≅ ∫𝑐:ℂ
𝐬𝐒𝐞𝐭(B(𝐺, ℂop, disc h𝑐) × 𝑋, 𝐹 𝑐)

and furthermore, by lemma 1.8.26:

𝐬𝐒𝐞𝐭(B(𝐺, ℂop, disc h𝑐) × 𝑋, 𝐹 𝑐) ≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(B𝑛(𝐺𝑛, ℂop, h𝑐) × 𝑋𝑛, 𝐹𝑛𝑐)

Now, we have

𝐒𝐞𝐭(B𝑛(𝐺𝑛, ℂop, h𝑐), 𝐹𝑛𝑐) ≅ C𝑛(𝐺𝑛, ℂ, 𝐒𝐞𝐭(h𝑐, 𝐹𝑛𝑐))

and since C𝑛(𝐺𝑛, ℂ, −) preserves limits,

∫𝑐:ℂ
C𝑛(𝐺𝑛, ℂ, 𝐒𝐞𝐭(h𝑐, 𝐹𝑛𝑐)) ≅ C𝑛

(𝐺𝑛, ℂ, ∫𝑐:ℂ
𝐒𝐞𝐭(h𝑐, 𝐹𝑛𝐶)) ≅ C𝑛(𝐺𝑛, ℂ, 𝐹𝑛)
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where in the last step we used the Yoneda lemma for ends (proposition a.6.18).
Thus, by the interchange law for ends (theorem a.6.17),

[ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop) × 𝑋, 𝐹 )

≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, ∫𝑐:ℂ

C𝑛(𝐺𝑛, ℂ, 𝐒𝐞𝐭(h𝑐, 𝐹𝑛𝑐)))

≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, ℂ, 𝐹𝑛))

so lemma 1.8.30 yields the required natural bijection:

[ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop) × 𝑋, 𝐹 ) ≅ 𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂ, 𝐹 ))

(ii′). Let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be a weight and let 𝑋 be a simplicial set. We wish to
construct a natural bijection of the following form:

[ℂ, 𝐬𝐒𝐞𝐭](𝐺, C(ℂ, ℂ, [𝑋, 𝐹 ])) ≅ 𝐬𝐒𝐞𝐭(𝑋, C(𝐺, ℂ, 𝐹 ))

To begin, by remark a.6.5,

[ℂ, 𝐬𝐒𝐞𝐭](𝐺, C(ℂ, ℂ, [𝑋, 𝐹 ])) ≅ ∫𝑐:ℂ
𝐬𝐒𝐞𝐭(𝐺𝑐, C(disc h 𝑐, ℂ, [𝑋, 𝐹 ]))

and by lemma 1.8.30,

𝐬𝐒𝐞𝐭(𝐺𝑐, C(disc h 𝑐, ℂ, [𝑋, 𝐹 ])) ≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝐺𝑛𝑐, C𝑛(h 𝑐, ℂ, [𝑋, 𝐹 ]𝑛))

but clearly,

𝐒𝐞𝐭(𝐺𝑛𝑐, C𝑛(h 𝑐, ℂ, [𝑋, 𝐹 ]𝑛)) ≅ C𝑛(𝐺𝑛𝑐 × h 𝑐, ℂ, [𝑋, 𝐹 ]𝑛)

and since C(−, ℂ, [𝑋, 𝐹 ]𝑛) takes colimits to limits, the Yoneda lemma for coends
(proposition a.6.18) implies

∫𝑐:ℂ
C𝑛(𝐺𝑛𝑐 × h 𝑐, ℂ, [𝑋, 𝐹 ]𝑛) ≅ C𝑛(𝐺𝑛, ℂ, [𝑋, 𝐹 ]𝑛)

so by using the interchange law for ends (theorem a.6.17):

[ℂ, 𝐬𝐒𝐞𝐭](𝐺, C(ℂ, ℂ, [𝑋, 𝐹 ]))
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≅ ∫[𝑛]:𝚫 ∫𝑐:ℂ
C𝑛(𝐺𝑛𝑐 × h 𝑐, ℂ, [𝑋, 𝐹 ]𝑛)

≅ ∫[𝑛]:𝚫
C𝑛(𝐺𝑛, ℂ, [𝑋, 𝐹 ]𝑛)

On the other hand, the Yoneda lemma implies [𝑋, 𝐹 𝑐]𝑛 ≅ 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝑋, 𝐹 𝑐), so

C𝑛(𝐺𝑛, ℂ, [𝑋, 𝐹 ]𝑛) ≅ C𝑛(𝐺𝑛, ℂ, 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝑋, 𝐹 ))

≅ ∫[𝑚]:𝚫
C𝑛(𝐺𝑛, ℂ, 𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, 𝐹𝑚))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, 𝐒𝐞𝐭(𝑋𝑚, C𝑛(𝐺𝑛, ℂ, 𝐹𝑚)))

and using the interchange law and Yoneda lemma for ends again,

∫[𝑛]:𝚫
C𝑛(𝐺𝑛, ℂ, [𝑋, 𝐹 ]𝑛)

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, 𝐒𝐞𝐭(𝑋𝑚, C𝑛(𝐺𝑛, ℂ, 𝐹𝑚)))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, ℂ, 𝐹𝑚))

which completes the proof.

(iii′). It is not hard to see that we have the following natural isomorphisms of
cosimplicial simplicial sets:

C•(𝑋 × 𝐺, ℂ, 𝐹 ) ≅ [𝑋, C•(𝐺, ℂ, 𝐹 )] ≅ C•(𝐺, ℂ, [𝑋, 𝐹 ])

We then apply theorem 1.6.26 to obtain the corresponding natural isomorphisms
of simplicial sets. ■

Theorem 1.8.37. Let ℂ and 𝔻 be two small categories.

• Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, let 𝐺 : 𝔻op → 𝐬𝐒𝐞𝐭 be a weight, and let
𝐻 : ℂop × 𝔻 → 𝐬𝐒𝐞𝐭 be a functor. There is then an isomorphism

B(B(𝐺, 𝔻, 𝐻), ℂ, 𝐹 ) ≅ B(𝐺, 𝔻, B(𝐻, ℂ, 𝐹 ))

that is natural in 𝐹 , 𝐺, and 𝐻 .
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• Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, let 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be a weight, and let
𝐻 : 𝔻op × ℂ → 𝐬𝐒𝐞𝐭 be a functor. There is then an isomorphism

C(B(𝐺, 𝔻op, 𝐻), ℂ, 𝐹 ) ≅ C(𝐺, 𝔻, C(𝐻, ℂ, 𝐹 ))

that is natural in 𝐹 , 𝐺, and 𝐻 .

Proof. The first claim is a straightforward consequence of theorem 1.8.24 and
lemma 1.8.26. We will now prove the second claim.

To prove the claim, the Yoneda lemma implies it is enough to construct a
bijection

𝐬𝐒𝐞𝐭(𝑋, C(B(𝐺, 𝔻op, 𝐻), ℂ, 𝐹 )) ≅ 𝐬𝐒𝐞𝐭(𝑋, C(𝐺, 𝔻, C𝑚(𝐻, ℂ, 𝐹 )))

that is natural in 𝑋, 𝐹 , 𝐺, and 𝐻 . By lemma 1.8.26 and lemma 1.8.30,

𝐬𝐒𝐞𝐭(𝑋, C(B(𝐺, 𝔻op, 𝐻), ℂ, 𝐹 ))

≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(B𝑛(𝐺𝑛, 𝔻op, 𝐻𝑛), ℂ, 𝐹𝑛))

and similarly,

𝐬𝐒𝐞𝐭(𝑋, C(𝐺, 𝔻, C(𝐻, ℂ, 𝐹 )))

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, 𝔻, (C(𝐻, ℂ, 𝐹 ))𝑚))

≅ ∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, 𝔻, 𝐒𝐞𝐭(Δ𝑚

𝑛, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛))))

where in the last step we used the Yoneda lemma and the fact that C𝑚(𝐺𝑚, 𝔻, −)
preserves limits. Furthermore,

𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, 𝔻, 𝐒𝐞𝐭(Δ𝑚
𝑛, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛))))
≅ 𝐒𝐞𝐭(Δ𝑚

𝑛, 𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, 𝔻, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛))))

and by using the interchange law for ends (theorem a.6.17) and the Yoneda
lemma for ends (proposition a.6.18),

∫[𝑚]:𝚫 ∫[𝑛]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑛, 𝐒𝐞𝐭(𝑋𝑚, C𝑚(𝐺𝑚, 𝔻, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛))))
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≅ ∫[𝑛]:𝚫
𝐒𝐞𝐭(𝑋𝑛, C𝑛(𝐺𝑛, 𝔻, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛)))

but (by theorem 1.8.24 again),

C𝑛(𝐺𝑛, 𝔻, C𝑛(𝐻𝑛, ℂ, 𝐹𝑛)) ≅ C𝑛(B𝑛(𝐺𝑛, 𝔻op, 𝐻𝑛), ℂ, 𝐹𝑛)

so we are done. ■

Proposition 1.8.38. Let ℂ be a small category.

• For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and each functor 𝐺 : ℂop → 𝐒𝐞𝐭, there
is a morphism B(𝐺, ℂ, 𝐹 ) → 𝐺 ⋆ℂ 𝐹 , and it is natural in both 𝐹 and 𝐺.

• For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and each functor 𝐺 : ℂ → 𝐒𝐞𝐭, there is
a morphism {𝐺, 𝐹 }ℂ → C(𝐺, ℂ, 𝐹 ), and it is natural in both 𝐹 and 𝐺.

Proof. By theorem a.6.14 and proposition 1.8.10, we have the following natural
isomorphisms:

∫
[𝑛]:𝚫

B𝑛(𝐺, ℂ, 𝐹 ) ≅ Δ1 ⋆𝚫op B•(𝐺, ℂ, 𝐹 ) ≅ lim−−→
𝚫op

B•(𝐺, ℂ, 𝐹 ) ≅ 𝐺 ⋆ℂ 𝐹

∫[𝑛]:𝚫
C𝑛(𝐺, ℂ, 𝐹 ) ≅ {Δ1, C•(𝐺, ℂ, 𝐹 )}𝚫 ≅ lim←−−

𝚫

C•(𝐺, ℂ, 𝐹 ) ≅ {𝐺, 𝐹 }ℂ

The claim then follows from the existence of a (unique) natural transformation
Δ• ⇒ Δ1. ■

Definition 1.8.39. Let ℂ be a small category, let ℳ be a locally small category,
and let 𝐹 : ℂ → ℳ be a diagram.

• The bar resolution of 𝐹 is the diagram B•(ℂ, ℂ, 𝐹 ) : ℂ → [𝚫op, ℳ]
defined by the following formula,

𝑐 ↦ B•(h𝑐, ℂ, 𝐹 )

where h𝑐 : ℂop → 𝐒𝐞𝐭 is the representable functor ℂ(−, 𝑐).

• The cobar resolution of 𝐹 is the diagram C•(ℂ, ℂ, 𝐹 ) : ℂ → [𝚫, ℳ]
defined by the following formula,

𝑐 ↦ C•(h 𝑐, ℂ, 𝐹 )

where h 𝑐 : ℂ → 𝐒𝐞𝐭 is the representable functor ℂ(𝑐, −).
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Lemma 1.8.40. Let ℂ be a small category and let 𝐹 : ℂ → 𝐒𝐞𝐭 be a diagram.

(i) There is an isomorphism

𝐹 ≅ lim←−−
𝚫

∘ C•(ℂ, ℂ, 𝐹 )

and it is natural in 𝐹 .

(ii) For each weight 𝐺 : ℂ → 𝐒𝐞𝐭, there is an isomorphism

{𝐺, C•(ℂ, ℂ, 𝐹 )}ℂ ≅ C•(𝐺, ℂ, 𝐹 )

and it is natural in both 𝐹 and 𝐺.

(iii) For each object 𝑐 in ℂ, there exist maps 𝑐 : 𝐹 𝑐 → C0(h 𝑐, ℂ, 𝐹 ), 𝑐 :
C0(h 𝑐, ℂ, 𝐹 ) → 𝐹 𝑐, and ℎ𝑛,𝑐 : C𝑛+1(h 𝑐, ℂ, 𝐹 ) → C𝑛(h 𝑐, ℂ, 𝐹 ) satisfying
these identities:

𝛿1
1 ∘ 𝑐 = 𝛿0

1 ∘ 𝑐

𝑐 ∘ 𝑐 = id
ℎ0,𝑐 ∘ 𝛿0

1 = 𝑐 ∘ 𝑐

ℎ𝑛,𝑐 ∘ 𝛿𝑖
𝑛+1 = 𝛿𝑖

𝑛 ∘ ℎ𝑛−1,𝑐 if 0 ≤ 𝑖 ≤ 𝑛
ℎ𝑛,𝑐 ∘ 𝛿𝑛+1

𝑛+1 = id
𝜎𝑖

𝑛 ∘ ℎ𝑛+1,𝑐 = ℎ𝑛,𝑐 ∘ 𝜎𝑖
𝑛+1 if 0 ≤ 𝑖 ≤ 𝑛

ℎ𝑛,𝑐 ∘ ℎ𝑛+1,𝑐 = ℎ𝑛,𝑐 ∘ 𝜎𝑛+1
𝑛+1

These maps are moreover natural in 𝐹 , and 𝑐 is also natural in 𝑐.

Proof. (i). By lemma 1.8.9, there are bijections

[ℂ, 𝐒𝐞𝐭](h 𝑐, 𝐹 ) ≅ lim←−−
𝚫

C•(h 𝑐, ℂ, 𝐹 )

that are natural in 𝑐 and 𝐹 , so the Yoneda lemma implies 𝐹 ≅ lim←−−𝚫
∘C•(ℂ, ℂ, 𝐹 ),

naturally in 𝐹 .

(ii). Applying the Yoneda lemma for ends (proposition a.6.18), we obtain the
following natural bijections:

∫𝑐:ℂ
[𝐺𝑐, [ℂ(𝑐, 𝑐𝑛) × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0]]
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≅ ∫𝑐:ℂ
[ℂ(𝑐, 𝑐𝑛), [𝐺𝑐 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0]]

≅ [𝐺𝑐𝑛 × ℂ(𝑐𝑛, 𝑐𝑛−1) × ⋯ × ℂ(𝑐1, 𝑐0), 𝐹 𝑐0]

Theorem a.6.14 implies that there is a natural isomorphism

{𝐺, C•(ℂ, ℂ, 𝐹 )}ℂ ≅ ∫𝑐:ℂ
[𝐺𝑐, C•(h 𝑐, ℂ, 𝐹 )]

and it is now clear that the claim holds.

(iii). Let 𝑐, 𝑐, and ℎ𝑛,𝑐 be the maps defined below:

𝑐(𝑥)(𝑐0) = (𝑦 ↦ 𝐹 (𝑦)(𝑥))

𝑐(𝑥) = 𝑥(𝑐)(id𝑐)

ℎ𝑛,𝑐(𝑥)(𝑐0,…,𝑐𝑛) = ((𝑦, 𝑓𝑛, … , 𝑓1) ↦ 𝑥(𝑐0,…,𝑐𝑛,𝑐)(id𝑐, 𝑦, 𝑓𝑛, … , 𝑓1))

By construction, we have 𝑐 ∘ 𝑐 = id𝐹𝑐
, and it is not hard to check that the other

identities are satisfied. For naturality of 𝑐 in 𝑐, observe that, given 𝑓 : 𝑐 → 𝑐′

in ℂ, we have

𝑐′(𝐹 (𝑓)(𝑥))(𝑐0) = (𝑦 ↦ 𝐹 (𝑦)(𝐹 (𝑓)(𝑥)))

= (𝑦 ↦ 𝐹 (𝑦 ∘ 𝑓)(𝑥))
= (𝑦 ↦ 𝐹 (h𝑓 (𝑦))(𝑥))
= C0(h𝑓 , ℂ, 𝐹 )( 𝑐(𝑥))(𝑐0)

and so 𝑐′ ∘ 𝐹 (𝑓) = C0(h𝑓 , ℂ, 𝐹 ) ∘ 𝑐, as required. ■

Proposition 1.8.41. Let ℂ be a small category, let ℳ be a locally small category,
and let 𝐹 : ℂ → ℳ be a diagram. If the bar resolution B•(ℂ, ℂ, 𝐹 ) exists, then:

(i) There is an isomorphism

𝐹 ≅ lim−−→
𝚫op

∘ B•(ℂ, ℂ, 𝐹 )

and it is natural in 𝐹 .

(ii) For each weight 𝐺 : ℂop → 𝐒𝐞𝐭, there is an isomorphism

𝐺 ⋆ℂ B•(ℂ, ℂ, 𝐹 ) ≅ B•(𝐺, ℂ, 𝐹 )

and it is natural in both 𝐹 and 𝐺.
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(iii) For each object 𝑐 in ℂ, there exist morphisms 𝑐 : 𝐹 𝑐 → B0(h𝑐, ℂ, 𝐹 ), 𝑐 :
B0(h𝑐, ℂ, 𝐹 ) → 𝐹 𝑐, and ℎ𝑛

𝑐 : B𝑛(h𝑐, ℂ, 𝐹 ) → B𝑛+1(h𝑐, ℂ, 𝐹 ) satisfying
these identities:

𝑐 ∘ 𝑑1
1 = 𝑐 ∘ 𝑑1

0

𝑐 ∘ 𝑐 = id
𝑑1

0 ∘ ℎ0
𝑐 = 𝑠 ∘ 𝑟

𝑑𝑛+1
𝑖 ∘ ℎ𝑛

𝑐 = ℎ𝑛−1
𝑐 ∘ 𝑑𝑛

𝑖 if 0 ≤ 𝑖 ≤ 𝑛
𝑑𝑛+1

𝑛+1 ∘ ℎ𝑛
𝑐 = id

ℎ𝑛+1
𝑐 ∘ 𝑠𝑛

𝑖 = 𝑠𝑛+1
𝑖 ∘ ℎ𝑛

𝑐 if 0 ≤ 𝑖 ≤ 𝑛
ℎ𝑛+1

𝑐 ∘ ℎ𝑛
𝑐 = 𝑠𝑛+1

𝑛+1 ∘ ℎ𝑛
𝑐

These morphisms are moreover natural in 𝐹 , and 𝑐 is also natural in 𝑐.

Dually, if the cobar resolution C•(ℂ, ℂ, 𝐹 ) exists, then:

(i) There is an isomorphism

𝐹 ≅ lim←−−
𝚫

∘ C•(ℂ, ℂ, 𝐹 )

and it is natural in 𝐹 .

(ii) For each weight 𝐺 : ℂ → 𝐒𝐞𝐭, there is an isomorphism

{𝐺, C•(ℂ, ℂ, 𝐹 )}ℂ ≅ C•(𝐺, ℂ, 𝐹 )

and it is natural in both 𝐹 and 𝐺.

(iii) For each object 𝑐 in ℂ, there exist morphisms 𝑐 : 𝐹 𝑐 → C0(h 𝑐, ℂ, 𝐹 ), 𝑐 :
C0(h 𝑐, ℂ, 𝐹 ) → 𝐹 𝑐, and ℎ𝑛,𝑐 : C𝑛+1(h 𝑐, ℂ, 𝐹 ) → C𝑛(h 𝑐, ℂ, 𝐹 ) satisfying
these identities:

𝛿1
1 ∘ 𝑐 = 𝛿0

1 ∘ 𝑐

𝑐 ∘ 𝑐 = id
ℎ0,𝑐 ∘ 𝛿0

1 = 𝑐 ∘ 𝑐

ℎ𝑛,𝑐 ∘ 𝛿𝑖
𝑛+1 = 𝛿𝑖

𝑛 ∘ ℎ𝑛−1,𝑐 if 0 ≤ 𝑖 ≤ 𝑛
ℎ𝑛,𝑐 ∘ 𝛿𝑛+1

𝑛+1 = id
𝜎𝑖

𝑛 ∘ ℎ𝑛+1,𝑐 = ℎ𝑛,𝑐 ∘ 𝜎𝑖
𝑛+1 if 0 ≤ 𝑖 ≤ 𝑛

ℎ𝑛,𝑐 ∘ ℎ𝑛+1,𝑐 = ℎ𝑛,𝑐 ∘ 𝜎𝑛+1
𝑛+1

These morphisms are moreover natural in 𝐹 , and 𝑐 is also natural in 𝑐.
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Proof. We may use the Yoneda lemma to reduce the claims to the case in the
previous lemma. ■

Lemma 1.8.42. Let ℂ be a small category, let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram, and
let 𝐺 : u� → 𝐬𝐒𝐞𝐭 be a weight. If each 𝐹 𝑐 is a Kan complex, then C•(𝐺, ℂ, 𝐹 ) is
a Reedy-fibrant cosimplicial simplicial set.

Proof. We must show that, for each natural number 𝑛, the matching morphism
C𝑛(𝐺, ℂ, 𝐹 ) → M𝑛(C•(𝐺, ℂ, 𝐹 )) is a Kan fibration. Consider the matching cat-
egory 𝜕([𝑛] ↓ 𝚫←): it is (isomorphic to) the full subcategory of the slice category
[𝑛]∕𝚫 spanned by the non-trivial quotients of [𝑛]. If we make the identification

C𝑚(𝐺, ℂ, 𝐹 ) ≅ ∏
𝑐𝑚→⋯→𝑐0

[𝐺𝑐𝑚, 𝐹 𝑐0]

where the product is taken over the set of all 𝑚-simplices of N(ℂ), then it is not
hard to see that every codegeneracy operator is the evident product projection.
One may then directly verify that

M𝑛(C•(𝐺, ℂ, 𝐹 )) ≅ ∏
𝑐𝑚→⋯→𝑐0

[𝐺𝑐𝑚, 𝐹 𝑐0]

where now the product is taken over the set of degenerate 𝑚-simplices of N(ℂ),
and that the 𝑛-matching morphism is again the evident product projection. But
corollary 1.4.16 implies that every product projection in question is a Kan fibra-
tion, so C•(𝐺, ℂ, 𝐹 ) is indeed Reedy-fibrant. ■

Remark 1.8.43. The lemma is true in greater generality: see Example 23.8 in
[Shulman, 2009].

1.9 Bousfield–Kan limits and colimits
Prerequisites. §§1.5, 1.6, 1.8, 2.4, 3.3, 3.4, 4.3, a.6

There are many definitions of ‘homotopy limit/colimit’, of varying abstract-
ness and complexity. In this section, we will study the theory of Bousfield and
Kan [1972] and compare it with some of the other definitions of ‘homotopy
limit/colimit’.
Remark 1.9.1. It is important to stress that there is an asymmetry between the
theory of homotopy colimits and the theory of homotopy limits in 𝐬𝐒𝐞𝐭 because
not all simplicial sets are fibrant. As such, it will often be necessary to restrict
our attention to Kan complexes when working with homotopy limits.
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Definition 1.9.2. Let ℂ be a small category.

• The Bousfield–Kan limit of 𝐹 is defined by the following end in 𝐬𝐒𝐞𝐭:

lim←−−
BK

ℂ
𝐹 = ∫𝑐:ℂ

[B(Δ1, ℂop, h𝑐), 𝐹 𝑐]

• The Bousfield–Kan colimit of 𝐹 is defined by the following coend in 𝐬𝐒𝐞𝐭:

lim−−→
BK

ℂ
𝐹 = ∫

𝑐:ℂ
B(Δ1, ℂ, h 𝑐) × 𝐹 𝑐

• The reversed Bousfield–Kan limit of 𝐹 is defined by the following end
in 𝐬𝐒𝐞𝐭:

lim←−−
KB

ℂ
𝐹 = ∫𝑐:ℂ

[B(h𝑐, ℂ, Δ1), 𝐹 𝑐]

• The reversed Bousfield–Kan colimit of 𝐹 is defined by the following
coend in 𝐬𝐒𝐞𝐭:

lim−−→
KB

ℂ
𝐹 = ∫

𝑐:ℂ
B(h 𝑐, ℂop, Δ1) × 𝐹 𝑐

Remark 1.9.3. In other words:

• The Bousfield–Kan limit of 𝐹 is the simplicially enriched limit of 𝐹 weighted
by B(Δ1, ℂop, ℂop).

• The Bousfield–Kan colimit of 𝐹 is the simplicially enriched colimit of 𝐹
weighted by B(Δ1, ℂ, ℂ).

• The reversed Bousfield–Kan limit of 𝐹 is the simplicially enriched limit
of 𝐹 weighted by B(ℂ, ℂ, Δ1).

• The reversed Bousfield–Kan colimit of 𝐹 is the simplicially enriched colimit
of 𝐹 weighted by B(ℂop, ℂop, Δ1).

Remark. There are various definitions of ‘homotopy (co)limit’ in the literature:

• The definition of ‘homotopy limit’ (resp. ‘homotopy colimit’) appearing
in [Bousfield and Kan, 1972, Ch. XI, resp. Ch. XII] is what we call the
‘Bousfield–Kan limit’ (resp. ‘reversed Bousfield–Kan colimit’): but be-
ware that what they call the ‘underlying space of ℂ’ is actually N(ℂop).
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• The definition of ‘homotopy limit’ (resp. ‘homotopy colimit’) appearing in
[Hirschhorn, 2003, Ch. 18] is what we call ‘reversed Bousfield–Kan limit’
(resp. ‘reversed Bousfield–Kan colimit’).

Our conventions have been chosen to make both remark 1.9.4 and corollary 1.9.6
true.
Remark 1.9.4. Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram. By remark 1.8.3, we have the
following natural isomorphisms,

lim←−−
BK
ℂ

𝐹 op ≅ (lim←−−
KB
ℂ

𝐹 )
op

lim−−→
BK
ℂ

𝐹 op ≅ (lim−−→
KB
ℂ

𝐹 )
op

and for every simplicial set 𝑌 , we have the following natural isomorphisms:

lim←−−
BK
ℂop

[𝐹 , 𝑌 ] ≅ [lim−−→
KB
ℂ

𝐹 , 𝑌 ]

lim←−−
BK
ℂop

[𝐹 , 𝑌 ] ≅ [lim−−→
KB
ℂ

𝐹 , 𝑌 ]

These should be regarded as duality principles.

Lemma 1.9.5. Let 𝑋 be a simplicial set and let ℂ be a small category. Then the
Bousfield–Kan limit of the constant diagram Δ𝑋 : ℂ → 𝐬𝐒𝐞𝐭 is (isomorphic to)
the simplicial set [N(ℂop), 𝑋] (naturally in 𝑋).

Proof. By definition,

lim←−−
BK

ℂ
Δ𝑋 ≅ ∫𝑐:ℂ

[B(Δ1, ℂop, h𝑐), 𝑋]

and it is not hard to verify that

∫𝑐:ℂ
[B(Δ1, ℂop, h𝑐), 𝑋] ≅ lim←−−

ℂ
[B(Δ1, ℂop, ℂop), 𝑋]

but [−, 𝑋] sends colimits in 𝐬𝐒𝐞𝐭 to limits in 𝐬𝐒𝐞𝐭, and

lim−−→
ℂ

ℂ(𝑐′, −) ≅ 1

for all objects 𝑐′ in ℂ, so by proposition 1.8.36,

lim−−→
ℂ

B(Δ1, ℂop, ℂop) ≅ B(Δ1, ℂop, Δ1)

which can be identified with N(ℂop), by remark 1.8.4. ■
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Corollary 1.9.6. Let 𝑋 be a simplicial set and let ℂ be a small category. Then
the Bousfield–Kan colimit of the constant diagram Δ𝑋 : ℂ → 𝐬𝐒𝐞𝐭 is (iso-
morphic to) the simplicial set N(ℂ) × 𝑋 (naturally in 𝑋).

Proof. By remark 1.9.4,

[lim−−→
BK
ℂ

Δ𝑋, 𝑌 ] ≅ lim←−−
BK
ℂop

[Δ𝑋, 𝑌 ]

and by lemma 1.9.5,

lim←−−
BK
ℂop

[Δ𝑋, 𝑌 ] ≅ [N(ℂ), [𝑋, 𝑌 ]] ≅ [N(ℂ) × 𝑋, 𝑌 ]

so an application of the Yoneda lemma yields the claim. ■

Proposition 1.9.7. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

(i) For each diagram 𝐹 : 𝔻 → 𝐬𝐒𝐞𝐭 and each weight 𝐺 : ℂ → 𝐬𝐒𝐞𝐭, there is
an isomorphism

C(𝐺, ℂ, 𝐹 𝑈) ≅ ∫𝑑:𝔻
[B(𝐺, ℂop, disc 𝑈 ∗h𝑑), 𝐹 𝑑]

and it is natural in both 𝐹 and 𝐺.

(ii) For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and each weight 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, there is
an isomorphism

C(𝐺𝑈, ℂ, 𝐹 ) ≅ ∫𝑑:𝔻
[𝐺𝑑, C(disc 𝑈 ∗h𝑑 , ℂ, 𝐹 )]

and it is natural in both 𝐹 and 𝐺.

Dually:

(i′) For each diagram 𝐹 : 𝔻 → 𝐬𝐒𝐞𝐭 and each weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, there
is an isomorphism

B(𝐺, ℂ, 𝐹 𝑈) ≅ ∫
𝑑:𝔻

B(𝐺, 𝔻, disc 𝑈 ∗h𝑑) × 𝐹 𝑑

and it is natural in both 𝐹 and 𝐺.
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(ii′) For each diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and each weight 𝐺 : 𝔻op → 𝐬𝐒𝐞𝐭, there
is an isomorphism

B(𝐺𝑈, ℂ, 𝐹 ) ≅ ∫
𝑑:𝔻

𝐺𝑑 × B(disc 𝑈 ∗h𝑑 , ℂ, 𝐹 )

and it is natural in both 𝐹 and 𝐺.

Proof. We will prove the first set of claims; the second can be proved in a similar
way.

(i). By lemma 1.8.31,

[B(𝐺, ℂop, disc 𝑈 ∗h𝑑), 𝐹 𝑑] ≅ C(𝐺, ℂ, [disc 𝑈 ∗h𝑑 , 𝐹 𝑑])

and since C(𝐺, ℂ, −) preserves limits (by proposition 1.8.36), it is enough to con-
struct a natural isomorphism of the following form:

𝐹 𝑈𝑐 ≅ ∫𝑑:𝔻
[disc 𝔻(𝑈𝑐, 𝑑), 𝐹 𝑑]

However, it is clear that

[disc 𝔻(𝑈𝑐, 𝑑), 𝐹 𝑑] ≅ 𝔻(𝑈𝑐, 𝑑) ⋔ 𝐹 𝑑

so we may apply the Yoneda lemma for ends (proposition a.6.18) to complete
the proof.

(ii). By proposition 1.8.36,

[𝐺𝑑, C(disc 𝑈 ∗h𝑑 , ℂ, 𝐹 )] ≅ C(𝐺𝑑 × disc 𝑈 ∗h𝑑 , ℂ, 𝐹 )

and since C(−, ℂ, 𝐹 ) sends colimits to limits, it is enough to construct a natural
isomorphism of the following form:

𝐺𝑈𝑐 ≅ ∫
𝑑:𝔻

𝐺𝑑 × disc 𝔻(𝑑, 𝑈𝑐)

However, it is clear that

𝐺𝑑 × disc 𝔻(𝑑, 𝑈𝑐) ≅ 𝔻(𝑑, 𝑈𝑐) ⊙ 𝐺𝑑

so we may apply the Yoneda lemma for coends (proposition a.6.18) to complete
the proof. ■
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Remark 1.9.8. Thus, we should regard the cobar construction C(𝐺, ℂ, 𝐹 ) (resp.
the bar construction B(𝐺, ℂ, 𝐹 )) as being the Bousfield–Kan analogue of the sim-
plicially enriched weighted limit {𝐺, 𝐹 }ℂ (resp. the simplicially enriched colimit
𝐺 ⋆ℂ 𝐹 ).

Proposition 1.9.9. Let ℂ and 𝔻 be small categories.

• Given weights 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 and 𝐻 : 𝔻 → 𝐬𝐒𝐞𝐭 and a diagram 𝐹 :
ℂ × 𝔻 → 𝐬𝐒𝐞𝐭,

C(𝐺, ℂ, C(𝐻, 𝔻, 𝐹 )) ≅ C(𝐺 ⊠ 𝐻, ℂ × 𝔻, 𝐹 )

naturally in 𝐹 , 𝐺, and 𝐻 , where 𝐺 ⊠ 𝐻 : ℂ × 𝔻 → 𝐬𝐒𝐞𝐭 is the functor
defined by (𝑐, 𝑑) ↦ 𝐺𝑐 × 𝐻𝑐.

• Given weights 𝐺 : ℂop → 𝐬𝐒𝐞𝐭 and 𝐻 : 𝔻op → 𝐬𝐒𝐞𝐭 and a diagram
𝐹 : ℂ × 𝔻 → 𝐬𝐒𝐞𝐭,

B(𝐺, ℂ, B(𝐻, 𝔻, 𝐹 )) ≅ B(𝐺 ⊠ 𝐻, ℂ × 𝔻, 𝐹 )

naturally in 𝐹 , 𝐺, and 𝐻 , where 𝐺 ⊠ 𝐻 : ℂop ×𝔻op → 𝐬𝐒𝐞𝐭 is the functor
defined by (𝑐, 𝑑) ↦ 𝐺𝑐 × 𝐻𝑐.

Proof. We will prove the first claim; the second can be proved in a similar way.
By proposition 1.9.7,

C(𝐺, ℂ, C(𝐻, 𝔻, 𝐹 )) ≅ ∫𝑐:ℂ
[B(𝐺, ℂop, disc h𝑐), C(𝐺, 𝔻, 𝐹 𝑐)]

and by propositions 1.8.36 and a.6.11,

[B(𝐺, ℂop, disc h𝑐), C(𝐺, 𝔻, 𝐹 𝑐)]

≅ ∫𝑑:𝔻
[B(𝐺, ℂop, disc h𝑐) × B(𝐻, 𝔻op, disc h𝑑), 𝐹 (𝑐, 𝑑)]

but it is easy to see that

B•(𝐺, ℂop, h𝑐) × B•(𝐻, 𝔻op, h𝑑) ≅ B•(𝐺 ⊠ 𝐻, ℂop × 𝔻op, h𝑐 ⊠ h𝑑)

so by the interchange law for ends (a.6.17),

C(𝐺, ℂ, C(𝐻, 𝔻, 𝐹 )) ≅ C(𝐺 ⊠ 𝐻, ℂ × 𝔻, 𝐹 )

as claimed. ■
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The homotopical significance of Bousfield–Kan limits/colimits (and more
generally, bar/cobar constructions) is best expressed in terms of certain model
structures on [ℂ, 𝐬𝐒𝐞𝐭].

Definition 1.9.10. Let u� be a category and let 𝐹 , 𝐹 ′ : u� → 𝐬𝐒𝐞𝐭 be functors.
A natural weak homotopy equivalence 𝐹 ⇒ 𝐹 ′ is a natural transformation
whose components are weak homotopy equivalences of simplicial sets.

Definition 1.9.11. Let u� be a category.

• An injective cofibration in [u�, 𝐬𝐒𝐞𝐭] is a natural transformation of functors
u� → 𝐬𝐒𝐞𝐭 whose components are monomorphisms.

• An injective trivial cofibration in [u�, 𝐬𝐒𝐞𝐭] is an injective cofibration that
is also a natural weak homotopy equivalence.

• A projective fibration in [u�, 𝐬𝐒𝐞𝐭] is a natural transformation of functors
u� → 𝐬𝐒𝐞𝐭 whose components are Kan fibrations.

• A projective trivial fibration in [u�, 𝐬𝐒𝐞𝐭] is a projective fibration that is
also a natural weak homotopy equivalence.

Definition 1.9.12. Let ℂ be a small category.

• An injective fibration in [ℂ, 𝐬𝐒𝐞𝐭] is a morphism that has the right lifting
property with respect to all injective trivial cofibrations.

• An injective trivial fibration in [ℂ, 𝐬𝐒𝐞𝐭] is a morphism that has the right
lifting property with respect to all injective cofibrations.

• A projective cofibration in [ℂ, 𝐬𝐒𝐞𝐭] is a morphism with the left lifting
property with respect to all projective trivial fibrations.

• A projective trivial cofibration in [ℂ, 𝐬𝐒𝐞𝐭] is a morphism with the left
lifting property with respect to all projective fibrations.

Theorem 1.9.13 (Bousfield and Kan). Let ℂ be a small category. The following
data constitute a a cofibrantly generated simplicial model structure on [ℂ, 𝐬𝐒𝐞𝐭]:

• The weak equivalences are the natural weak homotopy equivalences.

• The fibrations are the projective fibrations, i.e. the componentwise Kan
fibrations.
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• The cofibrations are the projective cofibrations, i.e. the morphisms with the
left lifting property with respect to componentwise trivial Kan fibrations.

This model structure is called the Bousfield–Kan model structure or the pro-
jective model structure on [ℂ, 𝐬𝐒𝐞𝐭].

Proof. See the proof of Proposition 8.1 in [Bousfield and Kan, 1972, Ch. XI], or
apply theorem 5.2.7 and proposition 2.4.17. ■

Theorem 1.9.14 (Heller). Let ℂ be a small category. The following data con-
stitute a cofibrantly generated simplicial model structure on [ℂ, 𝐬𝐒𝐞𝐭]:

• The weak equivalences are the natural weak homotopy equivalences.

• The fibrations are the injective cofibrations, i.e. the (componentwise) mono-
morphisms.

• The cofibrations are the injective fibrations, i.e. the morphisms with the
right lifting property with respect to componentwise anodyne extensions.

This model structure is called the Heller model structure or the injective model
structure on [ℂ, 𝐬𝐒𝐞𝐭].

Proof. See Theorem 4.5 in [Heller, 1988, Ch. II], or apply theorem 8.4.9 and
proposition 2.4.17. ■

Proposition 1.9.15. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• For any functor 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, the bar construction B(𝐺, ℂ, disc 𝑈 ∗h•)
is a cofibrant object in the Bousfield–Kan model structure on [𝔻op, 𝐬𝐒𝐞𝐭],
where 𝑈 ∗ : [𝔻, 𝐒𝐞𝐭] → [ℂ, 𝐒𝐞𝐭] is the functor induced by composition.

• For any functor 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, the bar construction B(disc 𝑈 ∗h•, ℂ, 𝐹 )
is a cofibrant object in the Bousfield–Kan model structure on [𝔻, 𝐬𝐒𝐞𝐭],
where 𝑈 ∗ : [𝔻op, 𝐒𝐞𝐭] → [ℂop, 𝐒𝐞𝐭] is the functor induced by composition.

• For any functor 𝐺 : ℂ → 𝐬𝐒𝐞𝐭, the bar construction B(𝐺, ℂop, disc 𝑈 ∗h•)
is a cofibrant object in the Bousfield–Kan model structure on [𝔻, 𝐬𝐒𝐞𝐭],
where 𝑈 ∗ : [𝔻op, 𝐒𝐞𝐭] → [ℂop, 𝐒𝐞𝐭] is the functor induced by composition.

• For any functor 𝐹 : ℂop → 𝐒𝐞𝐭, the bar construction B(disc 𝑈 ∗h•, ℂop, 𝐹 )
is a cofibrant object in the Bousfield–Kan model structure on [𝔻op, 𝐬𝐒𝐞𝐭],
where 𝑈 ∗ : [𝔻, 𝐒𝐞𝐭] → [ℂ, 𝐒𝐞𝐭] is the functor induced by composition.
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Proof. The four claims are formally dual; we will prove the first version.
Let ℐ = {𝜕Δ𝑛 ⊙ h𝑑 ↪ Δ𝑛 ⊙ h𝑑 | 𝑛 ≥ 0, 𝑑 ∈ ob 𝔻}. Using the Yoneda lemma

and proposition a.3.26, we see that each element of ℐ is a projective cofibration;
so by proposition a.3.17, it suffices to prove that B(𝐺, ℂ, disc 𝑈 ∗h•) is a ℐ-cell
complex in the sense of §0.5.

We proceed inductively. As usual, we define sk−1(𝑌 ) = ∅ for all simplicial
sets 𝑌 . Suppose we have shown that the (componentwise) (𝑛 − 1)-skeleton of
B•(𝐺, ℂ, disc 𝑈 ∗h•) is an ℐ-cell complex. Let 𝐼𝑛(𝑑) ⊆ (B(𝐺, ℂ, disc 𝑈 ∗h𝑑))𝑛
be the subset of non-degenerate 𝑛-simplices of B(𝐺, ℂ, disc 𝑈 ∗h𝑑). By propos-
ition 1.2.23, there is a canonical pushout diagram in 𝐬𝐒𝐞𝐭 of the form below:

𝜕Δ𝑛 ⊙ 𝐼𝑛(𝑑) Δ𝑛 ⊙ 𝐼𝑛(𝑑)

sk𝑛−1(B(𝐺, ℂ, disc 𝐹 ∗h𝑑)) sk𝑛(B(𝐺, ℂ, disc 𝐹 ∗h𝑑))

By lemma 1.8.26, an 𝑛-simplex of B(𝐺, ℂ, disc 𝑈 ∗h𝑑) is a tuple

(𝑦, 𝑓𝑛, … , 𝑓1, 𝑥) ∈ ∐
(𝑐0,…,𝑐𝑛)

𝐺𝑛(𝑐𝑛) × ℂ(𝑐𝑛−1, 𝑐𝑛) × ⋯ × ℂ(𝑐0, 𝑐1) × 𝔻(𝑑, 𝑈𝑐0)

where (𝑐0, … , 𝑐𝑛) ranges over (𝑛 + 1)-tuples of objects in ℂ, and this 𝑛-simplex
is degenerate if and only if at least one 𝑓𝑖 : 𝑐𝑖−1 → 𝑐𝑖 is an identity morphism
in ℂ. Thus, 𝐼𝑛 is a coproduct of representable functors 𝔻op → 𝐒𝐞𝐭 and is a
subfunctor of (B(𝐺, ℂ, disc 𝑈 ∗h𝑑))𝑛, so we have a pushout diagram of the form
below in [𝔻op, 𝐬𝐒𝐞𝐭]:

𝜕Δ𝑛 ⊙ 𝐼𝑛 Δ𝑛 ⊙ 𝐼𝑛

sk𝑛−1(B(𝐺, ℂ, disc 𝐹 ∗h•)) sk𝑛(B(𝐺, ℂ, disc 𝐹 ∗h•))

We may now conclude that B(𝐺, ℂ, disc 𝐹 ∗h•) is an ℐ-cell complex. ■

Proposition 1.9.16. Let ℂ be a small category.

• For each functor 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, there is a natural weak homotopy equi-
valence B(𝐺, ℂ, ℂ) ⇒ 𝐺, and it is also natural in 𝐺.

• For each functor 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, there is a natural weak homotopy equi-
valence B(ℂ, ℂ, 𝐹 ) ⇒ 𝐹 , and it is also natural in 𝐹 .
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• For each functor 𝐺 : ℂ → 𝐬𝐒𝐞𝐭, there is a natural weak homotopy equi-
valence B(𝐺, ℂop, ℂop) ⇒ 𝐺, and it is also natural in 𝐺.

• For each functor 𝐹 : ℂop → 𝐬𝐒𝐞𝐭, there is a natural weak homotopy
equivalence B(ℂop, ℂop, 𝐹 ) ⇒ 𝐹 , and it is also natural in 𝐹 .

Proof. The four claims are formally dual; we will prove the first version.
Let 𝐾•, 𝐿• : ℂop → 𝐬𝐬𝐒𝐞𝐭 be the functors defined below:

𝐾𝑛,𝑚(𝑐) = 𝐺𝑛(𝑐)
𝐿𝑛,𝑚(𝑐) = B𝑚(𝐺𝑛, ℂ, h 𝑐)

Observe that, by lemma 1.6.8, we have a natural isomorphism |𝐾•(𝑐)| ≅ 𝐺(𝑐);
and by lemma 1.8.26, |𝐿•(𝑐)| ≅ B(𝐺, ℂ, h 𝑐). On the other hand, recalling
proposition 1.7.12 and corollary 1.8.28, we see that proposition 1.8.41 implies
that there is a natural Reedy weak equivalence 𝐿•(𝑐) → 𝐾•(𝑐). Thus, by the-
orem 1.6.10, the induced natural transformation B(𝐺, ℂ, ℂ) ⇒ 𝐺 is a natural
weak homotopy equivalence, and it is clearly also natural in 𝐺. ■

Corollary 1.9.17. Let ℂ be a small category. For any weight 𝐺 : ℂ → 𝐬𝐒𝐞𝐭,
C(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 sends natural weak homotopy equivalences between
projective-fibrant diagrams to weak homotopy equivalences of Kan complexes.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.9.19. ■

Proposition 1.9.18. Let ℂ be a small category. For any weight 𝐺 : ℂ → 𝐬𝐒𝐞𝐭,
there is an adjunction of the form below,

B(𝐺, ℂop, ℂop) × (−) ⊣ C(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭

and it is a Quillen adjunction with respect to both the Heller and Bousfield–Kan
model structures on [ℂ, 𝐬𝐒𝐞𝐭]

Proof. The existence of the adjunction has been shown in proposition 1.8.36, so
by proposition 4.3.2, it suffices to show that

B(𝐺, ℂop, ℂop) × (−) : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭]

is a left Quillen functor with respect to the Heller model structure and that

C(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭
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is a right Quillen functor with respect to the Bousfield–Kan model structure.
It is clear that the induced natural transformation B(𝐺, ℂop, ℂop) × 𝑍 ⇒

B(𝐺, ℂop, ℂop) × 𝑊 is an injective cofibration in [ℂ, 𝐬𝐒𝐞𝐭] if 𝑍 → 𝑊 is a mono-
morphism in 𝐬𝐒𝐞𝐭. Moreover, the 2-out-of-3 property and proposition 1.5.17 im-
ply that B(𝐺, ℂop, ℂop)×(−) preserves weak equivalences. Thus B(𝐺, ℂop, ℂop)×
(−) is indeed a left Quillen functor with respect to the Heller model structure.

Now, proposition 1.9.7 says that

C(𝐺, ℂ, 𝐹 ) ≅ ∫𝑐:ℂ
[B(𝐺, ℂop, h𝑐), 𝐹 𝑐]

naturally in both 𝐹 and 𝐺; but by remark 2.1.24,

[ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop), 𝐹 ) ≅ ∫𝑐:ℂ
[B(𝐺, ℂop, h𝑐), 𝐹 𝑐]

and proposition 1.9.15 says B(𝐺, ℂop, ℂop) is cofibrant in the Bousfield–Kan model
structure on [ℂ, 𝐬𝐒𝐞𝐭], so by (theorem 1.9.13 and) proposition 2.4.7, C(𝐺, ℂ, −)
is indeed a right Quillen functor with respect to the Bousfield–Kan model struc-
ture. ■

Proposition 1.9.19. Let ℂ be a small category.

• For any weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, there is an adjunction of the form below,

B(𝐺, ℂ, −) ⊣ [B(𝐺, ℂ, ℂ), −] : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭]

and it is a Quillen adjunction with respect to both the Bousfield–Kan and
Heller model structures on [ℂ, 𝐬𝐒𝐞𝐭].

• For any diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, there is an adjunction of the form below,

B(−, ℂ, 𝐹 ) ⊣ C(ℂop, ℂop, [𝐹 , −]) : 𝐬𝐒𝐞𝐭 → [ℂop, 𝐬𝐒𝐞𝐭]

and it is a Quillen adjunction with respect to both the Bousfield–Kan and
Heller model structures on [ℂ, 𝐬𝐒𝐞𝐭].

Proof. The two claims are formally dual;[16] we will prove the first version.
The existence of the adjunction has been shown in proposition 1.8.36, so by

proposition 4.3.2, it suffices to show that

[B(𝐺, ℂ, ℂ), −] : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭]
[16] Recall proposition 1.7.12 and corollary 1.8.28.
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is a right Quillen functor with respect to the Bousfield–Kan model structure and
that

B(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭

is a left Quillen functor with respect to the Heller model structure.
By corollary 1.4.16, the induced natural transformation [B(𝐺, ℂ, ℂ), 𝑋] ⇒

[B(𝐺, ℂ, ℂ), 𝑌 ] is a projective fibration (resp. projective trivial fibration) if 𝑋 →
𝑌 is a Kan fibration (resp. trivial Kan fibration). Thus [B(𝐺, ℂ, ℂ), −] is indeed
a right Quillen functor with respect to the Bousfield–Kan model structure.

On the other hand, the cofibrations in the Heller model structure are the
(componentwise) monomorphisms, lemma 1.8.26 implies that B(𝐺, ℂ, −) pre-
serves cofibrations. To complete the proof, it is enough to show that B(𝐺, ℂ, −)
preserves weak equivalences. Let 𝜑 : 𝑋 ⇒ 𝑌 be a natural weak homotopy
equivalence of diagrams ℂ → 𝐬𝐒𝐞𝐭. To show that B(𝐺, ℂ, 𝜑) : B(𝐺, ℂ, 𝑋) →
B(𝐺, ℂ, 𝑌 ) is a weak homotopy equivalence, it is enough to verify that the in-
duced morphism

[B(𝐺, ℂ, 𝜑), 𝐾] : [B(𝐺, ℂ, 𝑌 ), 𝐾] → [B(𝐺, ℂ, 𝑋), 𝐾]

is a weak homotopy equivalence for all Kan complexes 𝐾 . But by lemma 1.8.31,
this is the same as showing that

C(𝐺, ℂop, [𝜑, 𝐾]) : C(𝐺, ℂop, [𝑌 , 𝐾]) → C(𝐺, ℂop, [𝑋, 𝐾])

is a weak homotopy equivalence for all Kan complexes 𝐾; and corollary 1.4.16
implies that [𝜑, 𝐾] is a natural weak homotopy equivalence between projective-
fibrant diagrams, so we may apply corollary 1.9.17. ■

Corollary 1.9.20. Let ℂ be a small category.

• For any weight 𝐺 : ℂop → 𝐬𝐒𝐞𝐭, B(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 preserves
weak equivalences.

• For any diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, B(−, ℂ, 𝐹 ) : [ℂop, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 pre-
serves weak equivalences.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.9.19 and the fact that
every object is cofibrant in the Heller model structure. ■
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Proposition 1.9.21. Let ℂ be a small category. Then

lim−−→
BK

ℂ
≃ lim−−→

KB

ℂ

as functors [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭, i.e. there is a zigzag of natural weak homotopy
equivalences connecting them.

Proof. By proposition 1.7.12 and corollary 1.9.20, we have the following zigzag
of natural weak homotopy equivalences,

lim−−→
BK
ℂ

Sd(−) Sd(lim−−→
BK
ℂ

(−)op
)

lim−−→
BK
ℂ

(−) lim−−→
BK
ℂ

(−)op
(lim−−→

BK
ℂ

(−)op
)

op

and by remark 1.9.4, the claim follows. ■

Proposition 1.9.22. Let ℂ be a small category. For any diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭,
there is an adjunction of the form below,

C(ℂ, ℂ, [−, 𝐹 ]) ⊣ C(−, ℂ, 𝐹 ) : [ℂ, 𝐬𝐒𝐞𝐭]op → 𝐬𝐒𝐞𝐭

and moreover:

(i) If 𝐹 is projective-fibrant, then the adjunction is a Quillen adjunction with
respect to the Bousfield–Kan model structure on [ℂ, 𝐬𝐒𝐞𝐭].

(ii) If 𝐹 is injective-fibrant, then the adjunction is a Quillen adjunction with
respect to the Heller model structure on [ℂ, 𝐬𝐒𝐞𝐭].

Proof. The existence of the adjunction was shown in proposition 1.8.36; it re-
mains to be shown that it is a Quillen adjunction under the appropriate hypo-
theses.

(i). Suppose 𝐹 is projective-fibrant. Proposition 1.9.7 says that

C(𝐺, ℂ, 𝐹 ) ≅ ∫𝑐:ℂ
[𝐺𝑐, C(disc h 𝑐, ℂ, 𝐹 )]

naturally in both 𝐹 and 𝐺; but by remark 2.1.24,

[ℂ, 𝐬𝐒𝐞𝐭](𝐺, C(ℂ, ℂ, 𝐹 )) ≅ ∫𝑐:ℂ
[𝐺𝑐, C(disc h 𝑐, ℂ, 𝐹 )]
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and proposition 1.9.18 implies that C(ℂ, ℂ, 𝐹 ) is projective-fibrant if 𝐹 is, so by
(theorem 1.9.13 and) proposition 2.4.7,

[ℂ, 𝐬𝐒𝐞𝐭](−, 𝐹 ) : [ℂ, 𝐬𝐒𝐞𝐭]op → 𝐬𝐒𝐞𝐭

is indeed a right Quillen functor with respect to the Bousfield–Kan model struc-
ture.

(ii). Suppose 𝐹 is injective-fibrant. Proposition 1.9.7 says that

C(𝐺, ℂ, 𝐹 ) ≅ ∫𝑐:ℂ
[B(𝐺, ℂop, disc h𝑐), 𝐹 𝑐]

naturally in both 𝐹 and 𝐺; but by remark 2.1.24,

[ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop), 𝐹 ) ≅ ∫𝑐:ℂ
[B(𝐺, ℂop, h𝑐), 𝐹 𝑐]

and (theorem 1.9.14 plus) proposition 2.4.7 says

[ℂ, 𝐬𝐒𝐞𝐭](−, 𝐹 ) : [ℂ, 𝐬𝐒𝐞𝐭]op → 𝐬𝐒𝐞𝐭

is a right Quillen functor with respect to the Heller model structure; on the other
hand, proposition 1.9.19 says

B(−, ℂop, ℂop) : [ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

is a left Quillen functor with respect to the Heller model structure, so (by propos-
itions 4.3.2 and 4.3.5) C(−, ℂ, 𝐹 ) is indeed a right Quillen functor with respect
to the Heller model structure. ■

The homotopical universal property of the bar/cobar constructions is tradi-
tionally stated in terms of derived functors.

Definition 1.9.23. Let ℂ be a small category.

• A homotopy limit functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 is a homotopical right
approximation for the functor lim←−−ℂ

: [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭.

• A homotopy colimit functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 is a homotopical left
approximation for the functor lim−−→ℂ

: [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭.
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Remark 1.9.24. Homotopy limit/colimit functors are not well defined up to iso-
morphism, but by remark 3.4.7, they are homotopically unique. By definition,
each homotopy limit functor (resp. homotopy colimit functor) is equipped with a
natural transformation from lim←−−ℂ

(resp. to lim−−→ℂ
); and for general reasons (cf. pro-

position 4.3.17), the component at an injective-fibrant (resp. projective-cofibrant)
diagram is a weak homotopy equivalence. However, we can do slightly better
with homotopy limit functors.

Since there is no more difficulty in doing so, we will also consider generalised
homotopy limits/colimits:

Definition 1.9.25. Let ℂ be a small category.

• Let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be a weight and let {𝐺, −}ℂ : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 be the
functor defined below,

{𝐺, 𝐹 }ℂ = ∫𝑐:ℂ
[𝐺𝑐, 𝐹 𝑐]

A homotopy 𝐺-weighted limit functor is a homotopical right approxim-
ation for {𝐺, −}ℂ : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭.

• Let 𝐺 : ℂop → 𝐬𝐒𝐞𝐭 be a weight and let 𝐺 ⋆ℂ (−) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 be
the functor defined below:

𝐺 ⋆ℂ 𝐹 = ∫
𝑐:ℂ

𝐺𝑐 × 𝐹 𝑐

A homotopy 𝐺-weighted colimit functor is a homotopical left approx-
imation for 𝐺 ⋆ℂ (−) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭.

Theorem 1.9.26. Let ℂ be a small category, let 𝐺 : ℂ → 𝐬𝐒𝐞𝐭 be a weight, and
let 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be (the functor part of) any functorial fibrant replacement
in 𝐬𝐒𝐞𝐭.

(i) {𝐺, −}ℂ : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 sends natural weak homotopy equivalences
between diagrams of the form C(ℂ, ℂ, 𝐹 ) where every 𝐹 𝑐 is a Kan complex
to weak homotopy equivalences of simplicial sets.

(ii) C(ℂ, ℂ, 𝑅 ∘ −) : [ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is (the functor part of) a functorial
right deformation retract for {𝐺, −}ℂ.
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(iii) C(𝐺, ℂ, 𝑅 ∘ −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the functor part of) a homotopy
𝐺-weighted limit functor.

Proof. (i). Let 𝑋, 𝑌 : ℂ → 𝐊𝐚𝐧 be diagrams and let 𝜑 : C(ℂ, ℂ, 𝑋) ⇒
C(ℂ, ℂ, 𝑌 ) be a natural weak homotopy equivalence. We have the following
commutative diagram,

{𝐺, C(ℂ, ℂ, 𝑋)}ℂ {B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝑋)}ℂ

{𝐺, C(ℂ, ℂ, 𝑌 )}ℂ {B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝑌 )}ℂ

where the horizontal arrows are induced by the natural weak homotopy equi-
valence of proposition 1.9.16 and the vertical arrows are induced by 𝜑; but by
remark 2.1.24,

{B(𝐺, ℂop, ℂop), −}ℂ ≅ [ℂ, 𝐬𝐒𝐞𝐭](B(𝐺, ℂop, ℂop), −)

and B(𝐺, ℂop, ℂop) is projective-cofibrant by proposition 1.9.15, and since both
C(ℂ, ℂ, 𝑋) and C(ℂ, ℂ, 𝑌 ) are projective-fibrant by proposition 1.9.18, we may
use corollary 1.9.17 to deduce that

{B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝑋)}ℂ → {B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝑌 )}ℂ

is a weak homotopy equivalence of Kan complexes. On the other hand, the fol-
lowing diagram commutes for all diagrams 𝐹 : ℂ → 𝐬𝐒𝐞𝐭,

{𝐺, C(ℂ, ℂ, 𝐹 )}ℂ {B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝐹 )}ℂ

{B(𝐺, ℂop, ℂop), 𝐹 }ℂ {B(B(𝐺, ℂop, ℂop), ℂop, ℂop), 𝐹 }ℂ

≅ ≅

where the horizontal arrows are induced by the natural weak homotopy equival-
ence B(𝐺, ℂop, ℂop) ⇒ 𝐺 (from proposition 1.9.16), and the vertical arrows are
the isomorphisms given by proposition 1.9.7. Moreover, by corollary 1.9.20,

B(B(𝐺, ℂop, ℂop), ℂop, ℂop) → B(𝐺, ℂop, ℂop)

is a natural weak homotopy equivalence, so if 𝐹 is projective-fibrant, then

{𝐺, C(ℂ, ℂ, 𝐹 )}ℂ → {B(𝐺, ℂop, ℂop), C(ℂ, ℂ, 𝐹 )}ℂ
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is a weak homotopy equivalence of Kan complexes; hence, by the 2-out-of-3
property,

{𝐺, C(ℂ, ℂ, 𝑋)}ℂ → {𝐺, C(ℂ, ℂ, 𝑌 )}ℂ

is also a weak homotopy equivalence of Kan complexes.

(ii). It remains to be shown that there is a natural weak equivalence id[ℂ,𝐬𝐒𝐞𝐭] ⇒
C(ℂ, ℂ, 𝑅 ∘ −). Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a diagram. By (the Yoneda lemma for ends
(proposition a.6.18 and) the arguments above, we have a natural weak homotopy
equivalence

𝑅𝐹 𝑐 ≅ {disc h 𝑐, 𝑅𝐹 }
ℂ → {B(disc h 𝑐, ℂop, ℂop), 𝐹 }

ℂ ≅ C(disc h 𝑐, ℂ, 𝑅𝐹 )

and we have a natural weak homotopy equivalence 𝐹 𝑐 → 𝑅𝐹 𝑐 by definition,
so do indeed have a natural weak homotopy equivalence 𝐹 ⇒ C(ℂ, ℂ, 𝐹 ), as
required.

(iii). Thus, by theorem 3.4.11, {𝐺, C(ℂ, ℂ, 𝑅 ∘ −)}ℂ : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the
functor part of) a homotopical right approximation for {𝐺, −}ℂ, and by propos-
ition 1.9.7,

C(𝐺, ℂ, 𝑅 ∘ −) ≅ {𝐺, C(ℂ, ℂ, 𝑅 ∘ −)}ℂ

so we are done. ■

Theorem 1.9.27. Let ℂ be a small category and let 𝐺 : ℂop → 𝐬𝐒𝐞𝐭 be a weight.

(i) 𝐺 ⋆ℂ (−) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 sends natural weak homotopy equivalences
between diagrams of the form B(ℂ, ℂ, 𝐹 ) to weak homotopy equivalences
of simplicial sets.

(ii) B(ℂ, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is (the functor part of) a functorial left
deformation retract for 𝐺 ⋆ℂ (−).

(iii) B(𝐺, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the functor part of) a homotopy 𝐺-weighted
colimit functor.

Proof. (i). An analogue of proposition a.6.15 says that we have an adjunction of
the following form:

𝐺 ⋆ℂ (−) ⊣ [𝐺, −] : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭]
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By corollary 1.4.16, [𝐺, −] : 𝐬𝐒𝐞𝐭 → [ℂ, 𝐬𝐒𝐞𝐭] is a right Quillen functor with
respect to the Bousfield–Kan model structure, so by proposition 4.3.2, 𝐺⋆ℂ (−) :
[ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is a left Quillen functor with respect to the Bousfield–Kan
model structure. But proposition 1.9.15 says diagrams of the form B(ℂ, ℂ, 𝐹 )
are projective-cofibrant, so the claim is a consequence of Ken Brown’s lemma
(4.3.6).

(ii). It remains to be shown that there is a natural weak equivalence B(ℂ, ℂ, −) ⇒
id[ℂ,𝐬𝐒𝐞𝐭], but this was done in proposition 1.9.16.

(iii). Thus, by theorem 3.4.11, 𝐺 ⋆ℂ B(ℂ, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the functor
part of) a homotopical left approximation for 𝐺 ⋆ℂ (−), and by proposition 1.9.7,

B(𝐺, ℂ, −) ≅ 𝐺 ⋆ℂ B(ℂ, ℂ, −)

so we are done. ■

The following comparison results are often useful.

Lemma 1.9.28.
• There is a morphism N(𝚫∕•)

op → Δ• in [𝚫, 𝐬𝐒𝐞𝐭].

• There is a morphism N(𝚫∕•) → Δ• in [𝚫, 𝐬𝐒𝐞𝐭].

Proof. Apply N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 to the functors (𝚫∕[𝑛])
op → [𝑛] (resp. 𝚫∕[𝑛] → [𝑛])

that send an object 𝛼 : [𝑚] → [𝑛] in 𝚫∕[𝑛] to 𝛼(0) (resp. 𝛼(𝑚)) in [𝑛]. ■

Theorem 1.9.29.
(i) There is an adjunction of the form below,

|−| ⊣ [Δ•, −] : 𝐬𝐒𝐞𝐭 → [𝚫op, 𝐬𝐒𝐞𝐭]

and it is a Quillen adjunction with respect to both the Bousfield–Kan and
Heller model structures on [𝚫op, 𝐬𝐒𝐞𝐭].

(ii) There is a conjugate pair of natural transformations

𝜑 : |−| ⇒ lim−−→𝚫op
𝜓 : Δ(−) ⇒ [Δ•, −]

where 𝜓 is induced by the unique natural transformation Δ• ⇒ Δ1, and
the derived natural transformations

𝐋𝜑 : 𝐋|−| ⇒ 𝐋lim−−→𝚫op
𝐑𝜓 : 𝐑Δ(−) ⇒ 𝐑[Δ•, −]

constitute a conjugate pair of natural isomorphisms.
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(iii) For any projective-cofibrant diagram 𝐹 : 𝚫op → 𝐬𝐒𝐞𝐭, the natural morph-
ism 𝜑𝐹 : |𝐹 | → lim−−→𝚫op

𝐹 is a weak homotopy equivalence. In particular,
the realisation functor |−| : [𝚫op, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the functor part of) a
homotopy colimit functor for diagrams 𝚫op → 𝐬𝐒𝐞𝐭.

Proof. (i). The existence of the adjunction is a special case of theorem b.3.19.
Theorem 1.6.4 says that the Reedy model structure on [𝚫op, 𝐬𝐒𝐞𝐭] coincides with
the Heller model structure, so by theorem 1.6.10, the indicated adjunction is a
Quillen adjunction with respect to the Heller model structure.

It remains to be shown that the adjunction in question is a Quillen adjunc-
tion with respect to the Bousfield–Kan model structure; by proposition 4.3.2, it
suffices to show that

[Δ•, −] : 𝐬𝐒𝐞𝐭 → [𝚫op, 𝐬𝐒𝐞𝐭]
is a right Quillen functor (with respect to the Bousfield–Kan model structure);
but this is an immediate consequence of corollary 1.4.16, so we are done.

(ii). Since the standard simplices Δ𝑛 are contractible, the unique natural trans-
formation Δ• ⇒ Δ1 is a natural weak homotopy equivalence. Thus, for any Kan
complex 𝐾 , the natural morphism 𝜓𝐾 : Δ𝐾 → [Δ•, 𝐾] is a weak homotopy
equivalence (by proposition 1.5.17). Thus, considering the explicit description
of 𝐑𝜓 afforded by theorems 3.3.17 and 4.3.12, we see that 𝐑𝜓 is a natural iso-
morphism; but 𝐋𝜑 and 𝐑𝜓 are conjugate by theorem 3.3.24, so we deduce that
𝐋𝜑 is also a natural isomorphism.

(iii). Since 𝐋𝜑 : 𝐋|−| ⇒ 𝐋lim−−→𝚫op
is a natural isomorphism, the natural morph-

ism 𝜑𝐹 : |𝐹 | → lim−−→𝚫op
𝐹 must be a weak homotopy equivalence for every

projective-cofibrant diagram 𝐹 : 𝚫op → 𝐬𝐒𝐞𝐭.
We claim that |−| : [𝚫op, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 and 𝜑 : |−| ⇒ lim−−→𝚫op

constitute
a homotopical left approximation for lim−−→𝚫op

: [𝚫op, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭. Let (𝑄, 𝑝)
be a functorial projective-cofibrant replacement for [𝚫op, 𝐬𝐒𝐞𝐭]; such exists, by
Quillen’s small object argument (theorem 0.5.12) and theorem 1.9.13. Then the-
orem 3.4.11 says that (lim−−→𝚫op

∘ 𝑄, lim−−→𝚫op
𝑝) homotopical left approximation for

lim−−→𝚫op
. But the following diagram commutes,

|−| |𝑄−| lim−−→𝚫op
∘ 𝑄

lim−−→𝚫op
lim−−→𝚫op

lim−−→𝚫op

𝜑

|𝑝| 𝜑𝑄

lim−→𝚫op
𝑝

200



1.9. Bousfield–Kan limits and colimits

and by Ken Brown’s lemma (4.3.6), both arrows in the top row are natural weak
homotopy equivalences, so by proposition 3.2.2, (|−|, 𝜑) is also a homotopical
left approximation for lim−−→𝚫op

, as claimed. ■

Corollary 1.9.30. Given any morphism • : N(𝚫∕•)
op → Δ• in [𝚫, 𝐬𝐒𝐞𝐭]:

(i) There is an induced natural transformation ∗ : lim−−→
BK
𝚫op

⇒ |−| making the
diagram below commute,

lim−−→
BK
𝚫op

lim−−→𝚫op

|−| lim−−→𝚫op

∗

where the horizontal arrows are the counits of the respective homotopical
right Kan extensions.

(ii) For any diagram 𝑋• : 𝚫op → 𝐬𝐒𝐞𝐭, the morphism

∗ : lim−−→
BK

𝚫op

𝑋• → |𝑋•|

is a weak homotopy equivalence.

Dually, given any morphism • : N(𝚫∕•) → Δ• in [𝚫, 𝐬𝐒𝐞𝐭]:

(i) There is an induced natural transformation ∗ : lim−−→
KB
𝚫op

⇒ |−| making the
diagram below commute,

lim−−→
KB
𝚫op

lim−−→𝚫op

|−| lim−−→𝚫op

∗

where the horizontal arrows are the counits of the respective homotopical
right Kan extensions.

(ii) For any diagram 𝑋• : 𝚫op → 𝐬𝐒𝐞𝐭, the morphism

∗ : lim−−→
KB

𝚫op

𝑋• → |𝑋•|

is a weak homotopy equivalence.
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Proof. (i). Each N(𝚫∕[𝑛]) and each Δ𝑛 is contractible, by corollary 1.3.11, so
• : N(𝚫∕•)

op → Δ• is a natural weak homotopy equivalence. Remark 1.8.4
says that B(Δ1, 𝚫op, h[𝑛]) ≅ N(𝚫∕[𝑛])

op, so proposition 1.9.7 implies that :
N(𝚫∕•)

op → Δ• induces a natural transformation

∫
[𝑛]:𝚫

B(Δ1, 𝚫op, h[𝑛]) × (−)𝑛 ⇒ ∫
[𝑛]:𝚫

Δ𝑛 × (−)𝑛

i.e. a natural transformation ∗ : lim−−→
BK
𝚫op

⇒ |−|. Similarly, the unique natural
transformation N(𝚫∕•)

op ⇒ Δ1 (resp. Δ• ⇒ Δ1) induces the canonical com-
parison lim−−→

BK
𝚫op

⇒ lim−−→𝚫op
(resp. |−| ⇒ lim−−→𝚫op

, so we have a commutative diagram
of the required form.

(ii). This is a corollary of lemma 3.2.5. ■

Corollary 1.9.31. Let u� be a locally small category.

• For each cosimplicial object 𝐴• in u� and each object 𝐵 in u�, there is a
weak homotopy equivalence

N((𝐴 ↓ 𝐵)) → u�(𝐴•, 𝐵)

and it is natural in 𝐴• and 𝐵.

• For each object 𝐴 in u� and each simplicial object 𝐵• in u�, there is a weak
homotopy equivalence

N((𝐴 ↓ 𝐵)) → u�(𝐴, 𝐵•)

and it is natural in 𝐴 and 𝐵•.

Proof. The two claims are formally dual; we will prove the first version.
By remark 1.8.5 and proposition 1.9.7, we have natural isomorphisms

N((𝐴 ↓ 𝐵)) ≅ B(Δ1, 𝚫op, 𝐴∗h𝐵) ≅ lim−−→
BK

𝚫op

disc u�(𝐴•, 𝐵)

and by (lemma 1.9.28 and) corollary 1.9.30, we have a natural weak homotopy
equivalence

lim−−→
BK

𝚫op

disc u�(𝐴•, 𝐵) → |disc u�(𝐴•, 𝐵)|

but by corollary 1.6.9,

|disc u�(𝐴•, 𝐵)| ≅ u�(𝐴•, 𝐵)

so we are done. ■
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Theorem 1.9.32.
(i) There is an adjunction of the form below,

Δ• × (−) ⊣ Tot : [𝚫, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭

and it is a Quillen adjunction with respect to both the Reedy and Heller
model structures on [𝚫, 𝐬𝐒𝐞𝐭].

(ii) There is a conjugate pair of natural transformations

𝜑 : Δ• × (−) ⇒ Δ(−) 𝜓 : lim←−−𝚫
⇒ Tot

where 𝜓 is induced by the unique natural transformation Δ• ⇒ Δ1, and
the derived natural transformations

𝐋𝜑 : 𝐋(Δ• × (−)) ⇒ 𝐋Δ(−) 𝐑𝜓 : 𝐑lim←−−𝚫
⇒ 𝐑Tot

constitute a conjugate pair of natural isomorphisms.

(iii) For any injective-fibrant diagram 𝐹 : 𝚫 → 𝐬𝐒𝐞𝐭, the natural morphism
𝜓𝐹 : lim←−−𝚫

𝐹 ⇒ Tot 𝐹 is a weak homotopy equivalence. In particular,
given any Reedy-fibrant replacement functor 𝑅 : [𝚫, 𝐬𝐒𝐞𝐭] → [𝚫, 𝐬𝐒𝐞𝐭],
the composite Tot∘𝑅 : [𝚫, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is (the functor part of) a homotopy
limit functor for diagrams 𝚫 → 𝐬𝐒𝐞𝐭.

Proof. (i). The existence of the adjunction is a special case of theorem b.3.18,
and it is a Quillen adjunction with respect to the Reedy model structure by the-
orem 1.6.26.

It remains to be shown that the adjunction in question is a Quillen adjunction
with respect to the injective model structure; by proposition 4.3.2, it suffices to
show that

Δ• × (−) : 𝐬𝐒𝐞𝐭 → [𝚫op, 𝐬𝐒𝐞𝐭]

is a left Quillen functor (with respect to the injective model structure). Clearly,
each Δ𝑛 × (−) preserves monomorphisms, and by proposition 1.5.17, it also pre-
serves weak homotopy equivalences; thus, Δ• × (−) sends monomorphisms to
injective cofibrations and (by proposition 1.5.12) anodyne extensions to injective
trivial cofibrations, as required.

(ii). Since the standard simplices Δ𝑛 are contractible, the unique natural trans-
formation Δ• ⇒ Δ1 is a natural weak homotopy equivalence. Thus, for any
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simplicial set 𝑋, the natural morphism 𝜑𝑋 : Δ• × 𝑋 → Δ𝑋 is a weak homotopy
equivalence (by proposition 1.5.17). Thus, considering the explicit description
of 𝐋𝜑 afforded by theorems 3.3.17 and 4.3.12, we see that 𝐋𝜑 is a natural iso-
morphism; but 𝐋𝜑 and 𝐑𝜓 are conjugate by theorem 3.3.24, so we deduce that
𝐑𝜓 is also a natural isomorphism.

(iii). Since 𝐑𝜓 : 𝐑lim←−−𝚫
⇒ 𝐑Tot is a natural isomorphism, the natural morphism

𝜓𝐹 : lim←−−𝚫
𝐹 → Tot 𝐹 must be a weak homotopy equivalence for every injective-

fibrant diagram 𝐹 : 𝚫 → 𝐬𝐒𝐞𝐭.
Let (𝑅, 𝑖) be any functorial Reedy-fibrant replacement for [𝚫, 𝐬𝐒𝐞𝐭]. We

claim that Tot ∘ 𝑅 : [𝚫, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 and 𝜓 ∘ 𝑖 : lim←−−𝚫
⇒ Tot ∘ 𝑅 constitute

a homotopical right approximation for lim←−−𝚫
: [𝚫op, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭. Let (�̂�, ̂𝑖) be

a functorial injective-fibrant replacement for [𝚫, 𝐬𝐒𝐞𝐭]; such exists, by Quillen’s
small object argument (theorem 0.5.12) and theorem 1.9.14. Then theorem 3.4.11
says that (lim←−−𝚫

∘ �̂�, lim←−−𝚫
̂𝑖) homotopical right approximation for lim←−−𝚫

. But the
following diagram commutes,

lim←−−𝚫
lim←−−𝚫

lim←−−𝚫

Tot ∘ 𝑅 Tot ∘ 𝑅 ∘ �̂� lim←−−𝚫
∘ 𝑅

𝜓∘𝑖 lim←−𝚫
̂𝑖

Tot 𝑅 ̂𝑖 (𝜓∘𝑖)𝑅

and by Ken Brown’s lemma (4.3.6), both arrows in the bottom row are natural
weak homotopy equivalences, so by proposition 3.2.2, (Tot ∘ 𝑅, 𝜓 ∘ 𝑖) is also a
homotopical right approximation for lim←−−𝚫

, as claimed. ■

Corollary 1.9.33. Given any morphism • : N(𝚫∕•)
op → Δ• in [𝚫, 𝐬𝐒𝐞𝐭]:

(i) There is an induced natural transformation ∗ : Tot ⇒ lim←−−
BK
𝚫

making the
diagram below commute,

lim←−−𝚫
Tot

lim←−−𝚫
lim←−−

BK
𝚫

∗

where the horizontal arrows are the canonical comparisons.
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(ii) For any Reedy-fibrant diagram 𝑋• : 𝚫 → 𝐬𝐒𝐞𝐭, the morphism

∗ : Tot 𝑋• → lim←−−
BK

𝚫

𝑋•

is a weak homotopy equivalence.

Dually, given any morphism • : N(𝚫∕•) → Δ• in [𝚫, 𝐬𝐒𝐞𝐭]:

(i) There is an induced natural transformation ∗ : Tot ⇒ lim←−−
KB
𝚫

making the
diagram below commute,

lim←−−𝚫
Tot

lim←−−𝚫
lim←−−

KB
𝚫

∗

where the horizontal arrows are the canonical comparisons.

(ii) For any Reedy-fibrant diagram 𝑋• : 𝚫 → 𝐬𝐒𝐞𝐭, the morphism

∗ : Tot 𝑋• → lim←−−
KB

𝚫

𝑋•

is a weak homotopy equivalence.

Proof. (i). Each N(𝚫∕[𝑛]) and each Δ𝑛 is contractible, by corollary 1.3.11, so
• : N(𝚫∕•)

op → Δ• is a natural weak homotopy equivalence. Remark 1.8.4
says that B(Δ1, 𝚫op, h[𝑛]) ≅ N(𝚫∕[𝑛])

op, so proposition 1.9.7 implies that :
N(𝚫∕•)

op → Δ• induces a natural transformation

∫[𝑛]:𝚫
[Δ𝑛, (−)𝑛] ⇒ ∫[𝑛]:𝚫

[B(Δ1, 𝚫op, h[𝑛]), (−)𝑛]

i.e. a natural transformation ∗ : Tot ⇒ lim←−−
BK
𝚫

. Similarly, the unique natural
transformation N(𝚫∕•)

op ⇒ Δ1 (resp. Δ• ⇒ Δ1) induces the canonical com-
parison lim←−−𝚫

⇒ lim←−−
BK
𝚫

(resp. lim←−−𝚫
⇒ Tot, so we have a commutative diagram of

the required form.

(ii). Let 𝑋• : 𝚫 → 𝐬𝐒𝐞𝐭 be a Reedy-fibrant diagram. If 𝑋• is injective-fibrant,
then by applying theorem 4.3.12 to propositions 1.9.18 and 4.3.17 and using the
2-out-of-3 property, we may deduce that that ∗ : Tot 𝑋• → lim←−−

BK
𝚫

𝑋• is a weak
homotopy equivalence. However:
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• By theorem 1.9.14 and proposition 4.1.24, we may replace an arbitrary 𝑋•

with a naturally weakly homotopy equivalent injective-fibrant diagram.

• By proposition 4.6.17, every injective-fibrant diagram is Reedy-fibrant,
and every Reedy-fibrant diagram is projective-fibrant.

• By theorem 1.6.26 (resp. proposition 1.9.18) and Ken Brown’s lemma (4.3.6),
the functor Tot (resp. lim←−−

BK
𝚫

) sends natural weak homotopy equivalences
between Reedy-fibrant (resp. projective-fibrant) diagrams 𝚫 → 𝐬𝐒𝐞𝐭 to
weak homotopy equivalences.

Thus, applying the 2-out-of-3 property again, ∗ : Tot 𝑋• → lim←−−
BK
𝚫

𝑋• is indeed
a weak homotopy equivalence for all Reedy-fibrant diagrams 𝑋•. ■

The following result is essentially due to Quillen [1973, §1].

Proposition 1.9.34. Let ℂ be a small category and let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 be a
diagram.

(i) There is a natural pullback diagram of the form below,

𝐹 𝑐 lim−−→
BK
ℂ

𝐹

Δ0 N(ℂ)

𝑝

where the bottom horizontal arrow is the morphism corresponding to the
vertex 𝑐 of N(ℂ) and 𝑝 : lim−−→

BK
ℂ

𝐹 → N(ℂ) is the morphism induced by
remark 1.8.5 and the unique natural transformation 𝐹 ⇒ Δ1.

(ii) Assuming 𝐹 𝑓 : 𝐹 𝑐′ → 𝐹 𝑐 is a weak homotopy equivalence for every
morphism 𝑓 : 𝑐′ → 𝑐 in ℂ, for any commutative diagram in 𝐬𝐒𝐞𝐭 of the
form below,

𝑋′ 𝑌 ′ lim−−→
BK
ℂ

𝐹

𝑋 𝑌 N(ℂ)

𝑢′ 𝑣′

𝑝

𝑢 𝑣

if 𝑢 : 𝑋 → 𝑌 is a weak homotopy equivalence and the two squares are
pullback squares in 𝐬𝐒𝐞𝐭, then 𝑢′ : 𝑋′ → 𝑌 ′ is also a weak homotopy
equivalence.
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Proof. We follow the proof of Lemma 5.7 in [GJ, Ch. IV].

(i). The diagram in question is obtained by applying diag : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 to the
following diagram in 𝐬𝐬𝐒𝐞𝐭,

𝐹 𝑐 B•(Δ1, ℂ, 𝐹 )

Δ0 disc B•(Δ1, ℂ, Δ1)

where the horizontal arrows are defined by the evident coproduct inclusions.
Recalling remark 1.8.18, it is not hard to see that this is a pullback diagram in
𝐬𝐬𝐒𝐞𝐭, so the same is true of its image under diag : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭.

(ii). Now suppose 𝐹 𝑓 : 𝐹 𝑐′ → 𝐹 𝑐 is a weak homotopy equivalence for every
morphism 𝑓 : 𝑐′ → 𝑐 in ℂ. The pullback functor 𝑝∗ : 𝐬𝐒𝐞𝐭∕N(ℂ) → 𝐬𝐒𝐞𝐭∕ lim−→

BK
ℂ

𝐹

has a right adjoint (by theorem a.2.22), so in particular it preserves transfinite
compositions. Thus, in view of proposition 1.5.12, lemma 4.1.10, and proposi-
tion a.3.17, it suffices to prove the claim in the special case where 𝑢 : 𝑋 → 𝑌 is
a horn inclusion, say Λ𝑛

𝑘 ↪ Δ𝑛.

Identifying Δ𝑛 with N([𝑛]), by proposition 1.2.2, there is a unique functor
𝑉 : [𝑛] → ℂ such that N(𝑉 ) = 𝑣. We then have a commutative diagram in 𝐬𝐬𝐒𝐞𝐭
of the form below,

B•(Δ1, [𝑛], 𝐹 𝑉 ) B•(Δ1, ℂ, 𝐹 )

B•(Δ1, [𝑛], Δ1) B•(Δ1, ℂ, Δ1)

where the horizontal arrows are the canonical comparison morphisms of pro-
position 1.8.21 and the vertical arrows are induced by the unique natural trans-
formation to Δ1, and by lemma 1.8.22, it is a pullback square in 𝐬𝐬𝐒𝐞𝐭. Further-
more, there is an evident natural transformation Δ𝐹 𝑉 [0] ⇒ 𝐹 𝑉 of diagrams
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[𝑛] → 𝐬𝐒𝐞𝐭, so we have the following diagram,

(Λ𝑛
𝑘)• × 𝐹 𝑉 [0] (Δ𝑛)• × 𝐹 𝑉 [0]

(Λ𝑛
𝑘)• ×(Δ𝑛)•

B•(Δ1, [𝑛], 𝐹 𝑉 ) B•(Δ1, [𝑛], 𝐹 𝑉 )

(Λ𝑛
𝑘)• (Δ𝑛)•

where both squares are pullback squares in 𝐬𝐬𝐒𝐞𝐭, and (recalling proposition 1.5.16)
the hypothesis implies that the vertical arrows in the upper square are Reedy weak
homotopy equivalences. Thus, by lemma 1.6.8 and theorem 1.6.10, in the induced
diagram in 𝐬𝐒𝐞𝐭,

Λ𝑛
𝑘 × 𝐹 𝑉 [0] Δ𝑛 × 𝐹 𝑉 [0]

Λ𝑛
𝑘 ×Δ𝑛 lim−−→

BK
[𝑛]

𝐹 𝑉 lim−−→
BK
[𝑛]

𝐹 𝑉

both vertical arrows are weak homotopy equivalences; but the top horizontal
arrow is a weak homotopy equivalence by proposition 1.5.17, so the bottom ho-
rizontal arrow must also be a weak homotopy equivalence, by the 2-out-of-3
property. ■

1.10 Bousfield–Kan extensions
Prerequisites. §§1.5, 1.6, 1.8, 2.4, 3.3, 3.4, 4.3, a.5, a.6.

In this section, we study a homotopy-theoretic version of Kan extensions.

Definition 1.10.1. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• The left Bousfield–Kan extension of a diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 along
𝑈 : ℂ → 𝔻 is the diagram LanBK

𝑈 𝐹 : 𝔻 → 𝐬𝐒𝐞𝐭 defined by the following
formula:

(LanBK
𝑈 𝐹 )𝑑 = B(𝑈 ∗h𝑑 , ℂ, 𝐹 )
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• The right Bousfield–Kan extension of a diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 along
𝑈 : ℂ → 𝔻 is the diagram RanBK

𝑈 𝐹 : 𝔻 → 𝐬𝐒𝐞𝐭 defined by the following
formula:

(RanBK
𝑈 𝐹 )𝑑 = C(𝑈 ∗h𝑑 , ℂ, 𝐹 )

Remark 1.10.2. Let ℂ be a small category. If 𝑈 : ℂ → 𝟙 is the unique functor,
then LanBK

𝑈 (resp. RanBK
𝑈 ) can be identified with lim−−→

BK
ℂ

(resp. lim←−−
BK
ℂ

).

Lemma 1.10.3. Let ℂ and 𝔻 be small categories and let 𝑊 : ℂop × 𝔻 → 𝐬𝐒𝐞𝐭
be a functor.

(i) There is an adjunction of the form below:

B(𝑊 , ℂ, −) ⊣ [𝔻, 𝐬𝐒𝐞𝐭](B(𝑊 , ℂ, ℂ), −) : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

(ii) There is an adjunction of the form below:

B(𝑊 , 𝔻op, 𝔻op) ⋆ℂ (−) ⊣ C(𝑊 , 𝔻, −) : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

Proof. Let 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be diagrams. For convenience, we
write 𝑊 𝑐

𝑑 for the value of 𝑊 : ℂop × 𝔻 → 𝐬𝐒𝐞𝐭 at (𝑐, 𝑑).

(i). By proposition 1.9.7,

B(𝑊𝑑 , ℂ, 𝐹 ) ≅ ∫
𝑐:ℂ

B(𝑊𝑑 , ℂ, disc h 𝑐) × 𝐹 𝑐

and thus, by remark a.6.5, proposition a.6.11, and the interchange law for ends
(theorem a.6.17), we have the following natural bijections,

[𝔻, 𝐬𝐒𝐞𝐭](B(𝑊 , ℂ, 𝐹 ), 𝐺) ≅ ∫𝑑:𝔻 ∫𝑐:ℂ
𝐬𝐒𝐞𝐭(B(𝑊𝑑 , ℂ, disc h 𝑐) × 𝐹 𝑐, 𝐺𝑑)

≅ ∫𝑐:ℂ ∫𝑑:𝔻
𝐬𝐒𝐞𝐭(𝐹 𝑐, [B(𝑊𝑑 , ℂ, disc h 𝑐), 𝐺𝑑])

≅ [ℂ, 𝐬𝐒𝐞𝐭](𝐹 , [𝔻, 𝐬𝐒𝐞𝐭](B(𝑊 , ℂ, ℂ), 𝐺))

where in the last step we have used remark 2.1.24.

(ii). Similarly,

C(𝑊 𝑐, 𝔻, 𝐺) ≅ ∫𝑑:𝔻
[B(𝑊𝑐, 𝔻op, disc h𝑑), 𝐺𝑑]
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and thus, we have the following natural bijections,

[ℂ, 𝐬𝐒𝐞𝐭](𝐹 , C(𝑊 , 𝔻, 𝐺)) ≅ ∫𝑐:ℂ ∫𝑑:𝔻
𝐬𝐒𝐞𝐭(𝐹 𝑐, [B(𝑊 𝑐, 𝔻op, disc h𝑑), 𝐺𝑑])

≅ ∫𝑑:𝔻 ∫𝑐:ℂ
𝐬𝐒𝐞𝐭(B(𝑊 𝑐, 𝔻op, disc h𝑑) × 𝐹 𝑐, 𝐺𝑑)

≅ [𝔻, 𝐬𝐒𝐞𝐭](B(𝑊 , 𝔻op, 𝔻op) ⋆ℂ 𝐹 , 𝐺)

where in the last step we have used the coend formula for simplicially enriched
weighted colimits: TODO: Add a refer-

ence for this.

B(𝑊 , 𝔻op, 𝔻op) ⋆ℂ 𝐹 ≅ ∫
𝑐:ℂ

B(𝑊 𝑐, 𝔻op, 𝔻op) × 𝐹 𝑐 ■

Proposition 1.10.4. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

(i) There is an adjunction of the form below:

LanBK
𝑈 ⊣ [𝔻, 𝐬𝐒𝐞𝐭](B(𝑈 ∗𝔻, ℂ, ℂ), −) : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

(ii) The adjunction is a Quillen adjunction with respect to the Bousfield–Kan
model structures on [ℂ, 𝐬𝐒𝐞𝐭] and [𝔻, 𝐬𝐒𝐞𝐭].

(iii) The adjunction is a Quillen adjunction with respect to the Heller model
structures on [ℂ, 𝐬𝐒𝐞𝐭] and [𝔻, 𝐬𝐒𝐞𝐭].

Proof. (i). Apply lemma 1.10.3 with 𝑊 = 𝔻(𝑈−, −).

(ii). By proposition 1.9.15, for each object 𝑐 in ℂ, B(𝑈 ∗𝔻, ℂ, disc h 𝑐) is a cofi-
brant object in the Bousfield–Kan model structure on [𝔻, 𝐬𝐒𝐞𝐭]. The Bousfield–
Kan model structure is a simplicial model structure (by theorem 1.9.13), thus
each [𝔻, 𝐬𝐒𝐞𝐭](B(𝑈 ∗𝔻, ℂ, disc h 𝑐), −) : [𝔻, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is a right Quillen
functor with respect to the Bousfield–Kan model structure; but fibrations and
trivial fibrations are componentwise in the Bousfield–Kan model structure, so
we conclude that [𝔻, 𝐬𝐒𝐞𝐭](B(𝑈 ∗𝔻, ℂ, ℂ), −) : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is a right
Quillen functor. The claim is then a consequence of proposition 4.3.2.

(iii). Proposition 1.9.19 says that each B(𝑈 ∗h𝑑 , ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is
a left Quillen functor with respect to the Heller model structure on [ℂ, 𝐬𝐒𝐞𝐭],
and since cofibrations and trivial cofibrations in the Heller model structure are
componentwise, we conclude that B(𝑈 ∗𝔻, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is a left
Quillen functor. As before, it follows that we have a Quillen adjunction. ■
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Corollary 1.10.5. Let 𝑈 : ℂ → 𝔻 be a functor between small categories. Then
LanBK

𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] preserves natural weak homotopy equivalences.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.10.4. ■

Proposition 1.10.6. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

(i) There is an adjunction of the form below:

B(𝑈 ∗(−), ℂop, ℂop) ⊣ RanBK
𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭]

(ii) The adjunction is a Quillen adjunction with respect to the Bousfield–Kan
model structures on [ℂ, 𝐬𝐒𝐞𝐭] and [𝔻, 𝐬𝐒𝐞𝐭].

(iii) The adjunction is a Quillen adjunction with respect to the Heller model
structures on [ℂ, 𝐬𝐒𝐞𝐭] and [𝔻, 𝐬𝐒𝐞𝐭].

Proof. (i). By lemma 1.10.3 (with 𝑊 = 𝔻(−, 𝑈−)), we obtain the following
adjunction:

B(𝑈 ∗𝔻op, ℂop, ℂop) ⋆𝔻 (−) ⊣ C(𝑈 ∗𝔻op, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭]

The right adjoint is (by definition) RanBK : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭], and by pro-
position 1.9.7,

B(𝑈 ∗𝔻op, ℂop, ℂop) ⋆𝔻 (−) ≅ B(𝑈 ∗(−), ℂop, ℂop)

so we indeed have an adjunction of the desired form.

(ii). Proposition 1.9.18 says that each C(𝑈 ∗h𝑑 , ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is a right
Quillen functor with respect to the Bousfield–Kan model structure on [ℂ, 𝐬𝐒𝐞𝐭],
and since fibrations and trivial fibrations are componentwise in the Bousfield–
Kan model structure are componentwise, we conclude that C(𝑈 ∗𝔻op, ℂ, ℂ) :
[ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is a left Quillen functor. The claim is then a consequence
of proposition 4.3.2.

(iii). Since cofibrations and trivial cofibrations are componentwise in the Heller
model structure, 𝑈 ∗ : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is a left Quillen functor (with respect
to the Heller model structure), and by proposition 1.9.19, so is B(−, ℂop, ℂop) :
[ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]. Thus, B(𝑈 ∗(−), ℂop, ℂop) : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is a
left Quillen functor (by proposition 4.3.5), and as before, it follows that we have
a Quillen adjunction. ■
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Corollary 1.10.7. Let 𝑈 : ℂ → 𝔻 be a functor between small categories. Then
RanBK

𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] preserves natural weak homotopy equivalences
between projective-fibrant diagrams.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.10.6. ■

The homotopical universal property of Bousfield–Kan extensions is tradi-
tionally stated in terms of derived functors.

Definition 1.10.8. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• A homotopy left Kan extension functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 along
𝑈 : ℂ → 𝔻 is a homotopical left approximation for the functor Lan𝑈 :
[ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭].

• A homotopy right Kan extension functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 along
𝑈 : ℂ → 𝔻 is a homotopical right approximation for the functor Ran𝑈 :
[ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭].

Theorem 1.10.9. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

(i) Lan𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] sends natural weak homotopy equivalences
between diagrams of the form B(ℂ, ℂ, 𝐹 ) to natural weak homotopy equi-
valences of diagrams 𝔻 → 𝐬𝐒𝐞𝐭.

(ii) B(ℂ, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is (the functor part) of a functorial left
deformation retract for Lan𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭].

(iii) LanBK
𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is (the functor part of) a homotopy left Kan

extension functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 along 𝑈 : ℂ → 𝔻.

Proof. (i) and (ii). Recalling theorem a.5.15, this is a straightforward consequence
of theorem 1.9.27.

(iii). Thus, by theorem 3.4.11, Lan𝑈 B(ℂ, ℂ, −) : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is (the
functor part of) a homotopical left approximation for Lan𝑈 , and by proposi-
tion 1.9.7,

Lan𝑈 B(ℂ, ℂ, −) ≅ 𝑈 ∗𝔻 ⋆ℂ B(ℂ, ℂ, −) ≅ B(𝑈 ∗𝔻, ℂ, −) = LanBK
𝑈 (−)

so we are done. ■
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Theorem 1.10.10. Let 𝑈 : ℂ → 𝔻 be a functor between small categories and
let 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 be (the functor part of) any functorial fibrant replacement
in 𝐬𝐒𝐞𝐭.

(i) Ran𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] sends natural weak homotopy equivalences
between diagrams of the form C(ℂ, ℂ, 𝐹 ) where every 𝐹 𝑐 is a Kan complex
to natural weak homotopy equivalences of diagrams 𝔻 → 𝐬𝐒𝐞𝐭.

(ii) C(ℂ, ℂ, 𝑅 ∘ −) : [ℂ, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is (the functor part) of a functorial
right deformation retract for Ran𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭].

(iii) RanBK
𝑈 (𝑅 ∘ −) : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is (the functor part of) a homotopy

right Kan extension functor for diagrams ℂ → 𝐬𝐒𝐞𝐭 along 𝑈 : ℂ → 𝔻.

Proof. (i) and (ii). Recalling theorem a.5.15, this is a straightforward consequence
of theorem 1.9.26.

(iii). Thus, by theorem 3.4.11, Ran𝑈 C(ℂ, ℂ, 𝑅 ∘ −) : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] is
(the functor part of) a homotopical right approximation for Lan𝑈 , and by pro-
position 1.9.7,

Ran𝑈 C(ℂ, ℂ, 𝑅 ∘ −) ≅ {𝑈 ∗𝔻op, C(ℂ, ℂ, 𝑅 ∘ −)}ℂ

≅ C(𝑈 ∗𝔻op, ℂ, 𝑅 ∘ −) = RanBK
𝑈 (𝑅 ∘ −)

so we are done. ■

Lemma 1.10.11. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories.

(i) There is a natural weak homotopy equivalence

B(𝑈 ∗𝔻, ℂ, ℂ) ⇒ disc 𝔻(𝑈−, −)

of functors ℂop × 𝔻 → 𝐒𝐞𝐭.

(ii) There is a natural weak homotopy equivalence

𝑈 ∗B(𝑉 ∗𝔼, 𝔻, 𝔻) ⇒ disc 𝔼(𝑉 𝑈−, −)

of functors ℂop × 𝔼 → 𝐒𝐞𝐭.
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(iii) There is a natural weak homotopy equivalence

B(𝑉 ∗𝔼, 𝔻, B(𝑈 ∗𝔻, ℂ, ℂ)) ⇒ 𝑈 ∗B(𝑉 ∗𝔼, 𝔻, 𝔻)

of functors ℂop × 𝔼 → 𝐒𝐞𝐭.

Proof. (i). This is a special case of proposition 1.9.16.

(ii). As above, there is a natural weak homotopy equivalence

B(𝑉 ∗𝔼, 𝔻, 𝔻) ⇒ disc 𝔼(𝑉 −, −)

of functors 𝔻op×𝔼 → 𝐒𝐞𝐭, and 𝑈 ∗ : [𝔻op, [𝔼, 𝐬𝐒𝐞𝐭]] → [ℂop, [𝔼, 𝐬𝐒𝐞𝐭]] preserves
weak equivalences, so the claim follows.

(iii). We may apply corollary 1.10.5 to obtain a natural weak homotopy equival-
ence of the required form. ■

Proposition 1.10.12.
(i) Let ℂ be a small category. There is a natural weak equivalence LanBK

idℂ
⇒

id[ℂ,𝐬𝐒𝐞𝐭].

(ii) Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small categories.
There is a natural weak equivalence LanBK

𝑉 ∘ LanBK
𝑈 ⇒ LanBK

𝑉 𝑈 .

Dually:

(i′) Let ℂ be a small category. There is a natural weak equivalence id[ℂ,𝐬𝐒𝐞𝐭] ⇒
RanBK

idℂ
.

(ii′) Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small categories.
There is a natural weak equivalence RanBK

𝑉 𝑈 ⇒ RanBK
𝑉 ∘ RanBK

𝑈 .

Proof. (i). By definition, LanBK
idℂ

= B(ℂ, ℂ, −), so this is a consequence of pro-
position 1.9.16.

(ii). By definition,

LanBK
𝑉 ∘ LanBK

𝑈 = B(𝑉 ∗𝔼, 𝔻, B(𝑈 ∗𝔻, ℂ, −))

and by theorem 1.8.37,

B(𝑉 ∗𝔼, 𝔻, B(𝑈 ∗𝔻, ℂ, −)) ≅ B(𝑈 ∗B(𝑉 ∗𝔼, 𝔻, 𝔻), ℂ, −)
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so by corollary 1.9.20, to prove the claim, it is enough to produce a natural weak
homotopy equivalence of the following form,

𝑈 ∗B(𝑉 ∗𝔼, 𝔻, 𝔻) ⇒ disc(𝑉 𝑈)∗𝔼 = disc 𝔼(𝑉 𝑈−, −)

but this was done in lemma 1.10.11. ■

¶ 1.10.13. Henceforth, for any functor 𝑈 : ℂ → 𝔻 between small categories,
we write

ℝBK𝑈 ∗ : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

for the right adjoint of LanBK
𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭] and

𝕃BK𝑈 ∗ : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭]

for the left adjoint of RanBK
𝑈 : [ℂ, 𝐬𝐒𝐞𝐭] → [𝔻, 𝐬𝐒𝐞𝐭].

Proposition 1.10.14. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• There is an adjunction of the form

𝐋Lan𝑈 ⊣ Ho 𝑈 ∗ : Ho [𝔻, 𝐬𝐒𝐞𝐭] → Ho [ℂ, 𝐬𝐒𝐞𝐭]

where 𝐋Lan𝑈 𝐹 = LanBK
𝑈 𝐹 for all diagrams 𝐹 : ℂ → 𝐬𝐒𝐞𝐭.

• There is an adjunction of the form

Ho 𝑈 ∗ ⊣ 𝐑Ran𝑈 : Ho [ℂ, 𝐬𝐒𝐞𝐭] → Ho [𝔻, 𝐬𝐒𝐞𝐭]

where 𝐑Ran𝑈 𝐹 = RanBK
𝑈 𝐹 for all diagrams 𝐹 : ℂ → 𝐊𝐚𝐧.

Proof. Apply theorem 3.3.24 to theorems 1.10.9 and 1.10.10. ■

Proposition 1.10.15. Let 𝑈 : ℂ → 𝔻 be a functor between small categories.

• There exist a conjugate pair of natural transformations

LanBK
𝑈 ⇒ Lan𝑈 𝑈 ∗ ⇒ ℝBK𝑈 ∗

that satisfy the following conditions:

– LanBK
𝑈 𝐹 ⇒ Lan𝑈 𝐹 is a natural weak homotopy equivalence for

every projective-cofibrant diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭, and in particu-
lar, for every diagram of the form 𝐹 = B(ℂ, ℂ, 𝐹 ′) for any diagram
𝐹 ′ : ℂ → 𝐬𝐒𝐞𝐭.
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– 𝑈 ∗𝐺 ⇒ ℝBK𝑈 ∗𝐺 is a natural weak homotopy equivalence for every
projective-fibrant diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭.

• There exist a conjugate pair of natural transformations

𝕃BK𝑈 ∗ ⇒ 𝑈 ∗ Ran𝑈 ⇒ RanBK
𝑈

that satisfy the following conditions:

– 𝕃BK𝑈 ∗𝐺 ⇒ 𝑈 ∗𝐺 is a natural weak homotopy equivalence for every
(injective-cofibrant) diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭.

– Ran𝑈 𝐹 ⇒ RanBK
𝑈 𝐹 is a is natural weak homotopy equivalence for

every injective-fibrant diagram 𝐹 : ℂ → 𝐬𝐒𝐞𝐭 and also for every dia-
gram of the form 𝐹 = C(ℂ, ℂ, 𝐹 ′) for any projective-fibrant diagram
𝐹 ′ : ℂ → 𝐬𝐒𝐞𝐭.

Proof. The two claims are formally dual; we will prove the first version.
By theorem 1.10.9,[17] there is a natural transformation LanBK

𝑈 ⇒ Lan𝑈 whose
components at diagrams of the form B(ℂ, ℂ, 𝐹 ′) are natural weak homotopy
equivalences (of diagrams 𝔻 → 𝐬𝐒𝐞𝐭).

On the other hand, it is not hard to see that 𝑈 ∗ : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is
a right Quillen functor with respect to the Bousfield–Kan model structure,[18]

so by combining lemmas 1.5.2 and 3.1.11, propositions 3.3.10, 3.3.13, and 4.3.2,
and theorem 4.3.12, we see that the components of the natural transformation at
projective-cofibrant diagrams are also natural weak homotopy equivalences.

Finally, we may apply theorem 3.3.24 to deduce that the conjugate natural
transformation 𝑈 ∗ ⇒ ℝBK𝑈 ∗ has the property that its components at projective-
fibrant diagrams 𝔻 → 𝐬𝐒𝐞𝐭 are natural weak homotopy equivalences (of dia-
grams ℂ → 𝐬𝐒𝐞𝐭). ■

[17] In the dual version, use theorem 1.10.10 instead.
[18] In the dual version, use the fact that 𝑈 ∗ : [𝔻, 𝐬𝐒𝐞𝐭] → [ℂ, 𝐬𝐒𝐞𝐭] is a left Quillen functor with

respect to the Heller model structure.
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Lemma 1.10.16. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories and let 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be a functor. Consider the following diagram
in [𝔼, 𝐬𝐒𝐞𝐭],

LanBK
𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈) Lan𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈)

LanBK
𝑉 𝑈 𝐺𝑈 Lan𝑉 𝑈 𝐺𝑈

LanBK
𝑉 𝐺 Lan𝑉 𝐺

LanBK
𝑉 𝑈 𝑝𝐺𝑈 Lan𝑉 𝑈 𝑝𝐺𝑈

Lan𝑉 𝐺

where the horizontal arrows are the canonical comparisons of proposition 1.10.15,
𝑝𝐺𝑈 : B(ℂ, ℂ, 𝐺𝑈) ⇒ 𝐺𝑈 is the natural weak homotopy equivalence of propos-
ition 1.9.16, 𝐺 : Lan𝑈 𝐺𝑈 ⇒ 𝐺 is the counit, and LanBK

𝑉 𝑈 𝐺𝑈 ⇒ LanBK
𝑉 𝐺 is the

canonical comparison of proposition 1.8.34.

(i) The diagram commutes and is functorial in 𝐺.

(ii) The canonical comparison

LanBK
𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈) ⇒ Lan𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈)

and the natural transformation

LanBK
𝑉 𝑈 𝑝𝐺𝑈 : LanBK

𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈) ⇒ LanBK
𝑉 𝑈 𝐺𝑈

are natural weak homotopy equivalences, and the image in Ho [𝔻, 𝐬𝐒𝐞𝐭] of

𝐺 ∘ Lan𝑈 𝑝𝐺𝑈 : Lan𝑈 B(ℂ, ℂ, 𝐺𝑈) ⇒ 𝐺

can be identified with the derived counit 𝐋Lan𝑈 (Ho 𝑈 ∗)𝐺 → 𝐺.

(iii) If 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 is projective-cofibrant, then the canonical comparison
LanBK

𝑉 𝐺 ⇒ Lan𝑉 𝐺 is also a natural weak homotopy equivalence, so the
canonical comparison

LanBK
𝑉 𝑈 𝐺𝑈 ⇒ LanBK

𝑉 𝐺

is a natural weak homotopy equivalence if and only if

Lan𝑉 𝐺 ∘ Lan𝑉 𝑈 𝑝𝐺𝑈 : Lan𝑉 𝑈 B(ℂ, ℂ, 𝐺𝑈) ⇒ Lan𝑉 𝐺

is a natural weak homotopy equivalence.
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Proof. (i). The top square commutes by naturality, and the bottom square com-
mutes by proposition 1.8.34 (applied componentwise). Every arrow appearing
in the diagram is natural in 𝐺, so the diagram itself is functorial in 𝐺.

(ii). The first subclaim was proved in proposition 1.10.15, the second subclaim
is a consequence of corollary 1.10.5, and the third subclaim is an application of
theorem 3.3.24 to theorem 1.10.9.

(iii). We know that LanBK
𝑉 𝐺 ⇒ Lan𝑉 𝐺 is a natural weak homotopy equivalence

when 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 is projective-cofibrant, and the rest of the claim is a simple
application of the 2-out-of-3 property. ■

Corollary 1.10.17. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories. For any diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the following are equivalent:

(i) The canonical comparison LanBK
𝑉 𝑈 𝐺𝑈 ⇒ LanBK

𝑉 𝐺 of proposition 1.8.34
is a natural weak homotopy equivalence of diagrams 𝔼 → 𝐬𝐒𝐞𝐭.

(ii) The morphism 𝐋Lan𝑉 𝐺 : 𝐋Lan𝑉 𝐋Lan𝑈 (Ho 𝑈 ∗)𝐺 → 𝐋Lan𝑉 𝐺 is an
isomorphism (in Ho [𝔼, 𝐬𝐒𝐞𝐭]).

Proof. By theorem 1.9.13 and proposition 4.1.17, there is a projective-cofibrant
replacement (�̃�, 𝑞) for 𝐺; but the following diagram in [𝔼, 𝐬𝐒𝐞𝐭] commutes,

LanBK
𝑉 𝑈 �̃�𝑈 LanBK

𝑉 �̃�

LanBK
𝑉 𝑈 𝐺𝑈 LanBK

𝑉 𝐺

LanBK
𝑉 𝑈 𝑞𝑈 LanBK

𝑉 𝑞

and the vertical arrows are natural weak homotopy equivalences by corollary 1.10.5,
so the claim is a consequence of lemma 1.10.16 (plus lemmas 1.5.2 and 3.1.11).

■

Lemma 1.10.18. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories and let 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be a diagram. Consider the following diagram
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in [𝔼, 𝐬𝐒𝐞𝐭],

Ran𝑉 𝐺 RanBK
𝑉 𝐺

Ran𝑉 𝑈 𝐺𝑈 RanBK
𝑉 𝑈 𝐺𝑈

Ran𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈) RanBK
𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈)

Ran𝑉 𝐺

Ran𝑉 𝑈 𝑖𝐺𝑈 RanBK
𝑉 𝑈 𝑖𝐺𝑈

where the horizontal arrows are the canonical comparisons of proposition 1.10.15,
𝑖𝐺𝑈 : 𝐺𝑈 ⇒ C(ℂ, ℂ, 𝐺𝑈) is the natural weak homotopy equivalence of propos-
ition 1.9.16, 𝐺 : 𝐺 ⇒ Ran𝑈 𝐺𝑈 is the unit, and RanBK

𝑉 𝐺 ⇒ RanBK
𝑉 𝑈 𝐺𝑈 is the

canonical comparison of proposition 1.8.34.

(i) The diagram commutes and is functorial in 𝐺.

(ii) If 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 is projective-fibrant, then the canonical comparison

RanBK
𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈) ⇒ RanBK

𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈)

and the natural transformation

RanBK
𝑉 𝑈 𝑖𝐺𝑈 : RanBK

𝑉 𝑈 𝐺𝑈 ⇒ RanBK
𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈)

are natural weak homotopy equivalences, and the image in Ho [𝔻, 𝐬𝐒𝐞𝐭] of

Ran𝑈 𝑖𝐺𝑈 ∘ 𝐺 : 𝐺 ⇒ Lan𝑈 B(ℂ, ℂ, 𝐺𝑈)

can be identified with the derived unit 𝐺 → 𝐑Ran𝑈 (Ho 𝑈 ∗)𝐺.

(iii) If 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 is injective-fibrant, then the canonical comparison
Ran𝑉 𝐺 ⇒ RanBK

𝑉 𝐺 is also a natural weak homotopy equivalence, so the
canonical comparison

RanBK
𝑉 𝐺 ⇒ RanBK

𝑉 𝑈 𝐺𝑈

is a natural weak homotopy equivalence if and only if

Ran𝑉 𝑈 𝑖𝐺𝑈 ∘ Ran𝑉 𝐺 : Ran𝑉 𝐺 ⇒ Ran𝑉 𝑈 C(ℂ, ℂ, 𝐺𝑈)

is a natural weak homotopy equivalence.
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Proof. The proof is essentially the same as that of lemma 1.10.16. ■

Corollary 1.10.19. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories. For any diagram 𝐺 : 𝔻 → 𝐊𝐚𝐧, the following are equivalent:

(i) The canonical comparison RanBK
𝑉 𝐺 ⇒ RanBK

𝑉 𝑈 𝐺𝑈 of proposition 1.8.34
is a natural weak homotopy equivalence of diagrams 𝔼 → 𝐬𝐒𝐞𝐭.

(ii) The morphism 𝐑Ran𝑉 𝐺 : 𝐑Ran𝑉 𝐺 → 𝐑Ran𝑉 𝐑Ran𝑈 (Ho 𝑈 ∗)𝐺 is an
isomorphism (in Ho [𝔼, 𝐬𝐒𝐞𝐭]).

Proof. By theorem 1.9.14 and proposition 4.1.17, there is an injective-fibrant re-
placement (�̂�, 𝑗) for 𝐺; but the following diagram in [𝔼, 𝐬𝐒𝐞𝐭] commutes,

LanBK
𝑉 𝑈 �̃�𝑈 LanBK

𝑉 �̃�

LanBK
𝑉 𝑈 𝐺𝑈 LanBK

𝑈 𝐺

LanBK
𝑉 𝑈 𝑞𝑈 LanBK

𝑉 𝑞

and since (by corollary 4.3.21) both �̂� and 𝐺 are projective-fibrant diagrams, the
vertical arrows are natural weak homotopy equivalences by corollary 1.10.5; thus
the claim is a consequence of lemma 1.10.18 (plus lemmas 1.5.2 and 3.1.11). ■

Lemma 1.10.20. Let 𝑈 : ℂ → 𝔻 and 𝑉 : 𝔻 → 𝔼 be functors between small
categories. The following are equivalent:

(i) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the canonical comparison (of proposi-
tion 1.8.34)

LanBK
𝑉 𝑈 𝐺𝑈 ⇒ LanBK

𝑉 𝐺

is a natural weak homotopy equivalence of diagrams 𝔼 → 𝐬𝐒𝐞𝐭.

(ii) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the morphism

𝐋Lan𝑉 𝐺 : 𝐋Lan𝑉 𝐋Lan𝑈 (Ho 𝑈 ∗)𝐺 → 𝐋Lan𝑉 𝐺

is an isomorphism in Ho [𝔼, 𝐬𝐒𝐞𝐭].

(iii) For every diagram 𝐻 : 𝔼 → 𝐬𝐒𝐞𝐭, the morphism

(Ho 𝑉 ∗)𝐻 : (Ho 𝑉 ∗)𝐻 → 𝐑Ran𝑈 (Ho 𝑈 ∗)(Ho 𝑉 ∗)𝐻

is an isomorphism in Ho [𝔻, 𝐬𝐒𝐞𝐭].
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Dually, the following are equivalent:

(i′) For every diagram 𝐺 : 𝔻 → 𝐊𝐚𝐧, the canonical comparison (of proposi-
tion 1.8.34)

RanBK
𝑉 𝐺 ⇒ RanBK

𝑉 𝑈 𝐺𝑈

is a natural weak homotopy equivalence of diagrams 𝔼 → 𝐬𝐒𝐞𝐭.

(ii′) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the morphism

𝐑Ran𝑉 𝐺 : 𝐑Ran𝑉 𝐺 ⇒ 𝐑Ran𝑉 𝐑Ran𝑈 (Ho 𝑈 ∗)𝐺

is an isomorphism in Ho [𝔼, 𝐬𝐒𝐞𝐭].

(iii′) For every diagram 𝐻 : 𝔼 → 𝐬𝐒𝐞𝐭, the morphism

(Ho 𝑉 ∗)𝐻 : 𝐋Lan𝑈 (Ho 𝑈 ∗)(Ho 𝑉 ∗)𝐻 ⇒ (Ho 𝑉 ∗)𝐻

is an isomorphism in Ho [𝔻, 𝐬𝐒𝐞𝐭].

Proof. (i) ⇔ (ii), (i′) ⇔ (ii′). See corollaries 1.10.17 and 1.10.19

(ii) ⇔ (iii), (ii′) ⇔ (iii ′). This is a special case of proposition a.1.12. ■

Corollary 1.10.21. Let 𝑈 : ℂ → 𝔻 be a functor between small categories and
let 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be a projective-cofibrant diagram. If 𝑈 : ℂ → 𝔻 is cofinal,
then the following are equivalent:

(i) The canonical comparison lim−−→
BK
ℂ

𝐺𝑈 → lim−−→
BK
𝔻

𝐺 of proposition 1.8.34 is
a weak homotopy equivalence of simplicial sets.

(ii) The canonical comparison lim−−→
BK
ℂ

𝐺𝑈 → lim−−→ℂ
𝐺𝑈 of proposition 1.10.15

is a weak homotopy equivalence of simplicial sets.

(iii) The canonical comparison 𝐋lim−−→ℂ
(Ho 𝑈 ∗)𝐺 → 𝐋lim−−→𝔻

𝐺 is an isomorph-
ism (in Ho 𝐬𝐒𝐞𝐭).
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Proof. With notation as in lemma 1.10.16, consider the following commutative
diagram in 𝐬𝐒𝐞𝐭:

lim−−→
BK
ℂ

B(ℂ, ℂ, 𝐺𝑈) lim−−→ℂ
B(ℂ, ℂ, 𝐺𝑈)

lim−−→
BK
ℂ

𝐺𝑈 lim−−→ℂ
𝐺𝑈

lim−−→
BK
𝔻

𝐺 lim−−→𝔻
𝐺

≃lim−→
BK
ℂ

𝑝𝐺𝑈

≃

Lan𝑉 𝑈 𝑝𝐺𝑈

lim−→𝔻
𝐺≅

≃

The lemma says that the marked arrows are weak homotopy equivalences of sim-
plicial sets, and the cofinality hypothesis says lim−−→𝔻 𝐺 : lim−−→ℂ

𝐺𝑈 → lim−−→𝔻
𝐺 is an

isomorphism of simplicial sets. Thus, equivalence of (i) and (ii) is a consequence
of the 2-out-of-3 property, and the equivalence of (i) and (iii) is a special case of
corollary 1.10.17. ■

Corollary 1.10.22. Let 𝑈 : ℂ → 𝔻 be a functor between small categories and
let 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭 be an injective-fibrant diagram. If 𝑈 : ℂ → 𝔻 is coinitial,
then the following are equivalent:

(i) The canonical comparison lim←−−
BK
𝔻

𝐺 → lim←−−
BK
ℂ

𝐺𝑈 of proposition 1.8.34 is
a weak homotopy equivalence of simplicial sets.

(ii) The canonical comparison lim−−→ℂ
𝐺𝑈 → lim←−−

BK
ℂ

𝐺𝑈 of proposition 1.10.15
is a weak homotopy equivalence of simplicial sets.

(iii) The canonical comparison 𝐑lim←−−𝔻
𝐺 → 𝐑lim←−−ℂ

(Ho 𝑈 ∗)𝐺 is an isomorph-
ism (in Ho 𝐬𝐒𝐞𝐭).

Proof. The proof is essentially the same as that of corollary 1.10.21. ■

Definition 1.10.23. Let ℂ and 𝔻 be small categories.

• A homotopy coinitial functor 𝑈 : ℂ → 𝔻 is a functor such that, for all
objects 𝑑 in 𝔻, the nerve N((𝑈 ↓ 𝑑)) is a weakly contractible simplicial
set.

• A homotopy cofinal functor 𝑈 : ℂ → 𝔻 is a functor such that, for all
objects 𝑑 in 𝔻, the nerve N((𝑑 ↓ 𝑈)) is a weakly contractible simplicial
set.
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Remark 1.10.24. By proposition 1.7.12, 𝑈 : ℂ → 𝔻 is a homotopy coinitial
functor if and only if 𝑈 op : ℂop → 𝔻op is a homotopy cofinal functor.
Remark 1.10.25. Every homotopy coinitial (resp. homotopy cofinal) functor is a
coinitial (resp. cofinal) functor, but the converse is false.

Theorem 1.10.26. Let 𝑈 : ℂ → 𝔻 be a functor between small categories. The
following are equivalent:

(i) 𝑈 : ℂ → 𝔻 is a homotopy coinitial functor.

(ii) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the canonical comparison morphism

𝐑lim←−−
𝔻

𝐺 → 𝐑lim←−−
ℂ

𝐺𝑈

is an isomorphism in Ho 𝐬𝐒𝐞𝐭.

(iii) For every diagram 𝐺 : 𝔻 → 𝐊𝐚𝐧, the canonical comparison morphism

lim−−→
BK

𝔻
𝐺 → lim−−→

BK

ℂ
𝐺𝑈

is a weak homotopy equivalence of simplicial sets.

Proof. (i) ⇔ (ii). By lemmas 1.10.20 and lemma 1.10.16 and corollary 1.10.17, it
is equivalent to show that 𝑈 : ℂ → 𝔻 is a homotopy coinitial functor if and only
if

LanBK
𝑈 Δ𝑋 ⇒ Δ𝑋

is a weak homotopy equivalence for every simplicial set 𝑋. By definition,

(LanBK
𝑈 Δ𝑋)𝑑 = B(𝑈 ∗h𝑑 , ℂ, Δ𝑋)

and by proposition 1.8.36,

B(𝑈 ∗h𝑑 , ℂ, Δ𝑋) ≅ B(𝑈 ∗h𝑑 , ℂop, Δ1) × 𝑋

but it is not hard to see that the diagram below commutes,

RanBK
𝑈 Δ𝑋 Δ𝑋

B(𝑈 ∗𝔻, ℂ, Δ1) × 𝑋 Δ1 × 𝑋

≅ ≅
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where the bottom arrow is the morphism induced by the unique natural trans-
formation B(𝑈 ∗𝔻, ℂop, Δ1) → Δ1, so by proposition 1.5.17, B(𝑈 ∗h𝑑 , ℂop, Δ1)
is a weakly contractible simplicial set if and only if every RanBK

𝑈 Δ𝑋 ⇒ Δ𝑋 is
a natural weak homotopy equivalence. Remark 1.8.5 says,

B(𝑈 ∗h𝑑 , ℂ, Δ1) ≅ N((𝑈 ↓ 𝑑))

so the claim follows.

(ii) ⇒ (iii). This is corollary 1.10.17. ■

Theorem 1.10.27. Let 𝑈 : ℂ → 𝔻 be a functor between small categories. The
following are equivalent:

(i) 𝑈 : ℂ → 𝔻 is a homotopy cofinal functor.

(ii) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the canonical comparison morphism

𝐋lim−−→
ℂ

𝐺𝑈 → 𝐋lim−−→
𝔻

𝐺

is an isomorphism in Ho 𝐬𝐒𝐞𝐭.

(iii) For every diagram 𝐺 : 𝔻 → 𝐬𝐒𝐞𝐭, the canonical comparison morphism

lim−−→
BK

ℂ
𝐺𝑈 → lim−−→

BK

𝔻
𝐺

is a weak homotopy equivalence of simplicial sets.

Proof. (i) ⇔ (ii). By lemmas 1.10.20 and 1.10.18 and corollary 1.10.19, it is equi-
valent to show that 𝑈 : ℂ → 𝔻 if and only if the canonical comparison

Δ𝑋 ⇒ RanBK
𝑈 Δ𝑋

is a weak homotopy equivalence for every Kan complex 𝑋. By definition,

(RanBK
𝑈 Δ𝑋)𝑑 = C(𝑈 ∗h𝑑 , ℂ, Δ𝑋)

and by proposition 1.8.36,

C(𝑈 ∗h𝑑 , ℂ, Δ𝑋) ≅ [B(𝑈 ∗h𝑑 , ℂop, Δ1), 𝑋]
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but it is not hard to see that the diagram below commutes,

Δ𝑋 RanBK
𝑈 Δ𝑋

[Δ1, 𝑋] [B(𝑈 ∗𝔻, ℂ, Δ1), 𝑋]

≅ ≅

where the bottom arrow is the morphism induced by the unique natural trans-
formation B(𝑈 ∗𝔻, ℂop, Δ1) → Δ1, so by proposition 1.5.17, Δ𝑋 ⇒ RanBK

𝑈 Δ𝑋
is a weak homotopy equivalence for all Kan complexes 𝑋 if and only if every
B(𝑈 ∗h𝑑 , ℂop, Δ1) is a weakly contractible simplicial set. Remark 1.8.5 says,

B(𝑈 ∗h𝑑 , ℂop, Δ1) ≅ N((𝑑 ↓ 𝑈)op) ≅ N((𝑑 ↓ 𝑈))op

so (recalling proposition 1.7.12) the claim follows.

(ii) ⇔ (iii). This is corollary 1.10.17. ■

1.11 Homotopy theory of nerves
Prerequisites. §§1.2, 1.3, 1.5, 1.7, 1.9, 3.1, 4.3, 5.1, b.5.

Although nerves of categories are not usually Kan complexes, they still pos-
sesses enough structure to have a good theory of weak homotopy equivalences: a
surprising number of category-theoretic constructions have homotopical mean-
ing when interpreted through the lens of the nerve functor. Most of these ideas
were introduced by Quillen [1973] for the purpose of studying higher algebraic
𝐾-theory.

¶ 1.11.1. In this section, categories are small unless otherwise stated.

Definition 1.11.2. A weak homotopy equivalence of categories is a functor
𝑓 : 𝔸 → 𝔹 such that the induced morphism N(𝑓) : N(𝔸) → N(𝔹) is a weak
homotopy equivalence of simplicial sets.

Remark. Weak homotopy equivalences of categories are also called ∞-equi-
valences, but we should avoid this term as it conflicts with the terminology of
higher category theory.

Lemma 1.11.3. 𝐂𝐚𝐭, with the class of weak homotopy equivalences, is a satur-
ated homotopical category. In particular, the class of weak homotopy equival-
ences of categories has the 2-out-of-3 property and is closed under retracts.
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Proof. Apply lemma 3.1.8 to lemma 1.5.2. ■

Remark 1.11.4. A functor 𝑓 : 𝔸 → 𝔹 is a weak homotopy equivalence if and
only if 𝑓 op : 𝔸op → 𝔹op is a weak homotopy equivalence, by propositions 1.2.2
and 1.7.12.

Lemma 1.11.5. Let 𝑓 : 𝔸 → 𝔹 be a functor. Then N(𝑓) : N(𝔸) → N(𝔹) is
right orthogonal to every inner horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛.

Proof. Apply lemma a.3.10 and proposition a.3.26 to lemma 1.2.6. ■

Proposition 1.11.6. Let 𝑝 : 𝔸 → 𝔹 be a functor. The following are equivalent:

(i) The morphism N(𝑝) : N(𝔸) → N(𝔹) has the right lifting property with
respect to the horn inclusion Λ1

1 ↪ Δ1 and is right orthogonal to the horn
inclusions Λ𝑛

𝑘 ↪ Δ𝑛 for 𝑛 > 1 and 0 < 𝑘 ≤ 𝑛.

(ii) Every morphism in 𝔸 is 𝑝-prone, and 𝑝 : 𝔸 → 𝔹 is a Grothendieck fibra-
tion.

(iii) The functor 𝑝 : 𝔸 → 𝔹 is a Grothendieck fibration and every fibre of 𝑝 is
a groupoid.

Dually, the following are equivalent:

(i) The morphism N(𝑝) : N(𝔸) → N(𝔹) has the right lifting property with
respect to the horn inclusion Λ1

0 ↪ Δ1 and is right orthogonal to the horn
inclusions Λ𝑛

𝑘 ↪ Δ𝑛 for 𝑛 > 1 and 0 ≤ 𝑘 < 𝑛.

(ii) Every morphism in 𝔸 is 𝑝-supine, and 𝑝 : 𝔸 → 𝔹 is a Grothendieck
opfibration.

(iii) The functor 𝑝 : 𝔸 → 𝔹 is a Grothendieck opfibration and every fibre of 𝑝
is a groupoid.

Proof. (i) ⇒ (ii). By unfolding definitions, one sees that every morphism in 𝔸
is 𝑝-prone if and only if N(𝑝) : N(𝔸) → N(𝔹) is right orthogonal to the horn
inclusion Λ2

2 ↪ Δ2; and if every morphism in 𝔸 is 𝑝-prone, then 𝑝 : 𝔸 → 𝔹 is a
Grothendieck fibration if and only if N(𝑝) : N(𝔸) → N(𝔹) has the right lifting
property with respect to Λ1

1 ↪ Δ1.

(ii) ⇔ (iii). See proposition b.5.32.
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(ii) ⇒ (i). We begin with the following observations:

• Lemma 1.11.5 says N(𝑝) : N(𝔸) → N(𝔹) is right orthogonal to every inner
horn inclusion.

• Since every morphism in 𝔸 is 𝑝-prone, N(𝑝) : N(𝔸) → N(𝔹) is right
orthogonal to the horn inclusion Λ2

2 ↪ Δ2.

• Since 𝑝 : 𝔸 → 𝔹 is a Grothendieck fibration, N(𝑝) : N(𝔸) → N(𝔹) has
the right lifting property with respect to the horn inclusion Λ1

1 ↪ Δ1.

Thus, it is enough to verify that N(𝑝) is right orthogonal to the horn inclusions
Λ𝑛

𝑛 ↪ Δ𝑛 for 𝑛 ≥ 3. This is straightforward for 𝑛 = 3, and for 𝑛 > 3, it is a
consequence of proposition 1.2.18 and corollary 1.2.19. ■

Corollary 1.11.7. For any category 𝔸, the nerve N(𝔸) is a Kan complex if and
only if 𝔸 is a groupoid.

Proof. The unique functor 𝔸 → 𝟙 is automatically both a Grothendieck fibra-
tion and a Grothendieck opfibration, so the claim is a special case of proposi-
tion 1.11.6. ■

Remark 1.11.8. The above shows that one cannot transfer the Kan–Quillen model
structure along the functor N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 by defining the weak equivalences
and the fibrations to be the morphisms that N sends to weak equivalences and
fibrations in 𝐬𝐒𝐞𝐭.

Definition 1.11.9. An aspherical category is a category whose nerve is weakly
contractible, i.e. a category 𝔸 such that the unique functor 𝔸 → 𝟙 is a weak
homotopy equivalence.

Remark 1.11.10. If 𝔸 has an initial object (resp. terminal object), then N(𝔸) is
contractible: indeed, then the unique functor 𝔸 → 𝟙 has a left adjoint (resp. right
adjoint), and by corollary 1.3.11, we deduce that N(𝔸) → N(𝟙) is an intrinsic
homotopy equivalence. In particular, such an 𝔸 is aspherical.
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Lemma 1.11.11. Let 𝑝 : 𝔸 → ℂ be a functor and let 𝑃 : ℂ → 𝐬𝐒𝐞𝐭 be the
diagram defined by 𝑃 (𝑐) = N((𝑝 ↓ 𝑐)).

(i) The projections (𝑝 ↓ 𝑐) → 𝔸 induce a colimiting cocone 𝑃 ⇒ ΔN(𝔸).

(ii) The canonical comparison morphism[19]

lim−−→
BK

ℂ
𝑃 → lim−−→

ℂ
𝑃 ≅ N(𝔸)

is a weak homotopy equivalence.

Dually, let 𝑞 : 𝔸 → ℂ be a functor and let 𝑄 : ℂop → 𝐬𝐒𝐞𝐭 be the diagram
defined by 𝑄(𝑐) = N((𝑐 ↓ 𝑞)).

(i′) The projections (𝑐 ↓ 𝑞) → 𝔸 induce a colimiting cocone 𝑄 ⇒ ΔN(𝔸).

(ii′) The canonical comparison morphism

lim−−→
KB

ℂop

𝑄 → lim−−→
ℂop

𝑄 ≅ N(𝔸)

is a weak homotopy equivalence.

Proof. (i). It is clear that the projections (𝑝 ↓ 𝑐) → 𝔸 define a cocone, i.e.

(𝑝 ↓ 𝑐0) 𝔸

(𝑝 ↓ 𝑐1) 𝔸

commutes for every morphism 𝑐0 → 𝑐1; we must show that the corresponding
cocone 𝑃 ⇒ ΔN(𝔸) is a colimiting cocone.

By remark 1.8.5, N((𝑓 ↓ 𝑏)) ≅ B(𝑝∗h𝑐, 𝔸, Δ1), and under this identification,
the forgetful functor (𝑝 ↓ 𝑐) → 𝔸 corresponds to the morphism

B(𝑝∗h𝑐, 𝔸, Δ1) → B(Δ1, 𝔸, Δ1)

induced by the unique natural transformation 𝑝∗h𝑐 ⇒ Δ1. Proposition 1.8.36
implies that B(−, 𝔸, Δ1) preserves colimiting cocones, so it suffices to show that

[19] See proposition 1.8.38.
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lim−−→𝔹
𝑝∗h• ≅ Δ1; and since colimits in [𝔸op, 𝐒𝐞𝐭] can be calculated component-

wise, it is enough to verify that lim−−→ℂ
h 𝑐 ≅ 1 for all objects 𝑐 in ℂ. But the Yoneda

lemma yields a bijection

[ℂ, 𝐒𝐞𝐭](h 𝑐, Δ𝑋) ≅ 𝐒𝐞𝐭(1, 𝑋)

that is natural in 𝑋, so we are done.

(ii). Let 𝐻 : 𝔸op × ℂ → 𝐬𝐒𝐞𝐭 be the functor given by 𝐻(𝑎, 𝑐) = disc 𝔹(𝑝(𝑎), 𝑐).
Then 𝑃 ≅ B(𝐻, 𝔸, Δ1), and by theorem 1.8.37 (and proposition 1.9.7),

lim−−→
BK

ℂ
𝑃 ≅ B(Δ1, ℂ, B(𝐻, 𝔸, Δ1)) ≅ B(B(Δ1, ℂ, 𝐻), 𝔸, Δ1)

but B(Δ1, ℂ, 𝐻) ≅ N(𝑝(•)∕ℂ), so (by remark 1.11.10) the unique natural trans-
formation B(Δ1, ℂ, 𝐻) ⇒ Δ1 is a natural weak homotopy equivalence; more-
over, the diagram below commutes,

B(Δ1, ℂ, B(𝐻, 𝔸, Δ1)) N(𝔸)

B(B(Δ1, ℂ, 𝐻), 𝔸, Δ1) B(Δ1, 𝔸, Δ1)

≅ ≅

so theorem 1.9.27 (plus the 2-out-of-3 property) implies that the horizontal ar-
rows in the diagram are weak homotopy equivalences. In particular, the morph-
ism B(Δ1, ℂ, 𝑃 ) → N(𝔸) in question is a weak homotopy equivalence. ■

Lemma 1.11.12. Let 𝑝 : 𝔸 → ℂ be a functor and let 𝔽 : ℂ → 𝐂𝐚𝐭 be the
diagram defined by 𝔽 (𝑐) = (𝑝 ↓ 𝑐).

(i) There is a natural transformation fitting into the following diagram in 𝐂𝐚𝐭,

𝐆(Δ𝟙, ℂ, 𝔽 ) 𝔸

ℂ ℂ

𝑝

where the left vertical arrow is the canonical projection and the top hori-
zontal arrow is the functor 𝐆(Δ𝟙, ℂ, 𝔽 ) → 𝔸 defined by (𝑐, (𝑎, 𝑢)) ↦ 𝑎.

(ii) The induced comparison functor 𝐆(Δ𝟙, ℂ, 𝔽 ) → (𝑝 ↓ ℂ) is an isomorph-
ism.
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(iii) The projection 𝑑1 : (𝑝 ↓ ℂ) → 𝔸 is a weak homotopy equivalence of cat-
egories.

Dually, let 𝑞 : 𝔸 → ℂ be a functor and let 𝔼 : ℂop → 𝐂𝐚𝐭 be the diagram defined
by 𝔼(𝑐) = (𝑐 ↓ 𝑞).

(i) There is a natural transformation fitting into the following diagram in 𝐂𝐚𝐭,

𝐆(𝔼, ℂ, Δ𝟙) 𝔸

ℂ ℂ

𝑞

where the left vertical arrow is the canonical projection and the top hori-
zontal arrow is the functor 𝐆(𝔼, ℂ, Δ𝟙) → 𝔸 defined by ((𝑎, 𝑢), 𝑐) ↦ 𝑎.

(ii) The induced comparison functor 𝐆(𝔼, ℂ, Δ𝟙) → (ℂ ↓ 𝑞) is an isomorph-
ism.

(iii) The projection 𝑑0 : (ℂ ↓ 𝑞) → 𝔸 is a weak homotopy equivalence of cat-
egories.

Proof. (i). The required natural transformation is the one whose component at
an object ((𝑎, 𝑢), 𝑐) in 𝐆(𝔼, ℂ, Δ𝟙) is the morphism 𝑢 : 𝑝𝑎 → 𝑐 in ℂ.

(ii). By unfolding the definitions, it is easy to see that the induced comparison
functor 𝐆(𝔼, ℂ, Δ𝟙) → (ℂ ↓ 𝑞) is bijective on objects and fully faithful.

(iii). The projection 𝑑1 : (𝑝 ↓ ℂ) → 𝔸 has an evident section 𝑠 : 𝔸 → (𝑝 ↓ ℂ),
namely the functor defined by 𝑎 ↦ (𝑎, 𝑝𝑎, id𝑝𝑎), and there is an evident nat-
ural transformation 𝑠 ∘ 𝑑1 ⇒ id(𝑝↓ℂ); so (by applying lemma 1.3.10) N(𝑑1) :
N((𝑝 ↓ ℂ)) → N(𝔸) is half of an intrinsic homotopy equivalence, hence is a
weak homotopy equivalence (by proposition 1.5.4). ■

Definition 1.11.13.
• A right aspherical functor is a functor 𝑓 : 𝔸 → 𝔹 with the following

property: for all objects 𝑏 in 𝔹, the comma category (𝑓 ↓ 𝑏) is aspherical.

• A left aspherical functor is a functor 𝑔 : 𝔹 → 𝔸 with the following
property: for all objects 𝑎 in 𝔸, the comma category (𝑎 ↓ 𝑔) is aspherical.
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Remark 1.11.14. A right aspherical (resp. left aspherical) functor is the same
thing as a homotopy coinitial (resp. homotopy cofinal) functor: see definition 1.10.23.
In particular, right apsherical (resp. left aspherical) functors are coinitial (resp.
cofinal) functors, but not vice versa.

Lemma 1.11.15.
• Let 𝑓 : 𝔹 → 𝔹 be a functor and let 𝔸 be the full subcategory of 𝔹 spanned

by the image of 𝑓 . If there is a natural transformation : 𝑓 ⇒ id𝔸, then
the inclusion 𝔸 ↪ 𝔹 is right aspherical.

• If 𝑔 : 𝔸 → 𝔸 be a functor and let 𝔹 be the full subcategory of 𝔸 spanned
by the image of 𝑔. If there is a natural transformation : id𝔸 ⇒ 𝑔, then
the inclusion 𝔹 ↪ 𝔸 is left aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑐 : 𝑓𝑎 → 𝑏 be a morphism in 𝔹. By naturality, the following diagram

commutes:
𝑓𝑎 𝑓𝑓𝑎 𝑓𝑏

𝑏 𝑏 𝑏

𝑐

𝑓𝑎 𝑓𝑐

𝑏

Thus, the morphism Δ0 → N((𝔸 ↓ 𝑏)) corresponding to the object (𝑓𝑏, 𝑏) is
half of an intrinsic homotopy equivalence and hence (by proposition 1.5.4) a
weak homotopy equivalence a fortiori. ■

Lemma 1.11.16. Let 𝑓 : 𝔸 → 𝔹 and 𝑔 : 𝔹 → 𝔸 be functors and let : 𝑔 ∘ 𝑓 ⇒
id𝔸 and : 𝑓 ∘ 𝑔 ⇒ id𝔹 be natural transformations.

• If 𝑓 ∙ 𝑓 = id𝑓 , then 𝑓 : 𝔸 → 𝔹 is a right aspherical functor.

• If 𝑔 ∙ 𝑔 = id𝑔, then 𝑔 : 𝔹 → 𝔸 is a left aspherical functor.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑐 : 𝑓 (𝑎) → 𝑏 be a morphism in 𝔹. By naturality, the following diagram

in 𝔹 commutes,
𝑓(𝑔(𝑓(𝑎))) 𝑓 (𝑎)

𝑓(𝑔(𝑏)) 𝑏

𝑓(𝑔(𝑐))

𝑓(𝑎)

𝑐

𝑏
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and since 𝑓 (𝑎) ∘ 𝑓( 𝑎) = id𝑓(𝑎), we obtain a the diagram in 𝔹 shown below:

𝑓(𝑎) 𝑓(𝑔(𝑏))

𝑏 𝑏

𝑐

𝑓(𝑔(𝑐)∘ 𝑎)

𝑏

Thus, the morphism Δ0 → N((𝑓 ↓ 𝑏)) corresponding to the object (𝑔(𝑏), 𝑏) is
half of an intrinsic homotopy equivalence and hence (by proposition 1.5.4) a
weak homotopy equivalence a fortiori. ■

Corollary 1.11.17.
• If 𝑓 : 𝔸 → 𝔹 is a functor that admits a right adjoint, then 𝑓 : 𝔸 → 𝔹 is

right aspherical.

• If 𝑔 : 𝔹 → 𝔸 is a functor that admits a left adjoint, then 𝑔 : 𝔹 → 𝔸 is left
aspherical. ■

Corollary 1.11.18. If 𝑓 : 𝔸 → 𝔹 is a functor that is fully faithful and essentially
surjective on objects, then 𝑓 : 𝔸 → 𝔹 is both left and right aspherical. ■

Proposition 1.11.19. Let 𝑢 : 𝔸 → 𝔹 and 𝑣 : 𝔹 → ℂ be functors.

• If 𝑣 ∘ 𝑢 : 𝔸 → ℂ is right aspherical and 𝑣 : 𝔹 → ℂ is fully faithful, then
𝑢 : 𝔸 → 𝔹 is also right aspherical.

• If 𝑣 ∘ 𝑢 : 𝔸 → ℂ is left aspherical and 𝑣 : 𝔹 → ℂ is fully faithful, then
𝑢 : 𝔸 → 𝔹 is also left aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Suppose 𝑣 ∘ 𝑢 : 𝔸 → ℂ is right aspherical and 𝑣 : 𝔹 → ℂ is fully faithful.

Then, for any object 𝑏 in 𝔹, the comma category (𝑢 ↓ 𝑏) is naturally isomorphic
to the comma category (𝑣 ∘ 𝑢 ↓ 𝑣(𝑐)), so (𝑢 ↓ 𝑏) is an aspherical category. Thus,
𝑢 : 𝔸 → 𝔹 is indeed right aspherical. ■

The following result is due to Grothendieck [1983, §40].

Theorem 1.11.20. Consider a commutative triangle of categories and functors:

𝔸 𝔹

ℂ
𝑝

𝑢

𝑞
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• If, for every object 𝑐 in ℂ, the functor 𝑢𝑐 : (𝑝 ↓ 𝑐) → (𝑞 ↓ 𝑐) induced by
𝑢 : 𝔸 → 𝔹 is a weak homotopy equivalence, then the functor 𝑢 : 𝔸 → 𝔹
itself is a weak homotopy equivalence.

• If, for every object 𝑐 in ℂ, the functor 𝑐𝑢 : (𝑐 ↓ 𝑝) → (𝑐 ↓ 𝑞) induced by
𝑢 : 𝔸 → 𝔹 is a weak homotopy equivalence, then the functor 𝑢 : 𝔸 → 𝔹
itself is a weak homotopy equivalence.

Proof. The two claims are formally dual; we will prove the first version, follow-
ing the proof of Théorème 2.1.13 in [Cisinski, 2004].

Let 𝑃 , 𝑄 : ℂ → 𝐬𝐒𝐞𝐭 be the diagrams defined by 𝑃 (𝑐) = N((𝑝 ↓ 𝑐)) and
𝑄(𝑐) = N((𝑞 ↓ 𝑐)), respectively. Then 𝑢 : 𝔸 → 𝔹 induces a natural transforma-
tion : 𝑃 ⇒ 𝑄 with components 𝑢 = N(𝑢𝑐), and by hypothesis, : 𝑃 ⇒ 𝑄 is a
natural weak homotopy equivalence. Lemma 1.11.11 says we have a commutative
diagram of the form below,

lim−−→
BK
ℂ

𝑃 N(𝔸)

lim−−→
BK
ℂ

𝑄 N(𝔹)

lim−→
BK
ℂ

N(𝑢)

where the horizontal arrows are weak homotopy equivalences; but corollary 1.9.20
implies lim−−→

BK
ℂ

is also a weak homotopy equivalence, so (using the 2-out-of-3
property) we may deduce that 𝑢 : 𝔸 → 𝔹 is indeed a weak homotopy equivalence
of categories. ■

As a corollary, we obtain a famous result of Quillen [1973, §1]:

Corollary 1.11.21 (Quillen’s Theorem A).
• Right aspherical functors are weak homotopy equivalences of categories.

• Left aspherical functors are weak homotopy equivalences of categories.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑓 : 𝔸 → 𝔹 be a right aspherical functor. Consider the following com-

mutative triangle:
𝔸 𝔹

𝔹
𝑓

𝑓

id
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Remark 1.11.10 implies that the slice categories 𝔹∕𝑏 are aspherical, so the 2-out-
of-3 property (lemma 1.11.3) plus right asphericity implies that the functors 𝑓𝑏 :
(𝑓 ↓ 𝑏) → 𝔹∕𝑏 are weak homotopy equivalences for all objects 𝑏 in 𝔹. Thus, by
theorem 1.11.20, 𝑓 : 𝔸 → 𝔹 itself is a weak homotopy equivalence. ■

Remark 1.11.22. In view of remarks 1.8.5 and 1.11.14, Quillen’s Theorem A is
also a corollary of theorem 1.10.27.

We may now prove a useful result of Thomason [1977, 1979].

Theorem 1.11.23 (Thomason’s homotopy colimit theorem). Let ℂ be a cat-
egory, let 𝔽 : ℂ → 𝐂𝐚𝐭 be a diagram, let 𝐆(Δ𝟙, ℂ, 𝔽 ) be the Grothendieck
construction, and let 𝑝 : 𝐆(Δ𝟙, ℂ, 𝔽 ) → ℂ be the canonical projection.

(i) There is a natural weak homotopy equivalence

𝔽 (−) ⇒ (𝑝 ↓ −)

and it is natural in 𝔽 .

(ii) There is a weak homotopy equivalence

lim−−→
BK

ℂ
(N ∘ 𝔽 ) → N(𝐆(Δ𝟙, ℂ, 𝔽 ))

and it is natural in 𝔽 .

Dually, let 𝔼 : ℂop → 𝐂𝐚𝐭 be a diagram, let 𝐆(𝔼, ℂ, Δ𝟙) be the Grothendieck
construction and let 𝑞 : 𝐆(𝔼, ℂ, Δ𝟙) → ℂ be the canonical projection.

(i) There is a natural weak homotopy equivalence

𝔼(−) ⇒ (− ↓ 𝑞)

and it is natural in 𝔼.

(ii) There is a weak homotopy equivalence

lim−−→
KB

ℂ
(N ∘ 𝔼) → N(𝐆(𝔼, ℂ, Δ𝟙))

and it is natural in 𝔼.
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Proof. (i). By construction, the fibre 𝑝−1{𝑐} is naturally isomorphic to 𝔽 (𝑐), and
𝑝 : 𝐆(Δ𝟙, ℂ, 𝔽 ) → ℂ is a Grothendieck (pre-)opfibration by proposition b.5.37
(and proposition b.5.31), so proposition b.5.23 says that the canonical compar-
ison functor 𝑝−1{𝑐} → (𝑝 ↓ 𝑐) has a left adjoint; but corollary 1.11.17 says that
such functors are left aspherical, and hence by Quillen’s Theorem A (corol-
lary 1.11.21), weak homotopy equivalences a fortiori. Thus, we have a natural
weak homotopy equivalence 𝔽 (−) ⇒ (𝑝 ↓ −).

(ii). Lemma 1.11.11 says that there exist a canonical isomorphism

lim−−→
ℂ

N((𝑝 ↓ −)) ≅ N(𝐆(Δ𝟙, ℂ, 𝔽 ))

and a canonical weak homotopy equivalence

lim−−→
BK

ℂ
N((𝑝 ↓ −)) → lim−−→

ℂ
N((𝑝 ↓ −))

so the claim is a consequence of the fact that lim−−→
BK
ℂ

preserves natural weak ho-
motopy equivalences (corollary 1.9.20). ■

Corollary 1.11.24. Let ℂ be a category. Then the functor

𝐆(−, ℂ, −) : [ℂop, 𝐂𝐚𝐭] × [ℂ, 𝐂𝐚𝐭] → 𝐂𝐚𝐭

defined by the Grothendieck construction sends natural weak homotopy equival-
ences to weak homotopy equivalences (in each variable and jointly).

Proof. Let 𝜑 : 𝔼′ → 𝔼 be a natural weak homotopy equivalence of functors
ℂop → 𝐂𝐚𝐭 and let 𝜓 : 𝔽 ′ → 𝔽 be a natural weak homotopy equivalence of
functors ℂ → 𝐂𝐚𝐭. Clearly,

𝐆(𝜑, ℂ, 𝜓) = 𝐆(𝜑, ℂ, 𝔽 ) ∘ 𝐆(𝔼, ℂ, 𝜓)

and since the class of weak homotopy equivalences is closed under composition
(by lemma 1.11.3), so it suffices to prove the claim for each variable separately;
and by duality, it suffices to prove it for just one variable, say the second variable.
But by proposition b.5.40, there is a commutative diagram of the form below,

𝐆(𝔼, ℂ, 𝔽 ′) 𝐆(Δ𝟙, 𝐆(𝔼, ℂ, Δ𝟙), 𝔽 ′)

𝐆(𝔼, ℂ, 𝔽 ) 𝐆(Δ𝟙, 𝐆(𝔼, ℂ, Δ𝟙), 𝔽 )

𝐆(𝔼,ℂ,𝜓)

≅

𝐆(Δ𝟙,𝐆(𝔼,ℂ,Δ𝟙),𝜓)

≅
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so (by the 2-out-of-3 property) the claim is a consequence of corollary 1.9.20
and Thomason’s homotopy colimit theorem (1.11.23). ■

Definition 1.11.25.
• A right-locally weakly constant functor is a functor 𝑝 : 𝔸 → 𝔹 with the

following property: for every morphism 𝑏′ → 𝑏 in 𝔹, the induced functor
(𝑝 ↓ 𝑏′) → (𝑝 ↓ 𝑏) is a weak homotopy equivalence.

• A left-locally weakly constant functor is a functor 𝑞 : 𝔸 → 𝔹 with the
following property: for every morphism 𝑏 → 𝑏′ in 𝔹, the induced functor
(𝑏′ ↓ 𝑞) → (𝑏 ↓ 𝑞) is a weak homotopy equivalence.

Lemma 1.11.26. Let 𝔹 be a category.

• Let 𝔽 be a 𝔹op-indexed category (with small fibres). The induced Grothen-
dieck opfibration

𝑝 : 𝐆(Δ𝟙, 𝔹, 𝔽 ) → 𝔹

is a right-locally weakly constant functor if and only if the reindexing func-
tor 𝔽 (𝑏′) → 𝔽 (𝑏) is a weak homotopy equivalence for every morphism
𝑏′ → 𝑏 in 𝔹.

• Let 𝔼 be a 𝔹-indexed category (with small fibres). The induced Grothen-
dieck fibration

𝑞 : 𝐆(𝔼, 𝔹, Δ𝟙) → 𝔹

is a left-locally weakly constant functor if and only if the reindexing functor
𝔼(𝑏′) → 𝔼(𝑏) is a weak homotopy equivalence for every morphism 𝑏 → 𝑏′

in 𝔹.

Proof. The two claims are formally dual; we will prove the first version.
Consider a morphism 𝑎 : 𝑏′ → 𝑏 in 𝔹. We then have the following diagram

in 𝐂𝐚𝐭,
𝔽 (𝑏′) (𝑝 ↓ 𝑏′)

𝔽 (𝑏) (𝑝 ↓ 𝑏)

where the horizontal arrows are the right adjoint functors of (the formal dual of)
proposition b.5.23 and the vertical arrows are induced by 𝑎 : 𝑏′ → 𝑏 and the
component of the natural transformation at an object 𝑓 ′ in 𝔽 (𝑏′) corresponds
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to the 𝑝-supine morphism (𝑎, id𝑎∗𝑓 ′). Thus, by lemmas 1.3.10 and 1.5.3, corol-
lary 1.11.17, and Quillen’s Theorem A (corollary 1.11.21), 𝔽 (𝑏′) → 𝔽 (𝑏) is a weak
homotopy equivalence if and only if (𝑝 ↓ 𝑏′) → (𝑝 ↓ 𝑏) is a weak homotopy equi-
valence. ■

Definition 1.11.27. A homotopy derived pullback diagram in 𝐂𝐚𝐭 is a com-
mutative square in 𝐂𝐚𝐭 whose image under N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 is a derived pullback
diagram in 𝐬𝐒𝐞𝐭.

Lemma 1.11.28. Let 𝑢 : 𝔸 → 𝔹 be a functor.

• Let 𝔽 : 𝔹 → 𝐂𝐚𝐭 be a diagram. If the reindexing functor 𝔽 (𝑏′) → 𝔽 (𝑏) is
a weak homotopy equivalence for every morphism 𝑏′ → 𝑏 in 𝔹, then the
pullback diagram in 𝐂𝐚𝐭 of lemma b.5.39

𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑢) 𝐆(Δ𝟙, 𝔹, 𝔽 )

𝔸 𝔹𝑢

is a homotopy derived pullback diagram.

• Let 𝔼 : 𝔹op → 𝐂𝐚𝐭 be a diagram. If the reindexing functor 𝔼(𝑏′) → 𝔼(𝑏)
is a weak homotopy equivalence for every morphism 𝑏 → 𝑏′ in 𝔹, then the
pullback diagram in 𝐂𝐚𝐭 of lemma b.5.39

𝐆(𝔼 ∘ 𝑢, 𝔸, Δ𝟙) 𝐆(𝔼, 𝔹, Δ𝟙)

𝔸 𝔹𝑢

is a homotopy derived pullback diagram.

Proof. The two claims are formally dual; we will prove the first version.
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We have the following commutative cube in 𝐬𝐒𝐞𝐭,

lim−−→
BK
𝔸

N ∘ 𝔽 ∘ 𝑢 N(𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑢))

lim−−→
BK
𝔹

N ∘ 𝔽 N(𝐆(Δ𝟙, 𝔹, 𝔽 ))

lim−−→
BK
𝔸

Δ1 N(𝐆(Δ𝟙, 𝔸, Δ𝟙))

lim−−→
BK
𝔹

Δ1 N(𝐆(Δ𝟙, 𝔹, Δ𝟙))

where the vertical arrows are induced by the unique natural transformation 𝔽 ⇒
Δ𝟙, the horizontal arrows are the weak homotopy equivalences of Thomason’s
homotopy colimit theorem (1.11.23), and the diagonal arrows are as in corol-
lary 1.8.23 and lemma b.5.39; note that the projections 𝐆(Δ𝟙, 𝔸, Δ𝟙) → 𝔸 and
𝐆(Δ𝟙, 𝔹, Δ𝟙) → 𝔹 are isomorphisms. In particular, we have the following pull-
back diagram in 𝐬𝐒𝐞𝐭,

lim−−→
BK
𝔸

N ∘ 𝔽 ∘ 𝑢 lim−−→
BK
𝔹

N ∘ 𝔽

lim−−→
BK
𝔸

Δ1 lim−−→
BK
𝔹

Δ1

but the right vertical arrow is homotopically quadrable by proposition 1.9.34, so
by by theorem 1.7.18 and proposition 5.1.24, the pullback diagram is a derived
pullback diagram. The claim is then a consequence of proposition 5.1.22. ■

Proposition 1.11.29. Let 𝑢 : 𝔸 → 𝔹 be a functor.

• Suppose we have a pullback diagram in 𝐂𝐚𝐭:

𝔸 ×𝔹 𝔽 𝔽

𝔸 𝔹

𝑞

𝑢

If 𝑞 : 𝔽 → 𝔹 is a right-locally weakly constant Grothendieck opfibration,
then the diagram is also a homotopy derived pullback diagram.
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• Suppose we have a pullback diagram in 𝐂𝐚𝐭:

𝔸 ×𝔹 𝔼 𝔼

𝔸 𝔹

𝑝

𝑢

If 𝑝 : 𝔼 → 𝔹 is a left-locally weakly constant Grothendieck fibration, then
the diagram is also a homotopy derived pullback diagram.

Proof. Apply lemmas 5.1.20 and 5.1.21 (plus lemma 1.3.10 and proposition 1.5.4)
to lemma 1.11.28 and theorem b.5.51. ■

The following is also due to Quillen [1973, §1].

Theorem 1.11.30 (Quillen’s Theorem B).
• If 𝑝 : 𝔸 → ℂ is a right-locally weakly constant functor, then for every

object 𝑐 in ℂ, we have the following homotopy derived pullback square in
𝐂𝐚𝐭,

(𝑝 ↓ 𝑐) 𝔸

ℂ∕𝑐 ℂ

𝑝

where the horizontal arrows are induced by the evident projection functors.

• If 𝑞 : 𝔸 → 𝔹 is a left-locally weakly constant functor, then for every object
𝑐 in ℂ, we have the following derived pullback square in 𝐬𝐒𝐞𝐭,

(𝑐 ↓ 𝑞) 𝔸

𝑐∕ℂ ℂ

𝑞

where the horizontal arrows are induced by the evident projection functors.

Proof. The two claims are formally dual; we will prove the first version.
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Consider the following commutative diagram in 𝐂𝐚𝐭,

(𝑝 ↓ 𝑐) (𝑝 ↓ ℂ) 𝔸

ℂ∕𝑐 [𝟚, ℂ] ℂ

𝟙 ℂ

𝑑1

𝑝

𝑑0

𝑑1

⌜𝑐⌝

where 𝑑1 : (𝑝 ↓ ℂ) → 𝔸 and 𝑑1 : [𝟚, ℂ] → ℂ are the domain projections,
𝑑0 : [𝟚, ℂ] → ℂ is the codomain projection, (𝑝 ↓ ℂ) → [𝟚, ℂ] is the functor
defined by (𝑎, 𝑐, 𝑢) ↦ 𝑢, ⌜𝑐⌝ : 𝟙 → ℂ is the functor corresponding to the object
𝑐 in ℂ, and every square is a pullback diagram. By lemmas 1.11.12 and 1.11.28,

(𝑝 ↓ 𝑐) (𝑝 ↓ ℂ)

𝟙 ℂ

𝑑0

⌜𝑐⌝

is a homotopy derived pullback diagram, and by lemma 5.1.20,

ℂ∕𝑐 [𝟚, ℂ]

𝟙 ℂ

𝑑0

⌜𝑐⌝

(𝑝 ↓ ℂ) 𝔸

[𝟚, ℂ] ℂ

𝑑1

𝑝

𝑑1

are homotopy derived pullback diagrams, so by applying lemma 5.1.21 (twice),
the claim follows. ■

Lemma 1.11.31. Let ℂ be a category.

• Let 𝔽 : ℂ → 𝐂𝐚𝐭 be a functor. If the induced Grothendieck opfibration

𝑝 : 𝐆(Δ𝟙, ℂ, 𝔽 ) → ℂ

is a right-locally weakly constant functor, then it is a homotopically quad-
rable morphism in 𝐂𝐚𝐭 (with respect to weak homotopy equivalences).

• Let 𝔼 : ℂop → 𝐂𝐚𝐭 be a functor. If the induced Grothendieck fibration

𝑞 : 𝐆(𝔼, ℂ, Δ𝟙)

is a left-locally weakly constant functor, then it is a homotopically quad-
rable morphism in 𝐂𝐚𝐭 (with respect to weak homotopy equivalences).
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Proof. The two claims are formally dual; we will prove the first version.
Let 𝑢 : 𝔸 → 𝔹 and 𝑣 : 𝔹 → ℂ be functors. By lemma b.5.39, we have the

following commutative diagram in 𝐂𝐚𝐭,

𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑣 ∘ 𝑢) 𝐆(Δ𝟙, 𝔹, 𝔽 ∘ 𝑣) 𝐆(Δ𝟙, ℂ, 𝔽 )

𝔸 𝔹 ℂ

̄𝑢 ̄𝑣

𝑝

𝑢 𝑣

where both squares are pullback squares. Moreover, by lemma 1.11.26, if 𝑝 :
𝐆(Δ𝟙, ℂ, 𝔽 ) → ℂ is right-locally weakly constant, then so are the other vertical
arrows in the above diagram. We wish to show that the functor

̄𝑢 : 𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑣 ∘ 𝑢) → 𝐆(Δ𝟙, 𝔹, 𝔽 ∘ 𝑣)

is a weak homotopy equivalence if 𝑢 : 𝔸 → 𝔹 is a weak homotopy equivalence
and 𝑝 : 𝐆(Δ𝟙, ℂ, 𝔽 ) → ℂ is right-locally weakly constant.

Recalling Thomason’s homotopy colimit theorem (1.11.23), we have a com-
mutative diagram in 𝐬𝐒𝐞𝐭 of the form below,

lim−−→
BK
𝔸

N ∘ 𝔽 ∘ 𝑣 ∘ 𝑢 lim−−→
BK
𝔹

N ∘ 𝔽 ∘ 𝑣 lim−−→
BK
ℂ

N ∘ 𝔽

N(𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑣 ∘ 𝑢)) N(𝐆(Δ𝟙, 𝔸, 𝔽 ∘ 𝑣)) N(𝐆(Δ𝟙, 𝔸, 𝔽 ))

≃

̃𝑣

≃

̃𝑢

≃

N( ̄𝑢) N( ̄𝑣)

where the vertical arrows are weak homotopy equivalences, and by corollary 1.8.23,
we have a commutative diagram in 𝐬𝐒𝐞𝐭 of form below,

lim−−→
BK
𝔸

N ∘ 𝔽 ∘ 𝑣 ∘ 𝑢 lim−−→
BK
𝔹

N ∘ 𝔽 ∘ 𝑣 lim−−→
BK
ℂ

N ∘ 𝔽

N(𝔸) N(𝔹) N(ℂ)

̃𝑢 ̃𝑣

N(𝑢) N(𝑣)

where the two squares are pullback squares, so by proposition 1.9.34, ̃𝑣 is a weak
homotopy equivalence of simplicial sets if 𝑢 is a weak homotopy equivalence of
categories; but by the 2-out-of-3 property, ̃𝑢 is a weak homotopy equivalence of
simplicial sets if and only if ̄𝑢 is a weak homotopy equivalence of categories, so
we are done. ■
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Proposition 1.11.32.
• Right-locally weakly constant Grothendieck opfibrations are homotopic-

ally quadrable morphisms in 𝐂𝐚𝐭 (with respect to weak homotopy equi-
valences).

• Left-locally weakly constant Grothendieck fibrations are homotopically
quadrable morphisms in 𝐂𝐚𝐭 (with respect to weak homotopy equival-
ences).

Proof. Apply lemmas 5.1.20 and 5.1.21 (plus lemma 1.3.10 and proposition 1.5.4)
to lemma 1.11.31 and theorem b.5.51. ■

Proposition 1.11.33. Consider a pullback diagram in 𝐂𝐚𝐭:

𝔼 𝔽

𝔸 𝔹

𝑝

𝑣

𝑞

𝑢

• If 𝑢 : 𝔸 → 𝔹 is left aspherical and 𝑞 : 𝔽 → 𝔹 is a Grothendieck opfibra-
tion, then 𝑣 : 𝔼 → 𝔽 is also left aspherical.

• If 𝑢 : 𝔸 → 𝔹 is right aspherical and 𝑞 : 𝔽 → 𝔹 is a Grothendieck fibration,
then 𝑣 : 𝔼 → 𝔽 is also right aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑓 be an object in 𝔽 and let 𝑏 = 𝑞(𝑓). Observe that we have the following

pullback diagrams in 𝐂𝐚𝐭,

(𝑓 ↓ 𝑣) 𝑓∕𝔽

𝔼 𝔽𝑣

(𝑏 ↓ 𝑢) 𝑏∕𝔹

𝔸 𝔹𝑢

where the vertical arrows are the evident projections, so by the pullback pasting
lemma,

(𝑓 ↓ 𝑣) 𝑓∕𝔽

(𝑏 ↓ 𝑢) 𝑏∕𝔹

𝑓 𝑞

242



1.11. Homotopy theory of nerves

is also a pullback diagram in 𝐂𝐚𝐭. But (recalling remark b.5.45 and lemma b.5.46)
by remark 1.11.10 and lemmas 1.11.26 and b.5.34, 𝑓 𝑞 : 𝑓∕𝔽 → 𝑏∕𝔹 is a right-
locally weakly constant Grothendieck opfibration, so proposition 1.11.32 implies
that (𝑓 ↓ 𝑣) → 𝑓∕𝔽 is a weak homotopy equivalence. Thus, (𝑓 ↓ 𝑣) is aspherical,
as required. ■

Definition 1.11.34. The category of simplices of a simplicial set 𝑋 is the cat-
egory 𝚫(𝑋) defined below:

• The objects are simplices of 𝑋.

• For 𝑥 ∈ 𝑋𝑛 and 𝑥′ ∈ 𝑋𝑛′, the morphisms 𝑥 → 𝑥′ are the morphisms
𝜑 : [𝑛] → [𝑛′] in 𝚫 such that 𝑋(𝜑)(𝑥′) = 𝑥.

• Composition and identities are the obvious ones.

We write 𝜋Δ : 𝚫(𝑋) → 𝚫 for the evident projection functor that sends an
𝑛-simplex of 𝑋 to the object [𝑛] in 𝚫.

¶ 1.11.35. For brevity, if 𝔸 is a small category, then we write 𝚫(𝔸) instead
of 𝚫(N(𝔸)). This is consistent with the notation of §4.10. We will also use the
left and right projection functors of definition 4.10.9.
Remark 1.11.36. Of course, 𝚫(𝑋) is (naturally isomorphic to) the comma cat-
egory (Δ• ↓ 𝑋).

Definition 1.11.37. The Quillen subdivision of a simplicial set 𝑋 is the simpli-
cial set SdQ(𝑋) = N(𝚫(𝑋)).

Lemma 1.11.38. The functor SdQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 admits a right adjoint, namely
the functor ExQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 defined by the following formula:

ExQ(𝑌 )𝑛 = 𝐬𝐒𝐞𝐭(SdQ(Δ𝑛), 𝑌 )

Proof. Let 𝐹 : 𝚫 → 𝐬𝐒𝐞𝐭 be the diagram defined by 𝐹 ([𝑛]) = SdQ(Δ𝑛) and let
𝑃 : 𝚫(𝑋) → 𝐬𝐒𝐞𝐭 be the diagram defined by 𝑃 (𝑥) = N(𝚫(𝑋)∕𝑥). Note that if 𝑥
is an 𝑛-simplex of 𝑋, then 𝜋Δ : 𝚫(𝑋) → 𝚫 induces an isomorphism 𝚫(𝑋)∕𝑥 →
𝚫∕[𝑛]; but there is a natural isomorphism 𝚫∕[𝑛] ≅ 𝚫(Δ𝑛), so 𝑃 ≅ 𝐹 𝜋Δ. On the
other hand, lemma 1.11.11 says that lim−−→𝚫(𝑋)

𝑃 can be identified with N(𝚫(𝑋)) =
SdQ(𝑋), so using the formula of theorem a.5.15, we deduce that SdQ(𝑋) ≅ 𝑋 ⋆𝚫
𝐹 (naturally in 𝑋). The claim is then an instance of proposition a.6.15. ■
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Lemma 1.11.39. The functor 𝚫(−) : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 admits a right adjoint, namely
the functor ExQ(N(−)) : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭.

Proof. By proposition 1.2.2, we have an adjunction

𝜏1 ⊣ N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭

and by lemma 1.11.38, we also have

SdQ ⊣ ExQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭

so by composition, we have the following adjunction:

𝜏1SdQ ⊣ ExQ(N(−)) : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭

We also know that N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 is fully faithful, so by proposition a.1.3, the
counit 𝜏1N ⇒ id𝐂𝐚𝐭 is a natural isomorphism; in particular, 𝜏1SdQ ≅ 𝚫(−). Thus
we have an adjunction of the required form. ■

Lemma 1.11.40. Let 𝑋 be a simplicial set.

(i) There is a natural isomorphism

SdQ(𝑋) ≅ lim−−→
KB

𝚫op

disc 𝑋•

where on the RHS we regard 𝑋 as a diagram 𝚫op → 𝐒𝐞𝐭.

(ii) There is a weak homotopy equivalence 𝑋 : SdQ(𝑋) → 𝑋, and it is natural
in 𝑋.

(iii) If 𝑋 = N(ℂ) for some category ℂ, then 𝑋 = N(𝜋R) as morphisms
SdQ(N(ℂ)) → N(ℂ). In particular, 𝜋R : 𝚫(N(ℂ)) → ℂ is a weak ho-
motopy equivalence of categories.

Proof. (i). This is straightforward.

(ii). We follow the proof of Lemme 2.1.15 in [Cisinski, 2004].
Let 𝑃 , 𝑄 : 𝚫(𝑋) → 𝐬𝐒𝐞𝐭 be the diagrams defined by 𝑃 (𝑥) = N(𝚫(𝑋)∕𝑥)

and 𝑄(𝑥) = Δ𝜋Δ(𝑥). Note that if 𝑥 is an 𝑛-simplex of 𝑋, then 𝜋Δ : 𝚫(𝑋) → 𝚫
induces an isomorphism 𝚫(𝑋)∕𝑥 → 𝚫∕[𝑛]; but there is a natural isomorphism
𝚫∕[𝑛] ≅ 𝚫(Δ𝑛), so the right projection 𝜋R : 𝚫(N(−)) ⇒ id𝐂𝐚𝐭 induces a natural
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transformation : 𝑃 ⇒ 𝑄. Moreover, by remark 1.11.10, each 𝑃 (𝑥) and 𝑄(𝑥) is
contractible, so : 𝑃 ⇒ 𝑄 is a natural weak homotopy equivalence.

Now, by proposition 1.8.38, we have the following commutative diagram:

lim−−→
BK
𝚫(𝑋)

𝑃 lim−−→𝚫(𝑋)
𝑃

lim−−→
BK
𝚫(𝑋)

𝑄 lim−−→𝚫(𝑋)
𝑄

lim−→
BK
𝚫(𝑋)

lim−→𝚫(𝑋)

Lemma 1.11.11 says that lim−−→𝚫(𝑋)
𝑃 can be identified with N(𝚫(𝑋)) ≅ SdQ(𝑋) and

that the morphism B(Δ1, 𝚫(𝑋), 𝑃 ) → SdQ(𝑋) is a weak homotopy equivalence.
On the other hand, theorem a.5.15 implies that lim−−→𝚫(𝑋)

𝑄 can be identified with
𝑋, so : 𝑃 ⇒ 𝑄 defines a natural morphism 𝑋 : SdQ(𝑋) → 𝑋.

We claim that 𝑋 : SdQ(𝑋) → 𝑋 is the desired natural weak homotopy
equivalence. Indeed, corollary 1.9.20 that the left vertical arrow in the diagram
is a weak homotopy equivalence, so to prove the claim, it suffices to show that
B(Δ1, 𝚫(𝑋), 𝑄) → 𝑋 is a weak homotopy equivalence. It is not hard to see that

B𝑛(Δ1, 𝚫(𝑋), 𝑄) ≅ ∐
(𝑘0,…,𝑘𝑛)

𝑋𝑘𝑛
× Δ𝑘𝑛

𝑘𝑛−1
× ⋯ × Δ𝑘1

𝑘0
× Δ𝑘0 ≅ B𝑛(𝑋, 𝚫, 𝚫)

naturally in 𝑛, where (𝑘0, … , 𝑘𝑛) varies over 𝑛-tuples of natural numbers. The
morphism B(Δ1, 𝚫(𝑋), 𝑄) → 𝑋 can then be identified with the realisation of
the morphism B(Δ1, 𝚫(𝑋), 𝑄•) → disc 𝑋• in 𝐬𝐬𝐒𝐞𝐭 defined by

(𝑥, 𝜑𝑛, … , 𝜑1, 𝜑0) ↦ 𝑋(𝜑𝑛 ∘ ⋯ ∘ 𝜑0)(𝑥)

which is a degreewise weak homotopy equivalence, by proposition 1.9.16; hence,
B(Δ1, 𝚫(𝑋), 𝑄) → 𝑋 is a weak homotopy equivalence, by theorem 1.6.10.

(iii). Let ℂ be a category and let 𝑋 = N(ℂ). Since a functor is uniquely de-
termined by its action on objects and morphisms, it suffices to show that 𝑋 :
N(𝚫(𝑋)) → 𝑋 agrees with N(𝜋R) : N(𝚫(N(ℂ))) → N(ℂ) on vertices and edges.
For convenience, we make the following identifications,

(B(Δ1, 𝚫(𝑋), 𝑃 ))0 ≅ ∐
𝑘

𝑋𝑘 × ob 𝚫∕[𝑘]

(B(Δ1, 𝚫(𝑋), 𝑃 ))1 ≅ ∐
(𝑘0,𝑘1)

𝑋𝑘1
× Δ𝑘1

𝑘0
× mor 𝚫∕[𝑘0]
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(B(Δ1, 𝚫(𝑋), 𝑄))0 ≅ ∐
𝑘

𝑋𝑘 × ob [𝑘]

(B(Δ1, 𝚫(𝑋), 𝑄))1 ≅ ∐
(𝑘0,𝑘1)

𝑋𝑘1
× Δ𝑘1

𝑘0
× mor [𝑘0]

so that a vertex of (B(Δ1, 𝚫(𝑋), 𝑃 )) is a pair (𝑥, 𝜑) where 𝑥 is a 𝑘-simplex of 𝑋
and 𝜑 is a morphism in 𝚫 with codomain [𝑘], etc.

Let 𝑥 be a vertex of N(𝚫(𝑋)), i.e. an 𝑛-simplex of 𝑋. It is the image of
an evident vertex of B(Δ1, 𝚫(𝑋), 𝑃 ), namely (𝑥, id[𝑛]). An 𝑛-simplex of 𝑋 is a
functor [𝑛] → ℂ, and by definition, B(Δ1, 𝚫(𝑋), ) sends (𝑥, id[𝑛]) to (𝑥, 𝑛). The
image of (𝑥, 𝑛) under the morphism B(Δ1, 𝚫(𝑋), 𝑃 ) → 𝑋 is 𝑥(𝑛), so 𝑋 indeed
agrees with N(𝜋R) on vertices.

Now let 𝑓 : 𝑥0 → 𝑥1 be an edge of N(𝚫(𝑋)), i.e. a morphism 𝛼 : [𝑛0] → [𝑛1]
in 𝚫 such that 𝑋(𝛼)(𝑥1) = 𝑥0. It is the image of the edge (𝑥1, 𝛼, idid[𝑛0]) in
B(Δ1, 𝚫(𝑋), 𝑃 ) and by definition, B(Δ1, 𝚫(𝑋), ) sends it to (𝑥1, 𝛼, id𝑛0). It
can be verified that the image of (𝑥1, 𝛼, id𝑛0) under B(Δ1, 𝚫(𝑋), 𝑃 ) → 𝑋 is
𝑋(𝛽)(𝑥1), where 𝛽 : [1] → [𝑛1] is the morphism in 𝚫 defined by 𝛽(0) = 𝛼(𝑛0)
and 𝛽(1) = 𝑛1, and this is precisely the image of 𝑓 : 𝑥0 → 𝑥1 under 𝜋R. Thus 𝑋
also agrees with N(𝜋L) on edges. ■

Lemma 1.11.41. For any simplicial set 𝑋, there is an anodyne extension 𝑖𝑋 :
𝑋 → ExQ(𝑋), and it is natural in 𝑋.

Proof. Let 𝜌𝑛 = Δ𝑛 : SdQ(Δ𝑛) → Δ𝑛, where : SdQ ⇒ id𝐬𝐒𝐞𝐭 is the nat-
ural weak homotopy equivalence of lemma 1.11.40. It is not hard to check that
Δ𝑛 is naturally isomorphic to N([𝑛]), so we can identify 𝜌𝑛 : SdQ(Δ𝑛) → Δ𝑛

with N(𝜋R) : N(𝚫(N([𝑛]))) → N([𝑛]). It is then straightforward to verify that
𝜌𝑛 : SdQ(Δ𝑛) → Δ𝑛 is an epimorphism. Thus, noting that each SdQ(Δ𝑛) is con-
tractible (by corollary 1.3.11), we may apply proposition 1.6.12 to obtain the re-
quired natural anodyne extension 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ ExQ. ■

Theorem 1.11.42.
(i) The functors N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 and 𝚫(−) : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 constitute a

homotopically mutually inverse pair of homotopical functors.

(ii) We have the following Quillen equivalence:

SdQ ⊣ ExQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭
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(iii) We have an adjunction of the form below,

𝚫(−) ⊣ ExQ(N(−)) : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭

and these constitute an adjoint homotopical equivalence of homotopical
categories.

Proof. (i). By definition, N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 preserves and reflects weak homotopy
equivalences, and lemma 1.11.40 says there is a natural weak homotopy equival-
ence : SdQ ⇒ id𝐬𝐒𝐞𝐭 , so (using the 2-out-of-3 property) 𝚫(−) : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭
also preserves and reflects weak homotopy equivalences. Moreover, the same
lemma implies that 𝜋R : 𝚫(N(−)) ⇒ id𝐂𝐚𝐭 is a natural weak homotopy equival-
ence, so we indeed have a homotopically mutually inverse pair of homotopical
functors.

(ii). First, we must show that the indicated adjunction is a Quillen adjunction,
and by proposition 4.3.2, it suffices to show that SdQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a left
Quillen functor. We already know that it preserves weak homotopy equivalences,
so we need only verify that it preserves monomorphisms; but it is clear that
𝚫 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 and N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 both preserve monomorphisms, so the
same must be true of SdQ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭.

Now, consider the derived adjunction:

𝐋SdQ ⊣ 𝐑ExQ : Ho 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭

Since every simplicial set is cofibrant, we may take 𝐋SdQ = Ho SdQ; and since
SdQ ≃ id𝐬𝐒𝐞𝐭 , we have Ho SdQ ≅ idHo 𝐬𝐒𝐞𝐭 . Thus, we must also have 𝐑ExQ ≅
idHo 𝐬𝐒𝐞𝐭 , and (recalling lemma 1.5.2) we may apply theorem 4.3.13 to deduce that
we have a Quillen equivalence.

(iii). Lemma 1.11.41 (and the 2-out-of-3 property) implies that the functor ExQ :
𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves weak homotopy equivalences, and N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭
preserves weak homotopy equivalences by definition, so the same is true of the
composite ExQ(N(−)) : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭. Thus, we have an induced adjoint equival-
ence of categories:

Ho 𝚫(−) ⊣ Ho ExQ(N(−)) : Ho 𝐂𝐚𝐭 → Ho 𝐬𝐒𝐞𝐭

Since 𝐂𝐚𝐭 and 𝐬𝐒𝐞𝐭 are both saturated homotopical categories, it follows that the
unit id𝐬𝐒𝐞𝐭 ⇒ ExQ(N(𝚫(−))) and the counit 𝚫(ExQ(N(−))) ⇒ id𝐂𝐚𝐭 are natural
weak homotopy equivalences, as required. ■
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We can say a little bit more about the (weak) homotopy type of the funda-
mental category of a (reflexive) graph (i.e. a 1-skeletal simplicial set).

Definition 1.11.43. Let 𝑛 be a positive integer.

• A principal edge of the standard simplex Δ𝑛 is an edge corresponding to
a map [1] → [𝑛] that sends 0 to 𝑖 and 1 to 𝑖 + 1.

• The spine of the standard simplex Δ𝑛 is the smallest simplicial subset of
Δ𝑛 containing its principal edges.

Remark 1.11.44. A simplex of N(ℂ) is degenerate if and only if (at least) one of
its principal edges is degenerate. However, a non-degenerate simplex of N(ℂ)
may still have degenerate edges!

Proposition 1.11.45. Let 𝐺 be a 1-skeletal simplicial set. For each positive
integer 𝑘, let 𝑋(𝑘) be the smallest simplicial subset of N(𝜏1𝐺) containing all
𝑘-simplices whose principal edges are in the image of the unit 𝐺 : 𝐺 → N(𝜏1𝐺),
i.e. the 𝑘-simplices corresponding to diagrams in 𝜏1𝐺 of the form below,

𝑥0 ⋯ 𝑥𝑘

where the arrows are either identity morphisms or non-degenerate edges of 𝐺.

(i) For each positive integer 𝑘, 𝑋(𝑘) ⊆ 𝑋(𝑘+1), and the inclusion 𝑋(𝑘) ↪ 𝑋(𝑘+1)

is an anodyne extension.

(ii) We have N(𝜏1𝐺) = ⋃𝑘≥1 𝑋(𝑘).

(iii) The unit 𝐺 : 𝐺 → N(𝜏1𝐺) is an anodyne extension.

Proof. (i). The definition of 𝑋(𝑘+1) ensures that 𝑋(𝑘) ⊆ 𝑋(𝑘+1). Let 𝛼 be a non-
degenerate (𝑘 + 1)-simplex of 𝑋(𝑘+1). Then 𝛼 corresponds to a diagram in 𝜏1𝐺
of the form below,

𝑥0 𝑥1 ⋯ 𝑥𝑘 𝑥𝑘+1
𝑔1 𝑔𝑘+1

where each 𝑔𝑖 is a non-degenerate edge of 𝐺. Clearly, a face 𝑑𝑖(𝛼) is in 𝑋(𝑘) if
and only if 𝑖 = 0 or 𝑖 = 𝑘 + 1. Let 𝑉 𝑘+1 be the smallest simplicial subset of Δ𝑘+1
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containing the 0-th and (𝑘 + 1)-th faces. It is not hard to verify that the inclusion
𝑉 𝑘+1 ↪ Δ𝑘+1 is an anodyne extension and that the evident commutative diagram

(∗)
𝑉 𝑘+1 𝑋(𝑘)

Δ𝑘+1 𝑋(𝑘+1)

is a pullback square in 𝐬𝐒𝐞𝐭. Moreover, since 𝐺 is 1-skeletal, 𝜏1𝐺 is freely gen-
erated by the non-degenerate edges of 𝐺, so the canonical pushout comparison
morphism Δ𝑘+1 ∪𝑉 𝑘+1

𝑋(𝑘) → 𝑋(𝑘+1) is a monomorphism.
Now, let 𝐼𝑘+1 be the set of all non-degenerate (𝑘 + 1)-simplices of 𝑋(𝑘+1). By

amalgamating diagrams of the form (∗), we obtain a commutative diagram

(∗∗)
𝐼𝑘+1 ⊙ 𝑉 𝑘+1 𝑋(𝑘)

𝐼𝑘+1 ⊙ Δ𝑘+1 𝑋(𝑘+1)

and as before, (∗∗) is a pullback square in 𝐬𝐒𝐞𝐭. Noting that every degenerate
(𝑘 + 1)-simplex of 𝑋(𝑘+1) is already in 𝑋(𝑘), we deduce that 𝐼𝑘+1⊙Δ𝑘+1 → 𝑋(𝑘+1)

and 𝑋(𝑘) ↪ 𝑋(𝑘+1) are jointly epimorphic; but the canonical pushout comparison
morphism is again a monomorphism, so (∗∗) is also a pushout square. In partic-
ular, 𝑋(𝑘) ↪ 𝑋(𝑘+1) is an anodyne extension.

(ii). Let 𝛼 be an 𝑛-simplex of N(𝜏1𝐺). By factoring the edges of 𝛼 in terms of
the generators, we can find a positive integer 𝑚 and an 𝑚-simplex 𝛽 of 𝑋(𝑚) such
that 𝛼 occurs as a subsimplex of 𝛽. In particular, 𝛼 is an 𝑛-simplex of 𝑋(𝑚). Thus,
N(𝜏1𝐺) = ⋃𝑘≥1 𝑋(𝑘).

(iii). It is clear that the unit 𝐺 : 𝐺 → N(𝜏1𝐺) is a monomorphism and that
its image is precisely 𝑋(1). It thus suffices to verify that 𝑋(1) ↪ N(𝜏1𝐺) is an
anodyne extension; but the class of anodyne extensions is closed under transfinite
composition, so the claim is a consequence of (i) and (ii). ■

Lemma 1.11.46. Let 𝐺 be a 1-skeletal simplicial set and let 𝐺′ and 𝐺″ be simpli-
cial subsets of 𝐺 such that 𝐺 = 𝐺′ ∪𝐺″. Then the induced commutative diagram
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in 𝐂𝐚𝐭
𝜏1(𝐺′ ∩ 𝐺″) 𝜏1𝐺″

𝜏1𝐺′ 𝜏1𝐺

is a pushout diagram where all the arrows are monomorphisms, and the induced
morphism

N(𝜏1𝐺′) ∪ N(𝜏1𝐺″) → N(𝜏1𝐺)

is an anodyne extension.

Proof. It is clear that the evident commutative diagram

𝐺′ ∩ 𝐺″ 𝐺″

𝐺′ 𝐺

is a pushout diagram in 𝐬𝐒𝐞𝐭, and since 𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 is a left adjoint (by
definition), the corresponding diagram in 𝐂𝐚𝐭 is also pushout diagram. More-
over, one may directly verify that 𝜏1 sends monomorphisms between 1-skeletal
simplicial sets in 𝐬𝐒𝐞𝐭 to monomorphisms in 𝐂𝐚𝐭. It then follows (using the fact
that N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 is a right adjoint) that the induced morphism N(𝜏1𝐺′) ∪
N(𝜏1𝐺″) → N(𝜏1𝐺) is indeed a monomorphism in 𝐬𝐒𝐞𝐭; thus, by proposi-
tion 1.5.12, it suffices to show that it is a weak homotopy equivalence. But the
following diagram commutes,

𝐺′ ∪ 𝐺″ N(𝜏1𝐺′) ∪ N(𝜏1𝐺″)

𝐺 N(𝜏1𝐺)

𝐺′∪ 𝐺″

𝐺

and by proposition 1.11.45 (plus the fact that the class of anodyne extensions is
closed under pushout and composition), the horizontal arrows are weak homo-
topy equivalences, so the claim is a consequence of the 2-out-of-3 property. ■
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II

Simplicial categories

2.1 Basics
Prerequisites. §§0.2, 1.1, 1.2, a.2, b.2.

In this section, we use the explicit universe convention.

Definition 2.1.1. A simplicial category u�• consists of the following data:

• For each natural number 𝑛, a category u�𝑛.

• For each natural number 𝑛 and 0 ≤ 𝑖 ≤ 𝑛, a functor 𝑑𝑛
𝑖 : u�𝑛 → u�𝑛−1 and a

functor 𝑠𝑛
𝑖 : u�𝑛 → u�𝑛+1.

These functors are moreover required to satisfy the simplicial identities. The
underlying category of u�• is the category u�0.

Remark 2.1.2. In short, a simplicial category is a simplicial object in the meta-
category of all categories. Thus, we may refer to the functors 𝑑𝑛

𝑖 and 𝑠𝑛
𝑖 as face

operators and degeneracy operators, just as in the general case.

Definition 2.1.3. Given two simplicial categories u�• and u�•, a simplicial func-
tor 𝐹• : u�• → u�• consists of a functor 𝐹𝑛 : u�𝑛 → u�𝑛 for each natural number 𝑛,
such that the functors 𝐹𝑛 are compatible with the face and degeneracy operators
in the obvious sense:

𝑑𝑛
𝑖 𝐹𝑛 = 𝐹𝑛−1𝑑𝑛

𝑖 𝑠𝑛
𝑖 𝐹𝑛 = 𝐹𝑛+1𝑠𝑛

𝑖

Definition 2.1.4. Given two simplicial functors 𝐹•, 𝐹 ′
• : u�• → u�•, a simplicial

natural transformation 𝜑• : 𝐹• ⇒ 𝐹 ′
• consists of a natural transformation
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𝜑𝑛 : 𝐹𝑛 ⇒ 𝐹 ′
𝑛 for each natural number 𝑛, such that the natural transformations

𝜑𝑛 are compatible with the face and degeneracy operators in the obvious sense:

𝑑𝑛
𝑖 𝜑𝑛 = 𝜑𝑛−1𝑑𝑛

𝑖 𝑠𝑛
𝑖 𝜑𝑛 = 𝜑𝑛+1𝑠𝑛

𝑖

Definition 2.1.5. Let 𝐔 be a universe. A 𝐔-small (resp. locally 𝐔-small) sim-
plicial category is a simplicial category u�• such that each u�𝑛 is 𝐔-small (resp.
locally 𝐔-small).

Example 2.1.6. If u� is a 𝐔-small category, then we have a 𝐔-small constant sim-
plicial category u�•, where u�𝑛 = u� for all 𝑛, with the trivial face and degeneracy
operators.

Definition 2.1.7. The bisimplicial nerve of a simplicial category u�• is the bisim-
plicial set Nss(u�•) defined by the following formula:

(Nss(u�•)𝑛)𝑚 = N(u�𝑚)𝑛

In other words, the 𝑚-simplices of the 𝑛-th level of Nss(u�•) are the composable
strings of morphisms in u�𝑚 of length 𝑛.

Example 2.1.8. Let u� be an ordinary category, and consider the simplicial cat-
egory u�• defined by u�𝑛 = [𝐈[𝑛], u�], where 𝐈[𝑛] denotes the groupoid obtained
by freely inverting all the arrows in [𝑛]. The bisimplicial nerve Nss(u�•) is then
(isomorphic to) the classifying diagram of u�, in the sense of Rezk [2001].

Proposition 2.1.9. Let 𝐔 be a universe, let [𝚫op, 𝐂𝐚𝐭] be the category of 𝐔-small
simplicial categories, and let 𝐬𝐬𝐒𝐞𝐭 be the category of bisimplicial sets.

(i) [𝚫op, 𝐂𝐚𝐭] is a locally finitely presentable 𝐔-category.

(ii) Nss : [𝚫op, 𝐂𝐚𝐭] → 𝐬𝐬𝐒𝐞𝐭 is a fully faithful ℵ0-accessible functor.

(iii) Nss has a left adjoint.

Proof. (i). This is an instance of proposition 0.2.44.

(ii). That Nss : [𝚫op, 𝐂𝐚𝐭] → 𝐬𝐬𝐒𝐞𝐭 is a fully faithful ℵ0-accessible functor
essentially follows from the fact that N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 is so: see proposition 1.2.2
and the accessible adjoint functor theorem (0.2.50).

(iii). It is also clear that Nss preserves limits for 𝐔-small diagrams, so we may
apply the accessible adjoint functor theorem to construct a left adjoint for Nss.

■

252



2.1. Basics

Definition 2.1.10. A simplicially enriched category u� consists of the following
data:

• A set of objects, ob u�.

• A simplicial set of morphisms, mor u�.

• A pair of simplicial maps dom, codom : mor u� → disc ob u�.

• For each element 𝐶 of ob u�, a vertex id𝐶 in mor u� such that dom id𝐶 = 𝐶
and codom id𝐶 = 𝐶 .

• A simplicial map u�[2] → mor u�, written as (𝛽, 𝛼) ↦ 𝛽 ∘ 𝛼, where u�[2] is the
simplicial set defined by the following pullback diagram:

u�[2] mor u�

mor u� disc ob u�

codom

dom

These are moreover required to satisfy the following condition:

• For each natural number 𝑛, the given identities and binary operation induce
a category with ob u� for its object-set and (mor u�)𝑛 for its morphism-set.

As usual, we write u�(𝐶, 𝐶′) for the simplicial subset of mor u� consisting of those
simplices 𝛼 such that dom 𝛼 = 𝐶 and codom 𝛼 = 𝐶′.

The underlying category of a simplicial category u� is the category u� ob-
tained by taking u�(𝐶′, 𝐶) = u�(𝐶′, 𝐶)0, with the evident identity morphisms and
induced composition. By object or morphism in u�, we shall always mean an
object or morphism in the underlying category u�.

Remark 2.1.11. It is clear from the definition that a simplicially enriched category
u� induces a simplicial category u�•, but not every simplicial category arises in this
fashion: simplicially enriched categories correspond to the simplicial categories
u�• where ob u�• is a constant simplicial set.

Definition 2.1.12. Given two simplicially enriched categories u� → u�, a simpli-
cially enriched functor 𝐹 : u� → u� consists of a map ob 𝐹 : ob u� → ob u� and a
simplicial map mor 𝐹 : mor u� → mor u� that respect the structure of simplicially
enriched categories in the obvious sense.
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Remark 2.1.13. There is a natural bijection between simplicially enriched func-
tors u� → u� and simplicial functors u�• → u�•, where u�• and u�• are the simplicial
categories associated with u� and u�.

Of course, just as in the simplicial case, a simplicially enriched functor 𝐹 :
u� → u� has a underlying functor 𝐹 : u� → u� between the underlying categories.

Definition 2.1.14. Given two simplicially enriched functors 𝐹 , 𝐹 ′ : u� → u�,
a simplicially enriched natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′ consists of a
morphism 𝜑𝐶 : 𝐹 𝐶 → 𝐹 ′𝐶 in u� for each object 𝐶 in u�, such that the following
diagram commutes for all pairs (𝐶, 𝐶′):

u�(𝐹 𝐶, 𝐹 𝐶′)

u�(𝐶, 𝐶′) u�(𝐹 𝐶, 𝐹 ′𝐶′)

u�(𝐹 ′𝐶, 𝐹 ′𝐶′)

u�(𝐹 𝐶,𝜑𝐶′)mor 𝐹

mor 𝐹 ′ u�(𝜑𝐶 ,𝐹 𝐶′)

Remark 2.1.15. It is not hard to see that any simplicially enriched natural trans-
formation has an underlying natural transformation; but unlike simplicially en-
riched functors, being a simplicially enriched natural transformation merely a
property, rather than an extra structure.

Less obviously, the bijection between simplicially enriched functors and sim-
plicial functors also extends to a bijection between simplicially enriched natural
transformations and simplicial natural transformations. In particular, to check
whether a natural transformation is simplicially enriched, it is enough to check
whether it is levelwise natural.

Definition 2.1.16. Let 𝐔 be a universe. A 𝐔-small simplicially enriched cat-
egory is a simplicially enriched category u� such that ob u� is a 𝐔-set and mor u�
is a simplicial 𝐔-set. A locally 𝐔-small simplicially enriched category is a
simplicially enriched category u� such that ob u� is a 𝐔-class and, for each pair
(𝐶′, 𝐶) of elements of ob u�, the simplicial set u�(𝐶′, 𝐶) is a simplicial 𝐔-set.

Remark 2.1.17. Let 𝐔 be a universe and let 𝐬𝐒𝐞𝐭 be the category of simplicial
𝐔-sets. Then a locally 𝐔-small simplicially enriched category is essentially the
same thing as a locally 𝐔-small 𝐬𝐒𝐞𝐭-enriched category, where we regard 𝐬𝐒𝐞𝐭
as a symmetric monoidal closed category via its cartesian closed structure; and
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under this identification, simplicially enriched functors (resp. natural transform-
ations) are the same thing as 𝐬𝐒𝐞𝐭-enriched functors (resp. natural transforma-
tions).

Proposition 2.1.18. Let 𝐔 be a universe and let 𝐬𝐒𝐞𝐭 be the category of simplicial
𝐔-sets. Then 𝐬𝐒𝐞𝐭 admits a simplicial enrichment, with

𝐬𝐒𝐞𝐭(𝑋, 𝑌 ) = [𝑋, 𝑌 ]

where [𝑋, 𝑌 ] denotes the exponential object.

Proof. This is a special case of proposition b.2.5. ■

Definition 2.1.19. A discrete simplicially enriched category is a simplicially
enriched category u� such that mor u� is a constant simplicial set.

Proposition 2.1.20. Let 𝐔 be a universe. If u� is a locally 𝐔-small category, then
there exists a locally 𝐔-small discrete simplicially enriched category u� whose
underlying category is u� such that, for all simplicially enriched categories u�, the
map sending a simplicially enriched functor u� → u� to its underlying ordinary
functor u� → u� is a bijection.

Proof. Obvious. ⧫

Definition 2.1.21. Let u� be a simplicially enriched category and let 𝐶 be an
object in u�. The simplicially enriched slice category u�∕𝐶 is defined as follows:

• The objects are morphisms 𝑓 : 𝑋 → 𝐶 in u�.

• The simplicial set of morphisms from 𝑓 : 𝑋 → 𝐶 to 𝑔 : 𝑌 → 𝐶 is defined
by the following pullback diagram in 𝐬𝐒𝐞𝐭,

u�∕𝐶(𝑓 , 𝑔) u�(𝑋, 𝑌 )

Δ0 u�(𝑋, 𝐶)

𝑔∗

where Δ0 → u�(𝑋, 𝐶) is the morphism corresponding to 𝑓 (considered as
a vertex of u�(𝑋, 𝐶)).

• Composition and identities are inherited from u�.
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Remark 2.1.22. It is straightforward to check that the above indeed defines a
simplicially enriched category. The morphism u�∕𝐶(𝑓 , 𝑔) → u�(𝑋, 𝑌 ) is monic,
so we may regard u�∕𝐶(𝑓 , 𝑔) as a simplicial subset of u�(𝑋, 𝑌 ); however, note that
it is not a “full” simplicial subset in general: for 𝑛 > 0, the 𝑛-simplices that are
in u�∕𝐶(𝑓 , 𝑔) must become degenerate after applying 𝑔∗ : u�(𝑋, 𝑌 ) → u�(𝑋, 𝐶).

Proposition 2.1.23. Let 𝐔 be a universe.

(i) If u� and ℰ are 𝐔-small simplicially enriched categories, then there exist
a 𝐔-small simplicially enriched category u� × ℰ and simplicially enriched
functors 𝑝1 : u� × ℰ → u� and 𝑝2 : u� × ℰ → ℰ such that (𝑝1, 𝑝2) induce
a bijection between simplicially enriched functors ⟨𝐹 , 𝐺⟩ : u� → u� × ℰ
and pairs (𝐹 , 𝐺) of simplicially enriched functors, where 𝐹 : u� → u� and
𝐺 : u� → ℰ, where u� varies over all simplicially enriched categories.

(ii) If u� is a 𝐔-small simplicially enriched category and ℰ is a locally 𝐔-small
simplicially enriched category, then there exist a locally 𝐔-small simpli-
cially enriched category [u�, ℰ] and a simplicially enriched functor ev :
[u�, ℰ] × u� → ℰ such that ev induces a bijection between simplicially en-
riched functors u� ×u� → ℰ and simplicially enriched functors u� → [u�, ℰ],
where u� varies over all simplicially enriched categories.

(iii) If u� and ℰ are both 𝐔-small simplicially enriched categories, then [u�, ℰ]
is also 𝐔-small.

Proof. This is a special case of theorem b.3.7. ■

Remark 2.1.24. Let u� be an ordinary category and let u� be a simplicially en-
riched category. Then all functors u� → u� are automatically simplicially en-
riched (by proposition 2.1.20), and as in remark a.6.5, we have a isomorphism

[u�, u�](𝐹 , 𝐹 ′) ≅ ∫𝐶:u�
u�(𝐹 𝐶, 𝐹 ′𝐶)

and this is natural in both 𝐹 and 𝐹 ′. More generally, see corollary b.3.22.

Proposition 2.1.25. Let 𝐔 be a universe, let 𝐒𝐂𝐚𝐭 be the category of 𝐔-small
simplicially enriched categories, and let [𝚫op, 𝐂𝐚𝐭] be the category of 𝐔-small
simplicial categories.

(i) 𝐒𝐂𝐚𝐭, regarded as a full subcategory of [𝚫op, 𝐂𝐚𝐭], is closed under limits
and colimits for all 𝐔-small diagrams.
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(ii) 𝐒𝐂𝐚𝐭 is a cartesian closed category.

(iii) The inclusion 𝐒𝐂𝐚𝐭 ↪ [𝚫op, 𝐂𝐚𝐭] has a left adjoint, and 𝐒𝐂𝐚𝐭 is a locally
finitely presentable 𝐔-category.

Proof. (i). The functor [𝚫op, ob] : [𝚫op, 𝐂𝐚𝐭] → 𝐬𝐒𝐞𝐭 has a left adjoint and
a right adjoint, so it follows that a limit or colimit for diagrams of simplicially
enriched categories, computed as a simplicial category, will have object-space a
discrete simplicial set and thus be isomorphic to a simplicially enriched category.

(ii). This is implied by proposition 2.1.23.

(iii). It is not hard to directly construct a left adjoint for the inclusion 𝐒𝐂𝐚𝐭 ↪
[𝚫op, 𝐂𝐚𝐭], and once this is done, we may apply the classification theorem for
locally presentable categories (0.2.40) to deduce (from proposition 2.1.9) that
𝐒𝐂𝐚𝐭 is also locally finitely presentable. Alternatively, one may instead first
show that 𝐒𝐂𝐚𝐭 is locally finitely presentable and then use the accessible adjoint
functor theorem (0.2.50) to construct a left adjoint for the inclusion. ◊

Proposition 2.1.26. Let u� be a category and let 𝕊[•] = (𝑆 [•], [•], 𝛿[•]) be a
cosimplicial object in the category of comonads on u�. If 𝕊[0] = (id, id, id), then u�
is the underlying ordinary category of a simplicially enriched category u� where
the hom-spaces are given by the formula below,

u�(𝐴, 𝐵) ≅ u�(𝑆 [•]𝐴, 𝐵)

with composition in level 𝑛 induced by the comultiplication 𝛿[𝑛] : 𝑆 [𝑛] ⇒ 𝑆 [𝑛]𝑆 [𝑛].

Proof. Let u�𝑛 be the Kleisli category associated with the comonad 𝕊[𝑛]. Clearly,
these fit together to form a simplicial category u�• such that ob u�• is a constant
simplicial set; so by remark 2.1.11, we have the required simplicially enriched
category u�. ■

Lemma 2.1.27 (Weak Yoneda lemma). Let 𝐔 be a universe, let 𝐬𝐒𝐞𝐭 be the
simplicially enriched category of simplicial 𝐔-sets, and let u� be a locally 𝐔-small
simplicially enriched category. For each object 𝐴 in u� and each simplicially
enriched functor 𝐹 : u� → 𝐬𝐒𝐞𝐭, the map 𝜑 ↦ 𝜑𝐴(id𝐴) is a bijection between
the set of u�-enriched natural transformations 𝜑 : u�(𝐴, −) ⇒ 𝐹 and the set of
vertices of 𝐹 𝐴.

Proof. This is a special case of lemma b.2.14. ■
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2.2 Simplicially enriched limits and colimits
Prerequisites. §§2.1, a.5, a.6, b.2, b.3, b.4.

In this section, we use the explicit universe convention.

Definition 2.2.1. Let u� be a simplicially enriched category, let 𝑋 be a simplicial
set, and let 𝐶 be an object in u�.

• A tensor product of 𝑋 and 𝐶 in u� is pair (𝑋 ⊙ 𝐶, ) where 𝑋 ⊙ 𝐶 is an
object in u� and is a morphism 𝑋 → u�(𝐶, 𝑋 ⊙ 𝐶) such that the simpli-
cially enriched natural transformation

u�(𝑋 ⊙ 𝐶, −) ⇒ [𝑋, u�(𝐶, −)]

induced by the corresponding vertex of [𝑋, u�(𝐶, 𝑋 ⊙ 𝐶)] is a simplicially
enriched natural isomorphism. We may also refer to (𝑋 ⊙ 𝐶, ) as a sim-
plicial copower of 𝐴 by 𝑋.

• A cotensor product of 𝑋 and 𝐶 in u� is a pair (𝑋 ⋔ 𝐶, ) where 𝑋 ⋔ 𝐶
is an object in u� and is a morphism 𝑋 → u�(𝑋 ⋔ 𝐶, 𝐶) such that the
simplicially enriched natural transformation

u�(−, 𝑋 ⋔ 𝐶) ⇒ [𝑋, u�(−, 𝐶)]

induced by the corresponding vertex of [𝑋, u�(𝑋 ⋔ 𝐶, 𝐶)] is a simplicially
enriched natural isomorphism. We may also refer to (𝑋 ⋔ 𝐶, ) as a sim-
plicial power of 𝐴 by 𝑋.

Remark 2.2.2. If u� is a locally 𝐔-small simplicially enriched category, then the
above definition coincides with the definition of tensor/cotensor product in a
𝐬𝐒𝐞𝐭-enriched category, where 𝐬𝐒𝐞𝐭 is the category of simplicial 𝐔-sets.

Definition 2.2.3. Let u� be a locally 𝐔-small simplicially enriched category and
let 𝐹 : 𝔻 → u� be a diagram in u�.

• A conical colimit for 𝐹 in u� is an object 𝐴 and a cocone : 𝐹 ⇒ Δ𝐴
such that, for all objects 𝐵 in u�, the hom-functor u�(−, 𝐵) : u� op → 𝐬𝐒𝐞𝐭
sends to a limiting cone in 𝐬𝐒𝐞𝐭.

• A conical limit for 𝐹 in u� is an object 𝐵 and a cone : Δ𝐵 ⇒ 𝐹 such
that, for all objects 𝐴 in u�, the hom-functor u�(𝐴, −) : u� → 𝐬𝐒𝐞𝐭 sends
to a limiting cone in 𝐬𝐒𝐞𝐭.
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Remark 2.2.4. Every conical colimit (resp. limit) for 𝐹 in u� is a colimit (resp.
limit) for 𝐹 in the underlying category u�, but the converse is not true in general.
Remark 2.2.5. When 𝔻 is an ordinary category 𝔻, ordinary cocones (resp. cones)
on diagrams 𝐹 : 𝔻 → u� are automatically simplicially enriched, and thus conical
colimits (resp. limits) for 𝐹 are the same thing as Δ1-weighted colimits (resp.
limits) for 𝐹 , where Δ1 denotes the constant functor with value 1 in 𝐬𝐒𝐞𝐭.

Proposition 2.2.6. Let u� be a locally 𝐔-small simplicially enriched category and
let 𝐹 : 𝔻 → u� be a diagram in u�. If u� has cotensor products with the standard
simplices, then the following are equivalent for any cocone : 𝐹 ⇒ Δ𝐴:

(i) is a conical colimit for 𝐹 in the simplicially enriched category u�.

(ii) is a colimit for 𝐹 in the underlying category u�.

Dually, if u� has tensor products with the standard simplices, then the following
are equivalent for any cone : Δ𝐵 ⇒ 𝐹 :

(i′) is a conical limit for 𝐹 in the simplicially enriched category u�.

(ii′) is a limit for 𝐹 in the underlying category u�.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). It suffices to show that, for each natural number 𝑛, the canonical
comparison map

u�(lim−−→𝔻
𝐹 , 𝑇 )𝑛 → lim←−−𝔻

u�(𝐹 , 𝑇 )𝑛

is a bijection; but by the Yoneda lemma,

u�(𝑆, 𝑇 )𝑛 ≅ 𝐬𝐒𝐞𝐭(Δ𝑛, u�(𝑆, 𝑇 ))

and the definition of Δ𝑛⋔(−) implies there is a natural bijection of the form below,

𝐬𝐒𝐞𝐭(Δ𝑛, u�(𝑆, 𝑇 )) ≅ u�(𝑆, Δ𝑛 ⋔ 𝑇 )

therefore the functor u�(−, 𝑇 )𝑛 : u� op → 𝐒𝐞𝐭 is representable. ■
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Definition 2.2.7. Let 𝐔 and 𝐔+ be universes, with 𝐔 ⊆ 𝐔+.

• A 𝐔-cocomplete simplicially enriched category is a locally 𝐔+-small
simplicially enriched category u� such that, for all 𝐔-small simplicially en-
riched diagrams 𝐹 : 𝔻 → u� and all 𝐔-small weights 𝑊 : 𝔻op → 𝐬𝐒𝐞𝐭, u�
has a 𝑊 -weighted colimit for 𝐹 .

• A 𝐔-complete simplicially enriched category is a locally 𝐔+-small sim-
plicially enriched category u� such that, for all 𝐔-small simplicially en-
riched diagrams 𝐹 : 𝔻 → u� and all 𝐔-small weights 𝑊 : 𝔻 → 𝐬𝐒𝐞𝐭, u�
has a 𝑊 -weighted limit for 𝐹 .

Proposition 2.2.8. Let u� be a locally 𝐔-small simplicially enriched category.

• u� is 𝐔-cocomplete if and only if u� is simplicially tensored and has conical
colimits for all 𝐔-small diagrams.

• u� is 𝐔-complete if and only if u� is simplicially cotensored and conical
limits for all 𝐔-small diagrams.

• u� is both 𝐔-cocomplete and 𝐔-complete if and only if u� is both simplicially
tensored and cotensored and the underlying category u� is 𝐔-cocomplete
and 𝐔-complete.

Proof. See [???]. □

2.3 Simplicial and cosimplicial objects
Prerequisites. §§1.1, 2.1, 2.2, a.6.

¶ 2.3.1. Recall that a simplicial object in a category is a diagram of shape
𝚫op, and dually, a cosimplicial object is a diagram of shape 𝚫. Let us write
𝐬ℳ for the category of simplicial objects in ℳ, and 𝐜ℳ for the category of
cosimplicial objects in ℳ.

Proposition 2.3.2. Let ℳ be a locally small category. Let Hom : (𝐬ℳ)op ×
𝐬ℳ → 𝐬𝐒𝐞𝐭 be the functor defined by

Hom(𝐴, 𝐵) ≅ Tot ℳ(𝐴•, 𝐵•)

where we regard ℳ(𝐴•, 𝐵•) as a cosimplicial simplicial set. Then 𝐬ℳ is a
locally small simplicially enriched category with hom-spaces given by Hom.
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Proof. By lemma 1.6.22, we have the following end formula:

Hom(𝐴, 𝐵)𝑛 ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, ℳ(𝐴𝑚, 𝐵𝑚))

Concretely, an element of 𝑓 of Hom(𝐴, 𝐵)𝑛 is a ∐[𝑚]:𝚫 𝚫([𝑚], [𝑛])-indexed fam-
ily of morphisms 𝑓𝜑 : 𝐴𝑚 → 𝐵𝑚 in ℳ, such that for any two morphisms
𝜑 : [𝑚] → [𝑛], 𝜓 : [𝑙] → [𝑚] in 𝚫, the diagram in ℳ shown below commutes:

𝐴𝑚 𝐵𝑚

𝐴𝑙 𝐵𝑙

𝜓∗

𝑓𝜑

𝜓∗

𝑓𝜑∘𝜓

Decomposing an element 𝑔 of Hom(𝐵, 𝐶)𝑛 the same way, we obtain the following
commutative diagram in ℳ,

𝐴𝑚 𝐵𝑚 𝐶𝑚

𝐴𝑙 𝐵𝑙 𝐶𝑙

𝜓∗

𝑓𝜑

𝜓∗

𝑔𝜑

𝜓∗

𝑓𝜑∘𝜓 𝑔𝜑∘𝜓

and thus we have an element of Hom(𝐴, 𝐶)𝑛. This is certainly natural in 𝑛, and
this is clearly the required associative composition with identity.

It remains to be shown that there is a natural bijection of the form below:

𝐬𝐒𝐞𝐭(Δ0, Hom(𝐴, 𝐵)) ≅ 𝐬ℳ(𝐴, 𝐵)

Given a morphism 𝑓• : 𝐴• → 𝐵•, we define an element 𝑓[𝑛] of Hom(𝐴, 𝐵)𝑛 for
each object [𝑛] in 𝚫op as follows: given 𝜑 : [𝑚] → [𝑛], we set (𝑓 [𝑛])𝜑 = 𝑓𝑚
and naturality of 𝑓𝑚 makes the diagram in ℳ shown below commute for every
morphism 𝜓 : [𝑙] → [𝑚] in 𝚫:

𝐴𝑚 𝐵𝑚

𝐴𝑙 𝐵𝑙

𝜓∗

(𝑓 [𝑛])𝜑

𝜓∗

(𝑓 [𝑛])𝜑∘𝜓

Thus, we have a morphism Δ0 → Hom(𝐴, 𝐵). Conversely, given a family of
elements 𝑓[−] such that ∗(𝑓 [𝑛]) = 𝑓[𝑛′] for all : [𝑛′] → [𝑛], we discover

(𝑓 [𝑛])𝜑 = (𝑓[𝑛])𝜑∘id[𝑚]
= (𝜑∗(𝑓 [𝑛]))id[𝑚]

= (𝑓[𝑚])id[𝑚]
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for all morphisms 𝜑 : [𝑚] → [𝑛] in 𝚫, so we get a morphism 𝑓• : 𝐴• → 𝐵• by
setting 𝑓𝑚 = (𝑓[𝑚])id[𝑚]

. This establishes the required natural bijection. ■

Definition 2.3.3. A constant simplicial object in a category ℳ is a simplicial
object in ℳ whose face and degeneracy operators are isomorphisms.

Proposition 2.3.4. Let ℳ be a locally small category. The following are equi-
valent for a simplicial object 𝐵• in ℳ:

(i) 𝐵• is a constant simplicial object in ℳ.

(ii) For all objects 𝐴 in ℳ, the simplicial set ℳ(𝐴, 𝐵•) is discrete.

(iii) For all simplicial objects 𝐴• in ℳ, the simplicial set 𝐬ℳ(𝐴, 𝐵) is discrete.

Proof. (i) ⇔ (ii). Use the fact that the Yoneda embedding ℳ → [ℳop, 𝐒𝐞𝐭] is
fully faithful.

(ii) ⇒ (iii). Apply lemma 1.6.24.

(iii) ⇒ (ii). Let 𝐴 be any object in ℳ. If we regard 𝐴 as a constant simplicial
object in the obvious way, then lemma 1.6.23 says there is a natural isomorphism

𝐬ℳ(𝐴, 𝐵) ≅ ℳ(𝐴, 𝐵•)

so ℳ(𝐴, 𝐵•) is indeed discrete. ■

Proposition 2.3.5. Let ℳ be a locally small category and let 𝑋 be a finite sim-
plicial set.

• If ℳ has finite colimits, then for any cosimplicial object 𝐴• in ℳ, there
exists an object 𝑋 ⋆ 𝐴 in ℳ equipped with bijections

ℳ(𝑋 ⋆ 𝐴, 𝐵) ≅ 𝐬𝐒𝐞𝐭(𝑋, ℳ(𝐴•, 𝐵))

that are natural in 𝐵.

• If ℳ has finite limits, then for any simplicial object 𝐵• in ℳ, there exists
an object {𝑋, 𝐵} in ℳ equipped with bijections

ℳ(𝐴, {𝑋, 𝐵}) ≅ 𝐬𝐒𝐞𝐭(𝑋, ℳ(𝐴, 𝐵•))

that are natural in 𝐴.
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Proof. The two claims are formally dual; we will prove the first version.
Applying the Yoneda lemma, we see that Δ𝑛 ⋆ 𝐴 must be (isomorphic to) 𝐴𝑛.

It is not hard to see that, if 𝑋 : u� → 𝐬𝐒𝐞𝐭 is a diagram such that 𝑋𝑗 ⋆ 𝐴 exists
for all 𝑗 in u� , then (lim−−→𝑗:u�

𝑋𝑗) ⋆ 𝐴 must be (isomorphic to) lim−−→𝑗:u� (𝑋𝑗 ⋆ 𝐴)
when the latter exists; thus, the class of simplicial sets 𝑋 for which 𝑋 ⋆ 𝐴 exists
must be closed under finite colimits (because ℳ has colimits for finite diagrams).
We may then use proposition 1.1.18 to deduce that 𝑋 ⋆ 𝐴 exists if 𝑋 is a finite
simplicial set. ■

Remark 2.3.6. The same is true for a general simplicial set 𝑋 when ℳ has limits
and colimits for all small diagrams: see theorem a.6.14.

Proposition 2.3.7. Let ℳ be a locally small category and let 𝑋 be a finite sim-
plicial set.

• If ℳ has finite colimits, then for any cosimplicial object 𝐴• in ℳ, the
tensor product (𝑋 ⊙ 𝐴)• exists in 𝐜ℳ.

• If ℳ has finite limits, then for any simplicial object 𝐵• in ℳ, the cotensor
product (𝑋 ⋔ 𝐵)• exists in 𝐬ℳ.

Proof. The two claims are formally dual; we will prove the first version.
It is clear that Δ𝑛 × 𝑋 is a finite simplicial set for all 𝑛 ≥ 0 when 𝑋 is a finite

simplicial set, so the objects (Δ𝑛 × 𝑋) ⋆ 𝐴 exist in ℳ (by proposition 2.3.5).
We then define (𝑋 ⊙ 𝐴)• by taking (𝑋 ⊙ 𝐴)𝑛 = (Δ𝑛 × 𝑋) ⋆ 𝐴. Let 𝐵• be any
cosimplicial object in ℳ. Using the calculus of ends, we have the following
natural bijections:

𝐜ℳ(𝑋 ⊙ 𝐴, 𝐵)𝑛 ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, ℳ((Δ𝑚 × 𝑋) ⋆ 𝐴, 𝐵𝑚))

by lemma 1.6.22

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑚)))

by definition and remark a.6.5

≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, 𝐒𝐞𝐭(Δ𝑚
𝑙 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑚)))

by proposition a.6.11
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≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑚)))

by exponential adjunction (twice)

≅ ∫[𝑙]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑚)))

by the interchange law (theorem a.6.17)

≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑙 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑙))

by the Yoneda lemma for ends (proposition a.6.18)

On the other hand:

[𝑋, 𝐜ℳ(𝐴, 𝐵)]𝑛 ≅ 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝑋, 𝐜ℳ(𝐴, 𝐵))
by remark a.2.23

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , ℳ(𝐴𝑙, 𝐵𝑙)))

by lemma 1.6.22 and remark a.6.5

≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, 𝐒𝐞𝐭(Δ𝑚
𝑙 , ℳ(𝐴𝑙, 𝐵𝑙)))

by proposition a.6.11

≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by exponential adjunction (twice)

≅ ∫[𝑙]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑚

𝑙 , 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by the interchange law (theorem a.6.17)

≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑙 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑙))

by the Yoneda lemma for ends (proposition a.6.18)

Thus, we have isomorphisms

𝐜ℳ(𝑋 ⊙ 𝐴, 𝐵) ≅ [𝑋, 𝐜ℳ(𝐴, 𝐵)]

that are natural in 𝐵•. Moreover,

[𝐜ℳ(𝑋 ⊙ 𝐴, 𝐵), 𝐜ℳ(𝑋 ⊙ 𝐴, 𝐶)] ≅ [𝐜ℳ(𝑋 ⊙ 𝐴, 𝐵) × 𝑋, 𝐜ℳ(𝐴, 𝐶)]
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and so a similar calculation may be used to verify simplicial naturality in 𝐵•. ■

Proposition 2.3.8. Let ℳ be a locally small category and let 𝑋 be a finite sim-
plicial set (resp. any simplicial set).

• If ℳ has finite copowers (resp. small copowers), then for any simplicial
object 𝐴• in ℳ, the simplicial object (𝑋 ⊙ 𝐴)• defined by

(𝑋 ⊙ 𝐴)𝑛 = 𝑋𝑛 ⊙ 𝐴𝑛

is (the object part of) a tensor product of 𝑋 and 𝐴• in 𝐬ℳ.

• If ℳ has finite powers (resp. small powers), then for any cosimplicial ob-
ject 𝐵• in ℳ, the cosimplicial object (𝑋 ⋔ 𝐵)• defined by

(𝑋 ⋔ 𝐵)𝑛 = 𝑋𝑛 ⋔ 𝐵𝑛

is (the object part of) a tensor product of 𝑋 and 𝐵• in 𝐜ℳ.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐵• be any simplicial object in ℳ. By the calculus of ends, we have the

following natural bijections:

𝐬ℳ(𝑋 ⊙ 𝐴, 𝐵)𝑛 ≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, ℳ(𝑋𝑚 ⊙ 𝐴𝑚, 𝐵𝑚))

by lemma 1.6.22

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚, 𝐒𝐞𝐭(𝑋𝑚, ℳ(𝐴𝑚, 𝐵𝑚)))

by definition

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, ℳ(𝐴𝑚, 𝐵𝑚))

by exponential adjunction

On the other hand:

[𝑋, 𝐬ℳ(𝐴, 𝐵)]𝑛 ≅ 𝐬𝐒𝐞𝐭(Δ𝑛 × 𝑋, 𝐬ℳ(𝐴, 𝐵))
by remark a.2.23

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑙

𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by lemma 1.6.22 and remark a.6.5
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≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑚 × 𝑋𝑚, 𝐒𝐞𝐭(Δ𝑙
𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by proposition a.6.11

≅ ∫[𝑚]:𝚫 ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑙

𝑚, 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by exponential adjunction (twice)

≅ ∫[𝑙]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(Δ𝑙

𝑚, 𝐒𝐞𝐭(Δ𝑛
𝑚 × 𝑋𝑚, ℳ(𝐴𝑙, 𝐵𝑙)))

by the interchange law (theorem a.6.17)

≅ ∫[𝑙]:𝚫
𝐒𝐞𝐭(Δ𝑛

𝑙 × 𝑋𝑙, ℳ(𝐴𝑙, 𝐵𝑙))

by the Yoneda lemma for ends (proposition a.6.18)

Thus, we have isomorphisms

𝐬ℳ(𝑋 ⊙ 𝐴, 𝐵) ≅ [𝑋, 𝐬ℳ(𝐴, 𝐵)]

that are natural in 𝐵•. Moreover,

[𝐬ℳ(𝑋 ⊙ 𝐴, 𝐵), 𝐬ℳ(𝑋 ⊙ 𝐴, 𝐶)] ≅ [𝐬ℳ(𝑋 ⊙ 𝐴, 𝐵) × 𝑋, 𝐬ℳ(𝐴, 𝐶)]

so a similar calculation may be used to verify simplicial naturality in 𝐵•. ■

Definition 2.3.9. Let ℳ be a locally small simplicially enriched category.

• A realisation of a simplicial object 𝐴• in ℳ is an object |𝐴•| in ℳ with
a simplicially enriched natural isomorphism of the form below:

ℳ(|𝐴•|, −) ≅ [𝚫, 𝐬𝐒𝐞𝐭](Δ•, ℳ(𝐴•, −))

• A totalisation of a cosimplicial object 𝐵• in ℳ is an object |𝐵•| in ℳ
with a simplicially enriched natural isomorphism of the form below:

ℳ(−, Tot 𝐵•) ≅ [𝚫, 𝐬𝐒𝐞𝐭](Δ•, ℳ(−, 𝐵•))

Remark 2.3.10. In other words, |𝐴•| is the simplicially enriched weighted colimit
Δ• ⋆𝚫op 𝐴•, and Tot 𝐵• is the simplicially enriched weighted limit {Δ•, 𝐵•}𝚫op

.
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Remark 2.3.11. By remark 2.1.24 and theorems b.3.18 and b.3.19, the above
definitions agree with the ones given in §1.6. In particular, we have simplicially
enriched natural isomorphisms

ℳ(|𝐴•|, −) ≅ Tot ℳ(𝐴•, −)
ℳ(−, Tot 𝐵•) ≅ Tot ℳ(−, 𝐵•)

for a simplicial object 𝐴• and a cosimplicial object 𝐵• in ℳ, respectively.

Proposition 2.3.12. Let ℳ be a locally small simplicially enriched category.

• Let 𝑋 be a simplicial set and let 𝐴• be a simplicial object in ℳ. If ℳ is
cocomplete and 𝑋 ⊡ 𝐴• is the simplicial object in ℳ defined below,

(𝑋 ⊡ 𝐴•)𝑛 = 𝑋𝑛 ⊙ 𝐴𝑛

then there is an isomorphism

|𝑋 ⊡ 𝐴•| ≅ 𝑋 ⊙ |𝐴•|

and it is natural in both 𝑋 and 𝐴•.

• Let 𝑋 be a simplicial set and let 𝐵• be a cosimplicial object in ℳ. If ℳ
is complete and 𝑋 □⋔ 𝐺• is the cosimplicial object in ℳ defined below,

(𝑋 □⋔ 𝐵•)𝑛 = 𝑋𝑛 ⋔ 𝐵𝑛

then there is an isomorphism

Tot(𝑋 □⋔ 𝐵•) ≅ 𝑋 ⋔ Tot 𝐵•

and it is natural in both 𝑋 and 𝐵•.

Proof. The two claims are formally dual; we will prove the first version.
Using the calculus of ends, we have the following natural bijections:

ℳ(𝑋 ⊙ |𝐴•|, 𝐵) ≅ 𝐬𝐒𝐞𝐭(𝑋, ℳ(|𝐴•|, 𝐵))
by definition

≅ 𝐬𝐒𝐞𝐭(𝑋, ∫[𝑛]:𝚫
[Δ𝑛, ℳ(𝐴𝑛, 𝐵)])

by theorem a.6.14
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≅ ∫[𝑛]:𝚫
𝐬𝐒𝐞𝐭(𝑋, [Δ𝑛, ℳ(𝐴𝑛, 𝐵)])

by proposition a.6.11

≅ ∫[𝑛]:𝚫
𝐬𝐒𝐞𝐭(𝑋 × Δ𝑛, ℳ(𝐴𝑛, 𝐵))

by exponential adjunction

≅ ∫[𝑛]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚 × Δ𝑛

𝑚, ℳ(𝐴𝑛, 𝐵)𝑚)

by remark a.6.5

≅ ∫[𝑛]:𝚫 ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, 𝐒𝐞𝐭(Δ𝑛

𝑚, ℳ(𝐴𝑛, 𝐵)𝑚))

by exponential adjunction

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, ∫[𝑛]:𝚫

𝐒𝐞𝐭(Δ𝑛
𝑚, ℳ(𝐴𝑛, 𝐵)𝑚))

by the interchange law (theorem a.6.17)

≅ ∫[𝑚]:𝚫
𝐒𝐞𝐭(𝑋𝑚, ℳ(𝐴𝑚, 𝐵)𝑚)

by the Yoneda lemma for ends (proposition a.6.18)

≅ ∫[𝑚]:𝚫
ℳ(𝑋𝑚 ⊙ 𝐴𝑚, 𝐵)𝑚

by definition

≅ ∫[𝑚]:𝚫
𝐬𝐒𝐞𝐭(Δ𝑚, ℳ(𝑋𝑚 ⊙ 𝐴𝑚, 𝐵))

by the ordinary Yoneda lemma
≅ ℳ(|𝑋 ⊡ 𝐴•|, 𝐵)

Applying the Yoneda lemma once more, we deduce that |𝑋 ⊡ 𝐴•| is naturally
isomorphic to 𝑋 ⊙ |𝐴•|. ■

Corollary 2.3.13. Let ℳ be a locally small simplicially enriched category.

• Let 𝑓•, 𝑓 ′
• : 𝐴• → 𝐵• be a parallel pair of morphisms in 𝐬ℳ. If ℳ is

cocomplete as a simplicially enriched category and there exists a morph-
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ism 𝐻 : Δ1 ⊡ 𝐴• → 𝐵• making the following diagram commute,

Δ0 ⊡ 𝐴• 𝐴•

Δ1 ⊡ 𝐴• 𝐵•

Δ0 ⊡ 𝐴• 𝐴•

𝛿1⊡id𝐴•

≅

𝑓•

𝐻

𝛿0⊡id𝐴•

≅

𝑓 ′
•

then there is an edge 𝛼 : |𝑓 | ⇒ |𝑓 ′| in ℳ(|𝐴•|, |𝐵•|).

• Let 𝑓 •, 𝑓 ′• : 𝐴• → 𝐵• be a parallel pair of morphisms in 𝐜ℳ. If ℳ is
complete as a simplicially enriched category and there exists a morphism
𝐻 : 𝐴• → Δ1 □⋔ 𝐵• making the following diagram commute,

𝐵• Δ0 □⋔ 𝐵•

𝐴• Δ1 □⋔ 𝐵•

𝐵• Δ0 □⋔ 𝐵•

≅

𝑓 •

𝐻

𝑓 ′•

𝛿1□⋔ id𝐵•

𝛿0□⋔ id𝐵•

≅

then there is an edge 𝛼 : Tot 𝑓 ⇒ Tot 𝑓 ′ in ℳ(Tot 𝐴•, Tot 𝐵•).

Proof. The Yoneda lemma implies there are natural bijections

ℳ(Δ1 ⊙ 𝐴, 𝐵) ≅ ℳ(𝐴, 𝐵)1 ≅ ℳ(𝐴, Δ1 ⋔ 𝐵)

so the required edge is obtained by applying realisation (resp. totalisation) to the
displayed diagrams. ■

Proposition 2.3.14. Let ℳ be a locally small simplicially enriched category.

• If ℳ is cocomplete and cotensored, then we have the following adjunction
of ordinary categories:

|−| ⊣ Δ• ⋔ (−) : ℳ → 𝐬ℳ

• If ℳ is complete and tensored, then we have the following adjunction of
ordinary categories:

Δ• ⊙ (−) ⊣ Tot : 𝐜ℳ → ℳ
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Proof. By definition, we have the following natural bijections:TODO: Replace
this with the en-
riched version. ℳ(|𝐴•|, 𝐵) ≅ [𝚫, 𝐬𝐒𝐞𝐭](Δ•, ℳ(𝐴•, 𝐵)) ≅ [𝚫op, ℳ](𝐴•, Δ• ⋔ 𝐵)

ℳ(𝐴, Tot 𝐵•) ≅ [𝚫, 𝐬𝐒𝐞𝐭](Δ•, ℳ(𝐴, 𝐵•)) ≅ [𝚫op, ℳ](Δ• ⊙ 𝐴, 𝐵•) ■

Definition 2.3.15. Let (𝑊 , , 𝛿) be a comonad on a category ℳ. The standard
resolution of an object 𝐴 in ℳ (with respect to this comonad) is the simplicial
object 𝐒(𝐴)• defined by the following formulae,

𝐒(𝐴)𝑛 = 𝑊 𝑛+1𝐴
𝑑𝑛

𝑖 = 𝑊 𝑛−𝑖
𝑊 𝑖𝐴

𝑠𝑛
𝑖 = 𝑊 𝑛−𝑖𝛿𝑊 𝑖𝐴

together with the standard augmentation, which is defined to be the unique
morphism ( �̃�)• : 𝐒(𝐴)• → 𝐴 in 𝐬ℳ given in degree 0 by the counit 𝐴 :
𝑊 𝐴 → 𝐴.

Remark 2.3.16. One does have to verify that the above really does define a sim-
plicial object and a morphism thereof, but this is straightforward.

Definition 2.3.17. Let 𝐴• be a simplicial object in a category ℳ.

• A forward contracting homotopy for 𝐴• consists of an object 𝐴−1 in ℳ
and morphisms 𝑟 : 𝐴0 → 𝐴−1, 𝑠 : 𝐴−1 → 𝐴0, and ℎ𝑛 : 𝐴𝑛 → 𝐴𝑛+1 in ℳ
satisfying these identities:

𝑟 ∘ 𝑑1
1 = 𝑟 ∘ 𝑑1

0

𝑟 ∘ 𝑠 = id
𝑑1

0 ∘ ℎ0 = 𝑠 ∘ 𝑟
𝑑1

1 ∘ ℎ0 = id
𝑑𝑛+1

𝑖 ∘ ℎ𝑛 = ℎ𝑛−1 ∘ 𝑑𝑛
𝑖 if 0 ≤ 𝑖 ≤ 𝑛

𝑑𝑛+1
𝑛+1 ∘ ℎ𝑛 = id

ℎ𝑛+1 ∘ 𝑠𝑛
𝑖 = 𝑠𝑛+1

𝑖 ∘ ℎ𝑛 if 0 ≤ 𝑖 ≤ 𝑛
ℎ𝑛+1 ∘ ℎ𝑛 = 𝑠𝑛+1

𝑛+1 ∘ ℎ𝑛

• A backward contracting homotopy for 𝐴• consists of an object 𝐴−1 in
ℳ and morphisms 𝑟 : 𝐴0 → 𝐴−1, 𝑠 : 𝐴−1 → 𝐴0, and ℎ𝑛 : 𝐴𝑛 → 𝐴𝑛+1 in
ℳ satisfying these identities:

𝑟 ∘ 𝑑1
1 = 𝑟 ∘ 𝑑1

0
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𝑟 ∘ 𝑠 = id
𝑑1

0 ∘ ℎ0 = id
𝑑1

1 ∘ ℎ0 = 𝑠 ∘ 𝑟
𝑑𝑛+1

0 ∘ ℎ𝑛 = id
𝑑𝑛+1

𝑖+1 ∘ ℎ𝑛 = ℎ𝑛−1 ∘ 𝑑𝑛
𝑖 if 0 ≤ 𝑖 ≤ 𝑛

ℎ𝑛+1 ∘ ℎ𝑛 = 𝑠𝑛+1
0 ∘ ℎ𝑛

ℎ𝑛+1 ∘ 𝑠𝑛
𝑖 = 𝑠𝑛+1

𝑖+1 ∘ ℎ𝑛 if 0 ≤ 𝑖 ≤ 𝑛

Remark 2.3.18. The above definition agrees with definition 1.3.19 in the case
ℳ = 𝐒𝐞𝐭.

Proposition 2.3.19. Let 𝐴• be a simplicial object in a locally small category
ℳ.

• Given a forward contracting homotopy for 𝐴•, say 𝑟 : 𝐴0 → 𝐴−1, 𝑠 :
𝐴−1 → 𝐴0, and ℎ𝑛 : 𝐴𝑛 → 𝐴𝑛+1, there are unique morphisms ̃𝑟• : 𝐴• →
𝐴−1 and ̃𝑠• : 𝐴−1 → 𝐴• in 𝐬ℳ defined in degree 0 by 𝑟 and 𝑠 respectively,
and we have ̃𝑟• ∘ ̃𝑠• = id𝐴−1

and an edge id𝐴•
⇒ ̃𝑠• ∘ ̃𝑟• in 𝐬ℳ(𝐴, 𝐴).

• Given a forward contracting homotopy for 𝐴•, say 𝑟 : 𝐴0 → 𝐴−1, 𝑠 :
𝐴−1 → 𝐴0, and ℎ𝑛 : 𝐴𝑛 → 𝐴𝑛+1, there are unique morphisms ̃𝑟• : 𝐴• →
𝐴−1 and ̃𝑠• : 𝐴−1 → 𝐴• in 𝐬ℳ defined in degree 0 by 𝑟 and 𝑠 respectively,
and we have ̃𝑟• ∘ ̃𝑠• = id𝐴−1

and an edge id𝐴•
⇒ ̃𝑠• ∘ ̃𝑟• in 𝐬ℳ(𝐴, 𝐴).

Proof. The two claims are formally dual; we will prove the first version.
By adjointness, there is a unique morphism ̃𝑠• : 𝐴−1 → 𝐴• in 𝐬ℳ such that

̃𝑠0 = 𝑠. It is clear that there is at most one morphism ̃𝑟• : 𝐴• → 𝐴−1 in 𝐬ℳ.
such that ̃𝑟0 = 𝑟, and since 𝑟 ∘ 𝑑1

1 = 𝑟 ∘ 𝑑1
0 , the simplicial identities imply there is

indeed such a morphism in 𝐬ℳ. Similarly, to verify the equation ̃𝑟• ∘ ̃𝑠• = id𝐴−1
,

it suffices to verify the claim in degree 0; but this is just the hypothesis that
𝑟 ∘ 𝑠 = id𝐴−1

.
Now, let 𝑇 be any object in ℳ, and consider the simplicial set ℳ(𝑇 , 𝐴•).

Then we have a natural forward contracting homotopy for each ℳ(𝑇 , 𝐴•); so
by proposition 1.3.20, for each morphism 𝑓• : 𝑇 → 𝐴• in 𝐬ℳ, there is a natural
edge 𝑓• ⇒ ̃𝑠• ∘ ̃𝑟• ∘ 𝑓• in ℳ(𝑇 , 𝐴•). But Tot : [𝚫, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 is a simplicially
enriched functor (by proposition b.3.16), so this implies there is an edge id𝐴•

⇒
̃𝑠• ∘ ̃𝑟• in 𝐬ℳ(𝐴, 𝐴), as required. ■
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Proposition 2.3.20. Let ℳ and u� be locally small categories, let

𝐹 ⊣ 𝑈 : ℳ → u�

be an adjunction with unit : idu� ⇒ 𝑈𝐹 and counit : 𝐹 𝑈 ⇒ idℳ, and
let 𝐴 be an object in ℳ. Taking 𝑈𝐒(𝐴)−1 = 𝑈𝐴, 𝑟 = 𝑈 𝐴, 𝑠 = 𝑈𝐴, and
ℎ𝑛 = 𝑈(𝐹 𝑈)𝑛+1𝐴, we have a forward contracting homotopy for 𝑈𝐒(𝐴)•.

Proof. This is a straightforward exercise in using the triangle identities. ⧫

2.4 Simplicial model categories
Prerequisites. §§1.5, 2.1, 4.1, 4.3, 4.7, 4.8.

Definition 2.4.1. Let ℳ be a locally small simplicially enriched category. A
simplicial model structure on ℳ is a model structure on the underlying model
category ℳ that satisfies the following axiom:[1]

SM7. If 𝑖 : 𝑍 → 𝑊 is a cofibration in ℳ and 𝑝 : 𝑋 → 𝑌 is a fibration in ℳ,
and the square in the diagram below is a pullback square in 𝐬𝐒𝐞𝐭,

ℳ(𝑊 , 𝑋)

ℳ(𝑍, 𝑋) ×ℳ(𝑍,𝑌 ) ℳ(𝑊 , 𝑌 ) ℳ(𝑊 , 𝑌 )

ℳ(𝑍, 𝑋) ℳ(𝑍, 𝑌 )

ℳ(𝑖,𝑋)

ℳ(𝑊 ,𝑝)

𝑖∗◰𝑝∗

ℳ(𝑖,𝑌 )

ℳ(𝑍,𝑝)

then the unique morphism 𝑖∗ ◰ 𝑝∗ making the diagram commute is a
Kan fibration; moreover, if either 𝑖 : 𝑍 → 𝑊 or 𝑝 : 𝑋 → 𝑌 is a weak
equivalence, then 𝑖∗ ◰ 𝑝∗ is a trivial Kan fibration.

A simplicial model category is a locally small simplicially enriched cat-
egory ℳ that is equipped with a simplicial model structure and satisfies the
additional axioms below:

SM0. For each finite simplicial set 𝐾 and each object 𝑋 in ℳ, the tensor
product 𝐾 ⊙ 𝑋 and the cotensor product 𝐾 ⋔ 𝑋 exist in ℳ.

[1] This presentation is due to Quillen [1967].
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CM1. ℳ has finite limits and finite colimits.

A simplicial derivable category is a locally small simplicially enriched cat-
egory ℳ that is equipped with a simplicial model structure and satisfies the
additional axioms below:

• If 𝑊 is a cofibrant object in ℳ, then the functor ℳ(𝑊 , −) : ℳ → 𝐬𝐒𝐞𝐭
preserves fibrant objects, fibrations, and trivial fibrations; and if 𝑋 is a
fibrant object in ℳ, then the functor ℳ(−) : ℳop → 𝐬𝐒𝐞𝐭 sends cofibrant
objects (resp. cofibrations, trivial cofibrations) in ℳ to Kan complexes
(resp. Kan fibrations, trivial Kan fibrations) in 𝐬𝐒𝐞𝐭.

• The underlying ordinary category ℳ equipped with the given model struc-
ture is a derivable category.

Remark 2.4.2. Proposition 2.2.6 implies that limits and colimits in a simplicial
model category are automatically conical (i.e. limits and colimits in the simpli-
cially enriched sense).
Remark 2.4.3. Let ℳ be a locally small simplicially enriched category equipped
whose underlying ordinary category is equipped with a model structure. Then ℳ
is a simplicial model category if and only if ℳop is a simplicial model category.

Proposition 2.4.4. Let ℳ be a locally small simplicially enriched category
whose underlying ordinary category is equipped with a model structure. If ℳ
satisfies axioms SM0 and CM1, then the following are equivalent:

(i) Axiom SM7 is satisfied.

(ii) For all fibrations (resp. trivial fibrations) 𝑝 : 𝑋 → 𝑌 in ℳ, if 𝑖 : 𝑍 → 𝑊
is a boundary inclusion 𝜕Δ𝑛 ↪ Δ𝑛 and the square in the diagram below is
a pullback square in ℳ,

𝑊 ⋔ 𝑋

(𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 ) 𝑊 ⋔ 𝑌

𝑍 ⋔ 𝑋 𝑍 ⋔ 𝑌

𝑖⋔id𝑋

id𝑊 ⋔𝑝

𝑖◰𝑝

𝑖⋔id𝑌

id𝑍⋔𝑝

273



II. Simplicial categories

then the unique morphism 𝑖◰𝑝 making the diagram commute is a fibration
(resp. trivial fibration); and for all fibrations 𝑝 : 𝑋 → 𝑌 in ℳ, if 𝑖 : 𝑍 →
𝑊 is a horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛, then the morphism 𝑖 ◰ 𝑝 defined as above
is a trivial fibration.

(iii) For all cofibrations (resp. trivial cofibrations) 𝑗 : 𝑋 → 𝑌 in ℳ, if 𝑖 :
𝑍 → 𝑊 is a boundary inclusion 𝜕Δ𝑛 ↪ Δ𝑛 and the square in the diagram
below is a pushout square in ℳ,

𝑍 ⊙ 𝑋 𝑍 ⊙ 𝑌

𝑊 ⊙ 𝑋 (𝑊 ⊙ 𝑋) ∪𝑍⊙𝑋 (𝑍 ⊙ 𝑌 )

𝑊 ⊙ 𝑌

𝑖⊙id𝑋

id𝑍⊙𝑗

𝑖⊙id𝑌

id𝑊 ⊙𝑗

𝑖◲𝑗

then the unique morphism 𝑖◲𝑗 making the diagram commute is a cofibra-
tion (resp. trivial cofibration); and for all cofibrations 𝑗 : 𝑋 → 𝑌 in ℳ, if
𝑖 : 𝑍 → 𝑊 is a horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛, then the morphism 𝑖 ◲ 𝑗 defined
as above is a trivial cofibration.

Proof. This is (essentially) a special case of proposition 5.5.1. ■

Corollary 2.4.5. Let ℳ be simplicial derivable category that has tensors for
finite (resp. all) simplicial sets and colimits for finite (resp. small) diagrams.

(i) If 𝑖 : 𝑍 → 𝑊 is a monomorphism of finite (resp. arbitrary) simplicial sets
and 𝑌 is a a cofibrant object in ℳ, then the morphism 𝑖 ⊙ id𝑌 : 𝑍 ⊙ 𝑌 →
𝑊 ⊙ 𝑌 is a cofibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension of finite (resp. arbitrary) simplicial
sets and 𝑌 is a a cofibrant object in ℳ, then the morphism 𝑖 ⊙ id𝑌 :
𝑍 ⊙ 𝑌 → 𝑊 ⊙ 𝑌 is a trivial cofibration.

(iii) If 𝑊 is any finite (resp. arbitrary) simplicial set and 𝑌 is a cofibrant object
in ℳ, then 𝑊 ⊙ 𝑌 is also a cofibrant object in ℳ.

Proof. (i) and (ii). Proposition 2.4.4 implies the claims in the special cases
where 𝑖 : 𝑍 → 𝑊 is a boundary inclusion or horn inclusion, and by propos-
ition 1.4.12 (resp. corollary 0.5.13) and proposition a.3.17, this is enough to de-
duce the claim for the general case.
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(iii). Take 𝑍 = ∅. ■

Corollary 2.4.6. Let ℳ be simplicial derivable category that has cotensors for
finite (resp. all) simplicial sets and limits for finite (resp. small) diagrams.

(i) If 𝑖 : 𝑍 → 𝑊 is a monomorphism of finite (resp. arbitrary) simplicial sets
and 𝑋 is a a fibrant object in ℳ, then the morphism 𝑖 ⋔ id𝑋 : 𝑊 ⋔ 𝑋 →
𝑍 ⋔ 𝑋 is a fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension of finite (resp. arbitrary) simplicial
sets and 𝑋 is a fibrant object in ℳ, then the morphism 𝑖 ⋔ id𝑋 : 𝑊 ⋔ 𝑋 →
𝑍 ⋔ 𝑋 is a trivial cofibration.

(iii) If 𝑊 is any finite (resp. arbitrary) simplicial set and 𝑋 is a fibrant object
in ℳ, then 𝑊 ⋔ 𝑌 is also a fibrant object in ℳ.

Proof. These claims are formally dual to the ones in corollary 2.4.5. ■

Proposition 2.4.7. Let ℳ be a locally small simplically enriched category with
an initial object 0 and a terminal object 1 (in the simplicially enriched sense)
and suppose ℳ is equipped with a simplicial model structure.

• If 𝐴 is a cofibrant object in ℳ, then the functor ℳ(𝐴, −) : ℳ → 𝐬𝐒𝐞𝐭
preserves weighted limits, fibrant objects, fibrations, and trivial fibrations.

• If 𝐵 is a fibrant object in ℳ, then the functor ℳ(−, 𝐵) : ℳop → 𝐬𝐒𝐞𝐭
preserves weighted limits, fibrant objects, fibrations, and trivial fibrations.

In particular, every simplicial model category is a simplicial derivable category.

Proof. The two claims are formally dual; we will prove the first version.
Essentially by definition, the functor ℳ(𝐴, −) : ℳ → 𝐬𝐒𝐞𝐭 preserves any

weighted limits that exist in ℳ. Lemma 4.1.16 says the unique morphism 0 → 𝐴
is a cofibration if and only if 𝐴 is a cofibrant object in ℳ, so we may then apply
axiom SM7 to deduce that ℳ(𝐴, −) preserves fibrant objects, fibrations, and
trivial fibrations.

To conclude, we need only apply remark 2.4.2 and proposition 4.1.17. ■

Lemma 2.4.8. Let ℳ be a simplicial derivable category, let ℳc be the full
subcategory of cofibrant objects in ℳ, and let ℳf be the full subcategory of
fibrant objects in ℳ.
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• If 𝐴 is a cofibrant object in ℳ, then ℳ(𝐴, −) : ℳf → 𝐬𝐒𝐞𝐭 is a homotop-
ical functor.

• If 𝐵 is a fibrant object in ℳ, then ℳ(−, 𝐵) : ℳc
op → 𝐬𝐒𝐞𝐭 is a homotop-

ical functor.

In particular, ℳ(−, −) : ℳc
op × ℳf → 𝐬𝐒𝐞𝐭 is a homotopical functor.

Proof. By definition, ℳ(𝐴, −) sends trivial fibrations in ℳ to trivial Kan fibra-
tions when 𝐴 is cofibrant, and ℳ(−, 𝐵) sends trivial cofibrations in ℳ to trivial
Kan fibrations when 𝐵 is fibrant, we may apply lemma 4.1.33. ■

Theorem 2.4.9. Let ℳ be a simplicial derivable category, let (ℳc, 𝑄, 𝑝) be
a left Quillen deformation retract of ℳ, and let (ℳf, 𝑅, 𝑖) be a right Quillen
deformation retract of ℳ.

(i) (ℳc
op × ℳf, 𝑄 × 𝑅, (𝑝, 𝑖)) is a right deformation retract for the functor

ℳ(−, −) : ℳop × ℳ → 𝐬𝐒𝐞𝐭.

(ii) ℳ(−, −) : ℳop × ℳ → 𝐬𝐒𝐞𝐭 has a total right derived functor; further-
more, if (ℳc, 𝑄, 𝑝) and (ℳf, 𝑅, 𝑖) are functorial deformation retracts,
then ℳ(−, −) also has a homotopical right approximation.

Proof. (i). This is lemma 2.4.8.

(ii). Apply theorems 3.3.17 and 3.4.11. ■

Definition 2.4.10. Let ℳ be a simplicial derivable category. A derived hom-
space functor for ℳ is a total right derived functor for the functor ℳ(−, −) :
ℳop × ℳ → 𝐬𝐒𝐞𝐭. We write 𝐑Homℳ : (Ho ℳ)op × Ho ℳ → Ho 𝐬𝐒𝐞𝐭 for (the
functor part of) a derived hom-space functor for ℳ.

Proposition 2.4.11. Let ℳ be a simplicial model category.

• If 𝐴 is a cofibrant object in ℳ, then the cosimplicial object Δ• ⊙ 𝐴 is (the
object part of) a left frame on 𝐴.

• If 𝐵 is a fibrant object in ℳ, then the simplicial object Δ• ⋔𝐵 is (the object
part of) a right frame on 𝐵.

Proof. See Remark 5.2.10 in [Hovey, 1999]. □
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Corollary 2.4.12. Let ℳ be a simplicial model category. If 𝐴 is a cofibrant
object in ℳ and 𝐵 is a fibrant object in ℳ, then:

• The hom-space ℳ(𝐴, 𝐵) is (the object part of) a left homotopy function
complex from 𝐴 to 𝐵.

• The hom-space ℳ(𝐴, 𝐵) is (the object part of) a right homotopy function
complex from 𝐴 to 𝐵.

Proof. The two claims are formally dual; we will prove the first version.
By proposition 2.4.11, the cosimplicial object ̃𝐴• = Δ• ⊙ 𝐴 is (the object

part of) a left frame on 𝐴; but there is a natural isomorphism between the left
hom-complex Homℳ( ̃𝐴, 𝐵) and the hom-space ℳ(𝐴, 𝐵), and 𝐵 is fibrant by
hypothesis, so we are done. ■

Remark 2.4.13. In particular, the derived hom-spaces of the simplicial model
category ℳ agree with the derived hom-spaces of the underlying model category
ℳ.

Proposition 2.4.14. Let ℳ be a simplicial model category.

• If 𝐴 is a cofibrant object in ℳ, then (Δ1 ⊙ 𝐴, 𝛿1 ⊙ id𝐴, 𝛿0 ⊙ id𝐴, 𝜎0 ⊙ id𝐴)
is a cylinder object for Δ0 ⊙ 𝐴 (and hence, isomorphic to a cylinder object
for 𝐴).

• If 𝐵 is a fibrant object in ℳ, then (Δ1 ⋔ 𝐵, 𝛿1 ⋔ id𝐵, 𝛿0 ⋔ id𝐵, 𝜎0 ⋔ id𝐵) is
a path object for Δ0 ⋔ 𝐵 (and hence, isomorphic to a path object for 𝐵).

Proof. Apply propositions 2.4.11 and 4.7.21; but see also Lemma 3.5 in [GJ], or
Lemma 9.5.4 in [Hirschhorn, 2003]. ■

Corollary 2.4.15. Let ℳ be a simplicial model category. If 𝐴 is a cofibrant
object in ℳ and 𝐵 is a fibrant object in ℳ, then the canonical map

Ho ℳ(𝐴, 𝐵) → 𝜋0ℳ(𝐴, 𝐵)

is a natural bijection.

Proof. Proposition 2.4.14 says that (Δ1 ⊙ 𝐴, 𝛿1 ⊙ id𝐴, 𝛿0 ⊙ id𝐴, 𝜎0 ⊙ id𝐴) is a
cylinder object for Δ0 ⊙ 𝐴, so if 𝐵 is fibrant, we may apply lemma 4.2.14 and
theorem 4.4.1 to deduce that the connected components of ℳ(𝐴, 𝐵) are in natural
bijection with the homotopy classes of morphisms 𝐴 → 𝐵. ■
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Lemma 2.4.16. Let 𝑓0, 𝑓1 : 𝐴 → 𝐵 be a parallel pair of morphisms in a sim-
plicial model category ℳ.

• If 𝐴 is a cofibrant object in ℳ and 𝑓0 and 𝑓1 are in the same connected
component of ℳ(𝐴, 𝐵), then 𝑓0 is a weak equivalence in ℳ if and only if
𝑓1 is a weak equivalence in ℳ.

• If 𝐵 is a fibrant object in ℳ and 𝑓0 and 𝑓1 are in the same connected
component of ℳ(𝐴, 𝐵), then 𝑓0 is a weak equivalence in ℳ if and only if
𝑓1 is a weak equivalence in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
By induction, we may assume that there is an edge 𝛼 : 𝑓0 ⇒ 𝑓1 in ℳ(𝐴, 𝐵).

Let ℎ : Δ1 ⊙ 𝐴 → 𝐵 be the corresponding morphism in ℳ. We then have the
following commutative diagram in ℳ:

Δ0 ⊙ 𝐴 𝐴

Δ1 ⊡ 𝐴 𝐵

Δ0 ⊡ 𝐴 𝐴

𝛿1⊙id𝐴

≅

𝑓0

ℎ

𝛿0⊙id𝐴

≅

𝑓1

Since 𝐴 is cofibrant, corollary 2.4.5 implies that the morphisms 𝛿0 ⊙ id𝐴, 𝛿1 ⊙
id𝐴 : Δ0 ⊙ 𝐴 → Δ1 ⊙ 𝐴 are weak equivalences in ℳ. Thus, by axiom CM2, 𝑓0
is a weak equivalence in ℳ if and only if 𝑓1 is a weak equivalence in ℳ. ■

Proposition 2.4.17. Let ℳ be a simplicial model category and let 𝔸 be a small
category.

• If the projective model structure on [𝔸, ℳ] exists, then [𝔸, ℳ] (with the
projective model structure) is a simplicial model category.

• If the injective model structure on [𝔸, ℳ] exists, then [𝔸, ℳ] (with the
injective model structure) is a simplicial model category.

Proof. The two claims are formally dual; we will prove the first version.
It is straightforward to check that [𝔸, ℳ] is indeed a locally small simpli-

cially enriched category with finite weighted limits and colimits (which may be
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computed componentwise). It remains to be shown that the projective model
structure on [𝔸, ℳ] satisfies axiom SM7. But fibrations, weak equivalences,
and weighted limits in [𝔸, ℳ] are defined componentwise, so proposition 2.4.4
implies that the property is indeed inherited from ℳ. ■

The following lemma is useful in the construction of simplicial model struc-
tures.

Lemma 2.4.18. Let ℳ be a simplicially enriched category, let u� be a simplicial
model category, and let 𝑈 : ℳ → u� be a simplicially enriched functor. Given
a commutative diagram in ℳ of the form below,

𝐴 ̂𝐴

𝐵 ̂𝐵

𝑓

𝑖𝐴

̂𝑓

𝑖𝐵

the morphism 𝑈𝑓 : 𝑈𝐴 → 𝑈𝐵 is a weak equivalence in u� if the following
conditions are satisfied:

• The cotensor products Δ1 ⋔ ̂𝐵 and 𝜕Δ1 ⋔ ̂𝐵 exist in ℳ and are preserved
by 𝑈 : ℳ → u� .

• 𝑈𝑖𝐴 : 𝑈𝐴 → 𝑈 ̂𝐴 and 𝑈𝑖𝐵 : 𝑈𝐵 → 𝑈 ̂𝐵 are weak equivalences in u� .

• There is a morphism 𝑔 : 𝐵 → ̂𝐴 in ℳ such that 𝑔 ∘ 𝑓 = 𝑖𝐴, and 𝑈 ̂𝐵 is
fibrant in u� .

• 𝑓 : 𝐴 → 𝐵 has the left lifting property with respect to all morphisms
𝑝 : 𝐶 → 𝐷 in ℳ such that 𝑈𝑝 : 𝑈𝐶 → 𝑈𝐷 is a fibration in u� .

Proof. The following is a generalisation of the proof of Theorem 1 in [Quillen,
1967, Ch. II, §4].

Let 𝑝 : Δ1 ⋔ ̂𝐵 → 𝜕Δ1 ⋔ ̂𝐵 be the morphism in ℳ induced by the boundary
inclusion 𝜕Δ1 ↪ Δ1, let 𝑎 : 𝐴 → Δ1 ⋔ ̂𝐵 be the composite

𝐴
𝑓
→ 𝐵

𝑖𝐵→ ̂𝐵
≅
→ Δ0 ⋔ ̂𝐵 → Δ1 ⋔ ̂𝐵

where Δ0 ⋔ ̂𝐵 → Δ1 ⋔ ̂𝐵 is induced by the unique morphism Δ1 → Δ0, and let
𝑏 : 𝐵 → 𝜕Δ1 ⋔ ̂𝐵 be the unique morphism in ℳ making the diagram below
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commute:
̂𝐵 Δ0 ⋔ ̂𝐵

𝐵 𝜕Δ1 ⋔ ̂𝐵

̂𝐵 Δ0 ⋔ ̂𝐵

≅

𝑖𝐵

̂𝑓 ∘𝑔

𝑏

𝛿1⋔id ̂𝐵

𝛿0⋔id ̂𝐵

≅

We then have the following commutative diagram in ℳ:

𝐴 Δ1 ⋔ ̂𝐵

𝐵 𝜕Δ1 ⋔ ̂𝐵

𝑓

𝑎

𝑝

𝑏

By corollary 2.4.6 (and the hypothesis on 𝑈 : ℳ → u� ), 𝑈𝑝 : 𝑈(Δ1 ⋔ ̂𝐵) →
𝑈(𝜕Δ1 ⋔ ̂𝐵) is a fibration in u� , so (by the hypothesis on 𝑓 : 𝐴 → 𝐵) there is a
morphism ℎ : 𝐵 → Δ1 ⋔ ̂𝐵 such that ℎ ∘ 𝑓 = 𝑎 and 𝑝 ∘ ℎ = 𝑏.

In particular, there is an edge 𝑈𝑖𝐵 ⇒ 𝑈( ̂𝑓 ∘ 𝑔) in u� (𝑈𝐴, 𝑈 ̂𝐵), so by
lemma 2.4.16, 𝑈( ̂𝑓 ∘ 𝑔) is a weak equivalence. But the diagram below com-
mutes,

𝐴 𝐵

̂𝐴 ̂𝐵
𝑖𝐴

𝑓

𝑔
̂𝑓 ∘𝑔

̂𝑓

so using theorem 4.4.1 and the 2-out-of-6 property of weak equivalences in u� ,
we may deduce that 𝑈𝑓 : 𝑈𝐴 → 𝑈𝐵 is a weak equivalence in u� . ■

2.5 Homotopical aspects
Prerequisites. §§1.2, 1.3, 1.4, 1.5, 1.7, 2.1, a.4.

Definition 2.5.1. Let u� be a category with finite products and let 𝐹 : 𝐬𝐒𝐞𝐭 → u�
be a functor that preserves finite products. The 𝐹 -localisation of a locally small
simplicially enriched category u� is the following u�-enriched category 𝐹 [u�]:

• The objects in 𝐹 [u�] are the objects in u�.
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• For each pair (𝑋, 𝑌 ) of objects in u�, the hom-object 𝐹 [u�](𝑋, 𝑌 ) is the
object 𝐹 (u�(𝑋, 𝑌 )).

• Identities and composition in 𝐹 [u�] are inherited from u� via 𝐹 .

Remark 2.5.2. It is clear that 𝐹 -localisation is 2-functorial and moreover pre-
serves finite products of simplicially enriched categories; unlike localisation of
relative categories, 𝐹 -localisation may or may not have a universal property.
Nonetheless, there is always a localising functor u� → 𝐹 [u�] between the under-
lying categories.

Definition 2.5.3. Let u� be a locally small simplicially enriched category. A
parallel pair of morphisms 𝑔0, 𝑔1 : 𝐴 → 𝐵 in u� are 𝐹 -homotopic if their images
under the localising functor u� → 𝐹 [u�] are equal, in which case we write 𝑔0

𝐹∼ 𝑔1.

Example 2.5.4. The notion of intrinsic homotopy in 𝐬𝐒𝐞𝐭 is obtained as the
special case where 𝐹 is the connected components functor 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭.[2]

Definition 2.5.5. Let u� be a locally small simplicially enriched category. A
weak 𝐹 -homotopy equivalence in u� is a morphism in u� whose image in 𝐹 [u�]
is an isomorphism. An 𝐹 -homotopy equivalence in u� is a pair (𝑓 , 𝑔), where 𝑓 :
𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 are morphisms in u� such that 𝑔 ∘𝑓

𝐹
∼ id𝐴 and 𝑓 ∘𝑔

𝐹
∼ id𝐵.

Two morphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 are mutual 𝐹 -homotopy inverses
when (𝑓 , 𝑔) constitute an 𝐹 -homotopy equivalence.

Remark 2.5.6. By lemma a.4.14, the class of weak 𝐹 -homotopy equivalences
in u� automatically has the 2-out-of-6 property in u�.

Lemma 2.5.7. Let u� be a locally small simplicially enriched category, let u� be
a cartesian closed category, and let 𝐹 : 𝐬𝐒𝐞𝐭 → u� be a functor that preserves
finite products.

• If u� is tensored over 𝐬𝐒𝐞𝐭, 𝑓 : 𝑋 → 𝑌 is a weak 𝐹 -homotopy equivalence
in 𝐬𝐒𝐞𝐭, and 𝑔 : 𝐴 → 𝐵 is a weak 𝐹 -homotopy equivalence in u�, then the
morphism 𝑓 ⊙ 𝑔 : 𝑋 ⊙ 𝐴 → 𝑌 ⊙ 𝐵 is a weak 𝐹 -homotopy equivalence in
u�.

[2] Recall proposition 1.2.7 and remark 1.3.7.
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• If u� is cotensored over 𝐬𝐒𝐞𝐭, 𝑓 : 𝑋 → 𝑌 is a weak 𝐹 -homotopy equival-
ence in 𝐬𝐒𝐞𝐭, and 𝑔 : 𝐴 → 𝐵 is a weak 𝐹 -homotopy equivalence in u�, then
the morphism 𝑓 ⋔ 𝑔 : 𝑌 ⋔ 𝐴 → 𝑋 ⋔ 𝐵 is a weak 𝐹 -homotopy equivalence
in u�.

Proof. Since ⊙ (resp. ⋔) is a simplicially enriched functor 𝐬𝐒𝐞𝐭 × u� → u� (resp.
𝐬𝐒𝐞𝐭 op × u� → u�), it induces a u�-enriched functor 𝐹 [𝐬𝐒𝐞𝐭] × 𝐹 [u�] → 𝐹 [u�] (resp.
𝐹 [𝐬𝐒𝐞𝐭]op × 𝐹 [u�] → 𝐹 [u�]) and so a fortiori must preserve weak 𝐹 -homotopy
equivalences. ■

Definition 2.5.8. A simplicial homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 in a simplicially enriched
category u� is an edge 𝛼 in mor u� such that 𝑑0(𝛼) = 𝑓1 and 𝑑1(𝛼) = 𝑓0. For each
morphism 𝑓 : 𝑋 → 𝑌 in u�, we define id𝑓 : 𝑓 ⇒ 𝑓 to be the simplicial homotopy
𝑠0(𝑓 ).

Remark 2.5.9. Because ob u� is a discrete set, we must have dom 𝑓0 = dom 𝑓1
and codom 𝑓0 = codom 𝑓1.

Definition 2.5.10. A parallel pair 𝑔0, 𝑔1 : 𝐴 → 𝐵 of morphisms in a simplicially
enriched category u� are simplicially homotopic if they are in the same connected
component of u�(𝐴, 𝐵), in which case we write 𝑔0 ∼ 𝑔1.

Lemma 2.5.11. Let u� be a locally small simplicially enriched category, and let
𝛼 : 𝑓0 ⇒ 𝑓1 be an intrinsic homotopy of morphisms in 𝐬𝐒𝐞𝐭.

• If u� is tensored over 𝐬𝐒𝐞𝐭, then for any morphism 𝑔 : 𝐴 → 𝐵 in u�, 𝛼 ⊙id𝑔 :
𝑓0 ⊙ 𝑔 ⇒ 𝑓1 ⊙ 𝑔 is a simplicial homotopy of morphisms in u�.

• If u� is cotensored over 𝐬𝐒𝐞𝐭, then for any morphism 𝑔 : 𝐴 → 𝐵 in u�,
𝛼 ⋔ id𝑔 : 𝑓0 ⋔ 𝑔 ⇒ 𝑓1 ⋔ 𝑔 is a simplicial homotopy of morphisms in u�.

Proof. This is an immediate consequence of the fact that ⊙ (resp. ⋔) is a simpli-
cially enriched functor 𝐬𝐒𝐞𝐭 × u� → u� (resp. 𝐬𝐒𝐞𝐭 op × u� → u�). ■

Recall the weak homotopy type functor 𝛑 : 𝐬𝐒𝐞𝐭 → 𝐇, as defined in propos-
ition 1.5.26.

Definition 2.5.12. Let u� be a locally small simplicially enriched category.

• A simplicial homotopy equivalence in u� is a 𝜋0-homotopy equivalence.
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• The simplicial homotopy category of u� is the locally small category
𝜋0[u�].

• The enriched simplicial homotopy category of u� is the 𝐇-enriched cat-
egory 𝛑[u�].

Remark 2.5.13. It is sometimes convenient to consider other localisations; for
example, if 𝜋1 : 𝐬𝐒𝐞𝐭 → 𝐆𝐫𝐩𝐝 is the fundamental groupoid functor,[3] then the
2-category 𝜋1[u�] has the following properties:

(i) The underlying category of 𝜋1[u�] is naturally isomorphic to the underlying
category of u� itself.

(ii) Given a parallel pair 𝑓0, 𝑓1 : 𝐴 → 𝐵 in u�, there exists a 2-cell 𝑓0 ⇒ 𝑓1 if
and only if 𝑓0 and 𝑓1 are 𝛑-homotopic in u�.

(iii) A morphism is a simplicial homotopy equivalence in u� if and only if it is
an equivalence in the 2-category 𝜋1[u�].

However, if 𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 is the fundamental category functor,[4] then the
2-category 𝜏1[u�] in general only enjoys the first of the above properties.

Proposition 2.5.14. Let u� be a locally small simplicially enriched category.

(i) A morphism in u� is a weak 𝜋0-homotopy equivalence if and only if it is a
weak 𝛑-homotopy equivalence.

(ii) The localising functor u� → 𝜋0[u�] induces a bijection between simplicially
enriched functors u� → u� and ordinary functors u� → u�, where u� is
an ordinary category (regarded as a simplicially enriched category via
proposition 2.1.20).

(iii) If u� is moreover tensored or cotensored over 𝐬𝐒𝐞𝐭, then 𝜋0[u�] is the local-
isation of u� at the weak 𝜋0-equivalences.

Proof. (i). The underlying category of the 𝐇-enriched category 𝛑[u�] is naturally
isomorphic to the category 𝜋0[u�], since 𝐇(1, 𝛑𝑋) ≅ 𝜋0𝑋, and the property of
being an isomorphism in a 𝐇-enriched category depends only on the underlying
category.

[3] Recall proposition 1.2.10.
[4] Recall proposition 1.2.2.
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(ii). By proposition 1.2.7, a morphism from a simplicial set 𝑋 to a discrete set
𝑌 must factor through 𝜋0𝑋 in a unique way, so a simplicially enriched functor
u� → u� must factor through 𝜋0[u�].

(iii). Simplicially tensored categories and simplicially cotensored categories are
formally dual; we will prove the claim for case where u� is tensored over 𝐬𝐒𝐞𝐭.

First, consider a simplicial homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 of morphisms 𝐴 → 𝐵
in u�. Transposing across the tensor–hom adjunction yields 𝐻 : Δ1 ⊙ 𝐴 → 𝐵
making the diagram below commute:

Δ0 ⊙ 𝐴 𝐴

Δ1 ⊙ 𝐴 𝐵

Δ0 ⊙ 𝐴 𝐴

𝛿1⊙id𝐴

𝞰𝐴

𝑓0

𝐻

𝛿0⊙id𝐴

𝞰𝐴

𝑓1

Using lemma 2.5.7, it is not hard to see that 𝛿0⊙id𝐴 and 𝛿1⊙id𝐴 are 𝜋0-homotopy
equivalences in u� with common 𝜋0-homotopy inverse 𝜎0 ⊙ id𝐴, so any functor
that sends weak 𝜋0-homotopy equivalences to isomorphisms must also identify
𝑓0 and 𝑓1, and hence, must factor through 𝜋0[u�]. ■

Proposition 2.5.15. Let u� be a simplicially enriched category.

(i) The localising functor u� → 𝜋0[u�] is full and surjective on objects.

(ii) A morphism in u� is a weak 𝜋0-homotopy equivalence if and only if it has
a 𝜋0-homotopy inverse.

(iii) Two objects in u� are isomorphic in 𝜋0[u�] if and only if there is a simplicial
homotopy equivalence between them in u�.

Proof. Claim (i) is just the observation that the canonical map 𝑋0 → 𝜋0𝑋 is
surjective, and the rest follows straightforwardly. ⧫

Definition 2.5.16. A Dwyer–Kan equivalence of simplicially enriched cat-
egories is a simplicially enriched functor 𝐹 : u� → u� such that the induced
𝐇-enriched functor 𝛑[𝐹 ] : 𝛑[u�] → 𝛑[u�] is fully faithful and essentially surject-
ive on objects.
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Remark 2.5.17. Strictly speaking, the above definition only applies to locally
small simplicially enriched categories; but it is clear how to extend the definition
to handle general simplicially enriched categories.

Lemma 2.5.18. 𝐒𝐂𝐚𝐭, with the class of Dwyer–Kan equivalences, is a satur-
ated homotopical category. In particular, the class of Dwyer–Kan equivalences
of (small) simplicially enriched categories has the 2-out-of-3 property, the 2-out-
of-6 property, and is closed under retracts.

Proof. By lemma 3.1.8, it suffices to verify that the class of 𝐇-enriched func-TODO: Prove the
general case for en-

riched categories.
tors that are fully faithful and essentially surjective on objects makes the cat-
egory of small 𝐇-enriched categories a saturated homotopical category, and this
is straightforward. ■

Proposition 2.5.19. Let 𝐹 : u� → u� be a simplicially enriched functor. The
following are equivalent:

(i) 𝐹 : u� → u� is a Dwyer–Kan equivalence.

(ii) For each pair (𝐴, 𝐵) of objects in u�, the hom-space morphism

𝐹 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵)

is a weak homotopy equivalence of simplicial sets, and the induced functor
𝜋0[𝐹 ] : 𝜋0[u�] → 𝜋0[u�] is essentially surjective on objects.

(iii) For each pair (𝐴, 𝐵) of objects in u�, the hom-space morphism

𝐹 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵)

is a weak homotopy equivalence of simplicial sets, and for each object 𝐷
in u�, there exist an object 𝐶 in u� and a simplicial homotopy equivalence
in u� between 𝐹 𝐶 and 𝐷.

Proof. This is a straightforward corollary of proposition 2.5.15. ■

Definition 2.5.20. The bisimplicial nerve of a simplicially enriched category
u� is the bisimplicial nerve of the corresponding simplicial category u�•.

Lemma 2.5.21. Let u� and u� be small simplicially enriched categories and let
𝐹 : u� → u� be a simplicially enriched functor. The following are equivalent:
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(i) 𝐹 : u� → u� is a bijective-on-objects Dwyer–Kan equivalence.

(ii) The morphism Nss(𝐹 )• : Nss(u�)• → Nss(u�)• is a degreewise weak homo-
topy equivalence.

Proof. It is clear that Nss(𝐹 )0 : Nss(u�)0 → Nss(u�)0 is an isomorphism if and
only if 𝐹 : u� → u� is bijective on objects. For each positive integer 𝑛, we have
an isomorphism

Nss(u�)𝑛 ≅ ∐
(𝑐0,…,𝑐𝑛)

u�(𝑐𝑛−1, 𝑐𝑛) × ⋯ × u�(𝑐0, 𝑐1)

and it is natural as u� varies along bijective-on-objects simplicially enriched func-
tors, so by proposition 1.5.16, each Nss(𝐹 )𝑛 : Nss(u�)𝑛 → Nss(u�)𝑛 is a weak homo-
topy equivalence if and only if 𝐹 : u� → u� is a bijective-on-objects Dwyer–Kan
equivalence. ■

Definition 2.5.22. A fibrant simplicially enriched category is a simplicially
enriched category u� such that the hom-spaces u�(𝐴, 𝐵) are Kan complexes for all
pairs (𝐴, 𝐵) of objects in u�.

For the sake of brevity, we also make the following definition:

Definition 2.5.23. A Kan-enriched category is a fibrant locally small simpli-
cially enriched category.

Theorem 2.5.24. Let u� be a locally small simplicially enriched category.

(i) Ex∞[u�] is a Kan-enriched category.

(ii) The localisation functor u� → Ex∞[u�] is a natural isomorphism of (ordin-
ary) categories.

(iii) The localisation functor admits a simplicial enrichment u� → Ex∞[u�] that
is a natural Dwyer–Kan equivalence of simplicially enriched categories.

Proof. The claims are immediate consequences of theorem 1.7.14: the functor
Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 preserves finite limits, sends simplicial sets to Kan com-
plexes, and is equipped with a natural weak homotopy equivalence 𝑖 : id𝐬𝐒𝐞𝐭 ⇒
Ex∞ that is bijective on vertices. ■
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Remark 2.5.25. In other words, every simplicial enrichment of a category can
be replaced with a Dwyer–Kan equivalent fibrant simplicial enrichment. How-
ever, this procedure tends to destroy the good properties of the original simplicial
enrichment: for instance, remark 1.7.15 implies that the fibrant replacement may
fail to have simplicially enriched infinite products even when the original does.

Definition 2.5.26. A simplicially enriched natural weak homotopy equival-
ence is a simplicially enriched natural transformation of simplicially enriched
functors u� → 𝐬𝐒𝐞𝐭 whose components are weak homotopy equivalences.

Definition 2.5.27.
• Let u� be a locally small simplicially enriched category. A homotopical

representation (resp. fibrant representation) of a simplicially enriched
functor 𝐹 : u� → 𝐬𝐒𝐞𝐭 is pair (𝐴, 𝑥) where 𝐴 is an object in u� and 𝑥 is a
vertex of 𝐹 𝐴 such that the components of the corresponding simplicially
enriched natural transformation u�(𝐴, −) ⇒ 𝐹 (as described by the weak
Yoneda lemma) are weak homotopy equivalences (resp. trivial Kan fibra-
tions).

• A homotopically representable (resp. fibrantly representable) simpli-
cially enriched functor is one that admits a homotopical representation
(resp. fibrant representation).

Lemma 2.5.28. Let u� be a locally small simplicially enriched category and let
𝐹 : u� → 𝐬𝐒𝐞𝐭 be a simplicially enriched functor. The following are equivalent:

(i) 𝐹 : u� → 𝐬𝐒𝐞𝐭 is a homotopically representable simplicially enriched func-
tor.

(ii) 𝛑[𝐹 ] : 𝛑[u�] → 𝐇 is a representable 𝐇-enriched functor.

Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (i). The weak Yoneda lemma (b.2.14) implies that the map 𝜑 ↦ 𝛑[𝜑]
is a surjection from the ensemble of simplicially enriched natural transforma-
tions u�(𝐴, −) ⇒ 𝐹 onto the ensemble of 𝐇-enriched natural transformations
𝛑u�(𝐴, −) ⇒ 𝛑[𝐹 ]; and it is not hard to see this restricts to a surjection from the
ensemble of simplicially enriched natural weak homotopy equivalences onto the
ensemble of 𝐇-enriched natural isomorphisms. Thus, if 𝛑[𝐹 ] is representable,
then 𝐹 is homotopically representable. ■
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Lemma 2.5.29. Let u� be a locally small simplicially enriched category and let
𝐹 : u� → 𝐬𝐒𝐞𝐭 be a simplicially enriched functor. Given any two representations
of 𝐹 , say (𝐴, 𝑥) and (𝐵, 𝑦):

(i) There is a morphism 𝑓 : 𝐴 → 𝐵 in u� such that 𝐹 (𝑓)(𝑥) ∼ 𝑦 in 𝐹 𝐵, and
it is unique up to simplicial homotopy in u�.

(ii) In particular, every such morphism 𝑓 : 𝐴 → 𝐵 is (half of) a simplicial
homotopy equivalence in u�.

(iii) If the component u�(𝐴, 𝐵) → 𝐹 𝐵 of the simplicially enriched natural trans-
formation corresponding to 𝑥 is a trivial Kan fibration, then the largest
simplicial subset of u�(𝐴, 𝐵) whose vertices are the morphisms 𝑓 : 𝐴 → 𝐵
in u� such that 𝐹 (𝑓)(𝑥) = 𝑦 is a contractible Kan complex.

Proof. (i). Let 𝜑 : u�(𝐴, −) ⇒ 𝐹 and 𝜓 : u�(𝐵, −) ⇒ 𝐹 be the simpli-
cially enriched natural weak homotopy equivalences such that 𝜑𝐴(id𝐴) = 𝑥 and
𝜓𝐵(id𝐵) = 𝑦; such exist and are unique by the weak Yoneda lemma (2.1.27).
By proposition 1.5.20, 𝜋0𝜑𝐵 : 𝜋0u�(𝐴, 𝐵) → 𝜋0𝐹 𝐵 is a bijection, so there is a
morphism 𝑓 : 𝐴 → 𝐵 in u� such that 𝜑𝐵(𝑓 ) ∼ 𝑦 in 𝐹 𝐵, and it is unique up to
simplicial homotopy in u�. But the following diagram commutes,

u�(𝐴, 𝐴) 𝐹 𝐴

u�(𝐴, 𝐵) 𝐹 𝐵

u�(𝐴,𝑓)

𝜑𝐴

𝐹 𝑓

𝜑𝐵

so 𝐹 (𝑓)(𝑥) = 𝜑𝐵(𝑓 ) ∼ 𝑦 as required.

(ii). Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 be morphisms in u� such that 𝐹 (𝑓)(𝑥) ∼ 𝑦
and 𝐹 (𝑔)(𝑦) ∼ 𝑥. Then 𝐹 (𝑔 ∘ 𝑓)(𝑥) ∼ 𝑥 and 𝐹 (𝑓 ∘ 𝑔)(𝑦) ∼ 𝑦, so we must have
𝑔 ∘ 𝑓 ∼ id𝐴 and 𝑓 ∘ 𝑔 ∼ id𝐵, i.e. (𝑓 , 𝑔) is a simplicial homotopy equivalence.

(iii). The indicated simplicial subset 𝑋 ⊆ u�(𝐴, 𝐵) fits into a pullback diagram
of the following form,

𝑋 u�(𝐴, 𝐵)

Δ0 𝐹 𝐵

𝜑𝐵

⌜𝑦⌝
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where ⌜𝑦⌝ : Δ0 → 𝐹 𝐵 is the morphism corresponding to the vertex 𝑦; so if
𝜑𝐵 : u�(𝐴, 𝐵) → 𝐹 𝐵 is a trivial Kan fibration, then (by proposition a.3.17)
𝑋 → Δ0 is also a trivial Kan fibration, and therefore 𝑋 is a contractible Kan
complex (by proposition 1.5.10). ■

Definition 2.5.30. A Dwyer–Kan contractible category is a simplicially en-
riched category u� such that the unique simplicially enriched functor u� → 𝟙 is a
Dwyer–Kan equivalence.

Lemma 2.5.31. Let u� be a simplicially enriched category. The following are
equivalent:

(i) u� is Dwyer–Kan contractible.

(ii) For every pair (𝐴, 𝐵) of objects in u�, the hom-space u�(𝐴, 𝐵) is weakly
contractible.

(iii) There is an object 𝐴 in u� such that, for every object 𝐵 in u�, the hom-space
u�(𝐴, 𝐵) is weakly contractible and 𝐴 is simplicially homotopy equivalent
to 𝐵.

Proof. Obvious. ⧫

Proposition 2.5.32. Let u� be a locally small simplicially enriched category, let
𝐹 : u� → 𝐬𝐒𝐞𝐭 be a simplicially enriched functor, and let u� be the simplicially
enriched full subcategory of the slice category [u�, 𝐬𝐒𝐞𝐭]∕𝐹 spanned by the fi-
brant representations of 𝐹 . If 𝐹 is fibrantly representable, then u� is fibrant and
Dwyer–Kan contractible.

Proof. Let (𝐴, 𝑥) be a fibrant representation of 𝐹 : u� → 𝐬𝐒𝐞𝐭. By lemma 2.5.29
and the strong Yoneda lemma (proposition b.3.9), for any fibrant representation
(𝐵, 𝑦) of 𝐹 , the hom-space u�((𝐵, 𝑦), (𝐴, 𝑥)) is a contractible Kan complex. Thus,
u� is a fibrant simplicially enriched category, and by lemma 2.5.31, it is Dwyer–
Kan contractible. ■

Definition 2.5.33. A Dwyer–Kan adjunction of simplicially enriched cat-
egories consists of the following data:

• A simplicially enriched functor 𝐹 : u� → u�, called the left adjoint.

• A simplicially enriched functor 𝐺 : u� → u�, called the right adjoint.
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• A simplicially enriched natural transformation : idu� ⇒ 𝐺𝐹 , called the
unit.

• A simplicially enriched natural transformation : 𝐹 𝐺 ⇒ idu�, called the
counit.

These are moreover required to satisfy the following condition: for all objects 𝐶
in u� and 𝐷 in u�,

𝛑(u�(𝐹 𝐶, 𝐷) ∘ 𝐹 𝐶,𝐺𝐷) : 𝛑u�(𝐶, 𝐺𝐷) → 𝛑u�(𝐹 𝐶, 𝐷)
𝛑(u�( 𝐶 , 𝐺𝐷) ∘ 𝐺𝐹 𝐶,𝐷) : 𝛑u�(𝐹 𝐶, 𝐷) → 𝛑u�(𝐶, 𝐺𝐷)

are mutually inverse.

Remark 2.5.34. Note that the data (𝐹 , 𝐺, , ) constitute a Dwyer–Kan adjunc-
tion if and only if (𝛑[𝐹 ], 𝛑[𝐺], 𝛑[ ], 𝛑[ ]) constitute a 𝐇-enriched adjunction (at
least when the simplicially enriched categories are locally small). In particular,
any simplicially enriched adjunction is also a Dwyer–Kan adjunction, but not
vice versa.

Unfortunately, we do not have an analogue of corollary b.2.27; instead, we
make the following definitions.

Definition 2.5.35. Let u� and u� be locally small simplicially enriched categories.

• A Dwyer–Kan left pre-adjoint functor 𝐹 : u� → u� is a simplicially
enriched functor with the following property: for each object 𝐷 in u�, the
simplicially enriched functor

u�(𝐹 −, 𝐷) : u� op → 𝐬𝐒𝐞𝐭

is homotopically representable in u�.

• A Dwyer–Kan right pre-adjoint functor 𝐺 : u� → u� is a simplicially
enriched functor with the following property: for each object 𝐶 in u�, the
simplicially enriched functor

u�(𝐶, 𝐺−) : u� → 𝐬𝐒𝐞𝐭

is homotopically representable in u�.
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Example 2.5.36. The inclusion 𝐊𝐚𝐧 ↪ 𝐬𝐒𝐞𝐭 is a Dwyer–Kan right pre-adjoint
functor: indeed, by corollary 1.4.16 and theorem 1.7.14,

𝐬𝐒𝐞𝐭(𝑖∞
𝑋 , −) : 𝐬𝐒𝐞𝐭(Ex∞(𝑋), −) ⇒ 𝐬𝐒𝐞𝐭(𝑋, −)

is a simplicially enriched natural weak homotopy equivalence of simplicially
enriched functors 𝐊𝐚𝐧 → 𝐬𝐒𝐞𝐭, and Ex∞(𝑋) is a Kan complex, as required.

Remark 2.5.37. Of course, any Dwyer–Kan equivalence of simplicially enriched
categories is both a Dwyer–Kan left pre-adjoint functor and a Dwyer–Kan right
pre-adjoint functor.

Lemma 2.5.38. Let u� and u� be locally small simplicially enriched categories.
The following are equivalent for a simplicially enriched functor 𝐹 : u� → u�:

(i) 𝐹 : u� → u� is a Dwyer–Kan left pre-adjoint functor.

(ii) 𝛑[𝐹 ] : 𝛑[u�] → 𝛑[u�] admits a 𝐇-enriched right adjoint.

Dually, the following are equivalent for a simplicially enriched functor 𝐺 : u� →
u�:

(i′) 𝐺 : u� → u� is a Dwyer–Kan right pre-adjoint functor.

(ii′) 𝛑[𝐺] : 𝛑[u�] → 𝛑[u�] admits a 𝐇-enriched left adjoint.

Proof. Apply lemma 2.5.28 to corollary b.2.27. ■

2.6 Homotopy limits and colimits
Prerequisites. §§1.9, 1.7, 1.11, 2.1, 2.5.

In this section, we define homotopy-theoretic limits and colimits in Kan-
enriched categories. In principle, one could extend these definitions to (locally
small) simplicially enriched categories by applying theorem 2.5.24, but we will
avoid this because one often requires a more serious “correction” than just fibrant
replacement of the hom-spaces.

Proposition 2.6.1. Let u� be a small category.

• The functor B(−, u� , −) : [u� op, 𝐬𝐒𝐞𝐭] × [u� , 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 admits a simpli-
cial enrichment.
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• The functor C(−, u� , −) : [u� , 𝐬𝐒𝐞𝐭]op × [u� , 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 admits a simpli-
cial enrichment.

Proof. Recall that, by proposition 1.8.36, there are isomorphisms of the form

B(𝑋 × 𝐺, u� , 𝐹 ) ≅ 𝑋 × B(𝐺, u� , 𝐹 ) ≅ B(𝐺, u� , 𝑋 × 𝐹 )

that are natural in 𝑋 (in the ordinary sense), and using lemma 1.8.26, it is straight-
forward to verify that these induce strengths for B(−, u� , 𝐹 ) and B(𝐺, u� , −) (re-
spectively). Thus, by theorem b.4.17, B(−, u� , 𝐹 ) and B(𝐺, u� , −) admit sim-
plicial enrichments, and using proposition b.2.18, it is not hard to verify that
B(−, u� , −) itself admits a simplicial enrichment.

Proposition 1.9.7 then says,

C(𝐺, u� , 𝐹 ) ≅ ∫𝑗:u�
[B(𝐺, u� op, disc h𝑗), 𝐹 𝑗]

so by proposition b.3.16, C(−, u� , −) also admits a simplicial enrichment. ■

Proposition 2.6.2. The functor Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 admits a unique simplicial
enrichment making the canonical embedding 𝑖∞ : id𝐬𝐒𝐞𝐭 ⇒ Ex∞ a simplicially
enriched natural transformation.

Proof. By theorem 1.7.14, Ex∞ preserves finite products, so we may apply Lem-
mas 2.1.4 and 2.1.6 in [Johnstone, 2002, Part B]. □

Corollary 2.6.3. There exist a simplicially enriched functor 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭
and a simplicially enriched natural transformation 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 satisfying the
following condition:

• For all simplicial sets 𝑋, 𝑅𝑋 is a Kan complex and 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an
anodyne extension. ■

Definition 2.6.4. Let u� be a locally small simplicially enriched category.

• A Bousfield–Kan limit in u� for a small diagram 𝐹 : u� → u� is a repres-
entation of the simplicially enriched functor

lim←−−
BK
u�

u�(−, 𝐹 ) : u� op → 𝐬𝐒𝐞𝐭
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i.e. a pair (lim←−−
BK
u�

𝐹 , ) where lim←−−
BK
u�

𝐹 is an object in u� and is a vertex of

lim←−−
BK
u�

u�(lim←−−
BK
u�

𝐹 , 𝐹 ) such that the induced simplicially enriched natural
transformation

u�(−, lim←−−
BK
u�

𝐹 ) ⇒ lim←−−
BK
u�

u�(−, 𝐹 )

is a simplicially enriched natural isomorphism.

• A Bousfield–Kan colimit in u� for a small diagram 𝐹 : u� → u� is a rep-
resentation of the simplicially enriched functor

lim←−−
BK
u� op

u�(𝐹 , −) : u� → 𝐬𝐒𝐞𝐭

i.e. a pair (lim−−→
BK
u�

𝐹 , ) where lim−−→
BK
u�

𝐹 is an object in u� and is a vertex of

lim←−−
BK
u�

u�(𝐹 , lim−−→
BK
u�

𝐹 ) such that the induced simplicially enriched natural
transformation

u�(lim−−→
BK
u�

𝐹 , −) ⇒ lim←−−
BK
u�

u�(𝐹 , −)

is a simplicially enriched natural isomorphism.

Remark 2.6.5. By remark 1.9.3 and propositions 2.6.1 and b.3.16, if Bousfield–
Kan limits for all diagrams of the shape u� exist in u�, then there is a simplicially
enriched functor

lim←−−
BK
u�

: [u� , u�] → u�

and a family of isomorphisms in 𝐬𝐒𝐞𝐭 of the form

u�(𝐴, lim←−−
BK
u�

𝐹 ) ≅ lim←−−
BK
u�

u�(𝐴, 𝐹 )

constituting a simplicially enriched natural isomorphism in 𝐴 and 𝐹 . Dually for
Bousfield–Kan colimits.

The following lemma describes the Bousfield–Kan analogue of the product–
equaliser formula for limits.

Lemma 2.6.6. Let u� be a locally small simplicially enriched category and let
𝐹 : u� → u� be a small diagram.

(i) If u� has simplicially enriched products for all finite families and all families
of size ≤ |mor u� |, then the simplicially enriched cobar complex C•(Δ1, u� , 𝐹 )
exists in u�, i.e. the cosimplicial simplicially enriched functor

C•(Δ1, u� , u�(−, 𝐹 )) : u� op → 𝐬𝐒𝐞𝐭
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admits a representation by a cosimplicial object in u�.

(ii) If the simplicially enriched cobar complex C•(Δ1, u� , 𝐹 ) exists in u�, then
we have

lim←−−
BK

u�
𝐹 ≅ Tot C•(Δ1, u� , 𝐹 )

where the LHS exists if and only if the RHS exists.

Dually:

(i′) If u� has simplicially enriched coproducts for all finite families and all
families of size ≤ |mor u� |, then the simplicially enriched bar complex
B•(Δ1, u� , 𝐹 ) exists in u�, i.e. the cosimplicial simplicially enriched func-
tor

C•(Δ1, u� op, u�(𝐹 , −)) : u� → 𝐬𝐒𝐞𝐭

admits a representation by a simplicial object in u�.

(ii′) If the simplicially enriched bar complex B•(Δ1, u� , 𝐹 ) exists in u�, then we
have

lim−−→
BK
u�

𝐹 ≅ |B•(Δ1, u� , 𝐹 )|
where the LHS exists if and only if the RHS exists.

Proof. (i). By remark 1.8.18,

C𝑛(Δ1, u� , u�(−, 𝐹 )) ≅ ∏
(𝑗0,…,𝑗𝑛)

(u� (𝑗𝑛, 𝑗𝑛−1) × ⋯ × u� (𝑗1, 𝑗0)) ⋔ 𝐹 𝑗0

so the simplicially enriched cobar complex C•(Δ1, u� , 𝐹 ) can be constructed us-
ing just simplicially enriched products.

(ii). By (definition and) proposition 1.9.7, we have the following simplicially
enriched natural isomorphism;

u�(−, lim←−−
BK
u�

𝐹 ) ≅ C(Δ1, u� , u�(−, 𝐹 ))

but recalling the definition of cobar constructions,

C(Δ1, u� , u�(−, 𝐹 )) ≅ Tot C•(Δ1, u� , u�(−, 𝐹 ))

and hence, by remark 2.3.11,

u�(−, lim←−−
BK
u�

𝐹 ) ≅ u�(−, Tot C•(Δ1, u� , 𝐹 ))

as required. ■
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Unfortunately, the notion of Bousfield–Kan limit/colimit is not stable under
Dwyer–Kan equivalence. To resolve this, we need a homotopy-invariant notion:

Definition 2.6.7. Let u� be a Kan-enriched category.

• A homotopy limit in u� for a small diagram 𝐹 : u� → u� is a homotopical
representation of the simplicially enriched functor

lim←−−
BK
u�

u�(−, 𝐹 ) : [u� , u�] → u�

i.e. a pair (holim←−−u�
𝐹 , ) where holim←−−u�

𝐹 is an object in u� and is a ver-

tex of lim←−−
BK
u�

u�(holim←−−u�
𝐹 , 𝐹 ) such that the induced simplicially enriched

natural transformation

u�(−, holim←−−u�
𝐹 ) ⇒ lim←−−

BK
u�

u�(−, 𝐹 )

is a simplicially enriched natural weak homotopy equivalence.

• A homotopy colimit in u� for a small diagram 𝐹 : u� → u� is a homotopical
representation of the simplicially enriched functor

lim←−−
BK
u� op

u�(𝐹 , −) : u� → 𝐬𝐒𝐞𝐭

i.e. a pair (holim−−→u�
𝐹 , ) where holim−−→u�

𝐹 is an object in u� and is a ver-

tex of lim←−−
BK
u�

u�(𝐹 , holim−−→u�
𝐹 ) such that the induced simplicially enriched

natural transformation

u�(holim−−→u�
𝐹 , −) ⇒ lim←−−

BK
u� op

u�(𝐹 , −)

is a simplicially enriched natural weak homotopy equivalence.

Definition 2.6.8. Let u� be a Kan-enriched category and let u� be a small cat-
egory.

• A homotopy limit functor for diagrams of shape u� in u� is a simplicially
enriched functor holim←−−u�

: [u� , u�] → u� equipped with a simplicially en-
riched natural weak homotopy equivalence

u�(−, holim←−−u�
−) ⇒ lim←−−

BK
u�

u�(−, −)

of simplicially enriched functors u� op × [u� , u�] → 𝐊𝐚𝐧.
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• A homotopy colimit functor for diagrams of shape u� in u� is a simpli-
cially enriched functor holim−−→u�

: [u� , u�] → u� equipped with a simplicially
enriched natural weak homotopy equivalence

u�(holim−−→u�
−, −) ⇒ lim←−−

BK
u� op

u�(−, −)

of simplicially enriched functors [u� , u�]op × u� → 𝐊𝐚𝐧.

Remark 2.6.9. By lemma 2.5.29, homotopy limits/colimits are unique up to sim-
plicial homotopy equivalence. Unfortunately, this is not enough to guarantee
functoriality in the sense above.

Lemma 2.6.10. Let u� be a Kan-enriched category and let u� be a small category.

• If u� has Bousfield–Kan limits for all diagrams of shape u� , then there is a
homotopy limit functor for diagrams of shape u� in u�.

• If u� has Bousfield–Kan colimits for all diagrams of shape u� , then there is
a homotopy colimit functor for diagrams of shape u� in u�.

Proof. The two claims are formally dual; we will prove the first version.
By remark 2.6.5, there exist a simplicially enriched functor that sends a dia-

gram 𝐹 : u� → u� to the Bousfield–Kan limit lim←−−
BK
u�

𝐹 in u� and a simplicially
enriched natural isomorphism

u�(−, lim←−−
BK
u�

−) ≅ lim←−−
BK
u�

u�(−, −)

which is a simplicially enriched natural weak homotopy equivalence a fortiori.
■

Theorem 2.6.11. Let u� be a small category.

(i) 𝐊𝐚𝐧 has Bousfield–Kan limits for all diagrams of shape u� ; in particular,
there is a homotopy limit functor for diagrams of shape u� in 𝐊𝐚𝐧.

(ii) There is a homotopy colimit functor for diagrams of shape u� in 𝐊𝐚𝐧.

Proof. (i). This is an immediate consequence of proposition 1.9.18 (plus propos-
ition 4.3.4) and lemma 2.6.10.
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(ii). By similar arguments, there exist a simplicially enriched functor lim−−→
BK

u� :
[u� , 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 and a simplicially enriched natural isomorphism

𝐬𝐒𝐞𝐭(lim−−→
BK
u�

−, −) ⇒ lim←−−
BK
u� op

𝐬𝐒𝐞𝐭(−, −)

but lim−−→
BK

u� 𝐹 may fail to be a Kan complex even when 𝐹 is a diagram u� → 𝐊𝐚𝐧.
To fix this, consider 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 as in corollary 2.6.3.
Then we have a simplicially enriched functor 𝑅 lim−−→

BK
u� : [u� , 𝐊𝐚𝐧] → 𝐊𝐚𝐧, and

by corollary 1.4.16, 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 induces a simplicially enriched natural weak
homotopy equivalence

𝐬𝐒𝐞𝐭(𝑅 lim−−→
BK
u�

−, −) ⇒ 𝐬𝐒𝐞𝐭(lim−−→
BK
u�

−, −)
and so we have a simplicially enriched natural weak homotopy equivalence

𝐬𝐒𝐞𝐭(𝑅 lim−−→
BK
u�

−, −) ⇒ lim←−−
BK
u� op

𝐬𝐒𝐞𝐭(−, −)

as required. ■

Definition 2.6.12. Let u� be a Kan-enriched category.

• A homotopy descent object for a cosimplicial object 𝐵• in u� is a homo-
topy limit for 𝐵• (considered as a diagram 𝚫 → u�).

• A homotopy codescent object for a simplicial object 𝐴• in u� is a homo-
topy colimit for 𝐴• (considered as a diagram 𝚫op → u�).

The following lemma describes the homotopy analogue of the product–equal-
iser formula for limits. Unfortunately, the non-functoriality of homotopy limits
means that the result is not as strong as lemma 2.6.6.

Lemma 2.6.13. Let u� be a Kan-enriched category and let 𝐹 : u� → u� be a
small diagram.

• If the homotopy cobar complex C•(Δ1, u� , 𝐹 ) exists in u�, i.e. the cosimpli-
cial simplicially enriched functor

C•(Δ1, u� , u�(−, 𝐹 )) : u� op → 𝐬𝐒𝐞𝐭

admits a homotopical representation by a cosimplicial object in u�, then
we have

holim←−−u�
𝐹 ≃ holim←−−𝚫

C•(Δ1, u� , 𝐹 )

provided the homotopy limit on the LHS and the homotopy descent object
on the RHS both exist.
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• If the homotopy bar complex B•(Δ1, u� , 𝐹 ) exists in u�, i.e. the cosimplicial
simplicially enriched functor

C•(Δ1, u� op, u�(𝐹 , −)) : u� → 𝐬𝐒𝐞𝐭

admits a homotopical representation by a simplicial object in u�, then we
have

holim−−→u�
𝐹 ≃ holim−−→𝚫op

B•(Δ1, u� , 𝐹 )

provided the homotopy colimit on the LHS and the homotopy codescent
object on the RHS both exist.

Proof. The two claims are formally dual; we will prove the first version.
For convenience, we will work in 𝐇 instead of 𝐬𝐒𝐞𝐭. By (definition and)

proposition 1.9.7, we have the following natural isomorphism;

𝛑u�(−, holim←−−u�
𝐹 ) ≅ 𝛑C(Δ1, u� , u�(−, 𝐹 ))

but recalling the definition of cobar constructions,

C(Δ1, u� , u�(−, 𝐹 )) ≅ Tot C•(Δ1, u� , u�(−, 𝐹 ))

and by lemma 1.8.42 and corollary 1.9.33:

𝛑(Tot C•(Δ1, u� , u�(−, 𝐹 ))) ≅ 𝛑(lim←−−
BK
𝚫

C•(Δ1, u� , u�(−, 𝐹 )))

On the other hand,

𝛑u�(−, holim←−−𝚫
C•(Δ1, u� , 𝐹 )) ≅ 𝛑(lim←−−

BK
𝚫

C•(Δ1, u� , u�(−, 𝐹 )))

so we have the following natural isomorphism:

𝛑u�(−, holim←−−u�
𝐹 ) ≅ 𝛑u�(−, holim←−−𝚫

C•(Δ1, u� , 𝐹 ))

Thus, applying the (ordinary) Yoneda lemma, we deduce that

holim←−−u�
𝐹 ≅ holim←−−𝚫

C•(Δ1, u� , 𝐹 )

in 𝜋0[u�], which implies the claim. ■

Definition 2.6.14. Let u� and u� be Kan-enriched categories, let 𝐹 : u� → u� be
a simplicially enriched functor, and let 𝐶 : u� → u� be a small diagram.
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• We say 𝐹 preserves homotopy limits for 𝐶 if, for every homotopy limit
for 𝐶 , say (𝐿, ), the pair (𝐹 𝐿, 𝐹 ∗ ) is a homotopy limit for 𝐹 𝐶 , where
𝐹 ∗ is the image in lim←−−

BK
u�

u�(𝐹 𝐿, 𝐹 𝐶) of vertex under the morphism

lim←−−
BK
u�

u�(𝐿, 𝐶) → lim←−−
BK
u�

u�(𝐹 𝐿, 𝐹 𝐶)

induced by 𝐹 : u�(−, −) ⇒ u�(𝐹 −, 𝐹 −).

• We say 𝐹 preserves homotopy colimits for 𝐶 if, for every homotopy
colimit for 𝐶 , say (𝐿, ), the pair (𝐹 𝐿, 𝐹 ∗ ) is a homotopy colimit for
𝐹 𝐶 , where 𝐹 ∗ is the image in lim←−−

BK
u� op

u�(𝐹 𝐶, 𝐹 𝐿) of vertex under the
morphism

lim←−−
BK
u� op

u�(𝐶, 𝐿) → lim←−−
BK
u� op

u�(𝐹 𝐶, 𝐹 𝐿)

induced by 𝐹 : u�(−, −) ⇒ u�(𝐹 −, 𝐹 −).

Proposition 2.6.15. Let u� and u� be Kan-enriched categories.

• If 𝐺 : u� → u� is a Dwyer–Kan right pre-adjoint, then it preserves homo-
topy limits for all small diagrams.

• If 𝐹 : u� → u� is a Dwyer–Kan left pre-adjoint, then it preserves homotopy
colimits for all small diagrams.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐷 : u� → u� be a small diagram and let (𝐿, ) be a homotopy limit

for 𝐷 in u�. We wish to prove that (𝐺𝐿, 𝐺∗ ) is a homotopy limit for 𝐺𝐷 in
u�. For each object 𝐴 in u�, let (𝐹 𝐴, 𝐴) be a homotopical representation for
u�(𝐴, 𝐺−) : u� → 𝐊𝐚𝐧 and consider the following diagram in 𝐇,

𝛑u�(𝐹 𝐴, 𝐿) 𝛑(lim←−−
BK
u�

u�(𝐹 𝐴, 𝐷))

𝛑u�(𝐴, 𝐺𝐿) 𝛑(lim←−−
BK
u�

u�(𝐴, 𝐺𝐷))

≅

≅

≅

where the vertical arrows are induced by the simplicially enriched natural trans-
formation

u�(𝐹 𝐴, −) ⇒ u�(𝐴, 𝐺−)
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corresponding to the vertex 𝐴 in u�(𝐴, 𝐺𝐹 𝐴), the top horizontal arrow is induced
by the component of the simplicially enriched natural transformation

u�(−, 𝐿) ⇒ lim←−−
BK
u�

u�(−, 𝐷)

corresponding to the vertex in lim←−−
BK
u�

u�(𝐿, 𝐷), and the bottom horizontal arrow
is induced by the component of the simplicially enriched natural transformation

u�(−, 𝐺𝐿) ⇒ lim←−−
BK
u�

u�(−, 𝐺𝐷)

corresponding to the vertex 𝐺∗ in lim←−−
BK
u�

u�(𝐺𝐿, 𝐺𝐷). To prove the claim, we
must show that the 𝐺∗ corresponds to a simplicially enriched natural weak ho-
motopy equivalence; and (using the 2-out-of-3 property) it is enough to verify
that the diagram above commutes (in 𝐇).

Now, lemma 2.5.38 says that 𝛑[𝐺] : 𝛑[u�] → 𝛑[u�] admits a 𝐇-enriched left
adjoint, say 𝐹 : 𝛑[u�] → 𝛑[u�]; and moreover, we may choose 𝐹 so that it agrees
with our earlier choices of (𝐹 𝐴, 𝐴). By the weak Yoneda lemma (b.2.14) for
𝐇-enriched functors, it then suffices to show that the composite

𝜋0u�(𝐺𝐿, 𝐺𝐿) → 𝜋0u�(𝐹 𝐺𝐿, 𝐿) → 𝜋0(lim←−−
BK
u�

u�(𝐹 𝐺𝐿, 𝐷)) → 𝜋0(lim←−−
BK
u�

u�(𝐺𝐿, 𝐺𝐷))

sends (the connected component of) the vertex id𝐺𝐿 to (the connected component
of) the vertex 𝐺∗ ; but this is a straightforward exercise in using naturality and
the (right) triangle identity. ■

Definition 2.6.16. Let u� be a Kan-enriched category, let 𝑋 be a simplicial set,
and let 𝐶 be an object u�.

• A homotopy power of 𝐶 by 𝑋 in u� is a homotopical representation of the
simplicially enriched functor

𝐬𝐒𝐞𝐭(𝑋, u�(−, 𝐶)) : u� op → 𝐬𝐒𝐞𝐭

i.e. a pair (𝑋 ⋔ 𝐶, ) where 𝑋 ⋔ 𝐶 is an object in u� and is a morphism
𝑋 → u�(𝑋 ⋔ 𝐶, 𝐶) such that the simplicially enriched natural transforma-
tion

u�(𝑋 ⊙ 𝐶, −) ⇒ 𝐬𝐒𝐞𝐭(𝑋, u�(−, 𝐶))

induced by the corresponding vertex of [𝑋, u�(𝑋 ⋔ 𝐶, 𝐶)] is a simplicially
enriched natural weak homotopy equivalence.
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2.6. Homotopy limits and colimits

• A homotopy copower of 𝐶 by 𝑋 in u� is a homotopical representation of
the simplicially enriched functor

𝐬𝐒𝐞𝐭(𝑋, u�(𝐶, −)) : u� → 𝐬𝐒𝐞𝐭

i.e. a pair (𝑋 ⊙ 𝐶, ) where 𝑋 ⊙ 𝐶 is an object in u� and is a morphism
𝑋 → u�(𝐶, 𝑋 ⊙ 𝐶) such that the simplicially enriched natural transform-
ation

u�(𝑋 ⊙ 𝐶, −) ⇒ [𝑋, u�(𝐶, −)]

induced by the corresponding vertex of [𝑋, u�(𝐶, 𝑋 ⊙ 𝐶)] is a simplicially
enriched natural weak homotopy equivalence.

Lemma 2.6.17. Let u� be a small category. Then there is a simplicially enriched
natural isomorphism

lim←−−
BK

u�
Δ(−) ≅ [N(u� ), −]

of simplicially enriched functors 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭, where Δ : 𝐬𝐒𝐞𝐭 → [u� , 𝐬𝐒𝐞𝐭]
sends simplicial sets 𝑋 to constant diagrams Δ𝑋 : u� → 𝐬𝐒𝐞𝐭.

Proof. Lemma 1.9.5 says that there is a natural isomorphism of the underlying
ordinary functors, and it is straightforward to verify that it is a simplicially en-
riched natural isomorphism. ■

Proposition 2.6.18. Let u� be a Kan-enriched category, let u� be a small cat-
egory, and let 𝐶 be an object in u�.

• Any homotopy limit in u� for the constant diagram Δ𝐶 : u� → u� is a
homotopy power of 𝐶 by N(u� ).

• Any homotopy colimit in u� for the constant diagram Δ𝐶 : u� → u� is a
homotopy copower of 𝐶 by N(u� ).

Proof. This is an immediate consequence of the definitions and lemma 2.6.17.
■

Theorem 2.6.19. Let u� be a Kan-enriched category.

• If u� has homotopy limits for all small constant diagrams, then the enriched
simplicial homotopy category 𝛑[u�] is a cotensored 𝐇-enriched category.
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II. Simplicial categories

• If u� has homotopy colimits for all small constant diagrams, then the en-
riched simplicial homotopy category 𝛑[u�] is a tensored 𝐇-enriched cat-
egory.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐶 be an object in u� and let 𝑋 be a simplicial set. We wish to show that

the 𝐇-enriched functor

[𝛑𝑋, 𝛑u�(−, 𝐶)] : 𝛑[u�]op → 𝐇

is representable in 𝛑[u�]. By (lemma 2.5.28 and) proposition 2.6.18, the homo-
topy limit of the constant diagram Δ𝐶 : 𝚫(𝑋) → u� yields a representation of
the 𝐇-enriched functor

𝛑(𝐬𝐒𝐞𝐭(SdQ(𝑋), u�(−, 𝐶))) : 𝛑[u�]op → 𝐇

but by lemma 1.11.40, there is a weak homotopy equivalence 𝑋 : SdQ(𝑋) → 𝑋,
and by proposition 1.4.24 and corollary 1.5.27, there is a 𝐇-enriched natural
isomorphism

[𝛑𝑋, 𝛑u�(−, 𝐶)] ≅ 𝛑(𝐬𝐒𝐞𝐭(𝑋, u�(−, 𝐶)))

so we may conclude that the homotopy power of 𝐶 by SdQ(𝑋) in u� defines a
cotensor product of 𝑋 and 𝐶 in 𝛑[u�]. ■

2.7 The Dwyer–Kan model structure
Prerequisites. §§0.2, 1.5, 1.6, 2.1, 2.3, 2.4, 2.5, 2.6, 4.1, 4.3, 5.2.

In this section, we construct a model structure on the category of small sim-
plicially enriched categories in which the weak equivalences are the Dwyer–Kan
equivalences. As a first step, following Dwyer and Kan [1980a], we construct a
“local” model structure on the category of small simplicially enriched categor-
ies with a fixed set of objects. We then follow Bergner [2007] in constructing
the “global” model structure on the category of all small simplicially enriched
categories.

Definition 2.7.1. Let 𝑂 be an ensemble.

• A category over 𝑂 is a category u� where ob u� = 𝑂.
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• A functor over 𝑂 is a functor u� → u� where the map ob u� → ob u� is
id : 𝑂 → 𝑂.

• A simplicially enriched (resp. Kan-enriched) category over 𝑂 is a sim-
plicially enriched (resp. Kan-enriched) category u� where ob u� = 𝑂.

• A simplicially enriched functor over 𝑂 is a simplicially enriched functor
u� → u� where the map ob u� → ob u� is id : 𝑂 → 𝑂.

When 𝑂 is a set, we write 𝐂𝐚𝐭𝑂 for the category of small categories over 𝑂 and
𝐒𝐂𝐚𝐭𝑂 for the category of small simplicially enriched categories over 𝑂.

Remark 2.7.2. A simplicially enriched category over 𝑂 is the essentially same
thing as a simplicial category over 𝑂; so by proposition 2.3.2, 2.3.7, and 2.3.8,
𝐒𝐂𝐚𝐭𝑂 admits a simplicial enrichment that is cotensored and tensored. There is
an evident forgetful functor 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 sending a simplicially enriched
category u� over 𝑂 to the (𝑂 × 𝑂)-indexed family of simplicial sets u�(−, −), and
it is not hard to see that this functor admits a compatible simplicial enrichment.

Definition 2.7.3. Let 𝑂 be a set.

• A reflexive graph over 𝑂 is a (𝑂 × 𝑂)-indexed set 𝐸 (i.e. an object in
𝐒𝐞𝐭𝑂×𝑂) together with a distinguished element of 𝐸(𝑎, 𝑎) for each element
𝑎 of 𝑂.

• A morphism of reflexive graphs over 𝑂 is a morphism of the underlying
(𝑂 × 𝑂)-indexed sets that preserves the distinguished elements.

• A simplicially enriched reflexive graph over 𝑂 is an (𝑂 × 𝑂)-indexed
simplicial set 𝐸 (i.e. an object in 𝐬𝐒𝐞𝐭𝑂×𝑂) together with a distinguished
vertex of 𝐸(𝑎, 𝑎) for each element 𝑎 of 𝑂.

• A morphism of simplicially enriched reflexive graphs over 𝑂 is a morph-
ism of the underlying (𝑂 × 𝑂)-indexed simplicial sets that preserves the
distinguished vertices.

We write 𝐆𝐫𝐩𝐡𝑂 for the category of reflexive graphs over 𝑂 and 𝐬𝐆𝐫𝐩𝐡𝑂 for the
category of simplicially enriched reflexive graphs over 𝑂.
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Remark 2.7.4. A simplicially enriched reflexive graph over 𝑂 is the essentially
same thing as a simplicial reflexive graph over 𝑂; so by proposition 2.3.2, 2.3.7,
and 2.3.8, 𝐬𝐆𝐫𝐩𝐡𝑂 admits a simplicial enrichment that is cotensored and tensored.
There are evident forgetful functors 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 and 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂

and each one admits a compatible simplicial enrichment.

Proposition 2.7.5. Let 𝑂 be a set.

(i) 𝐬𝐆𝐫𝐩𝐡𝑂 is a locally finitely presentable category.

(ii) The forgetful functor 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 is ℵ0-accessible and monadic.

(iii) The simplicially enriched forgetful functor 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 creates
cotensor products.

Proof. (i). We have remarked that 𝐬𝐆𝐫𝐩𝐡𝑂 is equivalent to the category of sim-
plicial objects in 𝐆𝐫𝐩𝐡𝑂, and it is not hard to see that the latter is a locally finitely
presentable category. We may then apply proposition 0.2.44.

(ii). It is clear that the forgetful functor 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 preserves
colimits for small filtered diagrams and limits for small diagrams, so we may use
the accessible adjoint functor theorem (0.2.50) to construct a left adjoint. We
must then verify that 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 creates coequalisers for 𝑈 -split
parallel pairs; once that is done, we may apply the well-known theorem of Beck
to deduce that 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂×𝑂 is monadic.[5]

(iii). Again, by regarding simplicially enriched reflexive graphs over 𝑂 as sim-
plicial objects in 𝐆𝐫𝐩𝐡𝑂, we may use the formula for cotensor products given
in the proof of proposition 2.3.7 to deduce that 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 creates
cotensor products. ■

Theorem 2.7.6. Let 𝑂 be a set. The following data constitute a cofibrantly gen-
erated simplicial model structure on 𝐬𝐆𝐫𝐩𝐡𝑂:

• The weak equivalences are the componentwise weak homotopy equival-
ences.

• The cofibrations are the componentwise monomorphisms.

• The fibrations are the componentwise Kan fibrations.

[5] See e.g. Theorem 1 in [CWM, Ch. VI, §7].
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This model structure is called the componentwise model structure, and with
respect to this model structure, we have a Quillen adjunction

𝐹 ⊣ 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂

where 𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 is the evident forgetful functor.

Proof. It is not hard to see that there is an isomorphism of categories

𝐬𝐆𝐫𝐩𝐡𝑂 ≅
(∏

𝑎∈𝑂

Δ0∕𝐬𝐒𝐞𝐭
)

× ∏
(𝑎,𝑏)∈𝑂×𝑂

𝑎≠𝑏

𝐬𝐒𝐞𝐭

and the componentwise model structure so induced indeed has the required weak
equivalences, cofibrations, and fibrations. Thus, the free–forgetful adjunction is
indeed a Quillen adjunction. Moreover, by remark 2.7.4, the forgetful functor
𝑈 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 admits a simplicial enrichment that preserves cotensor
products, so using (proposition 1.4.15 and) proposition 2.4.4, we see that the
componentwise model structure satisfies axiom SM7.

We still have to show that the componentwise model structure on 𝐬𝐆𝐫𝐩𝐡𝑂 is
cofibrantly generated. Let u� and u� ′ be the following subsets of mor 𝐬𝐒𝐞𝐭𝑂×𝑂,

u� = {𝜕Δ𝑛 ⊙ h(𝑎,𝑏) ↪ Δ𝑛 ⊙ h(𝑎,𝑏) | 𝑛 ≥ 0, (𝑎, 𝑏) ∈ 𝑂 × 𝑂}
u� ′ = {Λ𝑛

𝑘 ⊙ h(𝑎,𝑏) ↪ Δ𝑛 ⊙ h(𝑎,𝑏) | 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛, (𝑎, 𝑏) ∈ 𝑂 × 𝑂}

where h(𝑎,𝑏) is the (𝑂 × 𝑂)-indexed set that is 1 at (𝑎, 𝑏) and ∅ otherwise, and let
ℐ (resp. ℐ′) be the image of u� (resp. u� ′) under 𝐹 : 𝐬𝐒𝐞𝐭𝑂×𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂. By
adjointness (and the Yoneda lemma), an ℐ-fibration (resp. ℐ′-fibration) is pre-
cisely a componentwise Kan fibration (resp. componentwise trivial Kan fibra-
tion). Thus, ℐ and ℐ′ cofibrantly generate the componentwise model structure
on 𝐬𝐆𝐫𝐩𝐡𝑂. ■

Proposition 2.7.7. Let 𝑂 be a set.

(i) 𝐒𝐂𝐚𝐭𝑂 is a locally finitely presentable category.

(ii) The forgetful functor 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 is ℵ0-accesible and monadic.

(iii) The simplicially enriched forgetful functor 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 creates co-
tensor products.
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(iv) The forgetful functor 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 is ℵ0-accesible and monadic.

(v) The simplicially enriched forgetful functor 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 creates co-
tensor products.

Proof. (i). We have remarked that 𝐒𝐂𝐚𝐭𝑂 is equivalent to the category of sim-
plicial objects in 𝐂𝐚𝐭𝑂, and it is not hard to see that the latter is a locally finitely
presentable category. We may then apply proposition 0.2.44.

(ii). It is clear that the forgetful functor 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 preserves colimits
for small filtered diagrams and limits for small diagrams, so we may use the
accessible adjoint functor theorem (0.2.50) to construct a left adjoint. We must
then verify that 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 creates coequalisers for 𝑈 -split parallel
pairs; once that is done, we may apply the well-known theorem of Beck to deduce
that 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 is monadic.[6]

(iii). Again, by regarding small simplicially enriched categories over 𝑂 as sim-
plicial objects in 𝐂𝐚𝐭𝑂, we may use the formula for cotensor products given in
the proof of proposition 2.3.7 to deduce that 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 creates
cotensor products.

(iv) and (v). Similar arguments work. ■

Definition 2.7.8.
• A local fibration of simplicially enriched categories is a simplicially

enriched functor 𝑃 : u� → u� with the following property: for all pairs
(𝐴, 𝐵) of objects in u�, the morphism 𝑃 𝐴,𝐵 : u�(𝐴, 𝐵) → u�(𝑃 𝐴, 𝑃 𝐵) is a
Kan fibration.

• Let 𝑂 be an ensemble. A fibration of simplicially enriched categories
over 𝑂 is a simplicially enriched functor over 𝑂 that is also a local fibration
of simplicially enriched categories.

Theorem 2.7.9 (Dwyer and Kan). Let 𝑂 be a set. The following data constitute
a cofibrantly generated simplicial model structure on 𝐒𝐂𝐚𝐭𝑂:

• The weak equivalences are the Dwyer–Kan equivalences.

[6] See e.g. Theorem 1 in [CWM, Ch. VI, §7].
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• The fibrations are the fibrations of simplicially enriched categories over
𝑂.

• The cofibrations are the morphisms that have the left lifting property with
respect to the fibrations.

This model structure is called the Dwyer–Kan model structure, and the fibrant
objects are the Kan-enriched categories over 𝑂. With respect to this model struc-
ture, we have a Quillen adjunction

𝐹 ⊣ 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂

where 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 is the evident forgetful functor.

Proof. First, we will use Kan’s lifting theorem (5.2.5) to verify that the data
indeed constitute a cofibrantly generated model structure on 𝐒𝐂𝐚𝐭𝑂 compatible
with the indicated free–forgetful adjunction.

By proposition 2.7.7, the forgetful functor admits a simplicial enrichment
that preserves cotensor products. Let u� and u� ′ be the following subsets of
mor 𝐬𝐒𝐞𝐭𝑂×𝑂,

u� = {𝜕Δ𝑛 ⊙ h(𝑎,𝑏) ↪ Δ𝑛 ⊙ h(𝑎,𝑏) | 𝑛 ≥ 0, (𝑎, 𝑏) ∈ 𝑂 × 𝑂}
u� ′ = {Λ𝑛

𝑘 ⊙ h(𝑎,𝑏) ↪ Δ𝑛 ⊙ h(𝑎,𝑏) | 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛, (𝑎, 𝑏) ∈ 𝑂 × 𝑂}

where h(𝑎,𝑏) is the (𝑂 × 𝑂)-indexed set that is 1 at (𝑎, 𝑏) and ∅ otherwise, and let
ℐ (resp. ℐ′) be the image of u� (resp. u� ′) under 𝐹 : 𝐬𝐒𝐞𝐭𝑂×𝑂 → 𝐒𝐂𝐚𝐭𝑂. Since
𝐒𝐂𝐚𝐭𝑂 is locally finitely presentable, by remark 0.5.9 and Quillen’s small object
argument (theorem 0.5.12), there exist functorial weak factorisation systems on
𝐒𝐂𝐚𝐭𝑂 cofibrantly generated by ℐ and ℐ′; and by adjointness (and the Yoneda
lemma), an ℐ-fibration (resp. ℐ′-fibration) is precisely a fibration (resp. trivial
fibration) of simplicially enriched categories over 𝑂. It remains to be shown
that ℐ′-cofibrations are Dwyer–Kan equivalences; but this is a straightforward
application of lemma 2.4.18 to theorem 2.5.24.

To complete the proof, we must verify that the above model structure satis-
fies axiom SM7. But 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 preserves cotensor products, so
by proposition 2.4.4, this is an immediate consequence of the fact that 𝐬𝐒𝐞𝐭𝑂×𝑂

satisfies axiom SM7. ■

307



II. Simplicial categories

Corollary 2.7.10. Let 𝑂 be a set. There is a Quillen adjunction

𝐹 ⊣ 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂

where 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 is the evident forgetful functor.

Proof. Clearly, 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 preserves fibrations and trivial fibrations,
so by proposition 4.3.2, we have a Quillen adjunction. ■

Proposition 2.7.11. Let 𝑂 be a set and let u� be the full subcategory of [𝟚, 𝐒𝐂𝐚𝐭𝑂]
spanned by the Dwyer–Kan equivalences. Then u� is closed under colimits for
small filtered diagrams in [𝟚, 𝐒𝐂𝐚𝐭𝑂].

Proof. The forgetful functor 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐒𝐞𝐭𝑂×𝑂 preserves weak equival-
ences and colimits for small filtered diagrams and also reflects weak equival-
ences, so this is a corollary of proposition 1.5.14. ■

Definition 2.7.12. Let 𝑂 be a set and let 𝐹 : 𝐬𝐒𝐞𝐭𝑂×𝑂 → 𝐒𝐂𝐚𝐭𝑂 be the free
simplicially enriched category over 𝑂 functor. A standard cofibration in 𝐒𝐂𝐚𝐭𝑂
is a monomorphism 𝑓 : u� → u� for which there exist a chain of monomorphisms
in 𝐒𝐂𝐚𝐭𝑂

u� = u�(−1) u�(0) u�(1) u�(2) ⋯𝑖(0) 𝑖(1) 𝑖(2)

such that the following conditions are satisfied:

• There is a colimiting cocone from the above chain to u� where the com-
ponent u�(−1) → u� is 𝑓 : u� → u�.

• For each natural number 𝑛, there is a pushout diagram of the form below,

𝐹 (𝜕Δ𝑛 ⊙ 𝐼𝑛) 𝐹 (Δ𝑛 ⊙ 𝐼𝑛)

u�(𝑛−1) u�(𝑛)
𝑖(𝑛)

where 𝐼𝑛 is an (𝑂 × 𝑂)-indexed subset of u�(−, −)𝑛 not meeting the image
of 𝑓 : u� → u�, 𝐹 (𝜕Δ𝑛 ⊙ 𝐼𝑛) ↪ 𝐹 (Δ𝑛 ⊙ 𝐼𝑛) is induced by the boundary in-
clusion 𝜕Δ𝑛 ↪ Δ𝑛, and 𝐹 (Δ𝑛 ⊙ 𝐼𝑛) → u�(𝑛) is the tautological simplicially
enriched functor induced by the inclusion 𝐼𝑛 ↪ u�(−, −)𝑛.
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2.7. The Dwyer–Kan model structure

The following lemma implies that every instance of the word ‘monomorph-
ism’ in the above definition can be replaced by ‘morphism’.

Lemma 2.7.13. Let 𝑂 be a set, let 𝑛 be a natural number, and let 𝑓 : 𝑋 → 𝑌
be a monomorphism in 𝐬𝐒𝐞𝐭𝑂×𝑂. Given a pushout diagram in 𝐒𝐂𝐚𝐭𝑂 of the form
below,

𝐹 𝑋 𝐹 𝑌

u� u�

𝐹 𝑓

𝑖

the simplicially enriched functor 𝑖 : u� → u� is a monomorphism in 𝐒𝐂𝐚𝐭𝑂.

Proof. It is enough to show that each (𝑖𝑎,𝑏)𝑛 : u�(𝑎, 𝑏)𝑛 → u�(𝑎, 𝑏)𝑛 is injective,
and since colimits in 𝐒𝐂𝐚𝐭𝑂 can be computed degreewise, it suffices to prove the
analogous claim for categories over 𝑂. But every (𝑂 × 𝑂)-indexed injective map
is (isomorphic to) a coproduct insertions, and the free category over 𝑂 functor
𝐒𝐞𝐭𝑂×𝑂 → 𝐂𝐚𝐭𝑂 preserves coproducts, so it suffices to show that coproduct in-
sertions in 𝐂𝐚𝐭𝑂 are monic. This is clear if we think in terms of generators and
relations. ■

Proposition 2.7.14. Let 𝑂 be a set.

(i) Every standard cofibration in 𝐒𝐂𝐚𝐭𝑂 is a cofibration in the Dwyer–Kan
model structure.

(ii) Every morphism in 𝐒𝐂𝐚𝐭𝑂 can be factored as a standard cofibration fol-
lowed by a trivial fibration.

(iii) Every cofibration in 𝐒𝐂𝐚𝐭𝑂 is a retract of a standard cofibration.

Proof. (i). Let ℐ be the following subset of mor 𝐒𝐂𝐚𝐭𝑂:

ℐ = {𝐹 (𝜕Δ𝑛 ⊙ h(𝑎,𝑏)) ↪ 𝐹 (Δ𝑛 ⊙ h(𝑎,𝑏)) | 𝑛 ≥ 0, (𝑎, 𝑏) ∈ 𝑂 × 𝑂}

It is clear that standard cofibrations in 𝐒𝐂𝐚𝐭𝑂 are relative ℐ-cell complexes. We
previously saw that the ℐ-injective morphisms are precisely the trivial fibrations
in the Dwyer–Kan model structure on 𝐒𝐂𝐚𝐭𝑂, so relative ℐ-cell complexes are
cofibrations.

(ii). A variation on Quillen’s small object argument (theorem 0.5.12) applied to
ℐ can be used here.
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(iii). Let 𝑓 : u� → u� be a cofibration. There is a factorisation of the form
𝑓 = 𝑝 ∘ 𝑖 where 𝑝 is a trivial fibration and 𝑖 is a standard cofibration; but 𝑓 has
the left lifting property with respect to 𝑝, so 𝑓 is a retract of 𝑖. ■

Corollary 2.7.15. Let 𝑂 be a set. Every cofibration in 𝐒𝐂𝐚𝐭𝑂 in the Dwyer–Kan
model structure is a monomorphism. ■

¶ 2.7.16. Let us write Δ𝑂 for the reflexive graph over 𝑂 defined by the fol-
lowing formula:

Δ𝑂(𝑎, 𝑏) =
{

1 if 𝑎 = 𝑏
∅ if 𝑎 ≠ 𝑏

Clearly, Δ𝑂 is an initial object in 𝐆𝐫𝐩𝐡𝑂. It admits the structure of a category
over 𝑂 in a unique way and is also an initial object in 𝐂𝐚𝐭𝑂. As there is no danger
of confusion, we will also write Δ𝑂 for the initial objects in 𝐬𝐆𝐫𝐩𝐡𝑂 and 𝐒𝐂𝐚𝐭𝑂.

Lemma 2.7.17. Let u� be a small simplicially enriched category and let 𝑂 =
ob u�. Then the unique morphism Δ𝑂 → u� in 𝐒𝐂𝐚𝐭𝑂 is a standard cofibration
if there exist (𝑂 × 𝑂)-indexed subsets 𝐽𝑛 ⊆ u�(−, −)𝑛 satisfying the following
conditions:

• Regarding u� as a simplicial category u�•, the tautological functor 𝐹 (𝐽𝑛) →
u�𝑛 induced by the inclusion 𝐽𝑛 ↪ u�(−, −)𝑛 is an isomorphism (in 𝐂𝐚𝐭𝑂).

• For 0 ≤ 𝑘 ≤ 𝑛, the degeneracy operator 𝑠𝑘 : u�(−, −)𝑛 → u�(−, −)𝑛+1 sends
elements of 𝐽𝑛 into 𝐽𝑛+1.

In particular, for any object 𝑋 in 𝐬𝐆𝐫𝐩𝐡𝑂, the unique morphism Δ𝑂 → 𝐹 (𝑋) is
a standard cofibration.

Proof. Let 𝐼𝑛 be the intersection of 𝐽𝑛 and the set of non-degenerate 𝑛-simplices
of u�(−, −) and let u�(𝑛) be the simplicially enriched subcategory of u� generated by
(all) the 𝑛-simplices. Let u�(−1) = Δ𝑂. There is an evident commutative diagram
in 𝐒𝐂𝐚𝐭𝑂 of the form below,

𝐹 (𝜕Δ𝑛 ⊙ 𝐼𝑛) 𝐹 (Δ𝑛 ⊙ 𝐼𝑛)

u�(𝑛−1) u�(𝑛)
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and it is not hard to see that it is a pushout diagram. Clearly, ⋃𝑛≥0 u�(𝑛) = u�,
so the unique morphism u�(−1) → u� is indeed a standard cofibration, as claimed.
Finally, if u� = 𝐹 (𝑋), then we can take 𝐽𝑛 = 𝑋𝑛 ⧵ Δ𝑂, so the unique morphism
Δ𝑂 → 𝐹 (𝑋) is a standard cofibration. ■

Recalling lemma 1.6.8, we see that the realisation functor |−| : 𝐬𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭
preserves finite products. In particular, the following definition makes sense:

Definition 2.7.18. Let 𝑂 be a set and let u�• be a simplicial object in 𝐒𝐂𝐚𝐭𝑂. TheTODO: What is the
relationship between

this and realisation
in the general sense?

realisation of u�• is the simplicially enriched category u� defined by the following
formula:

u�(𝑎, 𝑏) = |u�•(𝑎, 𝑏)|
In other words, u� is |[u�•]| where we regard u�• as a category enriched over 𝐬𝐬𝐒𝐞𝐭.

Proposition 2.7.19. Let 𝑂 be a set and let 𝑓 • : u�• → u�• be a morphism of
simplicial objects in 𝐒𝐂𝐚𝐭𝑂. If each 𝑓 𝑛 : u�𝑛 → u�𝑛 is a Dwyer–Kan equivalence,
then |[𝑓 •]| : |[u�•]| → |[u�•]| is also a Dwyer–Kan equivalence.

Proof. This is a straightforward corollary of theorem 1.6.10. ■

Definition 2.7.20. Let u� be a small category and let 𝑂 = ob u�. The stand-
ard resolution of u� is the standard resolution of u� (as an object in 𝐂𝐚𝐭𝑂) with
respect to the comonad induced by the free–forgetful adjunction between 𝐂𝐚𝐭𝑂
and 𝐆𝐫𝐩𝐡𝑂.

Remark 2.7.21. The fact that the standard resolution of u� is stable under universe
enlargement is an instance of the stability of accessible adjunctions.
Remark 2.7.22. Although the standard resolution 𝐒(ℂ)• of a category ℂ is most
naturally defined as a simplicial category, the fact that ob 𝐒(ℂ)• is a constant
simplicial set enables us to view it as a simplicially enriched category 𝐒(ℂ), per
remark 2.1.11.

Proposition 2.7.23. For any small category ℂ, the standard augmentation ℂ :
𝐒(ℂ) → ℂ is a Dwyer–Kan equivalence of simplicially enriched categories.

Proof. Recalling proposition 1.3.20 (and proposition 1.5.4), this is a special case
of proposition 2.3.20. ■

Corollary 2.7.24. The functor 𝜋0[𝐒(ℂ)] → ℂ induced by the standard augment-
ation is an isomorphism of categories. ■
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Definition 2.7.25. Let u� be a small simplicially enriched category and let 𝑂 =
ob u�.

• The standard resolution of u� is the standard resolution of u� (as an ob-
ject in 𝐒𝐂𝐚𝐭𝑂) with respect to the comonad induced by the free–forgetful
adjunction between 𝐒𝐂𝐚𝐭𝑂 and 𝐬𝐆𝐫𝐩𝐡𝑂.

• The degreewise standard resolution of u� is 𝐒(u�•) together with the evi-
dent augmentation, where u�• is u� considered as a simplicial category and
𝐒(u�𝑛) is the standard resolution of u�𝑛 (as an object in 𝐂𝐚𝐭𝑂, with respect to
the comonad induced by the free–forgetful adjunctino between 𝐂𝐚𝐭𝑂 and
𝐆𝐫𝐩𝐡𝑂) considered as a simplicially enriched category.

Remark 2.7.26. The standard resolution and the degreewise standard resolution
are related as follows (up to natural bijection):

𝐒(u�)𝑛(𝑎, 𝑏)𝑚 = 𝐒(u�𝑚)(𝑎, 𝑏)𝑛

In particular, lemma 1.6.8 implies that their realisations are naturally isomorphic.

Proposition 2.7.27. Let u� be a small simplicially enriched category and let
𝑂 = ob u�.

(i) The degreewise standard augmentation 𝐒(u�•) → u�• is a degreewise Dwyer–
Kan equivalence.

(ii) The realisation of the standard augmentation is a Dwyer–Kan equivalence
|[𝐒(u�)•]| → u�.

(iii) For each natural number 𝑛, the unique morphism Δ𝑂 → 𝐒(u�)𝑛 in 𝐒𝐂𝐚𝐭𝑂
is a standard cofibration.

(iv) For each natural number 𝑛, the unique morphism Δ𝑂 → 𝐒(u�𝑛) in 𝐒𝐂𝐚𝐭𝑂
is a standard cofibration.

(v) The unique morphism Δ𝑂 → |[𝐒(u�)•]| in 𝐒𝐂𝐚𝐭𝑂 is a standard cofibration.

Proof. (i). See proposition 2.7.23.

(ii). Thus, by proposition 2.7.19 and remark 2.7.26, the induced morphisms

|𝐒(u�)•(𝑎, 𝑏)| → u�(𝑎, 𝑏)
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are weak homotopy equivalences.

(iii)–(v). This is a straightforward application of lemma 2.7.17. ■

Proposition 2.7.28. Let 𝑂 be a set. For any Dwyer–Kan equivalence 𝑓 : u� → u�
in 𝐒𝐂𝐚𝐭𝑂, the morphism 𝐒(𝑓)• : 𝐒(u�)• → 𝐒(u�)• of standard resolutions is a
degreewise Dwyer–Kan equivalence.

Proof. Corollary 2.7.10 says that 𝐹 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐒𝐂𝐚𝐭𝑂 is a left Quillen func-
tor, and since all objects in 𝐬𝐆𝐫𝐩𝐡𝑂 are cofibrant, Ken Brown’s lemma (4.3.6)
implies that 𝐹 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐒𝐂𝐚𝐭𝑂 preserves weak equivalences. On the other
hand, 𝑈 : 𝐒𝐂𝐚𝐭𝑂 → 𝐬𝐆𝐫𝐩𝐡𝑂 preserves weak equivalences by definition. Thus,
the morphism 𝐒(𝑓)• : 𝐒(u�)• → 𝐒(u�)• is a degreewise Dwyer–Kan equival-
ence. ■

Lemma 2.7.29. Let 𝑂 be a set.

(i) The forgetful functor 𝑈 : 𝐂𝐚𝐭𝑂 → 𝐆𝐫𝐩𝐡𝑂 preserves and reflects mono-
morphisms.

(ii) The coproduct functor (−) +𝑂 (−) : 𝐂𝐚𝐭𝑂 × 𝐂𝐚𝐭𝑂 → 𝐂𝐚𝐭𝑂 preserves
monomorphisms.

(iii) Let 𝐂𝐚𝐭𝑂,m (resp. 𝐆𝐫𝐩𝐡𝑂,m) be the subcategory of 𝐂𝐚𝐭𝑂 (resp. 𝐆𝐫𝐩𝐡𝑂)
consisting of the monomorphisms. There exists a functor

(−) +𝑂 (−) : 𝐆𝐫𝐩𝐡𝑂,m × 𝐆𝐫𝐩𝐡𝑂,m → 𝐆𝐫𝐩𝐡𝑂,m

making the following diagram commute up to isomorphism:

𝐂𝐚𝐭𝑂,m × 𝐂𝐚𝐭𝑂,m 𝐂𝐚𝐭𝑂,m

𝐆𝐫𝐩𝐡𝑂,m × 𝐆𝐫𝐩𝐡𝑂,m 𝐆𝐫𝐩𝐡𝑂,m

𝑈×𝑈

(−)+𝑂(−)

𝑈

(−)+𝑂(−)

Moreover, this functor is equipped with natural monomorphisms 𝑋 →
𝑋 +𝑂 𝑌 and 𝑌 → 𝑋 +𝑂 𝑌 , and these are compatible with the coproduct
insertions in 𝐂𝐚𝐭𝑂.
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Proof. (i). By (the proof of) proposition 2.7.7, 𝑈 : 𝐂𝐚𝐭𝑂 → 𝐆𝐫𝐩𝐡𝑂 is monadic,
and any monadic functor preserves and reflects monomorphisms.

(ii). Let u� and u� be objects in 𝐂𝐚𝐭𝑂. It is not hard to see that morphisms in the
coproduct u� +𝑂 u� admit a unique factorisation of the form

𝑜0 ⋯ 𝑜𝑘

where 𝑘 is a natural number (possibly zero!), each arrow is a non-identity morph-
ism in u� or u�, and no two adjacent arrows are in the same category. (The co-
product insertions u� → u� +𝑂 u� and u� → u� +𝑂 u� are monic, so by abuse of
notation, we identify u� and u� with their images in u� +𝑂 u�.) It is clear what
the action of (−) +𝑂 (−) on morphisms is, and by considering the factorisations
discussed above, it is easy to see that (−) +𝑂 (−) preserves monomorphisms.

(iii). Let 𝑋 and 𝑌 be objects in 𝐆𝐫𝐩𝐡𝑂. In view of the above description of
u� +𝑂 u�, let us define 𝑋 +𝑂 𝑌 to be the reflexive graph whose edges are (finite)
paths

𝑜0 ⋯ 𝑜𝑘

where 𝑘 is a natural number (possibly zero!), each arrow is a non-distinguished
edge of 𝑋 or 𝑌 , and no two adjacent arrows are in the same graph. It is then
clear how to extend (−) +𝑂 (−) to a functor 𝐆𝐫𝐩𝐡𝑂,m × 𝐆𝐫𝐩𝐡𝑂,m → 𝐆𝐫𝐩𝐡𝑂,m of
the required form, and there are evident natural monomorphisms 𝑋 → 𝑋 +𝑂 𝑌
and 𝑌 → 𝑋 +𝑂 𝑌 compatible with the coproduct insertions in 𝐂𝐚𝐭𝑂. ■

Lemma 2.7.30. Let 𝑂 be a set and let u� and u� be objects in 𝐂𝐚𝐭𝑂. If 𝑔 : 𝐒(u�) →
disc[u�] is the standard augmentation (regarded as a morphism in 𝐒𝐂𝐚𝐭𝑂), then
the coproduct morphism iddisc[u�] +𝑂 𝑔 : disc[u�] +𝑂 𝐒(u�) → disc[u�] +𝑂 disc[u�]
is a Dwyer–Kan equivalence in 𝐒𝐂𝐚𝐭𝑂.

Proof. Let 𝑈 : 𝐂𝐚𝐭𝑂 → 𝐆𝐫𝐩𝐡𝑂 be the forgetful functor and let 𝑟 = 𝑈𝑔0 :
𝑈𝐒(u�)0 → 𝑈u�. By proposition 2.3.20, there exist morphisms 𝑠 : 𝑈u� →
𝑈𝐒(u�)0 and ℎ𝑛 : 𝑈𝐒(u�)𝑛 → 𝑈𝐒(u�)𝑛+1 constituting a forward contracting ho-
motopy for 𝑈𝐒(u�)•. To prove the claim, (by propositions 1.3.20 and 1.5.4) it
suffices to show that u� +𝑂 𝐒(u�)• admits a forward contracting homotopy corres-
ponding to the morphism 𝑈(idu� +𝑂 𝑔•) : 𝑈(u� +𝑂 𝐒(u�)•) → 𝑈(u� +𝑂 u�).

By definition, the morphisms 𝑠 : 𝑈u� → 𝑈𝐒(u�)0 and ℎ𝑛 : 𝑈𝐒(u�)𝑛 →
𝑈𝐒(u�)𝑛+1 are (split) monomorphisms in 𝐆𝐫𝐩𝐡𝑂, so by lemma 2.7.29, we may
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apply id𝑈u� +𝑂 (−) to them. If we identify 𝑈u� +𝑂 𝑈𝐒(u�)• with 𝑈(u� +𝑂 𝐒(u�)•),
then we get the following identities for free:

𝑈(idu� +𝑂 𝑔0) ∘ 𝑈(idu� +𝑂 𝑑1
1) = 𝑈(idu� +𝑂 𝑔0) ∘ 𝑈(idu� +𝑂 𝑑1

0)
(id𝑈u� +𝑂 ℎ𝑛+1) ∘ 𝑈(idu� +𝑂 𝑠𝑛

𝑖 ) = 𝑈(idu� +𝑂 𝑠𝑛+1
𝑖 ) ∘ (id𝑈u� +𝑂 ℎ𝑛) if 0 ≤ 𝑖 ≤ 𝑛

(id𝑈u� +𝑂 ℎ𝑛+1) ∘ (id𝑈u� +𝑂 ℎ𝑛) = 𝑈(idu� +𝑂 𝑠𝑛+1
𝑛+1) ∘ (id𝑈u� +𝑂 ℎ𝑛)

To complete the proof, we must verify the equations shown below:

𝑈(idu� +𝑂 𝑔0) ∘ (id𝑈u� +𝑂 𝑠) = id
𝑈(idu� +𝑂 𝑑1

0) ∘ (id𝑈u� +𝑂 ℎ0) = (id𝑈u� +𝑂 𝑠) ∘ 𝑈(idu� +𝑂 𝑔0)
𝑈(idu� +𝑂 𝑑1

1) ∘ (id𝑈u� +𝑂 ℎ0) = id
𝑈(idu� +𝑂 𝑑𝑛+1

𝑖 ) ∘ (id𝑈u� +𝑂 ℎ𝑛) = (id𝑈u� +𝑂 ℎ𝑛−1) ∘ 𝑈(idu� +𝑂 𝑑𝑛
𝑖 ) if 0 ≤ 𝑖 ≤ 𝑛

𝑈(idu� +𝑂 𝑑𝑛+1
𝑛+1) ∘ (id𝑈u� +𝑂 ℎ𝑛) = id

The verification is straightforward and is omitted. ■

Lemma 2.7.31. Let 𝑂 be a set. The coproduct functor

(−) +𝑂 (−) : 𝐒𝐂𝐚𝐭𝑂 × 𝐒𝐂𝐚𝐭𝑂 → 𝐒𝐂𝐚𝐭𝑂

preserves weak equivalences.

Proof. Since the class of Dwyer–Kan equivalences is closed under composition,
by symmetry, it suffices to verify that u� +𝑂 (−) : 𝐒𝐂𝐚𝐭𝑂 → 𝐒𝐂𝐚𝐭𝑂 preserves
Dwyer–Kan equivalences for an arbitrary object u� in 𝐒𝐂𝐚𝐭𝑂.

First, suppose that u� = 𝐹 (disc 𝑋) for some (𝑂 × 𝑂)-indexed set 𝑋. Then,
for any object u� in 𝐒𝐂𝐚𝐭𝑂, we have the following formula,

(𝐹 (disc 𝑋) +𝑂 u�)(𝑎, 𝑏) = ∐
𝑘≥0

𝑌 (𝑘)(𝑎, 𝑏)

where 𝑌 (0)(𝑎, 𝑏) = u�(𝑎, 𝑏) and in general:

𝑌 (𝑘+1)(𝑎, 𝑏) = ∐
(𝑎′,𝑏′)∈𝑂×𝑂

𝑌 (𝑘)(𝑎, 𝑎′) × disc 𝑋(𝑎′, 𝑏′) × u�(𝑏′, 𝑏)

In other words, every 𝑛-simplex of (𝐹 (disc 𝑋) +𝑂 u�)(𝑎, 𝑏) admits a unique fac-
torisation of the form

𝑎 • ⋯ • 𝑏
𝑓1 𝑓2𝑘+1
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where 𝑓𝑗 is in u� when 𝑗 is odd and in 𝑋 if 𝑗 is even. It is then clear that
𝐹 (disc 𝑋) +𝑂 (−) preserves Dwyer–Kan equivalences.

Now, suppose u� is degreewise free, i.e. regarded as a simplicial category
u�•, for each natural number 𝑛, there is an (𝑋 × 𝑋)-indexed set 𝑋𝑛 such that
u�𝑛 = 𝐹 (𝑋𝑛). Let 𝑔 : u� → ℰ be a Dwyer–Kan equivalence in 𝐒𝐂𝐚𝐭𝑂. The above
argument shows that, for each natural number 𝑛,

id𝐹 (disc 𝑋𝑛) +𝑂 𝑔 : 𝐹 (disc 𝑋𝑛) +𝑂 u� → 𝐹 (disc 𝑋𝑛) +𝑂 ℰ

But u� is (isomorphic to) the realisation of the simplicial object disc[u�•], so by
proposition 2.7.19, the simplicially enriched functor

idu� +𝑂 𝑔 : u� +𝑂 u� → u� +𝑂 ℰ

is a Dwyer–Kan equivalence.
Next, let u� be any object in 𝐒𝐂𝐚𝐭𝑂. Let u� be any object in 𝐒𝐂𝐚𝐭𝑂, and

consider the degreewise standard augmentation 𝑔• : 𝐒(u�•) → disc[u�•]. By
lemma 2.7.30,

iddisc[u�•] +𝑂 𝑔• : disc[u�•] +𝑂 𝐒(u�•) → disc[u�•] +𝑂 disc[u�•]

is a degreewise Dwyer–Kan equivalence, so applying proposition 2.7.19 again,
we deduce that

idu� +𝑂 |[𝑔•]| : u� +𝑂 |[𝐒(u�)•]| → u� +𝑂 u�

is a Dwyer–Kan equivalence.
Finally, let 𝑔 : u� → ℰ be any Dwyer–Kan equivalence in 𝐒𝐂𝐚𝐭𝑂. Consider

the standard resolution of 𝑔 and the degreewise standard resolution of u�. We
have the following commutative diagram:

𝐒(u�𝑛) +𝑂 𝐒(u�)𝑛 disc[u�𝑛] +𝑂 𝐒(u�)𝑛

𝐒(u�𝑛) +𝑂 𝐒(ℰ)𝑛 disc[u�𝑛] +𝑂 𝐒(ℰ)𝑛

id𝐒(u�𝑛)+𝑂𝐒(𝑔)𝑛 iddisc[u�𝑛]+
𝑂𝐒(𝑔)𝑛

The simplicially enriched categories 𝐒(u�)𝑛 and 𝐒(ℰ)𝑛 are degreewise free, so by
proposition 2.7.27 and our earlier argument, the horizontal arrows in the dia-
gram are Dwyer–Kan equivalences. On the other hand, by proposition 2.7.28,
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𝐒(𝑔)𝑛 : 𝐒(u�)𝑛 → 𝐒(ℰ)𝑛 is a Dwyer–Kan equivalence; and 𝐒(u�𝑛) is degreewise
free, so by the same argument again, the left vertical arrow in the diagram is a
Dwyer–Kan equivalence. Thus, using the 2-out-of-3 property, we deduce that
the right vertical arrow is a Dwyer–Kan equivalence, so we have a degreewise
Dwyer–Kan equivalence

iddisc[u�•] +𝑂 𝐒(𝑔)• : disc[u�•] +𝑂 𝐒(u�)• → disc[u�•] +𝑂 𝐒(ℰ)•

and applying proposition 2.7.19, we deduce that

idu� +𝑂 |[𝐒(𝑔)•]| : u� +𝑂 |[𝐒(u�)•]| → u� +𝑂 |[𝐒(ℰ)•]|

is also a Dwyer–Kan equivalence. But the following diagram commutes,

u� +𝑂 |[𝐒(u�)•]| u� +𝑂 u�

u� +𝑂 |[𝐒(ℰ)•]| u� +𝑂 ℰ

idu�+𝑂|[𝐒(𝑔)•]| idu�+𝑂𝑔

and we know that the horizontal arrows are Dwyer–Kan equivalences, so (using
the 2-out-of-3 property) we conclude that

idu� +𝑂 𝑔 : u� +𝑂 u� → u� +𝑂 ℰ

is a Dwyer–Kan equivalence, as required. ■

Proposition 2.7.32. Let 𝑂 and 𝐼 be sets. The coproduct functor
𝑂

∑
𝐼

(−) : (𝐒𝐂𝐚𝐭𝑂)𝐼 → 𝐒𝐂𝐚𝐭𝑂

preserves weak equivalences.

Proof. It is well known that coproducts can be constructed using filtered colimits
and finite coproducts, so this is a corollary of proposition 2.7.11 and lemma 2.7.31.

■

Proposition 2.7.33. Let 𝑂 be a set. The Dwyer–Kan model structure on 𝐒𝐂𝐚𝐭𝑂
is proper.[7]

Proof. See Proposition 7.3 in [Dwyer and Kan, 1980a]. □

[7] See definition 5.1.7.
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2.8 Simplicial localisation
Prerequisites. §§1.2, 1.5, 1.6, 1.11, 2.1, 2.5, 2.7, 3.1, 4.5, 4.6, a.4.

When one passes from a relative category to its homotopy category by freely
inverting the weak equivalences, one loses much of the homotopical informa-
tion. Dwyer and Kan [1980a,b,c] instead proposed a more sophisticated notion
of localisation that produces a simplicial category retaining all the homotopical
information, at least in the case of a simplicial model category.

Definition 2.8.1. The standard resolution of a small relative category u� is the
simplicial relative category 𝐒(u�)• where und 𝐒(u�)• = 𝐒(und u�)• and weq 𝐒(u�)• =
𝐒(weq u�)•. The standard simplicial localisation of u� is the simplicial category
𝐋𝐨(u�)• obtained by applying Ho to 𝐒(u�)• degreewise, and the simplicial local-
ising functor is the induced simplicial functor 𝐒(u�)• → 𝐋𝐨(u�)•.

Remark 2.8.2. As in remark 2.7.22, the face and degeneracy operators of the
simplicial set ob 𝐋𝐨(u�)• are trivial, so we may regard it as a simplicially enriched
category 𝐋𝐨(u�).

Proposition 2.8.3. Let u� be a small relative category. The standard augmenta-
tion for u� induces an isomorphism 𝜋0[𝐋𝐨(u�)] → Ho u�.

Proof. Let u� be an ordinary category and let 𝐹 : u� → u� be a functor that sends
weak equivalences in u� to isomorphisms in u�. Then, composing with the stand-
ard augmentation ( u�)• : 𝐒(u�)• → u� yields a simplicial functor 𝐒(u�)• → u� that
sends weak equivalences in each 𝐒(u�)𝑛 to isomorphisms in u�, so the degreewise
universal property of 𝐋𝐨(u�)• yields a unique simplicial functor 𝐋𝐨(u�)• → u�
making the diagram below commute (strictly),

𝐒(u�)• u�

𝐋𝐨(u�)• u�

( u�)•

𝐹

where 𝐒(u�)• → 𝐋𝐨(u�)• is the simplicial localising functor. u� is an ordinary cat-
egory, so proposition 2.5.14 says the corresponding simplicially enriched functor
𝐋𝐨(u�) → u� factors through the 𝜋0-localising functor 𝐋𝐨(u�) → 𝜋0[𝐋𝐨(u�)] in a
unique way. Thus, 𝜋0[𝐋𝐨(u�)] has the universal property of Ho u�, and the re-
quired isomorphism 𝜋0[𝐋𝐨(u�)] → Ho u� is induced by the ordinary localising
functor u� → Ho u�. ■
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Proposition 2.8.4. Let u� be a small relative category. The following are equi-
valent for a morphism 𝑓 : 𝑋 → 𝑌 in u�:

(i) The morphism 𝑓 : 𝑋 → 𝑌 is a weak equivalence in u�.

(ii) The morphism in 𝐋𝐨(u�) corresponding to 𝑓 : 𝑋 → 𝑌 is an isomorphism.

(iii) The morphism in 𝐋𝐨(u�)0 corresponding to 𝑓 : 𝑋 → 𝑌 is an isomorphism.

Proof. (i) ⇒ (ii). For each natural number 𝑛, the morphism in 𝐒(u�)𝑛 correspond-
ing to 𝑓 : 𝑋 → 𝑌 is a weak equivalence (by definition), so its image in 𝐋𝐨(u�)𝑛
is an isomorphism. Thus, the morphism corresponding to 𝑓 in the simplicially
enriched category 𝐋𝐨(u�) is an isomorphism.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Since und 𝐒(u�)0 and weq 𝐒(u�)0 are free categories, the morphisms in
𝐋𝐨(u�)0 can be represented by reduced composable strings generated by morph-
isms in und u� and the formal inverses of morphisms in weq u�. Thus, a morphism
in u� corresponds to an isomorphism in 𝐋𝐨(u�)0 if and only if it is a weak equi-
valence in u�. ■

To justify the definition of the standard simplicial localisation, we must first
study the case of the fundamental category of a graph.

Lemma 2.8.5. Let 𝑂 be a set and let u� and u� be objects in 𝐂𝐚𝐭𝑂. Regarding
N(u�) and N(u�) as simplicial subsets of N(u� +𝑂 u�), the inclusion

N(u�) ∪ N(u�) ↪ N(u� +𝑂 u�)

is a weak homotopy equivalence.

Proof. Let 𝐹 : 𝐬𝐆𝐫𝐩𝐡𝑂 → 𝐒𝐂𝐚𝐭𝑂 be the free simplicially enriched category
over 𝑂 functor. If u� = 𝐹 𝑋 and u� = 𝐹 𝑌 for some 𝑋 and 𝑌 in 𝐬𝐆𝐫𝐩𝐡𝑂, then
the claim reduces to lemma 1.11.46. In general, consider the standard resolutions
of u� and u�. Since the standard resolution is degreewise free, for each natural
number 𝑛, the inclusion

N(𝐒(u�)𝑛) ∪ N(𝐒(u�)𝑛) ↪ N(𝐒(u�)𝑛 +𝑂 𝐒(u�))

is a weak homotopy equivalence; thus, by theorem 1.6.10,

|N(𝐒(u�)•)| ∪ |N(𝐒(u�)•)| ↪ |N(𝐒(u�)• +𝑂 𝐒(u�)•)|
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is a weak homotopy equivalence. We have the following commutative diagram
in 𝐬𝐒𝐞𝐭,

|N(𝐒(u�)•)| ∪ |N(𝐒(u�)•)| |N(𝐒(u�)• +𝑂 𝐒(u�)•)|

N(u�) ∪ N(u�) N(u� +𝑂 u�)

where the vertical arrows are induced by the respective standard augmentations;
but corollary 2.3.13 and proposition 2.3.20 (plus proposition 1.5.4) together with
lemmas 1.5.19 and 2.7.31 (plus lemmas 1.6.8 and 2.5.21) imply that the vertical
arrows in the diagram are weak homotopy equivalences, so we may use the 2-out-
of-3 property to deduce that the bottom arrow is also a weak homotopy equival-
ence, as desired. ■

Lemma 2.8.6. Let 𝑂 be a set, let (u�𝑖 | 𝑖 ∈ 𝐼) be a small family of categories over
𝑂, and let u� = ∑𝑂

𝑖∈𝐼 u�𝑖 be their coproduct in 𝐒𝐂𝐚𝐭𝑂. Regarding each N(u�𝑖) as
a simplicial subset of N(u�), the inclusion

⋃
𝑖∈𝐼

N(u�𝑖) ↪ N(u�)

is a weak homotopy equivalence.

Proof. Let u� be the poset of finite subsets of 𝐼 . By lemma 2.8.5 (and induction),
for each finite 𝐽 ⊆ 𝐼 , setting u�𝐽 = ∑𝑂

𝑗∈𝐼 u�𝑗 , the inclusion

⋃
𝑗∈𝐽

N(u�𝑗) ↪ N(u�𝐽 )

is a weak homotopy equivalence; but u� is directed, so by proposition 2.7.11,

lim−−→
𝐽∈u�

⋃
𝑗∈𝐽

N(u�𝑗) ↪ lim−−→
𝐽∈u�

N(u�𝐽 )

is also a weak homotopy equivalence, as required. ■

Lemma 2.8.7. Let 𝐺 be a 1-skeletal simplicial set. The unit 𝐺 : 𝐺 → N(𝜋1𝐺)
is an anodyne extension.

Proof. It is not hard to verify that the unit 𝐺 : 𝐺 → N(𝜋1𝐺) is a monomorph-
ism, so by proposition 1.5.12, it suffices to show that 𝐺 : 𝐺 → N(𝜋1𝐺) is a weak
homotopy equivalence.
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Let 𝑂 be the set of vertices of 𝐺 and consider 𝜋1𝐺 as a category over 𝑂.
It is easy to check (using the contractibility of Δ1 and N(𝜋1Δ1), plus propos-
ition 1.5.16) that 𝐺 : 𝐺 → N(𝜋1𝐺) is a weak homotopy equivalence when
𝐺 has a unique non-degenerate edge. In general, we note that the functor 𝜋1 :
𝐆𝐫𝐩𝐡𝑂 → 𝐂𝐚𝐭𝑂 preserves coproducts (because it is a left adjoint), so we may
apply lemma 2.8.6 to deduce the claim for all 1-skeletal simplicial sets 𝐺. ■

Proposition 2.8.8. Let 𝐺 be a 1-skeletal simplicial set. There is a natural com-
mutative diagram in 𝐬𝐒𝐞𝐭 of the form below,

𝐺 N(𝜏1𝐺)

𝐺 N(𝜋1𝐺)

where the horizontal arrows are the components of the respective adjunctions
and the vertical arrow is induced by the unit of the evident adjunction

𝐈 ⊣ 𝑈 : 𝐆𝐫𝐩𝐝 → 𝐂𝐚𝐭

and moreover, every arrow in the diagram is an anodyne extension.

Proof. It is not hard to verify that N(𝜏1𝐺) → N(𝜋1𝐺) is a monomorphism, and
the commutativity of the diagram is a consequence of the fact that adjunctions
can be composed. Thus, recalling the 2-out-of-3 property and proposition 1.5.12,
the claim is a corollary of proposition 1.11.45 and lemma 2.8.7. ■

Remark 2.8.9. In view of proposition 6.2.30, we should regard the above result
as saying that 𝜋1𝐺 is the groupoid completion of 𝜏1𝐺 even when regarded as an
(∞, 1)-category.

Lemma 2.8.10. Let u� be a small category. If we regard u� as a maximal relative
category, then the arrows in the diagram below are weak homotopy equivalences,

N(u�) |Nss(𝐒(u�))•| |Nss(𝐋𝐨(u�))•|

where the leftward-pointing arrow is induced by the standard augmentation and
the rightward-pointing arrow is induced by the simplicial localisation functor.
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Proof. Proposition 2.7.23 says that the standard augmentation is a Dwyer–Kan
equivalence, so by theorem 1.6.10 and lemma 2.5.21, the leftward-pointing arrow
is a weak homotopy equivalence. Similarly, by lemma 1.6.8, it suffices to verify
that the morphism

N(𝐒(u�)•) → N(𝐋𝐨(u�)•)

is a degreewise weak homotopy equivalence; but each 𝐒(u�)𝑛 is freely generated
by a reflexive graph, so this a corollary of proposition 2.8.8. ■

Recalling that the Dwyer–Kan model structure on 𝐒𝐂𝐚𝐭𝑂 is left proper (pro-
position 2.7.33), we may apply proposition 5.1.24 to complete the justification
of the definition of the standard simplicial localisation with the following obser-
vation:

Lemma 2.8.11. Let u� be a small relative category and let 𝑂 = ob u�. There is a
natural pushout diagram in 𝐒𝐂𝐚𝐭𝑂 of the form below,

𝐒(weq u�) 𝐋𝐨(max weq u�)

𝐒(und u�) 𝐋𝐨(u�)

where the morphism 𝐒(weq u�) ↪ 𝐒(und u�) induced by the inclusion is a stand-
ard cofibration, the horizontal arrows are induced by the simplicial localisation
functors, and every arrow is a monomorphism in 𝐒𝐂𝐚𝐭𝑂.

Proof. Regarding objects in 𝐒𝐂𝐚𝐭𝑂 as simplicial objects in 𝐂𝐚𝐭𝑂, the claim that
we have a pushout diagram can be verified degreewise; but the diagram in degree
𝑛 is just

𝐒(weq u�)𝑛 𝐈𝐒(weq u�)𝑛

𝐒(und u�)𝑛 Ho 𝐒(u�)𝑛

and it is not hard to see that this is indeed a pushout diagram. Similarly, the
property of being a monomorphism can be checked degreewise. A variation
on the proof of lemma 2.7.17 shows that 𝐒(weq u�) ↪ 𝐒(und u�) is a standard
cofibration. ■
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Definition 2.8.12. Let 𝑋 and 𝑌 be objects in a relative category u�.

• A hammock in u� from 𝑋 to 𝑌 of width 𝑘 and length 𝑛 is a commutative
diagram in u� of the form below,

𝑋 𝑍0,1 𝑍0,2 ⋯ 𝑍0,𝑛−2 𝑍0,𝑛−1 𝑌

𝑋 𝑍1,1 𝑍1,2 ⋯ 𝑍1,𝑛−2 𝑍1,𝑛−1 𝑌

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑋 𝑍𝑘−1,1 𝑍𝑘−1,2 ⋯ 𝑍𝑘−1,𝑛−2 𝑍𝑘−1,𝑛−1 𝑌

𝑋 𝑍𝑘,1 𝑍𝑘,2 ⋯ 𝑍𝑘,𝑛−2 𝑍𝑘,𝑛−1 𝑌

such that the following conditions are satisfied:

– In each column, all horizontal arrows point in the same direction.

– All leftward-pointing arrows are weak equivalences.

– All vertical arrows are weak equivalences.

We allow both 𝑘 and 𝑛 to be zero; if 𝑛 = 0 then we must have 𝑋 = 𝑌 .

• A reduced hammock in u� is a hammock with these additional properties:

– In each column, not every horizontal arrow is an identity morphism.

– Arrows in adjacent columns point in opposite directions.

Remark 2.8.13. In other words, a hammock in u� from 𝑋 to 𝑌 is a composable
sequence of morphisms in the category u�𝑇 (𝑋, 𝑌 ) for some zigzag type 𝑇 . It
is clear that we can transform any hammock into a reduced hammock by iterat-
ively omitting any column of identity morphisms and composing any adjacent
columns where possible.
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Definition 2.8.14. Let u� be a small relative category. The hammock localisa-
tion of u� is the simplicial category 𝐋𝐨H(u�) defined below:

• The objects are those in u�.

• For each pair (𝑋, 𝑌 ) of objects, the hom-space 𝐋𝐨H(u�)(𝑋, 𝑌 ) is the sim-
plicial set whose 𝑘-simplices are the reduced hammocks of width 𝑘 (and
any length), with face (resp. degeneracy) operators defined by omitting
(resp. repeating) a row of objects and reducing the resulting hammock if
necessary.

• Composition is defined by concatenation of hammocks (reducing as ne-
cessary), and identities are hammocks of length 0.

Proposition 2.8.15. Let 𝐙 be the category of zigzag types, let 𝐙→ be the sub-
category of monomorphisms, and let 𝐙← be the subcategory of epimorphisms.
Then 𝐙 is a Reedy category with direct subcategory 𝐙→ and inverse subcategory
𝐙←, and moreover it has cofibrant constants.

Proof. Let deg : ob 𝐙 → ℕ be defined by deg (𝑛, 𝑈, 𝑉 ) = 𝑛. It is clear that
this function makes 𝐙→ a direct category and 𝐙← an inverse category. Proposi-
tion a.4.30 then gives the required factorisation, and lemma a.4.35 shows that it
is a Reedy category with cofibrant constants. ■

Corollary 2.8.16. The functor lim−−→𝐙op
: [𝐙op, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭 preserves weak equi-

valences between Reedy-cofibrant diagrams.

Proof. Apply (proposition 4.3.2 and) Ken Brown’s lemma (4.3.6) and proposi-
tion 4.6.24 to proposition 2.8.15. ■

Proposition 2.8.17. Let u� be a small relative category, let 𝑋 and 𝑌 be objects in
u�, and let N(u�∗(𝑋, 𝑌 )) : 𝐙op → 𝐬𝐒𝐞𝐭 be the diagram described in remark a.4.42.

(i) The diagram N(u�∗(𝑋, 𝑌 )) : 𝐙op → 𝐬𝐒𝐞𝐭 is Reedy-cofibrant.

(ii) More generally, if 𝐹 : 𝐙 → 𝐙 is any functor that preserves (epimorphisms
and) pushouts of epimorphisms along epimorphisms,[8] then the diagram
N(u�𝐹 ∗(𝑋, 𝑌 )) : 𝐙op → 𝐬𝐒𝐞𝐭 is Reedy-cofibrant.

[8] Any functor that preserves pushouts of epimorphisms along epimorphisms must also preserve
epimorphisms.
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(iii) The colimit lim−−→𝐙op
N(u�∗(𝑋, 𝑌 )) is naturally isomorphic to the hom-space

𝐋𝐨H(u�)(𝑋, 𝑌 ).

Proof. (i) and (ii). First, let us show that u�∗(𝑋, 𝑌 ) sends epimorphisms in 𝐙
to monomorphisms in 𝐂𝐚𝐭. Indeed, if 𝜎 : 𝑆 → 𝑇 is an epimorphism in 𝐙,
then the corresponding functor 𝜎∗ : u�𝑇 (𝑋, 𝑌 ) → u�𝑆(𝑋, 𝑌 ) must be one defined
by inserting identity morphisms, so it is indeed a monomorphism. Since 𝐹 :
𝐙 → 𝐙 preserves epimorphisms, u�𝐹 ∗(𝑋, 𝑌 ) also sends epimorphisms in 𝐙 to
monomorphisms in 𝐂𝐚𝐭.

Secondly, we observe that u�∗(𝑋, 𝑌 ) sends pushouts of epimorphisms in 𝐙 to
pullbacks of monomorphisms in 𝐂𝐚𝐭: this is clear using the methods of the proof
of lemma a.4.36. As before, since 𝐹 : 𝐙 → 𝐙 preserves pushouts of epimorph-
isms along epimorphisms, u�𝐹 ∗(𝑋, 𝑌 ) also sends pushouts of epimorphisms in 𝐙
to pullbacks of monomorphisms in 𝐂𝐚𝐭.

Thus, it follows that the latching object of the diagram N(u�𝐹 ∗(𝑋, 𝑌 )) at a
zigzag type 𝑇 is simply the simplicial subset of N(u�𝐹 𝑇 (𝑋, 𝑌 )) corresponding
to the full subcategory of u�𝐹 𝑇 (𝑋, 𝑌 ) spanned by the joint image of all functors
(𝐹 𝜎)∗ : u�𝐹 𝑇 ′

(𝑋, 𝑌 ) → u�𝐹 𝑇 (𝑋, 𝑌 ) where 𝜎 : 𝑇 → 𝑇 ′ is an epimorphism in 𝐙.
In particular, the latching morphism of N(u�𝐹 ∗(𝑋, 𝑌 )) at 𝑇 is a cofibration, so
N(u�𝐹 ∗(𝑋, 𝑌 )) is indeed a Reedy-cofibrant diagram.

(ii). It is clear that reduction defines a morphism N(u�𝑇 (𝑋, 𝑌 )) → 𝐋𝐨H(u�)(𝑋, 𝑌 )
and (using lemma a.4.33) it is not hard to see that this is a colimiting cocone. ■

Proposition 2.8.18. Let u� and u� be small relative categories.

(i) For each relative functor 𝐹 : u� → u�, there is an induced simplicially
enriched functor 𝐋𝐨H(𝐹 ) : 𝐋𝐨H(u�) → 𝐋𝐨H(u�) defined by applying 𝐹 to
hammocks componentwise, and this defines an (ordinary) functor 𝐋𝐨H :
𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐒𝐂𝐚𝐭.

(ii) For each natural weak equivalence 𝜑 : 𝐹0 ⇒ 𝐹1 of relative functors u� →
u� and each pair (𝑋, 𝑌 ) of objects in u�, there is an intrinsic homotopy
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fitting into the following diagram in 𝐬𝐒𝐞𝐭:

𝐋𝐨H(u�)(𝐹0𝑋, 𝐹0𝑌 )

𝐋𝐨H(u�)(𝑋, 𝑌 ) 𝐋𝐨H(u�)(𝐹0𝑋, 𝐹1𝑌 )

𝐋𝐨H(u�)(𝐹1𝑋, 𝐹1𝑌 )

𝐋𝐨H(u�)(𝐹0𝑋,𝜑𝑌 )𝐋𝐨H(𝐹0)

𝐋𝐨H(𝐹1) 𝐋𝐨H(u�)(𝜑𝑋 ,𝐹1𝑌 )

Proof. (i). Obvious.

(ii). For any zigzag in u� from 𝑋 to 𝑌 , we have the following natural hammock
in u�:

𝐹0𝑋 𝐹0𝑋 ⋯ 𝐹0𝑌 𝐹1𝑌

𝐹0𝑋 𝐹1𝑋 ⋯ 𝐹1𝑌 𝐹1𝑌

𝜑𝑋 𝜑𝑌

𝜑𝑌

𝜑𝑋

This induces the required intrinsic homotopy. ■

Remark 2.8.19. Unlike the standard simplicial localisation, the hammock local-
isation of a relative category u� is equipped with a natural functor u� → 𝐋𝐨H(u�)
that is bijective on objects and faithful (but not necessarily full).

Proposition 2.8.20. Let u� be a small relative category. If 𝑓 : 𝑋 → 𝑌 is a weak
equivalence in u�, then:

• For each object 𝑆 in u�, the induced morphism

𝐋𝐨H(u�)(𝑆, 𝑓 ) : 𝐋𝐨H(u�)(𝑆, 𝑋) → 𝐋𝐨H(u�)(𝑆, 𝑌 )

is a weak homotopy equivalence.

• For each object 𝑇 in u�, the induced morphism

𝐋𝐨H(u�)(𝑓 , 𝑇 ) : 𝐋𝐨H(u�)(𝑌 , 𝑇 ) → 𝐋𝐨H(u�)(𝑋, 𝑇 )

is a weak homotopy equivalence.
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Proof. The two claims are formally dual; we will prove the first version.
Recalling remark a.4.41, we see that for any zigzag in u� from 𝑆 to 𝑋, we

have the following natural hammock:

𝑆 ⋯ 𝑋 𝑋 𝑋

𝑆 ⋯ 𝑋 𝑌 𝑋

𝑓

𝑓 𝑓

Similarly, for any zigzag in u� from 𝑆 to 𝑌 , we have the following natural ham-
mock:

𝑆 ⋯ 𝑌 𝑋 𝑌

𝑆 ⋯ 𝑌 𝑌 𝑌

𝑓

𝑓

𝑓

Thus, the morphism 𝐋𝐨H(u�)(𝑆, 𝑓 ) : 𝐋𝐨H(u�)(𝑆, 𝑋) → 𝐋𝐨H(u�)(𝑆, 𝑌 ) is half of
an intrinsic homotopy equivalence, hence is a weak homotopy equivalence (by
proposition 1.5.4). ■

Proposition 2.8.21. Let u� be a small relative category. There is a natural func-
tor

Ho u� → 𝜋0[𝐋𝐨H(u�)]

and it is an isomorphism of categories.

Proof. We have natural functors u� → 𝐋𝐨H(u�) and 𝐋𝐨H(u�) → 𝜋0[𝐋𝐨H(u�)]; and
by proposition 2.8.20, the composite functor u� → 𝜋0[𝐋𝐨H(u�)] sends weak equi-
valences in u� to isomorphisms in 𝜋0[𝐋𝐨H(u�)], so it must factor through the loc-
alising functor u� → Ho u�. This yields the required natural functor Ho u� →
𝜋0[𝐋𝐨H(u�)], and theorem a.4.44 implies that it is an isomorphism of categor-
ies. ■

Proposition 2.8.22. Let u� and u� be small relative categories.

(i) Given relative functors 𝐹0, 𝐹1 : u� → u�, if 𝐹0 and 𝐹1 are weakly equivalent
(as objects in [u�, u�]h), then 𝐋𝐨H(𝐹0) is a Dwyer–Kan equivalence if and
only if 𝐋𝐨H(𝐹1) is a Dwyer–Kan equivalence.

(ii) If 𝐹 : u� → u� is a relative equivalence, then 𝐋𝐨H(𝐹 ) : 𝐋𝐨H(u�) → 𝐋𝐨H(u�)
is a Dwyer–Kan equivalence.
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Proof. (i). By proposition 2.8.20, the morphisms

𝐋𝐨H(u�)(𝐹0𝑋, 𝜑𝑌 ) : 𝐋𝐨H(u�)(𝐹0𝑋, 𝐹0𝑌 ) → 𝐋𝐨H(u�)(𝐹0𝑋, 𝐹1𝑌 )
𝐋𝐨H(u�)(𝜑𝑋 , 𝐹1𝑌 ) : 𝐋𝐨H(u�)(𝐹1𝑋, 𝐹1𝑌 ) → 𝐋𝐨H(u�)(𝐹0𝑋, 𝐹1𝑌 )

are weak homotopy equivalences, so by lemma 1.5.3 and proposition 2.8.18, the
morphism

𝐋𝐨H(𝐹0) : 𝐋𝐨H(u�)(𝑋, 𝑌 ) → 𝐋𝐨H(u�)(𝐹0𝑋, 𝐹0𝑌 )

is a weak homotopy equivalence if and only if

𝐋𝐨H(𝐹1) : 𝐋𝐨H(u�)(𝑋, 𝑌 ) → 𝐋𝐨H(u�)(𝐹1𝑋, 𝐹1𝑌 )

is a weak homotopy equivalence. On the other hand, the induced functors Ho 𝐹0
and Ho 𝐹1 are isomorphic, so Ho 𝐹0 is essentially surjective on objects if and
only if Ho 𝐹1 is essentially surjective on objects. Thus, by applying proposi-
tions 2.5.19 and 2.8.21, the claim follows.

(ii). Let 𝐹 : u� → u� and 𝐺 : u� → u� be relative functors, and suppose
idu� and 𝐺𝐹 (resp. idu� and 𝐹 𝐺) are weakly equivalent. Then by (i), 𝐋𝐨H(𝐺𝐹 )
(resp. 𝐋𝐨H(𝐹 𝐺)) is a Dwyer–Kan equivalence. Thus, the 2-out-of-6 property
(lemma 2.5.18) implies 𝐋𝐨H(𝐹 ) is a Dwyer–Kan equivalence. ■

Theorem 2.8.23. Let u� be a small relative category and let u� be the following
simplicially enriched category:

• The objects are those in u�.

• For each pair (𝑋, 𝑌 ) of objects, the hom-space u�(𝑋, 𝑌 ) is given by

u�(𝑋, 𝑌 )𝑛 = 𝐋𝐨H(𝐒(u�)𝑛)(𝑋, 𝑌 )𝑛

where 𝐒(u�)• is the standard resolution of u�.

• Composition and identities are inherited from 𝐋𝐨H(𝐒(u�)•).

Let 𝐋𝐨(u�) be the standard simplicial localisation of u� and let 𝐋𝐨H(u�) be the
hammock localisation of u�. Then:

(i) The simplicially enriched functor u� → 𝐋𝐨H(u�) induced by the standard
augmentation 𝐒(u�) → u� is a Dwyer–Kan equivalence.
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(ii) The simplicially enriched functor u� → 𝐋𝐨(u�) induced by the localising
functors 𝐒(u�)𝑛 → 𝐋𝐨(u�)𝑛 is a Dwyer–Kan equivalence.

Proof. See Proposition 2.2 in [Dwyer and Kan, 1980b]. □

Definition 2.8.24. A Dwyer–Kan equivalence of relative categories is a re-
lative functor 𝐹 : u� → u� such that the induced simplicially enriched functor
𝐋𝐨H(𝐹 ) : 𝐋𝐨H(u�) → 𝐋𝐨H(u�) is a Dwyer–Kan equivalence of simplically en-
riched categories.

Definition 2.8.25. Let u�• be a simplicial category. The flattening of u�• is the
relative category u�♭ defined below:

• The objects are pairs (𝑛, 𝑋), where 𝑛 is a natural number and 𝑋 is an object
in u�𝑛.

• A morphism (𝑛, 𝑋) → (𝑚, 𝑌 ) is a pair (𝜑, 𝑓 ), where 𝜑 : [𝑚] → [𝑛] is a
morphism in 𝚫 and 𝑓 : 𝜑∗𝑋 → 𝑌 is a morphism in u�𝑚; a weak equivalence
is any morphism of the form (𝜑, id) : (𝑛, 𝑋) → (𝑚, 𝜑∗𝑋).

• Given morphisms (𝜑, 𝑓 ) : (𝑛, 𝑋) → (𝑚, 𝑌 ) and (𝜓, 𝑔) : (𝑚, 𝑌 ) → (𝑙, 𝑍),
their composite is (𝜑 ∘ 𝜓, 𝑔 ∘ 𝜓∗𝑓) : (𝑛, 𝑋) → (𝑙, 𝑍).

In other words, u�♭ is the Grothendieck construction applied to u�• considered as
a functor 𝚫op → 𝐂𝐚𝐭.

Theorem 2.8.26. Let 𝐑𝐞𝐥𝐂𝐚𝐭 be the category of small relative categories and
let 𝐒𝐂𝐚𝐭 be the category of small simplicially enriched categories.

(i) There is a zigzag of natural Dwyer–Kan equivalences between id𝐒𝐂𝐚𝐭 and
𝐋𝐨H((−)♭).

(ii) There is a zigzag of natural Dwyer–Kan equivalences between id𝐑𝐞𝐥𝐂𝐚𝐭 and
𝐋𝐨H(−)♭.

(iii) If we regard 𝐑𝐞𝐥𝐂𝐚𝐭 as a homotopical category where the weak equival-
ences are the Dwyer–Kan equivalences of relative categories, then the
functors

𝐋𝐨H(−) : 𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐒𝐂𝐚𝐭 (−)♭ : 𝐒𝐂𝐚𝐭 → 𝐑𝐞𝐥𝐂𝐚𝐭

are a mutually quasi-inverse pair of homotopical equivalences.
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Proof. See paragraph 2.5 and Proposition 3.1 in [Barwick and Kan, 2012]. □

Theorem 2.8.27 (Relative Yoneda embedding). Let u� be a small relative cat-
egory and let h• : u� → [u� op, 𝐬𝐒𝐞𝐭]h be the relative functor defined by the formula
below:

h𝑌 (𝑋) = 𝐋𝐨H(u�)(𝑋, 𝑌 )

(i) For each pair (𝑋, 𝑌 ) of objects in u�, the induced hom-space morphism

𝐋𝐨H(u�)(𝑋, 𝑌 ) → 𝐋𝐨H([u� op, 𝐬𝐒𝐞𝐭]h)(𝑋, 𝑌 )

is a weak homotopy equivalence of simplicial sets.

(ii) Let u� be the full relative subcategory of [u� op, 𝐬𝐒𝐞𝐭]h spanned by the relat-
ive functors u� op → 𝐬𝐒𝐞𝐭 that are naturally weakly equivalent to one in the
image of h•. Then the functor h• : u� → u� is a Dwyer–Kan equivalence of
relative categories.

Proof. See paragraph 4.3 in [Barwick and Kan, 2011]. □

2.9 Homotopical calculi of fractions
Prerequisites. §§1.2, 1.5, 1.11, 2.1, 2.5, 2.8, 3.1, 3.5, a.4.

Definition 2.9.1. A small relative category u� admits a homotopical three-arrow
calculus when it satisfies the following condition:

• Let 𝑋 and 𝑌 be objects in u�, let 𝑘 and 𝑙 be natural numbers, let ℋ0(𝑋, 𝑌 )
be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • •𝑘 arrows 𝑙 arrows

where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ1(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the
following type,

• • • • • •𝑘 arrows 𝑙 arrows

and let 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) be the functor defined by inserting an
identity morphism. Then 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) is a weak homotopy
equivalence of categories.
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Remark. A small relative category u� admits a homotopy calculus of fractions
in the sense of Dwyer and Kan [1980b] precisely when both u� and weq u� (re-
garded as a relative subcategory with the same weak equivalences) admit homo-
topical three-arrow calculi.

Lemma 2.9.2. Let u� be a small relative category, let u� = weq u�, let 𝑋 and 𝑌
be objects in u�, let 𝑆 and 𝑇 be zigzag types, and let 𝑇 ∗𝑆 be their concatenation:

• • •of type 𝑆 of type 𝑇

• If the rightmost arrow of 𝑆 points rightwards and the leftmost arrow of 𝑇
points rightwards, then

u�𝑇 ∗𝑆(𝑋, 𝑌 ) ≅ 𝐆(u�𝑇 (−, 𝑌 ), u� , u�𝑆(𝑋, −))

naturally in 𝑋, 𝑌 , 𝑇 , and 𝑆.

• If the rightmost arrow of 𝑆 points leftwards and the leftmost arrow of 𝑇
points leftwards, then

u�𝑇 ∗𝑆(𝑋, 𝑌 ) ≅ 𝐆(u�𝑆(𝑋, −), u� , u�𝑇 (−, 𝑌 ))

naturally in 𝑋, 𝑌 , 𝑇 , and 𝑆.

• If the rightmost arrow of 𝑆 points rightwards and the leftmost arrow of 𝑇
points leftwards, then

u�𝑇 ∗𝑆(𝑋, 𝑌 ) ≅ 𝐆(Δ𝟙, u� , u�𝑇 (−, 𝑌 ) × u�𝑆(𝑋, −))

naturally in 𝑋, 𝑌 , 𝑇 , and 𝑆.

• If the rightmost arrow of 𝑆 points leftwards and the leftmost arrow of 𝑇
points rightwards, then

u�𝑇 ∗𝑆(𝑋, 𝑌 ) ≅ 𝐆(u�𝑇 (−, 𝑌 ) × u�𝑆(𝑋, −), u� , Δ𝟙)

naturally in 𝑋, 𝑌 , 𝑇 , and 𝑆.

Proof. This is a straightforward exercise. ◊
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Lemma 2.9.3. Let u� be a small relative category, let 𝑋 and 𝑌 be objects in u�,
let 𝑆 and 𝑇 be possibly degenerate zigzag types, let ℋ0 be the category of zigzags
in u� from 𝑋 to 𝑌 of the following type,

• • • •of type 𝑆 of type 𝑇

let ℋ1 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • •of type 𝑆 of type 𝑇

let 𝑠0, 𝑠1 : ℋ0 → ℋ1 be the two functors defined by inserting an identity morph-
ism, and let 𝑑 : ℋ1 → ℋ0 be the functor defined by composing the middle two
arrows.

(i) 𝑑 ∘ 𝑠0 = 𝑑 ∘ 𝑠1 = idℋ1
.

(ii) 𝑠0, 𝑠1 : ℋ0 → ℋ1 and 𝑑 : ℋ1 → ℋ0 are all weak homotopy equivalences
of categories.

Proof. (i). Obvious.

(ii). There is a natural transformation idℋ1
⇒ 𝑑 ∘𝑠 whose component at an object

in ℋ1, say
𝑋 • • • 𝑌𝑣 𝑢

is given by the commutative diagram in u� shown below:

𝑋 • • • 𝑌

𝑋 • • • 𝑌

𝑣

𝑣

𝑢

𝑣∘𝑢

Thus, by lemma 1.3.10 and proposition 1.5.4, 𝑠0, 𝑠1 : ℋ0 → ℋ1 and 𝑑 : ℋ1 → ℋ0
are all indeed weak homotopy equivalences of categories. ■

Lemma 2.9.4. Let u� be a small relative category, let 𝑋 and 𝑌 be objects in u�,
let 𝑆 and 𝑇 be possibly degenerate zigzag types, let 𝑘 and 𝑙 be natural numbers,
let ℋ+

0 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • • • •of type 𝑆 𝑘 arrows 𝑙 arrows of type 𝑇
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where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ+

1 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • • • • •of type 𝑆 𝑘 arrows 𝑙 arrows of type 𝑇

and let 𝑠 : ℋ+
0 → ℋ+

1 be the functor defined by inserting an identity morphism.
If u� admits a homotopical three-arrow calculus, then 𝑠 : ℋ+

0 → ℋ+
1 is a weak

homotopy equivalence of categories.

Proof. Apply the 2-out-of-3 property of weak homotopy equivalences of cat-
egories and corollary 1.11.24 to lemma 2.9.2. ■

Lemma 2.9.5. Let u� be a small relative category, let 𝑋 and 𝑌 be objects in u�,
let 𝑆 be a zigzag type of the form below,

• • • •

let 𝑘 be the number of forward-pointing arrows in 𝑆, let 𝑇 be the following zigzag
type,

• • • •𝑘 arrows

let 𝜎 : 𝑆 → 𝑇 be the evident morphism of zigzag types that sends all interior
backward-pointing arrows in 𝑆 to identity morphisms, and let u�𝑆(𝑋, 𝑌 ) (resp.
u�𝑇 (𝑋, 𝑌 )) be the category of zigzags in u� of type 𝑆 (resp. 𝑇 ) from 𝑋 to 𝑌 . If
u� admits a homotopical three-arrow calculus, then the functor 𝑠 : u�𝑇 (𝑋, 𝑌 ) →
u�𝑆(𝑋, 𝑌 ) induced by 𝜎 : 𝑆 → 𝑇 is a weak homotopy equivalence of categories.

Proof. Recalling that the class of weak homotopy equivalences of categories is
closed under composition, we can reduce the claim to lemmas 2.9.4 and 2.9.3 by
factoring 𝜎 : 𝑆 → 𝑇 as a sequence of morphisms of zigzag types of the appro-
priate nature and considering the corresponding factorisation of 𝑠 : u�𝑇 (𝑋, 𝑌 ) →
u�𝑆(𝑋, 𝑌 ). ■

Theorem 2.9.6 (Fundamental theorem of homotopical three-arrow calculi). Let
u� be a small relative category, let 𝑋 and 𝑌 be objects in u�, and let ℋ(𝑋, 𝑌 ) be
the category of zigzags in u� from 𝑋 to 𝑌 of the following type:

• • • •

If u� admits a homotopical three-arrow calculus, then the reduction morphism

N(ℋ(𝑋, 𝑌 )) → 𝐋𝐨H(u�)(𝑋, 𝑌 )

is a weak homotopy equivalence.

333



II. Simplicial categories

Proof. We follow the proof of Proposition 6.2 in [Dwyer and Kan, 1980b].
Let 𝐹 : 𝐙 → 𝐙 be the evident functor that sends each zigzag type 𝑇 to the

zigzag type
• • • •of type 𝑇

and let 𝐺 : 𝐙 → 𝐙 be the evident functor that sends each zigzag type 𝑆 with 𝑘
rightward-pointing arrows to the following zigzag type:

• • • •𝑘 arrows

Let 𝑇→ (resp. 𝑇←) be the zigzag type consisting of a single rightward-pointing
(resp. leftward-pointing) arrow. First, let us show that the colimiting cocone
component

𝐙(𝐺𝑇→, 𝑇 ) → lim−−→𝐙op
𝐙(𝐺, 𝑇 )

is a bijection for all zigzag types 𝑇 . Indeed, by lemma a.4.33, we see that
𝐙(𝐺𝑆, 𝑇 ) is empty unless 𝑇 is a zigzag type of the form below,

• • • •𝑛 arrows 𝑚 arrows 𝑙 arrows

where 𝑙, 𝑚, 𝑛 are natural numbers and 𝑙 + 𝑚 + 𝑛 ≥ 1; moreover:

• If 𝑚 ≥ 1, then there is a unique morphism 𝐺𝑇→ → 𝑇 .

• If 𝑚 = 0, then there are 𝑙 +𝑛+1 morphisms 𝐺𝑇→ → 𝑇 , all of which factor
through the unique epimorphism 𝐺𝑇→ → 𝐺𝑇← (necessarily uniquely).

Similarly, for any zigzag type 𝑆′ consisting of only rightward-pointing arrows,
there is a unique morphism 𝑇→ → 𝑆′, and its image under 𝐺 is the unique
morphism 𝐺𝑇→ → 𝐺𝑆′, and it is clear that any zigzag type 𝑆 with at least one
rightward-pointing arrow admits a unique morphism 𝜎 : 𝑆 → 𝑆′ such that 𝑆′

consists of only rightward-pointing arrows and 𝐺𝜎 = id𝐺𝑆′. On the other hand,
there are unique morphisms 𝑇→∗𝑇← → 𝑇→ and 𝑇→∗𝑇← → 𝑇←, and for any zigzag
type 𝑆′ consisting of only leftward-pointing arrows, there is a unique morphism
𝑇← → 𝑆′, so we conclude that each connected component of the comma category
(𝐺 ↓ 𝑇 ) contains a unique object corresponding to each morphism 𝐺𝑇→ → 𝑇 .
But lim−−→𝐙op

𝐙(𝐺, 𝑇 ) can be identified with the set of connected components of the
comma category, so this proves the claim.

Now, taking 𝐻 = 𝐙(𝐺−, −) and applying the Yoneda lemma, we obtain
natural isomorphisms

N(u�𝐺∗(𝑋, 𝑌 )) ≅ 𝐻 ⋆𝐙op N(u�∗(𝑋, 𝑌 ))
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and by proposition a.6.15,

lim−−→𝐙op
𝐻 ⋆𝐙op N(u�∗(𝑋, 𝑌 )) ≅ lim−−→𝐙op

𝐻 ⋆𝐙op N(u�∗(𝑋, 𝑌 ))

but we have shown that the canonical 𝐙(𝐺𝑇→, −) ⇒ lim−−→𝐙op
𝐻 is a natural iso-

morphism, so applying the Yoneda lemma again, we deduce that the colimiting
cocone component

𝑗 : N(u�𝐺𝑇→(𝑋, 𝑌 )) → lim−−→𝐙op
N(u�𝐺∗(𝑋, 𝑌 ))

is an isomorphism as well.
Next, consider the evident natural epimorphisms

𝜑 : 𝐹 ⇒ id𝐙 𝜓 : 𝐹 ⇒ 𝐺

the induced natural transformations

𝜑∗ : u�∗(𝑋, 𝑌 ) ⇒ u�𝐹 ∗(𝑋, 𝑌 ) 𝜓∗ : u�𝐺∗(𝑋, 𝑌 ) ⇒ u�𝐹 ∗(𝑋, 𝑌 )

and the induced morphisms

lim−−→𝐙op
N(𝜑∗) : lim−−→𝐙op

N(u�∗(𝑋, 𝑌 )) → lim−−→𝐙op
N(u�𝐹 ∗(𝑋, 𝑌 ))

lim−−→𝐙op
N(𝜓∗) : lim−−→𝐙op

N(u�𝐺∗(𝑋, 𝑌 )) → lim−−→𝐙op
N(u�𝐹 ∗(𝑋, 𝑌 ))

of simplicial sets. Observe that lim−−→𝐙op
N(u�𝐹 ∗(𝑋, 𝑌 )) can be identified with the

simplicial set of hammocks in u� from 𝑋 to 𝑌 where the two outermost columns
of arrows are leftward-pointing and which are reduced except possibly for the
outermost columns, so that e.g.

𝑋 • • ⋯ • • 𝑌

𝑋 • • ⋯ • • 𝑌

is an edge of lim−−→𝐙op
N(u�𝐹 ∗(𝑋, 𝑌 )). The canonical comparison morphism

𝑟 : lim−−→𝐙op
u�𝐹 ∗(𝑋, 𝑌 ) → lim−−→𝐙op

u�∗(𝑋, 𝑌 )

can be identified with the morphism that sends unreduced hammocks to their
reductions, and the morphism

lim−−→𝐙op
N(𝜑∗

𝑇 ) : lim−−→𝐙op
u�𝐹 ∗(𝑋, 𝑌 ) → lim−−→𝐙op

u�∗(𝑋, 𝑌 )
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can be identified with the morphism that sends each reduced hammock to the
(non-reduced) hammock obtained by adjoining to the left (resp. right) of the
reduced hammock a column of id : 𝑋 ← 𝑋 (resp. id : 𝑌 ← 𝑌 ), so we have
𝑟 ∘ (lim−−→𝐙op

N(𝜑∗
𝑇 )) = id. On the other hand, the following diagram commutes

in Ho 𝐬𝐒𝐞𝐭,

N(u�𝐺𝑇→(𝑋, 𝑌 )) lim−−→𝐙op
N(u�𝐺∗(𝑋, 𝑌 ))

lim−−→𝐙op
N(u�∗(𝑋, 𝑌 )) lim−−→𝐙op

N(u�𝐹 ∗(𝑋, 𝑌 ))

𝑖

𝑗
≅

lim−→𝐙op
N(𝜓∗)

lim−→𝐙op
N(𝜑∗)

where 𝑖 : N(u�𝐺𝑇→(𝑋, 𝑌 )) → lim−−→𝐙op
N(u�∗(𝑋, 𝑌 )) is the component of the colim-

iting cocone. Hence, by lemma 1.5.2 (plus the 2-out-of-6 property of isomorph-
isms in Ho 𝐬𝐒𝐞𝐭), 𝑖 is a weak homotopy equivalence if and only if lim−−→𝐙op

N(𝜓∗)
is a weak homotopy equivalence.

To complete the proof, we make the following observations:

• By lemma 2.9.5, the components

N(𝜓∗
𝑇 ) : N(u�𝐺𝑇 (𝑋, 𝑌 )) → N(u�𝐹 𝑇 (𝑋, 𝑌 ))

are weak homotopy equivalences.

• By proposition 2.8.17, N(u�∗(𝑋, 𝑌 )) : 𝐙op → 𝐬𝐒𝐞𝐭 is a Reedy-cofibrant
diagram.

• It is not hard to see that 𝐹 : 𝐙 → 𝐙 preserves (epimorphisms and) pushouts
of epimorphisms along epimorphisms, so N(u�𝐹 ∗(𝑋, 𝑌 )) : 𝐙op → 𝐬𝐒𝐞𝐭 is
also a Reedy-cofibrant diagram.

Thus, by corollary 2.8.16, lim−−→𝐙op
N(𝜓∗) is a weak homotopy equivalence; but the

morphism
N(ℋ(𝑋, 𝑌 )) → 𝐋𝐨H(u�)(𝑋, 𝑌 )

in question can be identified with 𝑖, so we are done. ■

Corollary 2.9.7. Let u� be a small relative category and let 𝑇 be the following
zigzag type:

• • • •

Assuming u� admits a homotopical three-arrow calculus:
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• For any weak equivalence 𝑤 : 𝑋 → 𝑋′ and any object 𝑌 in u�, the functor

𝑤∗ : u�𝑇 (𝑋, 𝑌 ) → u�𝑇 (𝑋′, 𝑌 )

defined by sending each zigzag

𝑋 • • 𝑌𝑣 𝑓 𝑢

to the zigzag
𝑋′ • • 𝑌𝑤∘𝑣 𝑓 𝑢

is a weak homotopy equivalence of categories.

• For any object 𝑋 and any weak equivalence 𝑤 : 𝑌 ′ → 𝑌 in u�, the functor

𝑤∗ : u�𝑇 (𝑋, 𝑌 ) → u�𝑇 (𝑋, 𝑌 ′)

defined by sending each zigzag

𝑋 • • 𝑌𝑣 𝑓 𝑢

to the zigzag
𝑋 • • 𝑌 ′𝑣 𝑓 𝑢∘𝑤

is a weak homotopy equivalence of categories.

Proof. The two claims are formally dual; we will prove the first version.
There is an evident morphism 𝑤∗ : 𝐋𝐨H(u�)(𝑋, 𝑌 ) → 𝐋𝐨H(u�)(𝑋′, 𝑌 ) defined

by concatenation and reduction making the following diagram in 𝐬𝐒𝐞𝐭 commute,

N(u�𝑇 (𝑋, 𝑌 )) 𝐋𝐨H(u�)(𝑋, 𝑌 )

N(u�𝑇 (𝑋′, 𝑌 )) 𝐋𝐨H(u�)(𝑋′, 𝑌 )

N(𝑤∗) 𝑤∗

where the horizontal arrows are defined by reduction, which are weak homotopy
equivalences by the fundamental theorem of homotopical three-arrow calculi
(2.9.6). Thus, the 2-out-of-3 property implies that

𝑤∗ : u�𝑇 (𝑋, 𝑌 ) → u�𝑇 (𝑋′, 𝑌 )
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is a weak homotopy equivalence of categories if and only if

𝑤∗ : 𝐋𝐨H(u�)(𝑋, 𝑌 ) → 𝐋𝐨H(u�)(𝑋′, 𝑌 )

is a weak homotopy equivalence of simplicial sets, and one may use the method
of the proof of proposition 2.8.20 to show that the latter is indeed a weak homo-
topy equivalence. ■

Lemma 2.9.8. Let u� be a small relative category, let u� = weq u�, let 𝑘 be a
positive integer, and let 𝑇𝑘 be the following zigzag type:

• • • •𝑘 arrows

Assuming u� admits a homotopical three-arrow calculus:

• For any weak equivalence 𝑤 : 𝑋 → 𝑋′ and any object 𝑌 in u�, the functor

𝑤∗ : u�𝑇𝑘(𝑋, 𝑌 ) → u�𝑇𝑘(𝑋′, 𝑌 )

defined by sending each zigzag

𝑋 • ⋯ • 𝑌𝑣 𝑢

to the zigzag

𝑋′ • ⋯ • 𝑌𝑤∘𝑣 𝑢

is a weak homotopy equivalence of categories.

• For any object 𝑋 and any weak equivalence 𝑤 : 𝑌 ′ → 𝑌 in u�, the functor

𝑤∗ : u�𝑇𝑘(𝑋, 𝑌 ) → u�𝑇𝑘(𝑋, 𝑌 ′)

defined by sending each zigzag

𝑋 • ⋯ • 𝑌𝑣 𝑢

to the zigzag

𝑋 • ⋯ • 𝑌 ′𝑣 𝑢∘𝑤

is a weak homotopy equivalence of categories.
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Proof. The two claims are formally dual; we will prove the first version.
The special case 𝑘 = 1 is corollary 2.9.7. In general, we have the following

commutative diagram in 𝐂𝐚𝐭,

u�𝑇𝑘+1(𝑋, 𝑌 ) u�𝑇𝑘∗𝑇1(𝑋, 𝑌 )

u�𝑇𝑘+1(𝑋′, 𝑌 ) u�𝑇𝑘∗𝑇1(𝑋′, 𝑌 )

𝑤∗ 𝑤∗

where the horizontal arrows defined by inserting (two) identity morphisms, which
are weak homotopy equivalences by lemma 2.9.5, and the right vertical arrow is
a weak homotopy equivalence by corollary 1.11.24 and lemma 2.9.2; thus, by the
2-out-of-3 property, 𝑤∗ : 𝐶𝑇𝑘+1(𝑋, 𝑌 ) → u�𝑇𝑘+1(𝑋, 𝑌 ′) is also a weak homotopy
equivalence. ■

Lemma 2.9.9. Let u� be a small relative category, let u� = weq u�, let 𝑘 be a
positive integer, let 𝑇𝑘 be the following zigzag type,

• • • •𝑘 arrows

and let ℍ : u� × u� op → 𝐂𝐚𝐭 be the diagram defined by ℍ𝑌
𝑋 = u�𝑇𝑘(𝑋, 𝑌 ). If u�

admits a homotopical three-arrow calculus, then:

(i) We have a commutative diagram in 𝐂𝐚𝐭 of the form below,

𝐆(Δ𝟙, u� , 𝐆(ℍ, u� , Δ𝟙)) weq [𝑇𝑘, u�]h

𝐆(Δ𝟙, u� , Δu�) u� × u�

≅

≅

where the left vertical arrow is induced by the canonical projection of (the
inner) Grothendieck construction, the bottom horizontal arrow is the ca-
nonical isomorphism of lemma b.5.38, and the right vertical arrow is the
functor defined by sending zigzags in ℳ of the form

𝑋 • ⋯ • 𝑌

to the pair (𝑋, 𝑌 ).
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(ii) For any object 𝑋 in u�, the Grothendieck fibration

𝐆(ℍ𝑋 , u� , Δ𝟙) → u�

is left-locally weakly constant; dually, for any object 𝑌 in u�, the Grothen-
dieck opfibration

𝐆(Δ𝟙, u� , ℍ𝑌 ) → u�

is right-locally weakly constant.

(iii) The domain projection

weq [𝑇𝑘, u�]h → u�

is a right-locally weakly constant Grothendieck opfibration; dually, the
codomain projection

weq [𝑇𝑘, u�]h → u�

is a left-locally weakly constant Grothendieck fibration.

Proof. (i). Straightforward.

(ii). Lemma 2.9.8 says that the diagram ℍ𝑋 : u� op → 𝐂𝐚𝐭 has the property that
every reindexing functor is a weak homotopy equivalence of categories, so we
may apply lemma 1.11.26.

(iii). Similarly, by corollary 1.11.24, the diagram 𝐆(ℍ, u� , Δ𝟙) : u� → 𝐂𝐚𝐭 has
the property that every reindexing functor is a weak homotopy equivalence of
categories, so the Grothendieck opfibration

𝐆(Δ𝟙, u� , 𝐆(ℍ, u� , Δ𝟙)) → u�

is right-locally weakly constant; but by (i), the following diagram in 𝐂𝐚𝐭 com-
mutes,

𝐆(Δ𝟙, u� , 𝐆(ℍ, u� , Δ𝟙)) weq [𝑇𝑘, u�]h

u� u�

≅

dom

where the left vertical arrow is the Grothendieck opfibration discussed above, so
the claim follows. ■
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Lemma 2.9.10. Let u� be a small relative category, let u� = weq u�, let 𝑘 be a
positive integer, and let 𝑇𝑘 be the following zigzag type:

• • • •𝑘 arrows

Then the functor 𝑠 : weq [[𝑘], u�] → weq [𝑇𝑘, u�]h defined by inserting (two)
identity morphisms is a weak homotopy equivalence of categories.

Proof. Let 𝑟 : weq [𝑇𝑘, u�]h → weq [[𝑘], u�] be the functor defined by discarding
the two leftward-pointing arrows. Clearly, 𝑠 ∘ 𝑟 = idweq [[𝑘],u�]. On the other hand,
for any zigzag in u� of type 𝑇𝑘, say

𝑋 �̃� ⋯ ̂𝑌 𝑌𝑣 𝑢

there is a natural commutative diagram in u� of the form below,

𝑋 �̃� ⋯ ̂𝑌 𝑌

�̃� �̃� ⋯ ̂𝑌 𝑌

�̃� �̃� ⋯ ̂𝑌 ̂𝑌

𝑣

𝑣 𝑢

𝑢

𝑢

so there is a zigzag of natural transformations between idweq [𝑇𝑘,u�]h
and 𝑟 ∘ 𝑠. We

may then apply lemma 1.3.10 and proposition 1.5.4 to deduce that the functor
𝑠 : weq [[𝑘], u�] → weq [𝑇𝑘, u�]h is indeed a weak homotopy equivalence. ■

Proposition 2.9.11. Let u� be a small relative category, let u� = weq u�, and let
𝑇 be the following zigzag type:

• • • •

(i) There is a pullback diagram in 𝐂𝐚𝐭 of the form below,

weq [𝑇 , u�]h weq [𝟚, u�]

[𝟚, u�] × [𝟚, u�] u� × u�

⟨𝑑0,𝑑1⟩

𝑑1×𝑑0

where 𝑑1 (resp. 𝑑0) denotes the appropriate domain (resp. codomain) pro-
jection. Moreover, the horizontal arrows in the diagram are weak homo-
topy equivalences of categories.
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(ii) For each pair (𝑋, 𝑌 ) of objects in u�, we have the following pullback dia-
gram in 𝐂𝐚𝐭,

u�𝑇 (𝑋, 𝑌 ) weq [𝑇 , u�]h

𝟙 u� × u�

𝑝

⌜(𝑋,𝑌 )⌝

where 𝑝 : weq [𝑇 , u�]h → u� × u� is the functor defined by sending zigzags
in ℳ of the form

𝑋 • • 𝑌

to the pair (𝑋, 𝑌 ), and ⌜(𝑋, 𝑌 )⌝ : 𝟙 → u� × u� is the functor correspond-
ing to the object (𝑋, 𝑌 ) in u� × u� .

(iii) If u� admits a homotopical three-arrow calculus, then we have a homotopy
derived pullback diagram in 𝐂𝐚𝐭 of the form below,

u�𝑇 (𝑋, 𝑌 ) weq [𝟚, u�]

u�∕𝑋 × 𝑌 ∕u� u� × u�

⟨𝑑1,𝑑0⟩

where the bottom horizontal arrow is defined by the evident projections.

Proof. (i). It is clear that we have a pullback diagram of the required form, the
top horizontal arrow is a weak homotopy equivalence by lemma 2.9.10, and a
similar argument using lemma 1.3.10 and proposition 1.5.4 shows that the bottom
horizontal arrow is a weak homotopy equivalence as well.

(ii). This is a paraphrase of the definition of u�𝑇 (𝑋, 𝑌 ).

(iii). Consider the following commutative diagram in 𝐂𝐚𝐭,

u�𝑇 (𝑋, 𝑌 ) weq [𝑇 , u�]h weq [𝟚, u�]

u�∕𝑋 × 𝑌 ∕u� [𝟚, u�] × [𝟚, u�] u� × u�

𝟙 u� × u�

𝑑0×𝑑1

𝑑1×𝑑0

⌜(𝑋,𝑌 )⌝
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2.9. Homotopical calculi of fractions

where every square is a pullback diagram. We wish to prove that the horizontal
rectangle is a homotopy derived pullback diagram, and since its right half is a
homotopy derived pullback diagram by lemma 5.1.20, it suffices by lemma 5.1.21
to verify that its left half is a homotopy derived pullback diagram; but it is not
hard to check that the vertical arrows in the diagram below are weak homotopy
equivalences of categories,

u�∕𝑋 × 𝑌 ∕u� [𝟚, u�] × [𝟚, u�]

𝟙 u� × u�

𝑑0×𝑑1

⌜(𝑋,𝑌 )⌝

so it is enough in turn to show that the vertical rectangle is a homotopy derived
pullback diagram.

Let ℍ : u� × u� op → 𝐂𝐚𝐭 be the diagram defined by ℍ𝑌 ′

𝑋′ = u�𝑇 (𝑋′, 𝑌 ′). By
lemmas 1.11.26,1.11.28, and 2.9.9, the diagrams

𝐆(ℍ𝑋 , u� , Δ𝟙) weq [𝑇 , u�]h

𝟙 u�
⌜𝑋⌝

u�𝑇 (𝑋, 𝑌 ) 𝐆(ℍ𝑋 , u� , Δ𝟙)

𝟙 u�
⌜𝑌 ⌝

are homotopy derived pullback diagrams. In addition, by proposition 1.5.17 and
lemma 5.1.19, the evident diagram

u� × u� u�

u� 𝟙

is a homotopy derived pullback diagram; thus, in the diagram shown below,

u�𝑇 (𝑋, 𝑌 ) 𝐆(ℍ𝑋 , u� , Δ𝟙) weq [𝑇 , u�]h

𝟙 u� u� × u�

𝟙 u�

⌜𝑌 ⌝ ⌜𝑋⌝×idu�

⌜𝑋⌝
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every square is a homotopy derived pullback diagram. In particular,

u�𝑇 (𝑋, 𝑌 ) weq [𝑇 , u�]h

𝟙 u� × u�
⌜(𝑋,𝑌 )⌝

is a homotopy derived pullback diagram, as required. ■

Lemma 2.9.12. Let u� be a small relative category and let 𝑛 be a positive integer.
If u� admits a homotopical three-arrow calculus, then we have derived pullback
diagram in 𝐂𝐚𝐭 of the form below,

weq [[𝑛 + 1], u�] weq [[𝑛], u�]

weq [[1], u�] weq u�

𝑝

𝑑0

dom

codom

where 𝑝 : weq [[𝑛 + 1], u�] → weq [[1], u�] is the functor defined by sending each
composable sequence of morphisms in ℳ of length 𝑛 + 1, say

𝑋0 𝑋1 ⋯ 𝑋𝑛+1
𝑓1

(considered as an object in weq [[𝑛 + 1], u�]) to the morphism 𝑓1 : 𝑋0 → 𝑋1
(considered as an object in weq [[1], u�]).

Proof. For each positive integer 𝑘, and let 𝑇𝑘 be the following zigzag type:

• • • •𝑘 arrows

We then have a commutative cube in 𝐂𝐚𝐭 of the form below,

weq [[𝑛 + 1], u�] weq [[𝑛], u�]

weq [𝑇𝑛 ∗ 𝑇1, u�]h weq [𝑇𝑛, u�]h

weq [[1], u�] weq u�

weq [𝑇1, u�]h weq u�

𝑝

𝑑0

dom

domcodom

codom
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where the non-trivial diagonal arrows are defined by inserting identity morph-
isms. It is straightforward to verify that the front and back faces of the cube are
pullback squares in 𝐂𝐚𝐭, and moreover, by lemmas 1.11.26, 1.11.28, and 2.9.9,
the front face is a homotopy derived pullback square in 𝐂𝐚𝐭. Since the diagonal
arrows are weak homotopy equivalences (by lemmas 2.9.5 and 2.9.10), the claim
follows by an application of proposition 5.1.22. ■

The following is due to Dugger [2006].

Lemma 2.9.13 (Dugger). Let u� be a small category, let u� and u� be subclasses
of mor u�, let 𝑋 and 𝑌 be objects in u�, and let ℌ be the double category defined
below:

• The objects in ℌ are the zigzags in u� of the form below,

𝑋 �̃� ̂𝑌 𝑌𝑣 𝑢

where 𝑢 : 𝑌 → ̂𝑌 is in u� and 𝑣 : �̃� → 𝑋 is in u� .

• The horizontal morphisms in ℌ are commutative diagrams of the following
form:

𝑋 �̃�0
̂𝑌0 𝑌

𝑋 �̃�1
̂𝑌1 𝑌

• The vertical morphisms in ℌ are commutative diagrams of the following
form:

𝑋 �̃�0
̂𝑌0 𝑌

𝑋 �̃�1
̂𝑌1 𝑌

• The 2-cells in ℌ are commutative diagrams of the evident form.

• All identities and compositions are inherited from u�.

Let 𝐻•,• be the bisimplicial set where 𝐻𝑛,𝑚 is the set of 𝑛 × 𝑚 composable arrays
of 2-cells in ℌ.

(i) The canonical morphism 𝐻0,• → |𝐻•,•| is a weak homotopy equivalence.
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II. Simplicial categories

(ii) The canonical morphism 𝐻0,• → |𝐻•,•| is a weak homotopy equivalence.

Proof. (i). First, observe that each 𝐻𝑛,• is (isomorphic to) the nerve of a category.
As always, we have 𝑑0,• ∘ 𝑠0,• = id𝐻𝑛,•

; we claim that 𝑠0,• ∘ 𝑑0,• and id𝐻𝑛+1,•
are

intrinsically homotopic. Indeed, consider a vertical morphism in ℌ, say:

𝑋 �̃�0
̂𝑌0 𝑌

𝑋 �̃�1
̂𝑌1 𝑌

𝑣0

ℎ

𝑓0

𝑘

𝑢0

𝑣1 𝑓1 𝑢1

We can decompose the above as a cospan of horizontal morphisms in ℌ,

𝑋 �̃�0
̂𝑌0 𝑌

𝑋 �̃�0
̂𝑌0 𝑌

𝑋 �̃�1
̂𝑌1 𝑌

𝑣0 𝑓0

𝑘

𝑢0

𝑣0

ℎ

𝑢1

𝑣1 𝑓1 𝑢1

thus obtaining the following diagram of 2-cells in ℌ,

[
𝑣0←

𝑓0→
𝑢0←] [

𝑣0←→
𝑢1←] [

𝑣1←
𝑓1→

𝑢1←]

[
𝑣1←

𝑓1→
𝑢1←] [

𝑣1←
𝑓1→

𝑢1←] [
𝑣1←

𝑓1→
𝑢1←]

(ℎ,𝑘)

(id,𝑘)

(ℎ,id)

(ℎ,id)

(id,id)

where the horizontal (resp. vertical) arrows depict horizontal (resp. vertical)
morphisms in ℌ. Thus, for any composable chain of vertical morphisms in ℌ of
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2.9. Homotopical calculi of fractions

length 𝑛 + 1, we have a natural commutative diagram in ℌ of the form below:

𝐹0 • 𝐹1

𝐹1 𝐹1 𝐹1

⋮ ⋮ ⋮

𝐹𝑛 𝐹𝑛 𝐹𝑛

𝐹𝑛+1 𝐹𝑛+1 𝐹𝑛+1

id

Since the rightmost column is the result of applying 𝑠0,• ∘ 𝑑0,• to the leftmost
column, this proves the claim. Hence, by proposition 1.5.4, 𝑑0,• : 𝐻𝑛+1,• → 𝐻𝑛,•
is a weak homotopy equivalence. We then apply corollary 1.6.11 and lemma 4.8.2
to deduce that the canonical morphism 𝐻0,• → |𝐻•,•| is a weak homotopy equi-
valence.

(ii). A similar argument works. ■

Definition 2.9.14. A small relative category u� admits a homotopical calculus
of right fractions when it satisfies the following condition:

• Let 𝑋 and 𝑌 be objects in u�, let 𝑘 be a natural number, let ℋ0(𝑋, 𝑌 ) be
the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • •𝑘 arrows

where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ1(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the
following type,

• • • •𝑘 arrows

and let 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) be the functor defined by inserting an
identity morphism. Then 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) is a weak homotopy
equivalence of categories.
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Dually, a small relative category u� admits a homotopical calculus of left frac-
tions when it satisfies the following condition:

• Let 𝑋 and 𝑌 be objects in u�, let 𝑘 be a natural number, let ℋ0(𝑋, 𝑌 ) be
the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • •𝑘 arrows

where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ1(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the
following type,

• • • •𝑘 arrows

and let 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) be the functor defined by inserting an
identity morphism. Then 𝑠 : ℋ0(𝑋, 𝑌 ) → ℋ1(𝑋, 𝑌 ) is a weak homotopy
equivalence of categories.

Remark. A small relative category u� admits a homotopy calculus of right (resp.
left) fractions in the sense of Dwyer and Kan [1980b] precisely when both u�
and weq u� (regarded as a relative subcategory with the same weak equivalences)
admit homotopical calculi of right (resp. left) fractions.

Proposition 2.9.15. Let u� be a category with weak equivalences.

• If u� admits a functorial calculus of cocycles, then u� also admits a homo-
topical calculus of right fractions.

• If u� admits a functorial calculus of cycles, then u� also admits a homotop-
ical calculus of left fractions.

Proof. Recalling lemma 1.3.10 and proposition 1.5.4, this is just lemma 3.5.15.
■

Lemma 2.9.16. Let u� be a small relative category, let 𝑋 and 𝑌 be objects in u�,
let 𝑆 and 𝑇 be possibly degenerate zigzag types, and let 𝑘 be a natural number.

• Let ℋ+
0 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • •of type 𝑆 𝑘 arrows of type 𝑇
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2.9. Homotopical calculi of fractions

where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ+

1 be the category of zigzags in u� from 𝑋 to 𝑌 of the following
type,

• • • • • •of type 𝑆 𝑘 arrows of type 𝑇

and let 𝑠 : ℋ+
0 → ℋ+

1 be the functor defined by inserting an identity
morphism. If u� admits a homotopical calculus of right fractions, then
𝑠 : ℋ+

0 → ℋ+
1 is a weak homotopy equivalence of categories.

• Let ℋ+
0 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • • • •of type 𝑆 𝑘 arrows of type 𝑇

where the dotted arrows stand for a composable chain of rightward-pointing
arrows, let ℋ+

1 be the category of zigzags in u� from 𝑋 to 𝑌 of the following
type,

• • • • • •of type 𝑆 𝑘 arrows of type 𝑇

and let 𝑠 : ℋ+
0 → ℋ+

1 be the functor defined by inserting an identity morph-
ism. If u� admits a homotopical calculus of left fractions, then 𝑠 : ℋ+

0 →
ℋ+

1 is a weak homotopy equivalence of categories.

Proof. Apply the 2-out-of-3 property of weak homotopy equivalences of cat-
egories and corollary 1.11.24 to lemma 2.9.2. ■

Corollary 2.9.17. If u� admits either a homotopical calculus of right fractions
or a homotopical calculus of left fractions, then u� admits a homotopical three-
arrow calculus. ■

Theorem 2.9.18 (Fundamental theorem of homotopical calculi of fractions). Let
u� be a small relative category and let 𝑋 and 𝑌 be objects in u�.

• Let ℋ(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the following
type:

• • •

If u� admits a homotopical calculus of right fractions, then the reduction
morphism

N(ℋ(𝑋, 𝑌 )) → 𝐋𝐨H(u�)(𝑋, 𝑌 )

is a weak homotopy equivalence.
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• Let ℋ(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the following
type:

• • •

If u� admits a homotopical calculus of left fractions, then the reduction
morphism

N(ℋ(𝑋, 𝑌 )) → 𝐋𝐨H(u�)(𝑋, 𝑌 )

is a weak homotopy equivalence.

Proof. The two claims are formally dual; we will prove the first version.
Let ℋ+(𝑋, 𝑌 ) be the category of zigzags in u� from 𝑋 to 𝑌 of the following

type,
• • • •

and let 𝑠 : ℋ(𝑋, 𝑌 ) → ℋ+(𝑋, 𝑌 ) be the functor defined by inserting an identity
morphism. Since u� admits a homotopical calculus of right fractions, 𝑠 is a weak
homotopy equivalence. But the following diagram in 𝐬𝐒𝐞𝐭 commutes,

N(ℋ(𝑋, 𝑌 )) 𝐋𝐨H(u�)(𝑋, 𝑌 )

N(ℋ+(𝑋, 𝑌 )) 𝐋𝐨H(u�)(𝑋, 𝑌 )

N(𝑠)

where the horizontal arrows are the reduction morphisms, so the claim is a con-
sequence of the fundamental theorem of homotopical three-arrow calculi (2.9.18)
applied to corollary 2.9.17. ■

2.10 Homotopy-coherent diagrams
Prerequisites. §§1.1, 1.2, 2.1, 2.3, 2.5, 2.7, 6.1.

Definition 2.10.1. Let u� be an ordinary category. A homotopy-coherent dia-
gram of shape u� in a simplicially enriched category u� is a simplicially enriched
functor 𝐒(u� ) → u�.

Remark 2.10.2. It is worth thinking about the data that comprise a homotopy-
coherent diagram of shape u� : in degree 0, one must specify a morphism 𝐹 (𝑓)
in u� for every non-trivial morphism 𝑓 in u� (but this assignment need not be
functorial!); in degree 1, for every composable string of non-trivial morphisms
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of positive length, such as 𝑓3 ∘ 𝑓2 ∘ 𝑓1, one has a simplicial homotopy from the
“free” composition to the “true” composition, e.g.

𝑓3,𝑓2,𝑓1
: 𝐹 (𝑓3) ∘ 𝐹 (𝑓2) ∘ 𝐹 (𝑓1) ⇒ 𝐹 (𝑓3 ∘ 𝑓2 ∘ 𝑓1)

and so on in higher degrees. The phrase ‘homotopy-coherent’ alludes to the
relations imposed by the higher simplices: for instance, for each composable
triple (𝑓3, 𝑓2, 𝑓1) as above, one has a pair of 2-cells in mor u� as in the diagram
below:

𝐹 (𝑓3) ∘ 𝐹 (𝑓2) ∘ 𝐹 (𝑓1)

𝐹 (𝑓3 ∘ 𝑓2) ∘ 𝐹 (𝑓1)

𝐹 (𝑓3 ∘ 𝑓2 ∘ 𝑓1)

𝐹 (𝑓3) ∘ 𝐹 (𝑓2 ∘ 𝑓1)

⇓

⇑

𝑓3,𝑓2∘id𝑓1 𝑓3∘𝑓2,𝑓1

𝑓3,𝑓2,𝑓1

id𝑓3∘ 𝑓2,𝑓1 𝑓3,𝑓2∘𝑓1

In particular, if u� is obtained from a 2-category ℭ by applying the nerve functor
N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 to its hom-categories, a homotopy-coherent diagram of shape
u� in u� is the same thing as a normalised lax 2-functor u� → ℭ.

Definition 2.10.3. The homotopy-coherent nerve of a simplicially enriched
category u� is the simplicial set defined by the formula below,

Nhc(u�)𝑛 = {simplicially enriched functors 𝐒([𝑛]) → u�}

with face and degeneracy maps induced by the coface and codegeneracy maps
in 𝚫.

Proposition 2.10.4. Let 𝐒𝐂𝐚𝐭 be the category of small simplicially enriched
categories.

(i) Nhc : 𝐒𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 has a left adjoint, which is the unique (up to unique
isomorphism) colimit-preserving functor 𝐂 : 𝐬𝐒𝐞𝐭 → 𝐒𝐂𝐚𝐭 such that
𝐂(Δ𝑛) = 𝐒([𝑛]).

(ii) Nhc : 𝐒𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 and 𝐂 : 𝐬𝐒𝐞𝐭 → 𝐒𝐂𝐚𝐭 are both accessible functors.
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(iii) If ℂ is a small category regarded as a simplicially enriched category, then
Nhc(ℂ) is naturally isomorphic to N(ℂ).

Proof. (i). Apply theorem 1.1.13.

(ii). This is an instance of the accessible adjoint functor theorem (0.2.50).

(iii). This follows from proposition 2.5.14 and corollary 2.7.24. ■

Definition 2.10.5. Given a simplicial set 𝑋, the associated simplicially en-
riched category is the simplicially enriched category 𝐂(𝑋) constructed above.

Remark 2.10.6. The stability of accessible adjunctions under universe enlarge-
ment implies that the simplicially enriched category 𝐂(𝑋) associated with a sim-
plicial set 𝑋 does not depend on the choice of universe.
Remark 2.10.7. One way of getting a good grip on the hom-spaces of 𝐂(𝑋) for
a general simplicial set 𝑋 is to use the formalism of necklaces introduced by
Dugger and Spivak [2011b].

Theorem 2.10.8 (Riehl).
(i) For any simplicial set 𝑋 and any pair (𝑎, 𝑏) of vertices of 𝑋, the hom-space

𝐂(𝑋)(𝑎, 𝑏) is 3-coskeletal.

(ii) For any category ℂ and any pair (𝐴, 𝐵) of objects in ℂ, the hom-space
𝐂(N(ℂ))(𝐴, 𝐵) is 2-coskeletal.

(iii) For any category ℂ, its associated simplicially enriched category 𝐂(N(ℂ))
is naturally isomorphic to the standard resolution 𝐒(ℂ).

Proof. See Theorems 4.1, 6.4, and 6.7 in [Riehl, 2011c]. □

Corollary 2.10.9. For any simplicially enriched category u� and any ordinary
category u� , there is a bijection

{simplicial maps N(u� ) → Nhc(u�)}
≅ {homotopy-coherent diagrams of shape u� in u�}

and it is natural in u� and in u�. ■

Remark 2.10.10. The above result can also be proven directly, and the unique-
ness of representations for functors up to unique isomorphism then implies that
𝐂(N(u� )) must be isomorphic to 𝐒(u� ).
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Definition 2.10.11. Let 𝐹 and 𝐺 be homotopy-coherent diagrams of shape u� in
a simplicially enriched category u�. A homotopy-coherent natural transform-
ation 𝐹 ⇒ 𝐺 is a homotopy-coherent diagram of shape u� × [1] such that the
restriction along 𝐒(idu� × 𝛿1) is 𝐹 and the restriction along 𝐒(idu� × 𝛿0) is 𝐺.

Unfortunately, it is in general not possible to compose homotopy-coherent
natural transformations, and even when it is possible, the composite is usually
only well-defined up to higher homotopy. Instead, in good situations, what we
get is a quasicategory:

Theorem 2.10.12. Let u� be a small category and let u� be a small simplicially
enriched category. Consider the following simplicial set:

[u� , u�]hc = [N(u� ), Nhc(u�)]

(i) There is a natural identification of the vertices of [u� , u�]hc as homotopy-
coherent diagrams of shape u� in u�, and similarly, there is a natural iden-
tification of the edges as homotopy-coherent natural transformations.

(ii) If u� is fibrant, then the homotopy-coherent nerve Nhc(u�) is a small quasi-
category.

(iii) Under the same hypothesis, [u� , u�]hc is a small quasicategory.

Proof. (i). Apply corollary 2.10.9 to the explicit description of exponential ob-
jects in the category of simplicial 𝐔-sets.

(ii). See Theorem 2.1 in [Cordier and Porter, 1986].

(iii). Use corollary 6.2.15. □

Let us say that a locally small simplicially enriched category u� admits rec-
tification for homotopy-coherent diagrams if, for all small categories u� , we
have a commutative diagram of functors of the form below,

[u� , u�] 𝜏1[u� , u�]hc

𝜋0[[u� , u�]]

where [u� , u�] → 𝜏1[u� , u�]hc is the functor

[u� , u�] ≅ 𝜏1N([u� , u�]) ≅ 𝜏1[N(u� ), N(u�)] → 𝜏1[u� , u�]hc
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induced by the canonical morphism N(u�) → Nhc(u�), [u� , u�] → 𝜋0[[u� , u�]] is the
localising functor, and 𝜋0[[u� , u�]] → 𝜏1[u� , u�]hc is fully faithful and essentially
surjective on objects. (Note that this functor is unique if it exists, because the
localising functor [u� , u�] → 𝜋0[[u� , u�]] is full and bijective on objects.)

Theorem 2.10.13 (Cordier–Porter). Let u� be a locally small simplicially en-
riched category. Consider the following conditions:

(i) u� is fibrant and complete as a simplicially enriched category.

(ii) u� is fibrant and cocomplete as a simplicially enriched category.

(iii) u� is the simplicially enriched category of Kan complexes.

If u� satisfies any one of the above conditions, then u� admits rectification for
homotopy-coherent diagrams.

Proof. (i). See Theorem 4.7 in [Cordier and Porter, 1986].

(ii). This follows from claim (i) by duality.

(iii). See the remark following Corollary 2.3 in [Cordier and Porter, 1997]. □

2.11 The Bergner model structure
Prerequisites. §§1.5, 2.1, 2.5, 4.1, 5.2.

Definition 2.11.1. A Dwyer–Kan isofibration of simplicially enriched cat-
egories is a simplicially enriched functor 𝑃 : u� → u� with the following proper-
ties:

• 𝑃 : u� → u� is a local fibration of simplicially enriched categories.

• If 𝑔 : 𝑃 𝐶 → 𝐷 is a weak simplicial homotopy equivalence in u�, then
there is a weak simplicial homotopy equivalence 𝑓 : 𝐶 → �̃� in u� such
that 𝑃 �̃� = 𝐷 and 𝑃 𝑓 = 𝑔.

Theorem 2.11.2 (Bergner). The following data constitute a cofibrantly gener-
ated model structure on 𝐒𝐂𝐚𝐭:

• The weak equivalences are the Dwyer–Kan equivalences.
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• The fibrations are the Dwyer–Kan isofibrations.

• The cofibrations are the morphisms that have the left lifting property with
respect to the Dwyer–Kan isofibrations.

This model structure is called the Bergner model structure, and the fibrant
objects are the Kan-enriched categories.

Proof. See Theorem 1.1 in [Bergner, 2007]. □

Proposition 2.11.3. The Bergner model structure on 𝐒𝐂𝐚𝐭 is right proper.[9]

Proof. See Proposition 3.5 in [Bergner, 2007]. □

[9] See definition 5.1.7.
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Homotopical categories

3.1 Basics
Prerequisites. §a.4.

Definition 3.1.1. A relative category u� is a category with weak equivalences
if it is semi-saturated and weq u� has the 2-out-of-3 property, and it is a homo-
topical category if weq u� has the 2-out-of-6 property. A homotopical functor
is a relative functor between homotopical categories.

Remark 3.1.2. If u� is a relative category such that weq u� has the 2-out-of-6 prop-
erty, then every isomorphism in u� is automatically a weak equivalence. Indeed,
suppose 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are mutual inverses in u�; then the fact that
𝑔 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑔 = id𝑌 are in weq u� implies that 𝑓 and 𝑔 must also be in
weq u�. Recalling lemma a.4.14, it follows that every homotopical category is a
category with weak equivalences.

¶ 3.1.3. To simplify notation, we will usually not distinguish between und u�
and u�. For example, when u� and u� are relative categories, then by ‘ordinary
functor u� → u�’ we mean a functor und u� → und u�.

Example 3.1.4. Any saturated relative category is automatically a homotopical
category, by corollary a.4.15. In particular, any minimal saturated relative cat-
egory is a homotopical category. On the other hand, any maximal relative cat-
egory is obviously a homotopical category.

Remark 3.1.5. A relative category u� is a category with weak equivalences or a
homotopical category if and only if the opposite relative category u� op is.
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Lemma 3.1.6. Let 𝐴 be an object in a homotopical category (resp. category
with weak equivalences) u�. Then the slice category u�∕𝐴 is also a homotopical
category (resp. category with weak equivalences) if we declare a morphism in
u�∕𝐴 to be a weak equivalence if and only if it is a weak equivalence in u�.

Proof. Use lemma a.4.14 on the projection functor u�∕𝐴 → u�. ■

Lemma 3.1.7. Any relative subcategory u� of a homotopical category (resp. cat-
egory with weak equivalences) u� is also a homotopical category (resp. category
with weak equivalences).

Proof. Use lemma a.4.14 on the inclusion u� ↪ u�. ■

Lemma 3.1.8. Let u� be a relative category, let u� be a saturated homotopical
category, and let 𝐹 : u� → u� be a relative functor. If a morphism in u� is a weak
equivalence if and only if its image under 𝐹 is a weak equivalence in u�, then u�
is also a saturated homotopical category.

Proof. Consider the induced functor Ho 𝐹 : Ho u� → Ho u�. Let 𝑓 : 𝑋 → 𝑌
be a morphism in u� such that 𝑓 is an isomorphism in Ho u�. Since Ho 𝐹 is a
functor, 𝐹 𝑓 must be an isomorphism in Ho u�; but u� is saturated, so 𝐹 𝑓 is a
weak equivalence in u�. We may therefore deduce that 𝑓 is a weak equivalence
in u�. ■

Corollary 3.1.9. Any relative subcategory of a saturated homotopical category
is a saturated homotopical category. ■

Lemma 3.1.10. Let u� and u� be two relative categories. If u� is a homotop-
ical category (resp. category with weak equivalences), then the relative functor
category [u�, u�]h is also a homotopical category (resp. category with weak equi-
valences).

Proof. This is a straightforward check. ⧫

Lemma 3.1.11. Let u� and u� be two relative categories. If u� is a saturated ho-
motopical category, then the relative functor category [u�, u�]h is also a saturated
homotopical category.

Proof. For each object 𝐶 in u�, we have a homotopical functor 𝐶∗ : [u�, u�]h → u�
that evaluates an object 𝐹 in [u�, u�]h at 𝐶 . Thus, we obtain a functor Ho 𝐶∗ :
Ho [u�, u�]h → Ho u�.
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Consider a morphism 𝜑 : 𝐹 ⇒ 𝐹 ′ in [u�, u�]h such that 𝜑 is an isomorphism
in Ho [u�, u�]h. Since Ho 𝐶∗ is a functor, (Ho 𝐶∗)(𝜑) must be an isomorphism in
Ho u�; but u� is a saturated homotopical category, so that implies the component
𝜑𝐶 is a weak equivalence in u�. We therefore conclude that 𝜑 is a weak equival-
ence in [u�, u�]h. ■

Definition 3.1.12. Two objects in a relative category are weakly equivalent if
they can be connected by a zigzag of weak equivalences; we define 𝑋 w≃ 𝑌 to
mean that 𝑋 and 𝑌 are weakly equivalent.

Remark 3.1.13. If 𝑋 and 𝑌 are weakly equivalent in a relative category u�, then
they are isomorphic in Ho u�. The converse is certainly true if u� is saturated, but
is false if u� is not semi-saturated.

Definition 3.1.14. A homotopically replete subcategory of a relative category
u� is a relative subcategory u� with the following property:

• If 𝐷 is an object in u� and 𝑓 : 𝐶 → 𝐷 is a weak equivalence in u�, then
both 𝐶 and 𝑓 are in u�.

• If 𝐷 is an object in u� and 𝑔 : 𝐷 → 𝐶 is a weak equivalence in u�, then
both 𝐶 and 𝑔 are in u�.

Remark 3.1.15. Any full relative subcategory u� of a relative category u� is ho-
motopically replete if and only if it has the following property:

• If 𝐷 is an object in u� and 𝐶 an object in u� that is weakly equivalent to 𝐷,
then 𝐶 is in u�.

Definition 3.1.16. A parallel pair of morphisms in a relative category u� are
weakly homotopic if they are equal in Ho u�; we define 𝑓 w∼ 𝑔 to mean that
𝑓 and 𝑔 are weakly homotopic.

Definition 3.1.17. An equivalence in a relative category u� is a pair (𝑓 , 𝑔), where
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are morphisms in u� such that 𝑔 ∘ 𝑓 w∼ id𝑋 and
𝑓 ∘ 𝑔 w∼ id𝑌 . Two morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 in u� are mutual
quasi-inverses when (𝑓 , 𝑔) constitute an equivalence in u�.

Remark 3.1.18. It follows from the definitions that quasi-inverses are unique up
to weak homotopy.
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Lemma 3.1.19. If the localising functor 𝛾 : u� → Ho u� for a relative category u�
is full, then the following are equivalent for all morphisms 𝑓 : 𝑋 → 𝑌 in u�:

• 𝑓 is a morphism in u� and has a quasi-inverse.

• 𝛾𝑓 is an isomorphism in u�.

Proof. Obvious. ⧫

Remark 3.1.20. Clearly, any isomorphism in any relative category has a quasi-
inverse; but this implies that in a relative category that is not semi-saturated, a
morphism that has a quasi-inverse need not be a weak equivalence. On other
hand, if 𝑓 is a morphism in a saturated homotopical category and 𝑓 has a quasi-
inverse, then 𝑓 must be a weak equivalence.

Definition 3.1.21. A relative category u� has the Whitehead property when the
following are equivalent:

• 𝑓 is a weak equivalence in u�.

• 𝑓 is a morphism in u� and has a quasi-inverse.

Theorem 3.1.22. Let u� be a relative category. The following are equivalent:

(i) u� has the Whitehead property.

(ii) The localising functor 𝛾 : u� → Ho u� is full, and u� is a saturated homotop-
ical category.

Proof. (i) ⇒ (ii). By theorem a.4.44, every morphism 𝛾𝑋0 → 𝛾𝑋𝑛 in Ho u� is
of the form

(𝛾𝑓𝑛)
−1 ∘ ⋯ ∘ 𝛾ℎ2 ∘ (𝛾𝑓1)

−1 ∘ 𝛾ℎ1

for some morphisms ℎ1 : 𝑋0 → 𝑌1, 𝑓1 : 𝑋1 → 𝑌1, ℎ2 : 𝑋1 → 𝑌2, etc. in u�, where
𝑓1, … , 𝑓𝑛 are weak equivalences. By the Whitehead property, each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖
has a quasi-inverse in u�, say 𝑔𝑖 : 𝑌𝑖 → 𝑋𝑖. Since 𝛾𝑔𝑖 = (𝛾𝑓𝑖)

−1, it follows that

(𝛾𝑓𝑛)
−1 ∘ ⋯ ∘ ℎ2 ∘ (𝛾𝑓1)

−1 ∘ 𝛾ℎ1 = 𝛾(𝑔𝑛 ∘ ⋯ ∘ ℎ2 ∘ 𝑔1 ∘ ℎ1)

and therefore 𝛾 : u� → Ho u� is indeed full.
In particular, every morphism 𝑓 : 𝑋 → 𝑌 in u� such that 𝛾𝑓 : 𝛾𝑋 → 𝛾𝑌 is

an isomorphism in Ho u� must have a quasi-inverse, and hence must be a weak

360



3.1. Basics

equivalence, in view of the Whitehead property. We therefore conclude that u� is
a saturated homotopical category.

(ii) ⇒ (i). The converse follows from the definitions and lemma 3.1.19. ■

Remark 3.1.23. The Whitehead property is in general not inherited by slice cat-
egories or by functor categories. For example, if 𝑞∘𝑓 = 𝑝 and 𝑔 is a quasi-inverse
for 𝑓 , it is only guaranteed that 𝑞 w∼ 𝑝 ∘ 𝑔.

Definition 3.1.24. Let 𝐹 , 𝐺 : u� → u� be two ordinary functors between relative
categories. A natural weak equivalence 𝛼 : 𝐹 ⇒ 𝐺 is a natural transformation
such that 𝛼𝐶 : 𝐹 𝐶 → 𝐺𝐶 is a weak equivalence in u� for all objects 𝐶 in u�, and
we say 𝐹 and 𝐺 are naturally weakly equivalent if they can be connected by a
zigzag of natural weak equivalences.

Remark 3.1.25. This is precisely the notion of weak equivalence in the relative
functor category [min und u�, u�]h. Although the definition above applies to all
functors, if 𝐻 : u� → ℰ is an ordinary functor, then the natural transformation
𝐻𝛼 : 𝐻𝐹 ⇒ 𝐻𝐺 is only guaranteed to be a natural weak equivalence if we
assume 𝐻 is a relative functor.

Definition 3.1.26. A relative equivalence is a relative functor 𝐹 : u� → u� for
which there exists a relative functor 𝐺 : u� → u� such that 𝐺𝐹 is naturally weakly
equivalent to idu� and 𝐹 𝐺 is naturally weakly equivalent to idu�. Such a 𝐺 is said
to be a relative inverse of 𝐹 . When u� and u� are homotopical categories, we
may say homotopical equivalence and homotopical inverse instead of ‘relative
equivalence’ and ‘relative inverse’.

Proposition 3.1.27. If 𝐹 : u� → u� is a relative equivalence of relative categories
with relative inverse 𝐺 : u� → u�, then Ho 𝐹 : Ho u� → Ho u� is an equivalence
of categories, with quasi-inverse Ho 𝐺 : Ho u� → Ho u�. ■

Definition 3.1.28. An adjoint relative equivalence is an adjunction of the form
below,

𝐹 ⊣ 𝐺 : u� → u�

where u� and u� are relative categories, 𝐹 and 𝐺 are relative functors, and both
the adjunction unit and counit are natural weak equivalences. When u� and u� are
homotopical categories, we may say adjoint homotopical equivalence instead
of ‘adjoint relative equivalence’.
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Proposition 3.1.29. An adjoint relative equivalence of relative categories des-
cends to an adjoint equivalence of homotopy categories.

Proof. Use the 2-functoriality of Ho : ℜ𝔢𝔩ℭ𝔞𝔱 → ℭ𝔞𝔱 (corollary a.4.20). ■

Definition 3.1.30. A homotopically contractible category is a homotopical
category u� such that the unique (homotopical) functor u� → 𝟙 is a homotopical
equivalence, where 𝟙 is the trivial category with only one object.

Proposition 3.1.31. Let u� be a homotopical category. The following are equi-
valent:

(i) u� is homotopically contractible.

(ii) u� is inhabited, and for every object 𝐴 in u�, the constant functor Δ𝐴 is
naturally weakly equivalent to idu� .

(iii) There exists an object 𝐴 in u� such that Δ𝐴 and idu� are naturally weakly
equivalent.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].) ⧫

3.2 Homotopical Kan extensions
Prerequisites. §§3.1, a.4.

Definition 3.2.1. Let u� be a homotopical category. A homotopically initial ob-
ject in u� is an object 𝐴 for which there exists a zigzag of natural transformations
of the form

Δ𝐴 𝐹 𝐺 idu�
𝛼

where Δ𝐴 : u� → u� is the constant functor with value 𝐴, 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 is
a weak equivalence in u�, and the squiggles denote (possibly trivial) zigzags of
natural weak equivalences. Dually, a homotopically terminal object in u� is a
homotopically initial object in u� op.

Proposition 3.2.2. Let u� be a homotopical category. If 𝐴 is a homotopically
initial (resp. homotopically terminal) object in u�, then:

(i) Any object in u� weakly equivalent to 𝐴 is also a homotopically initial (resp.
homotopically terminal) object in u�.
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(ii) 𝐴 is an initial (resp. terminal) object in Ho u�.

(iii) If u� is a minimal homotopical category, then 𝐴 is an initial (resp. terminal)
object in u� as well.

Conversely, any initial (resp. terminal) object in u� is also homotopically initial
(resp. homotopically terminal).

Proof. Obvious. (This is Proposition 38.3 in [DHKS].) ⧫

Proposition 3.2.3. If 𝐴 is a homotopically initial object in a homotopical cat-
egory u�, then for any object 𝑍 in u�, the zigzag category u�(𝐓)(𝐴, 𝑍) is connected.

Proof. By theorem a.4.44, there is a bijection between the connected compon-
ents of u�(𝐓)(𝐴, 𝑍) and the morphisms 𝐴 → 𝑍 in Ho u�; but we know 𝐴 is an
initial object in Ho u�, so u�(𝐓)(𝐴, 𝑍) has exactly one connected component. ■

Lemma 3.2.4. Let 𝐻 : u� → u� be a relative functor and let 𝐹 : u� → u� be
an ordinary functor. If If weq u� has the 2-out-of-3 property and 𝐹 is naturally
weakly equivalent to 𝐻 , then 𝐹 is also a relative functor.

Proof. Apply the 2-out-of-3 property inductively. ⧫

Lemma 3.2.5. If 𝐴 and 𝐴′ be homotopically initial objects in a homotopical
category u�, then 𝐴 w≃ 𝐴′, and moreover every morphism 𝐴 → 𝐴′ in u� is a weak
equivalence.

Proof. This is paragraph 38.5 in [DHKS].
Suppose, as in the definition, that we have endofunctors 𝐹 , 𝐹 ′, 𝐺, 𝐺′ on u�

and natural transformations 𝛼 : 𝐹 ⇒ 𝐺, 𝛼′ : 𝐹 ′ ⇒ 𝐺′, such that 𝐹 w≃ Δ𝐴,
𝐹 ′ w≃ Δ𝐴′, 𝐺 w≃ idu� , and 𝐺′ w≃ idu� , and the morphisms 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 and
𝛼′

𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ are both weak equivalences. Note that the previous lemma
implies 𝐺 and 𝐺′ are both homotopical functors, while a similar argument shows
that 𝐹 and 𝐹 ′ sends all morphisms to weak equivalences.

Let 𝑓 : 𝐴 → 𝐴′ be a morphism in u�. By applying the 2-out-of-3 property
repeatedly in the following diagram,

𝐴 𝐹 𝐴 𝐺𝐴 𝐴

𝐴 𝐹 𝐴′ 𝐺𝐴′ 𝐴′

𝐹 𝑓

𝛼𝐴

𝐺𝑓 𝑓

𝛼𝐴′
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we see that 𝑓 is a weak equivalence if and only if 𝛼𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ is a weak
equivalence. Since 𝛼′

𝐴′ : 𝐹 ′𝐴′ → 𝐺′𝐴′ is a weak equivalence, and 𝐺𝐴′ w≃ 𝐴′,
it follows that 𝛼′

𝐺𝐴′ : 𝐹 𝐺𝐴′ → 𝐺′𝐺𝐴′ is a weak equivalence, and since 𝐺
is homotopical, so 𝐺𝛼′

𝐺𝐴′ : 𝐺𝐹 𝐺𝐴′ → 𝐺𝐺′𝐺𝐴′ is also a weak equivalence.
Similarly, 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 is a weak equivalence, and 𝐴 w≃ 𝐹 𝐴′ w≃ 𝐺′𝐹 𝐴′, so
𝛼𝐺′𝐹 𝐴′ : 𝐹 𝐺′𝐹 𝐴′ → 𝐺𝐺′𝐹 𝐴′ is a weak equivalence as well.

Now, by applying the 2-out-of-6 property to the diagram below,

𝐹 𝐹 ′𝐹 𝐴′ 𝐺𝐹 ′𝐹 𝐴′ 𝐺𝐹 ′𝐺𝐴′

𝐹 𝐺′𝐹 𝐴′ 𝐺𝐺′𝐹 𝐴′ 𝐺𝐺′𝐺𝐴′

𝐹 𝛼′
𝐹 𝐴′

𝛼𝐹 ′𝐹 𝐴′

𝐺𝛼′
𝐹 𝐴′

𝐺𝐹 ′𝛼𝐴′

𝐺𝛼′
𝐺𝐴′

𝛼𝐺′𝐹 𝐴′ 𝐺𝐺′𝛼𝐴′

we may deduce that 𝐺𝐺′𝛼𝐴′ : 𝐺𝐺′𝐹 𝐴′ → 𝐺𝐺′𝐺𝐴′ is a weak equivalence, and
hence that 𝛼𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ is a weak equivalence, as required. Moreover,
𝐴 w≃ 𝐹 𝐴′ and 𝐺𝐴′ w≃ 𝐴′, so it follows that 𝐴 w≃ 𝐴′. ■

¶ 3.2.6. We will say that an object in a homotopical category u� characterised
by a homotopical universal property is homotopically unique if the full subcat-
egory spanned by such objects inside the homotopical category of objects in u�
equipped with the relevant additional structure is homotopically contractible.

Proposition 3.2.7. Let u� be a homotopically contractible category.

(i) Every morphism in u� is a weak equivalence.

(ii) The unique functor Ho u� → 𝟙 is an equivalence of categories.

(iii) If u� is a minimal homotopical category, then u� → 𝟙 is also an equivalence
of categories.

(iv) The opposite homotopical category u� op and the homotopical functor cat-
egory [u�, u�]h (for any homotopical category u�) are also homotopically
contractible.

(v) Every object in u� is both homotopically initial and homotopically terminal.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].) ⧫

Proposition 3.2.8. Let u� be a homotopical category. If u� is the full homotop-
ical subcategory of u� spanned by the homotopically initial (or homotopically
terminal) objects, then u� is homotopically contractible.
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Proof. This follows from lemma 3.2.5. ■

Remark 3.2.9. Even if u� is a saturated homotopical category, an object that is
initial in Ho u� need not be homotopically initial in u�. Indeed, let u� be the max-
imal homotopical category generated by a graph of the following form:

• • • • • • ⋯

No object in u� is homotopically initial, because the length of the shortest zigzag
connecting two objects cannot be bounded above; yet every object in Ho u� is
initial. The same argument shows that u� is not homotopically contractible, but
Ho u� is certainly contractible.

Definition 3.2.10. Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be two ordinary functors
between homotopical categories. A homotopical left Kan extension (resp. ho-
motopical right Kan extension) of 𝐺 along 𝐹 is a homotopically initial (resp.
homotopically terminal) object of the homotopical category (𝐺 ↓ 𝐹 ∗)h (resp.
(𝐹 ∗ ↓ 𝐺)h) described below:

• The objects are pairs (𝐻, 𝛼) where 𝐻 is a homotopical functor u� → ℰ and
𝛼 is a natural transformation of type 𝐺 ⇒ 𝐻𝐹 (resp. 𝐻𝐹 ⇒ 𝐺).

• The morphisms (𝐻 ′, 𝛼′) → (𝐻, 𝛼) are those natural transformations 𝛽 :
𝐻 ′ ⇒ 𝐻 such that 𝛽𝐹 ∙ 𝛼′ = 𝛼 (resp. 𝛼 ∙ 𝛽𝐹 = 𝛼′).

• The weak equivalences are the natural weak equivalences.

Remark 3.2.11. Note that any homotopical Kan extension of 𝐹 : u� → u� along
𝐺 : u� → ℰ has, by definition, an underlying homotopical functor 𝐻 : u� → ℰ.

Corollary 3.2.12. Homotopical Kan extensions are homotopically unique, any
two homotopical left (resp. right) Kan extensions of 𝐺 along 𝐹 are naturally
weakly equivalent. ■

Definition 3.2.13. Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be two ordinary functors
between homotopical categories, and let 𝐿 : ℰ → ℱ be a homotopical func-
tor. We say 𝐿 preserves a homotopical left (resp. right) Kan extension (𝐻, 𝛼)
of 𝐺 along 𝐹 if (𝐿𝐻, 𝐿𝛼) is a homotopical left (resp. right) Kan extension of
𝐿𝐹 along 𝐺. If a homotopical Kan extension is preserved by all homotopical
functors, then it is said to be absolute.
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3.3 Quillen–Verdier derived functors
Prerequisites. §§3.1, a.4, a.1, a.5

The fact that Ho : ℜ𝔢𝔩ℭ𝔞𝔱 → ℭ𝔞𝔱 is a 2-functor means that relative functors
𝐹 : u� → u� descend to functors Ho 𝐹 : Ho u� → Ho u� in a very well-behaved
way. However, what can we say about ordinary (i.e. not necessarily relative)
functors u� → u�?

In this section, we follow [DHKS, §§40–43]; however, we will use a weaker
definition of ‘deformation retract’ and a stronger definition of ‘total derived func-
tor’.

Definition 3.3.1. Let u� and u� be relative categories, and let 𝛾u� : u� → Ho u� and
𝛾u� : u� → Ho u� be the localising functors.

• A total left derived functor for an ordinary functor 𝐹 : u� → u� is an
absolute right (!) Kan extension of 𝛾u�𝐹 : u� → Ho u� along 𝛾u� : u� → Ho u�.

• A total right derived functor for an ordinary functor 𝐺 : u� → u� is an
absolute left (!) Kan extension of 𝛾u�𝐺 : u� → Ho u� along 𝛾u� : u� → Ho u�.

Remark 3.3.2. The above definition is essentially due to Verdier [1963], but the
formulation using Kan extensions is due to Quillen [1967, Ch. I, §4]. We deviate
from convention by demanding that the Kan extensions be absolute; this is in
order to make theorem 3.3.5 true.
Remark 3.3.3. As with everything defined by a universal property, total derived
functors are unique up to unique isomorphism if they exist.

Definition 3.3.4. Let u� and u� be relative categories and let 𝐹 ⊣ 𝐺 : u� → u� be
an adjunction of ordinary categories. A derived adjunction for 𝐹 ⊣ 𝐺 consists
of

• a left derived functor (𝐋𝐹 , 𝛼) for 𝐹 ,

• a right derived functor (𝐑𝐺, 𝛽) for 𝐺, and

• an adjunction 𝐋𝐹 ⊣ 𝐑𝐺 : Ho u� → Ho u� with unit ̄ : idHo u� ⇒ (𝐑𝐺)(𝐋𝐹 )
and counit ̄ : (𝐋𝐹 )(𝐑𝐺) ⇒ idHo u�,

such that (𝛼, 𝛽) constitute a conjugate pair of natural transformations. We refer
to ̄ as the derived unit and ̄ as the derived counit.
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The following appears in [Maltsiniotis, 2007].

Theorem 3.3.5. Let u� and u� be relative categories and let 𝐹 ⊣ 𝐺 : u� → u�
be an ordinary adjunction. If (𝐋𝐹 , 𝛼) is a total left derived functor for 𝐹 and
(𝐑𝐺, 𝛽) is a total right derived functor for 𝐺, then there exist unique natural
transformations ̄ : idHo u� ⇒ (𝐑𝐺)(𝐋𝐹 ) and ̄ : (𝐋𝐹 )(𝐑𝐺) ⇒ idHo u� making
𝐋𝐹 ⊣ 𝐑𝐺 : Ho u� → Ho u� a derived adjunction for 𝐹 ⊣ 𝐺 with derived unit ̄
and derived counit .̄

Proof. Let and be the unit and counit of the adjunction 𝐹 ⊣ 𝐺. First, we
prove that ̄ and ̄ are unique if they exist. Indeed, if they exist, then (𝛼, 𝛽) is a
conjugate pair of natural transformations, so we must have the equations shown
below:

𝛽𝐹 ∙ 𝛾u� = (𝐑𝐺)𝛼 ∙ �̄�u� �̄�u� ∙ (𝐋𝐹 )𝛽 = 𝛾u� ∙ 𝛼𝐺

However, ((𝐑𝐺)(𝐋𝐹 ), (𝐑𝐺)𝛼) is a left Kan extension of (𝐑𝐺)𝛾u�𝐹 along 𝛾u� and
((𝐋𝐹 )(𝐑𝐺), (𝐋𝐹 )𝛽) is a right Kan extension of (𝐋𝐹 )𝛾u�𝐺 along 𝛾u�, so ̄ and ̄
are uniquely determined as natural transformations by these equations.

Next, we prove that the natural transformations ̄ and ̄ defined above satisfy
the left and right triangle identities. Using naturality and the defining equations
for ̄ and ,̄ we obtain the following:

𝛼 ∙ ( (̄𝐋𝐹 ) ∙ (𝐋𝐹 ) )̄𝛾u� = 𝛼 ∙ (̄𝐋𝐹 )𝛾u� ∙ (𝐋𝐹 ) �̄�u�

= �̄�u�𝐹 ∙ (𝐋𝐹 )(𝐑𝐺)𝛼 ∙ (𝐋𝐹 ) �̄�u�

= �̄�u�𝐹 ∙ (𝐋𝐹 )𝛽𝐹 ∙ (𝐋𝐹 )𝛾u�

= 𝛾u� 𝐹 ∙ 𝛼𝐺𝐹 ∙ (𝐋𝐹 )𝛾u�

= 𝛾u� 𝐹 ∙ 𝛾u�𝐹 ∙ 𝛼
= 𝛾u�( 𝐹 ∙ 𝐹 ) ∙ 𝛼

Since (𝐋𝐹 , 𝛼) is a right Kan extension of 𝐹 along 𝛾u� , this implies that ̄ and ̄
satisfy the left triangle identity if and do. A formally dual calculation shows
that the same is true for the right triangle identity. Thus, we have the required
derived adjunction. ■

Definition 3.3.6. Let u� and u� be relative categories. A left deformation retract
for an ordinary functor 𝐹 : u� → u� is a triple (u�◦, 𝑄, 𝑝) where
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• u�◦ is a full subcategory of u� with the induced relative subcategory struc-
ture,

• 𝑄 is a pair of maps ob u� → ob u� and mor u� → mor u� (but not necessarily
functorial), and

• 𝑝 assigns to each object 𝑋 in u� a weak equivalence 𝑝𝑋 : 𝑄𝑋 → 𝑋,

and these data are required to satisfy the following axioms:

DR1. For all objects 𝑋 in u�, the object 𝑄𝑋 is in u�◦.

DR2. For all morphisms 𝑓 : 𝑋 → 𝑌 in u�, we have 𝑝𝑌 ∘ 𝑄𝑓 = 𝑓 ∘ 𝑝𝑋 , i.e. the
diagram in u� shown below commutes,

𝑄𝑋 𝑋

𝑄𝑌 𝑌

𝑄𝑓

𝑝𝑋

𝑓

𝑝𝑌

and if 𝑓 is a weak equivalence in u�, then so is 𝑄𝑓 .

DR3. The inclusion u�◦ ↪ u� induces a faithful functor Ho u�◦ → Ho u�.

DR4. The restriction 𝐹 |u�◦ : u�◦ → u� is a relative functor.

An ordinary functor 𝐹 : u� → u� is left deformable if there exists a left deform-
ation retract for 𝐹 . A left deformation retract of a relative category u� is a left
deformation retract for idu� .

Dually, a right deformation retract for an ordinary functor 𝐺 : u� → u� is a
triple (u�◦, 𝑅, 𝑖) where

• u�◦ is a full subcategory of u� with the induced relative subcategory struc-
ture,

• 𝑅 is a pair of maps ob u� → ob u� and mor u� → mor u� (but not necessarily
functorial), and

• 𝑖 assigns to each object 𝐴 in u� a weak equivalence 𝑖𝐴 : 𝐴 → 𝑅𝐴,

and these data are required to satisfy the following axioms:

DR1. For all objects 𝐴 in u�, the object 𝑅𝐴 is in u�◦.
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DR2. For all morphisms 𝑔 : 𝐴 → 𝐵 in u�, we have 𝑅𝑔 ∘ 𝑖𝐴 = 𝑖𝐵 ∘ 𝑔, i.e. the
diagram in u� shown below commutes,

𝐴 𝑅𝐴

𝐵 𝑅𝐵

𝑔

𝑖𝐴

𝑅𝑔

𝑖𝐵

and if 𝑔 is a weak equivalence in u�, then so is 𝑅𝑔.

DR3. The inclusion u�◦ ↪ u� induces a faithful functor Ho u�◦ → Ho u�.

DR4. The restriction 𝐺|u�◦ : u�◦ → u� is a relative functor.

An ordinary functor 𝐺 : u� → u� is right deformable if there exists a right
deformation retract for 𝐺. A right deformation retract of a relative category u�
is a right deformation retract for idu�.

Remark 3.3.7. Every relative functor is both left deformable and right deform-
able, with trivial left and right deformation retracts.

Proposition 3.3.8.
• Let u� be a relative category and let (u�◦, 𝑄, 𝑝) be a left deformation retract

of u�. Then the functor 𝑈 : Ho u�◦ → Ho u� induced by the inclusion u�◦ ↪
u� is fully faithful and essentially surjective on objects, and there exist a
unique functor �̄� : Ho u� → Ho u�◦ and a unique natural isomorphism
Ho 𝑝 : 𝑈�̄� ⇒ idHo u� whose components are (the images of) the weak
equivalences 𝑝𝑋 : 𝑄𝑋 → 𝑋.

• Let u� be a relative category and let (u�◦, 𝑅, 𝑖) be a right deformation re-
tract of u�. Then the functor 𝑈 : Ho u�◦ → Ho u� by the inclusion u�◦ ↪ u�
is fully faithful and essentially surjective on objects, and there exist a
unique functor �̄� : Ho u� → Ho u�◦ and a unique natural isomorphism
Ho 𝑖 : idHo u� ⇒ 𝑈�̄� whose components are (the images of) the weak equi-
valences 𝑖𝐴 : 𝐴 → 𝑅𝐴.

Proof. The two claims are formally dual; we will prove the first version.
Since each 𝑝𝑋 : 𝑄𝑋 → 𝑋 is a weak equivalence in u� and each 𝑄𝑋 is in u�◦,

we see that the functor 𝑈 : Ho u�◦ → Ho u� is essentially surjective on objects.
Axiom DR3 says that it is also faithful, so it remains to be shown that 𝑈 is full.

369



III. Homotopical categories

Let �̃� and ̃𝑌 be objects in u�◦ and consider a morphism 𝑓 : �̃� → ̃𝑌 in Ho u�. By
theorem a.4.44 and axiom DR2, there is a morphism of zigzags in u� of the form
below,

𝑋 𝑄�̃� ⋯ 𝑄 ̃𝑌 𝑌

𝑋 𝑋 ⋯ 𝑌 𝑌

𝑝�̃�

𝑝�̃� 𝑝 ̃𝑌

𝑝 ̃𝑌

where the top row is a zigzag in u�◦ and the bottom row is a zigzag in u� repres-
enting 𝑓 : �̃� → ̃𝑌 in Ho u�. Thus, the top row also represents 𝑓 : �̃� → ̃𝑌 in
Ho u�, and in particular, 𝑓 : �̃� → ̃𝑌 is in the image of 𝑈 : Ho u�◦ → Ho u�.

Clearly, the assignments 𝑋 ↦ 𝑄𝑋 and 𝑓 ↦ 𝑄𝑓 induce a well-defined
functor Ho 𝑄 : Ho u� → Ho u� whose image is contained in the image of the fully
faithful functor 𝑈 : Ho u�◦ → Ho u�. Thus, there is a unique functor �̄� : Ho u� →
Ho u�◦ such that Ho 𝑄 = 𝑈�̄�. It is easy to see that there is a unique natural
isomorphism Ho 𝑖 : 𝑈�̄� ⇒ idHo u� of the required form. ■

Corollary 3.3.9. Let u� and u� be relative categories.

• Let (u�◦, 𝑄, 𝑝) be a left deformation retract for an ordinary functor 𝐹 :
u� → u�. For any full subcategory u�′ ⊆ u�, if u�′ contains every 𝑄𝑋 and
the restriction 𝐹 : u�′ → u� is a relative functor, then (u�′, 𝑄, 𝑝) is also a
left deformation retract for 𝐹 : u� → u�.

• Let (u�◦, 𝑅, 𝑖) be a right deformation retract for an ordinary functor 𝐺 :
u� → u�. For any full subcategory u�′ ⊆ u�, if u�′ contains every 𝑅𝐴 and
the restriction 𝐺 : u�′ → u� is a relative functor, then (u�′, 𝑄, 𝑝) is also a
right deformation retract for 𝐺 : u� → u�.

Proof. The two claims are formally dual; we will prove the first version.
Clearly, (u�′, 𝑄, 𝑝) satisfies axioms DR1 and DR2, and by hypothesis, it also

satisfies axiom DR4. We must now verify axiom DR3. We have the following
commutative diagram,

Ho u�◦ Ho u�◦
𝐹

Ho u�

and since Ho u�◦ → Ho u� is fully faithful and essentially surjective on objects
(by proposition 3.3.8), Ho u�◦ → Ho u�◦

𝐹 is faithful. In particular, the evident
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restriction of (u�◦, 𝑄, 𝑝) is a left deformation retract of u�◦
𝐹 , so the same proposition

implies Ho u�◦ → Ho u�◦
𝐹 is fully faithful and essentially surjective on objects. The

2-out-of-3 property of such functors then implies that Ho u�◦
𝐹 → Ho u� is faithful,

as required. ■

Proposition 3.3.10. Let u� and u� be relative categories. Given a left deformation
retract (u�◦, 𝑄, 𝑝) for an ordinary functor 𝐹 : u� → u�:

(i) If 𝑄 is functorial, then the composite 𝐹 𝑄 : u� → u� is a relative functor.

(ii) If u�◦
𝐹 is the full subcategory of u� spanned by the objects 𝑋 such that the

morphism 𝐹 𝑝𝑋 : 𝐹 𝑄𝑋 → 𝐹 𝑋 is weak equivalence in u�, then u�◦ ⊆ u�◦
𝐹 .

(iii) If moreover weq u� has the 2-out-of-3 property in u�, then (u�◦
𝐹 , 𝑄, 𝑝) is also

a left deformation retract for 𝐹 .

Dually, given a right deformation retract (u�◦, 𝑅, 𝑖) be a right deformation retract
for an ordinary functor 𝐺 : u� → u�:

(i′) If 𝑄 is functorial, then the composite 𝐺𝑅 : u� → u� is a relative functor.

(ii′) If u�◦
𝐺 is the full subcategory of u� spanned by the objects 𝐴 such that the

morphism 𝐺𝑖𝐴 : 𝐺𝐴 → 𝐺𝑅𝐴 is weak equivalence in u�, then u�◦ ⊆ u�◦
𝐺.

(iii′) If moreover weq u� has the 2-out-of-3 property in u�, then (u�◦
𝐺, 𝑅, 𝑖) is also

a right deformation retract for 𝐹 .

Proof. (i). Immediate from the definitions.

(ii). Let �̃� be an object in u�◦. By definition, 𝑄�̃� is also an object in u�◦, and
𝐹 |u�◦ is a relative functor, so 𝐹 𝑝�̃� : 𝐹 𝑄�̃� → 𝐹 �̃� is a weak equivalence in u�.

(iii). Let 𝑋 and 𝑌 be objects in u�◦
𝐹 and let 𝑓 : 𝑋 → 𝑌 be a weak equivalence in

u�. Consider the following commutative diagram in u�:

𝐹 𝑄𝑋 𝐹 𝑋

𝐹 𝑄𝑌 𝐹 𝑌

𝐹 𝑄𝑓

𝐹 𝑝𝑋

𝐹 𝑓

𝐹 𝑝𝑌

𝐹 𝑄𝑓 is a weak equivalence in u� by claim (i), and both 𝐹 𝑝𝑋 and 𝐹 𝑝𝑌 are weak
equivalences by the definition of u�◦

𝐹 , so using the 2-out-of-3 property of weq u�,
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we may deduce that 𝐹 𝑓 is a weak equivalence in u� too. Thus, 𝐹 |u�◦
𝐹

is a relative
functor, and by corollary 3.3.9, (u�◦

𝐹 , 𝑄, 𝑝) is a left deformation retract for 𝐹 . ■

Lemma 3.3.11. Let u� and u� be relative categories, let 𝐹 : u� → u� be an
ordinary functor, and let {u�◦

𝑗 | 𝑗 ∈ 𝐽} be a directed family of full subcategories
of u� and let u�◦ = ⋃𝑗∈𝐽 u�◦

𝑗 . If each restriction 𝐹 : u�◦
𝑗 → u� is a relative functor,

then the restriction 𝐹 : u�◦ → u� is also a relative functor.

Proof. Obvious. ⧫

When we have the 2-out-of-6 property, we can say a bit more about enlarging
deformation retracts.

Lemma 3.3.12. Let u� and u� be relative categories.

• Let (u�◦, 𝑄, 𝑝) and (u�′◦, 𝑄′, 𝑝′) be left deformation retracts for an ordinary
functor 𝐹 : u� → u� and let u�″◦ be the full subcategory of u� generated by
the union of u�◦ and u�′◦. If u� is a homotopical category, then the restriction
𝐹 : u�″◦ → u� is a relative functor.

• Let (u�◦, 𝑅, 𝑖) and (u�′◦, 𝑅′, 𝑖′) be right deformation retracts for an ordinary
functor 𝐺 : u� → u� and let u�″◦ be the full subcategory of u� generated
by the union of u�◦ and u�′◦. If u� is a homotopical category, then the
restriction 𝐺 : u�″◦ → u� is a relative functor.

Proof. The two claims are formally dual; we will prove the first version. We
follow the proof of Proposition 40.4 in [DHKS].

Let 𝑓 : 𝑋 → 𝑌 be a weak equivalence in u�″◦. If 𝑋 and 𝑌 are both in u�◦ (resp.
u�′◦), then 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is a weak equivalence in u�, because (u�◦, 𝑄, 𝑝) (resp.
(u�′◦, 𝑄′, 𝑝′)) is a left deformation retract for 𝐹 : u� → u�; so instead suppose 𝑋
(resp. 𝑌 ) is in u�◦ (resp. u�′◦). Consider the following diagram in u�:

𝐹 𝑄𝑄′𝑋 𝐹 𝑄′𝑋 𝐹 𝑄′𝑌

𝐹 𝑄𝑋 𝐹 𝑋 𝐹 𝑌

≃𝐹 𝑄𝑝′
𝑋

𝐹 𝑝𝑄′𝑋

𝐹 𝑝′
𝑋

𝐹 𝑄′𝑓
≃

𝐹 𝑝′
𝑌≃

≃
𝐹 𝑝𝑋 𝐹 𝑓

The left square commutes because (u�◦, 𝑄, 𝑝) is a left deformation retract and the
right square commutes because (u�′◦, 𝑄′, 𝑝′) is a left deformation retract. Since
the marked arrows are weak equivalences in u�, the 2-out-of-6 property implies
that 𝐹 𝑓 : 𝐹 𝑋 → 𝐹 𝑌 is also a weak equivalence in u�, as required. ■
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Proposition 3.3.13. Let u� and u� be relative categories.

• Let (u�◦, 𝑄, 𝑝) be a left deformation retract for an ordinary functor 𝐹 : u� →
u�. Assuming u� is a homotopical category, there is a full subcategory
u�◦

𝐹 ⊆ u� with the following property: for any full subcategory u�′ ⊆ u� that
contains every 𝑄𝑋, (u�′, 𝑄, 𝑝) is a left deformation retract for 𝐹 : u� → u�
if and only if u�′ ⊆ u�◦

𝐹 .

• Let (u�◦, 𝑅, 𝑖) be a right deformation retract for an ordinary functor 𝐺 :
u� → u�. Assuming u� is a homotopical category, there is a full subcategory
u�◦

𝐺 ⊆ u� with the following property: for any full subcategory u�′ ⊆ u� that
contains every 𝑅𝐴, (u�′, 𝑅, 𝑖) is a right deformation retract for 𝐺 : u� → u�
if and only if u�′ ⊆ u�◦

𝐹 .

Proof. Recalling corollary 3.3.9, this is a straightforward consequence of lem-
mas 3.3.11 and 3.3.12. ■

Proposition 3.3.14. Let u� and u� be relative categories, and let 𝛾u� : u� → Ho u�
and 𝛾u� : u� → Ho u� be the respective localising functors.

• If (u�◦, 𝑄, 𝑝) is a left deformation retract for an ordinary functor 𝐹 : u� →
u�, then there exist a right Kan extension (𝐋𝐹 , 𝛼) of 𝛾u�𝐹 along 𝛾u� such
that (𝐋𝐹 )𝛾u� = 𝛾u�𝐹 𝑄 and 𝛼 = 𝛾u�𝐹 𝑝. (In particular, 𝛾u�𝐹 𝑄 is functorial
even if 𝑄 is not.)

• If (u�◦, 𝑅, 𝑖) is a right deformation retract for an ordinary functor 𝐺 : u� →
u�, then there exist a left Kan extension (𝐑𝐺, 𝛽) of 𝛾u�𝐺 along 𝛾u� such that
(𝐑𝐺)𝛾u� = 𝛾u�𝐺𝑅 and 𝛽 = 𝛾u�𝐺𝑖. (In particular, 𝛾u�𝐺𝑅 is functorial even if
𝑅 is not.)

Proof. The two claims are formally dual; we will prove the first version.
To simplify notation, we may assume without loss of generality that u� is a

minimal saturated relative category and that 𝛾u� = idu�. Henceforth, we write 𝛾
instead of 𝛾u� . First, observe that 𝛾𝑄 is functorial (even if 𝑄 is not) because each
𝛾𝑝𝑋 : 𝛾𝑄𝑋 → 𝛾𝑋 is an isomorphism, so (using axioms DR1 and DR3) there is
a unique functor �̃� : Ho u� → Ho u�◦ such that �̃�𝛾 = 𝛾𝑄. Let 𝛾◦ : u�◦ → Ho u�◦ be
the localising functor for u�◦. Since 𝐹 |u�◦ is a relative functor (by axiom DR4), we
must have 𝐹 |u�◦ = ̃𝐹 𝛾◦ for a unique functor ̃𝐹 : Ho u�◦ → u�. We may then define
𝐋𝐹 to be the functor ̃𝐹 �̃�. We define 𝛼 : (𝐋𝐹 )𝛾 ⇒ 𝐹 by taking 𝛼𝑋 = 𝐹 𝑝𝑋; by
axiom DR2, this is indeed a natural transformation.
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It remains to be shown that (𝐋𝐹 , 𝛼) is a right Kan extension of 𝐹 : u� → u�
along 𝛾 : u� → Ho u�. Let 𝐻 : Ho u� → u� be a functor and let 𝜑 : 𝐻𝛾 ⇒ 𝐹 be
any natural transformation. By restricting along the inclusion u�◦ → u�, we obtain
a natural transformation 𝜑|u�◦ : 𝐻|Ho u�◦𝛾◦ ⇒ 𝐹 |u�◦, so there is a unique natural
transformation �̃� : 𝐻|Ho u�◦ ⇒ ̃𝐹 such that �̃�𝛾◦ = 𝜑|u�◦ (by the 2-dimensional
universal property of Ho u�). Since 𝛾𝑝 is a natural isomorphism, there is then a
unique natural transformation �̄� : 𝐻 ⇒ 𝐋𝐹 such that �̄�𝛾𝑋 ∘ 𝐻𝛾𝑝𝑋 = �̃�𝛾◦𝑄𝑋
for all objects 𝑋 in u�. We then have 𝛼 ∙ �̄�𝛾 = 𝜑, and �̄� is the unique such nat-
ural transformation because the canonical functor Ho u�◦ → Ho u� is essentially
surjective on objects. ■

Definition 3.3.15. Let ℬ, u�, u�, ℰ be relative categories. Given a composable
pair of ordinary functors 𝐹 : u� → u� and 𝐺 : u� → ℰ, a lax left deformation
retract for (𝐺, 𝐹 ) consists of

• a left deformation retract (u�◦, 𝑄u�◦
, 𝑝u�◦

) for 𝐹 , and

• a left deformation retract (u�◦, 𝑄u�◦
, 𝑝u�◦

) for 𝐺,

such that (u�◦, 𝑄u�◦
, 𝑝u�◦

) is also a left deformation retract for 𝐺𝐹 as well. A strong
left deformation retract for (𝐺, 𝐹 ) is a lax left deformation retract as above such
that 𝐹 sends objects in u�◦ to objects in u�◦. We say a composable pair of functors
is laxly left deformable (resp. strongly left deformable) if it admits a lax left
deformation (resp. strong left deformation).

Dually, given a composable pair of ordinary functors 𝐹 : u� → ℬ and 𝐺 :
u� → u�, an oplax right deformation retract for (𝐹 , 𝐺) consists of

• a right deformation retract (u�◦, 𝑅u�◦
, 𝑖u�◦

) for 𝐹 , and

• a right deformation retract (u�◦, 𝑅u�◦
, 𝑖u�◦

) for 𝐺,

such that (u�◦, 𝑅u�◦
, 𝑖u�◦

) is a right deformation retract for 𝐺𝐹 as well. A strong
right deformation retract for (𝐹 , 𝐺) is an oplax right deformation retract as
above such that 𝐺 sends objects in u�◦ to objects in u�◦. We say a composable
pair of functors is oplaxly right deformable (resp. strongly left deformable) if
it admits an oplax right deformation (resp. strong right deformation).

Lemma 3.3.16.
• Let (u�◦, 𝑄u�◦

, 𝑝u�◦

) be a left deformation retract for 𝐹 : u� → u� and let
(u�◦, 𝑄u�◦

, 𝑝u�◦

) be a left deformation retract for 𝐺 : u� → ℰ. If 𝐹 maps
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objects in u�◦ to objects in u�◦, then (u�◦, 𝑄u�◦
, 𝑝u�◦

) is a left deformation
retract for 𝐺𝐹 : u� → ℰ.

Dually:

• Let (u�◦, 𝑅u�◦
, 𝑖u�◦

) be a right deformation retract for 𝐹 : u� → ℬ and let
(u�◦, 𝑅u�◦

, 𝑖u�◦

) be a right deformation retract for 𝐺 : u� → u�. If 𝐺 maps
objects in u�◦ to objects in u�◦, then (u�◦, 𝑄u�◦

, 𝑖u�◦

) is a right deformation
retract for 𝐹 𝐺 : u� → ℬ.

Proof. Our hypotheses imply that the restriction 𝐺𝐹 |u�◦ : u�◦ → ℰ is a relative
functor, so (u�◦, 𝑄u�◦

, 𝑝u�◦

) satisfies the conditions required to be a left deformation
retract for 𝐺𝐹 : u� → ℰ. ■

Theorem 3.3.17. Let u�, u�, and ℰ be relative categories, and let 𝛾u� : u� → Ho u�,
𝛾u� : u� → Ho u�, and 𝛾ℰ : ℰ → Ho ℰ be the respective localising functors.

(i) Let 𝐹 : u� → u� be an ordinary functor. If (u�◦, 𝑄, 𝑝) is any left deformation
retract for 𝐹 , then 𝐹 has a total left derived functor (𝐋𝐹 , 𝛼) such that
(𝐋𝐹 )𝛾u� = 𝛾u�𝐹 𝑄 and 𝛼 = 𝛾u�𝐹 𝑝.

(ii) Let 𝐹 , 𝐹 ′ : u� → u� be a parallel pair of ordinary functors. If (𝐋𝐹 , 𝛼) and
(𝐋𝐹 ′, 𝛼′) are total left derived functors for 𝐹 and 𝐹 ′ (respectively), then
for any natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′, there exists a unique natural
transformation 𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′ such that 𝛼′ ∙ (𝐋𝜑)𝛾u� = 𝛾u�𝜑 ∙ 𝛼.

(iii) Moreover, if (u�◦, 𝑄, 𝑝) is a left deformation retract for both 𝐹 and 𝐹 ′, then
(𝐋𝜑)𝛾u� = 𝛾u�𝜑𝑄.

(iv) Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be ordinary functors between relative cat-
egories. If (𝐋𝐹 , 𝛼𝐹 ), (𝐋𝐺, 𝛼𝐺), and (𝐋(𝐺𝐹 ), 𝛼𝐺𝐹 ) are total left derived
functors for 𝐹 , 𝐺, and 𝐺𝐹 (respectively), then there is a unique natural
transformation 𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ) such that 𝛼𝐺𝐹 ∙ 𝞵𝐺,𝐹 𝛾u� =
𝛼𝐺𝐹 ∙ (𝐋𝐺)𝛼𝐹 .

(v) If (𝐺, 𝐹 ) is moreover a strongly left deformable composable pair, then the
canonical comparison 𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ) is an isomorphism.
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Dually:

(i′) Let 𝐺 : u� → u� be an ordinary functor. If (u�◦, 𝑅, 𝑖) is any right deform-
ation retract for 𝐺, then 𝐺 has a total right derived functor (𝐑𝐺, 𝛽) such
that (𝐑𝐺)𝛾u� = 𝛾u�𝐺𝑅 and 𝛽 = 𝛾u�𝐺𝑖.

(ii′) Let 𝐺, 𝐺′ : u� → u� be a parallel pair of ordinary functors. If (𝐑𝐺, 𝛽) and
(𝐑𝐺′, 𝛽′) are total right derived functors for 𝐺 and 𝐺′ (respectively), then
for any natural transformation 𝜓 : 𝐺′ ⇒ 𝐺, there exists a unique natural
transformation 𝐑𝜓 : 𝐑𝐺′ ⇒ 𝐑𝐺 such that (𝐑𝜓)𝛾u� ∙ 𝛽′ = 𝛽 ∙ 𝛾u�𝜓 .

(iii′) Moreover, if (u�◦, 𝑅, 𝑖) is a right deformation retract for both 𝐺 and 𝐺′,
then (𝐑𝜓)𝛾u� = 𝛾u�𝜓𝑅.

(iv′) Let 𝐹 : u� → ℬ and 𝐺 : u� → u� be ordinary functors between re-
lative categories. If (𝐑𝐹 , 𝛽𝐹 ), (𝐑𝐺, 𝛽𝐺), and (𝐑(𝐹 𝐺), 𝛽𝐹 𝐺) are total
right derived functors for 𝐹 , 𝐺, and 𝐹 𝐺 (respectively), then there is a
unique natural transformation 𝞭𝐹 ,𝐺 : 𝐑(𝐹 𝐺) ⇒ (𝐑𝐹 )(𝐑𝐺) such that
𝞭𝐹 ,𝐺𝛾u� ∙ 𝛽𝐹 𝐺 = (𝐑𝐹 )𝛽𝐺 ∙ 𝛽𝐹 𝐺.

(v′) If (𝐹 , 𝐺) is moreover a strongly right deformable composable pair, then the
canonical comparison 𝞭𝐹 ,𝐺 : 𝐑(𝐹 𝐺) ⇒ (𝐑𝐹 )(𝐑𝐺) is an isomorphism.

Proof. (i). By proposition 3.3.14, the functor 𝛾u�𝐹 : u� → Ho u� has a right Kan
extension along 𝛾u� : u� → Ho u�, say (𝐋𝐹 , 𝛼), characterised by the announced
equations. We must verify that (𝐋𝐹 , 𝛼) is an absolute right Kan extension, i.e.
that (𝐻(𝐋𝐹 ), 𝐻𝛼) is a right Kan extension for any functor 𝐻 : Ho u� → ℰ
whatsoever.

It is clear that (u�◦, 𝑄, 𝑝) is also a left deformation retract for 𝐻𝛾u�𝐹 : u� → ℰ,
so the cited proposition yields a right Kan extension (𝐿′, 𝛼′) of 𝐻𝛾u�𝐹 along
𝛾u� . There is then a unique natural transformation 𝜑 : 𝐻(𝐋𝐹 ) ⇒ 𝐿′ such that
𝛼′ ∙ 𝜑𝛾u� = 𝐻𝛼, i.e. the following diagram commutes for all objects 𝑋 in u�:

𝐻(𝐋𝐹 )𝛾u�𝑋 𝐿′𝛾u�𝑋

𝐻𝛾u�𝐹 𝑋 𝐻𝛾u�𝐹 𝑋

𝐻𝛼𝑋

𝜑𝛾u�𝑋

𝛼′
𝑋

However, if �̃� is in u�◦, then 𝛼�̃� and 𝛼′
�̃� are isomorphisms, and so 𝜑𝛾u�𝑋 must be an

isomorphism as well. Since the canonical functor Ho u�◦ → Ho u� is essentially
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surjective on objects, 𝜑 : 𝐻(𝐋𝐹 ) ⇒ 𝐿′ must be a natural isomorphism. In
particular, (𝐻(𝐋𝐹 ), 𝐻𝛼) is indeed a right Kan extension.

(ii). Noting that 𝛾u�𝜑∙𝛼 is a natural transformation (𝐋𝐹 )𝛾u� ⇒ 𝛾u�𝐹 ′, the universal
property of (𝐋𝐹 ′, 𝛼′) yields a unique natural transformation 𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′

such that 𝛾u�𝜑 ∙ 𝛼 = 𝛼′ ∙ (𝐋𝜑)𝛾u� , as required.

(iii). We must have

𝛾u�𝐹 𝑝 ∙ (𝐋𝜑)𝛾u� = 𝛾u�𝜑 ∙ 𝛾u�𝐹 ′𝑝 = 𝛾u�𝐹 𝑝 ∙ 𝛾u�𝜑𝑄

as required.

(iv). Since 𝛼𝐺𝐹 ∙ (𝐋𝐺)𝛼𝐹 is a natural transformation (𝐋𝐺)(𝐋𝐹 )𝛾u� ⇒ 𝛾u�𝐺𝐹 , the
universal property of (𝐋(𝐺𝐹 ), 𝛼𝐺𝐹 ) yields the required natural transformation
𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ).

(v). Let (u�◦, 𝑄u�◦
, 𝑝u�◦

) and (u�◦, 𝑄u�◦
, 𝑝u�◦

) constitute a strong left deformation
retract for (𝐺, 𝐹 ), and let (𝐋𝐹 , 𝛼𝐹 ), (𝐋𝐺, 𝛼𝐺), (𝐋(𝐺𝐹 ), 𝛼𝐺𝐹 ) be the total left
derived functors for 𝐹 and 𝐺, respectively, as constructed in claim (i). Then,

𝛼𝐺𝐹 ∙ 𝛍𝐺,𝐹 𝛾u� = 𝛼𝐺𝐹 ∙ (𝐋𝐺)𝛼𝐹

= 𝛾ℰ𝐺𝑝u�◦
𝐹 ∙ 𝛾ℰ𝐺𝑄u�◦

𝐹 𝑝u�◦

= 𝛾ℰ𝐺𝐹 𝑝u�◦
∙ 𝛾ℰ𝐺𝑝u�◦

𝐹 𝑄u�◦

so we must have 𝛍𝐺,𝐹 𝛾u� = 𝛾ℰ𝐺𝑝u�◦
𝐹 𝑄u�◦

; but 𝛾ℰ𝐺𝑝u�◦
𝐹 𝑄u�◦

is a natural isomorph-
ism because 𝐹 sends objects in u�◦ to objects in u�◦ and 𝐺 preserves weak equi-
valences in u�◦, so we deduce that 𝛍𝐺,𝐹 is also a natural isomorphism (using the
fact that 𝛾u� : u� → Ho u� is bijective on objects). ■

Corollary 3.3.18. Let u� and u� be relative categories.

• If 𝐹 : u� → u� is a relative functor, then (Ho 𝐹 , id) is a total left derived
functor for 𝐹 .

• If 𝐺 : u� → u� is a relative functor, then (Ho 𝐺, id) is a total right derived
functor for 𝐺.

Proof. The two claims are formally dual; we will prove the first version.
By remark 3.3.7, the trivial right deformation retract is a right deforma-

tion retract for 𝐹 : u� → u�. Thus, Ho 𝐹 : Ho u� → Ho u� together with
id : (Ho 𝐹 )𝛾u� ⇒ 𝛾u�𝐹 constitute a total left derived functor for 𝐹 . ■
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Proposition 3.3.19. Let u� be a relative category.

• If (u�◦, 𝑄, 𝑝) is a left deformation retract of u� and u� is a subcategory of
u� such that weq u�◦ ⊆ u� ⊆ weq u�, then the functor u�[u�−1] → Ho u�
induced by the inclusion u� ↪ weq u� has a fully faithful left adjoint.

• If (u�◦, 𝑅, 𝑖) is a right deformation retract of u� and u� is a subcategory
of u� such that weq u�◦ ⊆ u� ⊆ weq u�, then the functor u�[u�−1] → Ho u�
induced by the inclusion u� ↪ weq u� has a fully faithful right adjoint.

Proof. The two claims are formally dual; we will prove the first version.
Consider the localising functor 𝛾u� : u� → u�[u�−1]. Since weq u�◦ ⊆ u� ,

(u�◦, 𝑄, 𝑝) is a left deformation retract for 𝛾u� , so (by theorem 3.3.17) there ex-
ists an absolute right Kan extension (𝐹 , 𝛼) of 𝛾u� : u� → u�[u�−1] along the
localising functor 𝛾 : u� → Ho u�. Since 𝛾 factors through 𝛾u� , say 𝛾 = 𝐺𝛾u� ,
the 2-dimensional universal property of u�[u�−1] yields a natural transforma-
tion : 𝐹 𝐺 ⇒ idu�[u�−1] such that 𝛾u� = 𝛼; similar arguments show that
(𝐹 , ) is an absolute right Kan extension of id : u�[u�−1] → u�[u�−1] along
𝐺 : u�[u�−1] → Ho u�, so 𝐹 is a left adjoint for 𝐺 with counit , by proposi-
tion a.5.21.

It remains to be shown that 𝐹 : Ho u� → u�[u�−1] is fully faithful. Consider
the natural transformation 𝐺 : 𝐺𝐹 𝐺 ⇒ 𝐺. The total derived functor theorem
says 𝛾u� : 𝐹 𝐺𝛾u� ⇒ 𝛾u� is given by 𝛾u�𝑝, so 𝐺 𝛾u� is given by 𝐺𝛾u�𝑝, which
is a natural isomorphism. Since 𝛾u� is bijective on objects, we deduce that 𝐺
itself is a natural isomorphism. Thus, 𝐺 : 𝐺 ⇒ 𝐺𝐹 𝐺 is a natural isomorphism
(by the right triangle identity), and since 𝐺 is bijective on objects, we may use
proposition a.1.3 to see that 𝐹 is fully faithful. ■

Definition 3.3.20. The 2-category of small left deformation retracts is defined
as follows:

• The objects are pairs (u�, u�◦, 𝑄u�◦
, 𝑝u�◦

) where u� is a small relative category
and (u�◦, 𝑄u�◦

, 𝑝u�◦

) is a left deformation retract of u�.

• A 1-morphism 𝐹 : (u�, u�◦, 𝑄u�◦
, 𝑝u�◦

) → (u�, u�◦, 𝑄u�◦
, 𝑝u�◦

) is an ordinary
functor 𝐹 : u� → u�, such that (u�◦, 𝑄u�◦

, 𝑝u�◦

) is a left deformation retract
for 𝐹 , and 𝐹 sends objects in u�◦ to objects in u�◦.

• The 2-morphisms are ordinary natural transformations.
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• All compositions and identities are inherited from 2-category of small cat-
egories.

We write 𝔏𝔇𝔢𝔣 for this 2-category, and we write LDefFun for its hom-sets.
The 2-category of small right deformation retracts is defined dually:

• The objects are pairs (u�, u�◦, 𝑅u�◦
, 𝑖u�◦

) where u� is a small relative category
and (u�◦, 𝑅u�◦

, 𝑖u�◦

) is a right deformation retract of u�.

• A 1-morphism 𝐺 : (u�, u�◦, 𝑅u�◦
, 𝑖u�◦

) → (u�, u�◦, 𝑅u�◦
, 𝑖u�◦

) is an ordinary
functor 𝐺 : u� → u�, such that (u�◦, 𝑅u�◦

, 𝑖u�◦

) is a right deformation retract
for 𝐺, and 𝐺 sends objects in u�◦ to objects in u�◦.

• The 2-morphisms are ordinary natural transformations.

• All compositions and identities are inherited from 2-category of small cat-
egories.

We write ℜ𝔇𝔢𝔣 for this 2-category, and we write RDefFun for its hom-sets.

Remark 3.3.21. The duality principle for deformation retracts can be formalised
as follows: there is a 2-functor 𝔏𝔇𝔢𝔣co → ℜ𝔇𝔢𝔣 that sends (u�, u�◦, 𝑄u�◦

, 𝑝u�◦

)
to its opposite (u� op, (u�◦)op, (𝑄u�◦

)
op, (𝑝u�◦

)
op

), and it has an evident strict in-
verse ℜ𝔇𝔢𝔣co → 𝔏𝔇𝔢𝔣. Note that these two 2-functors reverse the direction
of 2-morphisms but preserve the direction of 1-morphisms!

Corollary 3.3.22. There are two pseudofunctors, 𝐋 and 𝐑, where:

• 𝐋 is a pseudofunctor 𝔏𝔇𝔢𝔣 → ℭ𝔞𝔱 that sends an object (u�, u�◦, 𝑄u�◦
, 𝑝u�◦

)
to the homotopy category Ho u�, a 1-morphism 𝐹 : (u�, u�◦, 𝑄u�◦

, 𝑝u�◦

) →
(u�, u�◦, 𝑄u�◦

, 𝑝u�◦

) to its total left derived functor 𝐋𝐹 : Ho u� → Ho u�,
and a 2-morphism 𝜑 : 𝐹 ⇒ 𝐹 ′ to the derived natural transformation
𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′, and 𝐋 preserves identity 1-morphisms strictly.

• 𝐑 is a pseudofunctor ℜ𝔇𝔢𝔣 → ℭ𝔞𝔱 that sends an object (u�, u�◦, 𝑅u�◦
, 𝑖u�◦

)
to the homotopy category Ho u�, a 1-morphism 𝐺 : (u�, u�◦, 𝑅u�◦

, 𝑖u�◦

) →
(u�, u�◦, 𝑅u�◦

, 𝑖u�◦

) to its total right derived functor 𝐑𝐺 : Ho u� → Ho u�,
and a 2-morphism 𝜓 : 𝐺′ ⇒ 𝐺 to the derived natural transformation
𝐑𝜓 : 𝐑𝐺′ ⇒ 𝐑𝐺, and 𝐑 preserves identity 1-morphisms strictly.
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• 𝐋 and 𝐑 are compatible with the duality principle, in the sense that the
following diagrams commute (strictly):

𝔏𝔇𝔢𝔣co ℭ𝔞𝔱co

ℜ𝔇𝔢𝔣 ℭ𝔞𝔱

(−)op

𝐋co

(−)op

𝐑

ℜ𝔇𝔢𝔣co ℭ𝔞𝔱co

𝔏𝔇𝔢𝔣 ℭ𝔞𝔱

(−)op

𝐑co

(−)op

𝐋

Proof. The main claims follow from theorem 3.3.17; the only thing left to check
is that the collection of 2-isomorphisms 𝞵 and 𝞭 satisfy the coherence laws for
pseudofunctors; that is, we should show that the following diagrams commute:

(𝐋𝐻)(𝐋𝐺)(𝐋𝐹 ) (𝐋𝐻)𝐋(𝐺𝐹 )

𝐋(𝐻𝐺)(𝐋𝐹 ) 𝐋(𝐻𝐺𝐹 )

𝞵𝐻,𝐺(𝐋𝐹 )

(𝐋𝐻)𝞵𝐺,𝐹

𝞵𝐻,𝐺𝐹

𝞵𝐻𝐺,𝐹

𝐑(𝐹 𝐺𝐻) (𝐑𝐹 )𝐑(𝐺𝐻)

𝐑(𝐹 𝐺)(𝐑𝐻) (𝐑𝐹 )(𝐑𝐺)(𝐑𝐻)

𝞭𝐹 𝐺,𝐻

𝞭𝐹 ,𝐺𝐻

(𝐑𝐹 )𝞭𝐺,𝐻

𝞭𝐹 ,𝐺(𝐑𝐻)

However, using the explicit formulae for 𝝻 and 𝝳 in the proof of the theorem, it
is easy to see that these diagrams do indeed commute. ■

Definition 3.3.23. A deformable adjunction between two relative categories
is an ordinary adjunction where the left adjoint is left deformable and the right
adjoint is right deformable.

Theorem 3.3.24. Let u� and u� be relative categories and let 𝐹 ⊣ 𝐺 : u� → u�
be an adjunction of ordinary categories, with unit : idu� ⇒ 𝐺𝐹 and counit

: 𝐹 𝐺 ⇒ idu�.

(i) If 𝐹 ⊣ 𝐺 : u� → u� is a deformable adjunction, then it admits a derived
adjunction.

(ii) Let 𝐹 ′ ⊣ 𝐺′ : u�′ → u�′ be another adjunction, with unit ′ and counit ′,
and let 𝐻 : u�′ → u� and 𝐾 : u�′ → u� be relative functors. If

• (u�◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 ,

380



3.3. Quillen–Verdier derived functors

• (u�′◦, 𝑄′, 𝑝′) is a left deformation retract for 𝐹 ′,

• 𝐻 sends objects in u�′◦ to objects in u�◦,

• (u�◦, 𝑅, 𝑖) is a right deformation retract for 𝐺,

• (u�′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′, and

• 𝐾 sends objects in u�′◦ to objects in u�◦,

then for any conjugate pair of natural transformations,

𝜑 : 𝐹 𝐻 ⇒ 𝐾𝐹 ′ 𝜓 : 𝐻𝐺′ ⇒ 𝐺𝐾

the derived natural transformations

𝐋𝜑 : (𝐋𝐹 )(Ho 𝐻) ⇒ (Ho 𝐾)(𝐋𝐹 ′) 𝐑𝜓 : (Ho 𝐾)(𝐑𝐺′) ⇒ (𝐑𝐺)(Ho 𝐾)

also constitute a conjugate pair.

(iii) Let 𝐹 ′ ⊣ 𝐺′ : u�′ → u� be another adjunction, with unit ′ and counit ′. If
(𝐹 ′, 𝐹 ) is strongly left deformable and (𝐺, 𝐺′) is strongly right deformable,
then the three derived adjunctions

𝐋𝐹 ⊣ 𝐑𝐺 : Ho u� → Ho u�
𝐋𝐹 ′ ⊣ 𝐑𝐺′ : Ho u�′ → Ho u�

𝐋(𝐹 ′𝐹 ) ⊣ 𝐑(𝐺𝐺′) : Ho u�′ → Ho u�

make (𝞵𝐹 ′,𝐹 , 𝞭𝐺,𝐺′) a conjugate pair of natural transformations, i.e.

(𝞭𝐺,𝐺′𝐋(𝐹 ′𝐹 )) ∙ ″̄ = ((𝐑𝐺)(𝐑𝐺′)𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ′̄(𝐋𝐹 ) ∙ ̄
″̄ ∙ (𝞵𝐹 ′,𝐹 𝐑(𝐺𝐺′)) = ′̄ ∙ (𝐋𝐹 ′) (̄𝐑𝐺′) ∙ ((𝐋𝐹 )(𝐋𝐹 ′)𝞭𝐺,𝐺′)

where ″̄ and ″̄ are the unit and counit for 𝐋(𝐹 ′𝐹 ) ⊣ 𝐑(𝐺𝐺′).

Proof. (i). We appeal to theorems 3.3.5 and 3.3.17.

(ii). Recall the following characterisations of 𝐋𝜑 and 𝐑𝜓 :

𝛾u�𝐾𝐹 ′𝑝′ ∙ (𝐋𝜑)𝛾u�′ = 𝛾u�𝜑 ∙ 𝛾u�𝐹 𝑝𝐻
(𝐑𝜓)𝛾u�′ ∙ 𝛾u�𝐻𝐺′𝑖′ = 𝛾u�𝐺𝑖𝐾 ∙ 𝛾u�𝜓

We wish to show that these equations hold:

(̄Ho 𝐾) ∙ (𝐋𝐹 )(𝐑𝜓) = (Ho 𝐾) ′̄ ∙ (𝐋𝜑)(𝐑𝐺′)(1)

381



III. Homotopical categories

(𝐑𝐺)(𝐋𝜑) ∙ (̄Ho 𝐻) = (𝐑𝜓)(𝐋𝐹 ′) ∙ (Ho 𝐻) ′̄(2)

By proposition a.1.5, it suffices to show that equation (1) is satisfied, and since the
canonical functor Ho u�′◦ → Ho u�′ is essentially surjective on objects, equation
(1) holds if and only if the following equation holds for all ̂𝐴 in u�′◦:

(3) �̄�u�𝐾 ̂𝐴 ∘ (𝐋𝐹 )(𝐑𝜓)𝛾u�′ ̂𝐴 = (Ho 𝐾) ′̄
𝛾u�′ ̂𝐴 ∘ (𝐋𝜑)𝛾u�′𝐺′𝑅′ ̂𝐴

We observe that 𝐺′𝑖′
̂𝐴
: 𝐺′ ̂𝐴 → 𝐺′𝑅′ ̂𝐴 is a weak equivalence in u�′ (because

(u�′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′), so 𝛾u�𝐻𝐺′𝑖′
̂𝐴 is invertible, and

we must have

(𝐑𝜓)𝛾u�′ ̂𝐴 = 𝛾u�𝐺𝑖𝐾 ̂𝐴 ∘ 𝛾u�𝜓 ̂𝐴 ∘ (𝛾u�𝐻𝐺′𝑖′
̂𝐴)

−1

and hence,

(𝐋𝐹 )(𝐑𝜓)𝛾u�′ ̂𝐴 = 𝛾u�𝐹 𝑄𝐺𝑖𝐾 ̂𝐴 ∘ 𝛾u�𝐹 𝑄𝜓 ̂𝐴 ∘ (𝛾u�𝐹 𝑄𝐻𝐺′𝑖′
̂𝐴)

−1

therefore:

�̄�u�𝐾 ̂𝐴 ∘ (𝐋𝐹 )(𝐑𝜓)𝛾u�′ ̂𝐴 = 𝛾u� 𝐾 ̂𝐴 ∘ 𝛾u�𝐹 𝑝𝐺 ̂𝐴 ∘ 𝛾u�𝐹 𝑄𝜓 ̂𝐴 ∘ (𝛾u�𝐹 𝑄𝐻𝐺′𝑖′
̂𝐴)

−1

= 𝛾u� 𝐾 ̂𝐴 ∘ 𝛾u�𝐹 𝜓 ̂𝐴 ∘ 𝛾u�𝐹 𝑝𝐻𝐺′ ̂𝐴 ∘ (𝛾u�𝐹 𝑄𝐻𝐺′𝑖′
̂𝐴)

−1

On the other hand,

′̄
𝛾u�′ ̂𝐴 = 𝛾u�′

′
̂𝐴 ∘ 𝛾u�′𝐹 ′𝑝′

𝐺′ ̂𝐴 ∘ (𝛾u�′𝐹 ′𝑄′𝐺′𝑖′
̂𝐴)

−1

and so,

(Ho 𝐾) ′̄
𝛾u�′ ̂𝐴 ∘ (𝐋𝜑)𝛾u�′𝐺′𝑅′ ̂𝐴

= 𝛾u�𝐾 ′
̂𝐴 ∘ 𝛾u�𝐾𝐹 ′𝑝′

𝐺′ ̂𝐴 ∘ (𝛾u�𝐾𝐹 ′𝑄′𝐺′𝑖′
̂𝐴)

−1 ∘ (𝐋𝜑)𝛾u�′𝐺′𝑅′ ̂𝐴

= 𝛾u�𝐾 ′
̂𝐴 ∘ 𝛾u�𝐾𝐹 ′𝑝′

𝐺′ ̂𝐴 ∘ (𝐋𝜑)𝛾u�′𝐺′ ̂𝐴 ∘ (𝛾u�𝐹 𝑄𝐻𝐺′𝑖′
̂𝐴)

−1

= 𝛾u�𝐾 ′
̂𝐴 ∘ 𝛾u�𝜑𝐺′ ̂𝐴 ∘ 𝛾u�𝐹 𝑝𝐻𝐺′ ̂𝐴 ∘ (𝛾u�𝐹 𝑄𝐻𝐺′𝑖′

̂𝐴)
−1

but 𝐾 ̂𝐴 ∘ 𝐹 𝜓 ̂𝐴 = 𝐾 ′
̂𝐴 ∘ 𝜑𝐺′ ̂𝐴 by hypothesis, so equation (3) indeed holds.
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(iii). Suppose

• (u�◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 ,

• (u�′◦, 𝑄′, 𝑝′) is a left deformation retract for 𝐹 ′,

• 𝐹 sends objects in u�◦ to objects in u�′◦,

• (u�◦, 𝑅, 𝑖) is a right deformation retract for 𝐺,

• (u�′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′, and

• 𝐺′ sends objects in u�′◦ to objects in u�◦,

and recall that the comparison isomorphisms are characterised by the following
equations:

𝞵𝐹 ′,𝐹 𝛾u� = 𝛾u�′𝐹 ′𝑝′𝐹 𝑄 𝞭𝐺,𝐺′𝛾u�′ = 𝛾u�𝐺𝑖𝐺′𝑅′

Thus, (((𝐑𝐺)(𝐑𝐺′) ∘ 𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ′̄(𝐋𝐹 ) ∙ )̄𝛾u� expands to

𝛾u�𝐺𝑅𝐺′𝑅′𝐹 ′𝑝′𝐹 𝑄

∙ 𝛾u�(𝐺𝑅𝐺′𝑖′𝐹 ′𝑄′𝐹 𝑄 ∙ 𝐺𝑅 ′𝑄′𝐹 𝑄) ∙ (𝛾u�𝐺𝑅𝑝′𝐹 𝑄)
−1

∙ 𝛾u�(𝐺𝑖𝐹 𝑄 ∙ 𝑄) ∙ (𝛾u�𝑝)
−1

and a straightforward calculation then shows

((𝞭−1
𝐺,𝐺′ ∘ 𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ′̄(𝐋𝐹 ) ∙ )̄𝛾u�

= 𝛾u�𝐺𝑖𝐺′𝑅′𝐹 ′𝐹 𝑄 ∙ 𝛾u�(𝐺𝐺′𝑖′𝐹 ′𝐹 𝑄 ∙ 𝐺 𝐹 𝑄 ∙ 𝑄) ∙ (𝛾u�𝑝)
−1

but the RHS is precisely the definition of ((𝞭𝐺,𝐺′𝐋(𝐹 ′𝐹 )) ∙ ″̄)𝛾u� . The dual
calculation proves the other equation. ■

Corollary 3.3.25. Let u�, u�′, u�, u�′ be relative categories, let 𝐹 ⊣ 𝐺 : u� → u�
and 𝐹 ′ ⊣ 𝐺′ : u�′ → u�′ be two adjunctions of ordinary categories, and let
𝐻 : u�′ → u� and 𝐾 : u�′ → u� be homotopical functors. Suppose we have a
conjugate pair of natural transformations as in the diagrams below:

(L)
u�′ u�

u�′ u�

𝐹 ′

𝐻

𝐹

𝐾

𝜑

u�′ u�

u�′ u�

𝐺′

𝐾

𝐺

𝐻

𝜓 (R)
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Assume the following hypotheses:

• (u�◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 .

• (u�′◦, 𝑄′, 𝑝′) is a left deformation retract for 𝐹 ′.

• 𝐻 sends objects in u�′◦ to objects in u�◦.

• (u�◦, 𝑅, 𝑖) is a right deformation retract for 𝐺.

• (u�′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′.

• 𝐾 sends objects in u�′◦ to objects in u�◦.

Then, considering the derived natural transformations 𝐋𝜑 and 𝐑𝜑:

(L′)
Ho u�′ Ho u�

Ho u�′ Ho u�

𝐋𝐹 ′

Ho 𝐻

𝐋𝐹

Ho 𝐾

𝐋𝜑

Ho u�′ Ho u�

Ho u�′ Ho u�

𝐑𝐺′

Ho 𝐾

𝐑𝐺

Ho 𝐻

𝐑𝜓 (R′)

• If diagram (R) satisfies the left Beck–Chevalley condition, then so does
(R′).

• If diagram (L) satisfies the right Beck–Chevalley condition, then so does
(L′).

Proof. The theorem says that 𝐋𝜑 and 𝐑𝜓 constitute a conjugate pair of natural
transformations, and by theorem 3.3.17 it is clear that 𝐋𝜑 (resp. 𝐑𝜓) is a natural
isomorphism if 𝜑 (resp. 𝜓) is a natural isomorphism. ■

Proposition 3.3.26. Let ℬ, u�, u�, ℰ be relative categories.

• Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be functors and suppose (𝐺, 𝐹 ) is laxly
left deformable. If the canonical comparison 𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 )
is a natural isomorphism and ℰ is a saturated homotopical category, then
(𝐺, 𝐹 ) is a left deformable composable pair.

Dually:

• Let 𝐹 : u� → ℬ and 𝐺 : u� → u� be functors and suppose (𝐹 , 𝐺) is
oplaxly right deformable. If the canonical comparison 𝞭𝐹 ,𝐺 : 𝐑(𝐹 𝐺) ⇒
(𝐑𝐹 )(𝐑𝐺) is a natural isomorphism and u� is a saturated homotopical
category, then (𝐹 , 𝐺) is a left deformable composable pair.
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Proof. Let (u�◦, 𝑄u�◦
, 𝑝u�◦

) and (u�◦, 𝑄u�◦
, 𝑝u�◦

) constitute a lax left deformation
retract for (𝐺, 𝐹 ). By theorem 3.3.17, we may assume without loss of generality
that (𝐋𝐹 )𝛾u� = 𝛾u�𝐹 𝑄, (𝐋𝐺)𝛾u� = 𝛾u�𝐺𝑄u�◦

, and 𝞵𝐺,𝐹 𝛾u� = 𝛾u�𝐺𝑝u�◦
𝐹 𝑄u�◦

. Our
hypothesis says 𝞵𝐺,𝐹 is a natural isomorphism and ℰ is a saturated homotopical
category, so the morphisms 𝐺𝑝u�◦

𝐹 𝑄u�◦𝑋 : 𝐺𝑄u�◦
𝐹 𝑄u�◦

𝑋 ⇒ 𝐺𝐹 𝑄u�◦
𝑋 are weak

equivalences, for all objects 𝑋 in u�.
Now, let �̃� be an object in u�◦. The following diagram commutes,

𝐺𝑄u�◦
𝐹 𝑄u�◦

�̃� 𝐺𝐹 𝑄u�◦
�̃�

𝐺𝑄u�◦
𝐹 �̃� 𝐺𝐹 �̃�

𝐺𝑄u�◦
𝐹 𝑝u�◦

�̃�

𝐺𝑝u�◦

𝐹 𝑄u�◦�̃�

𝐺𝐹 𝑝u�◦
�̃�

𝐺𝑝u�◦
𝐹 �̃�

and since (u�◦, 𝑄u�◦
, 𝑝u�◦

) is a left deformation retract for both 𝐹 and 𝐺𝐹 , it follows
that the downward-pointing arrows in the above diagrams are weak equivalences
in ℰ; so using the 2-out-of-3 property of weq ℰ and the fact that 𝐺𝑝u�◦

𝐹 𝑄u�◦�̃� is a weak
equivalence, we deduce that 𝐺𝑝u�◦

𝐹 �̃� is a weak equivalence in ℰ. Thus, recalling
proposition 3.3.10, we obtain a left deformation retract (u�◦

𝐺, 𝑄u�◦
, 𝑝u�◦

) for 𝐺
such that 𝐹 sends every object in u�◦ to an object in u�◦

𝐺, and so (𝐺, 𝐹 ) is indeed
strongly left deformable. ■

Corollary 3.3.27. Let u�, u�, and ℰ be relative categories, and let

𝐹! ⊣ 𝐹 ∗ : u� → u� 𝐺! ⊣ 𝐺∗ : ℰ → u�

be adjunctions of ordinary categories. If u� and ℰ are saturated homotopical
categories, then the following are equivalent:

(i) (𝐺!, 𝐹!) is strongly left deformable and (𝐹 ∗, 𝐺∗) is strongly right deform-
able.

(ii) (𝐺!, 𝐹!) is laxly left deformable and (𝐹 ∗, 𝐺∗) is strongly right deformable.

(iii) (𝐺!, 𝐹!) is strongly left deformable and (𝐹 ∗, 𝐺∗) is oplaxly right deform-
able.

Proof. Theorem 3.3.24 says (𝞵𝐺!,𝐹!
, 𝞭𝐹 ∗,𝐺∗) is a conjugate pair of natural trans-

formations, and the pasting lemma (a.1.11) implies 𝞵𝐺!,𝐹!
is a natural isomorph-

ism if and only if 𝞭𝐹 ∗,𝐺∗ is a natural isomorphism, so the equivalence of the three
statements follows from the proposition above. ■
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Proposition 3.3.28. Let u� and u� be two relative categories, let 𝐹 ⊣ 𝐺 : u� → u�
be an adjunction of ordinary categories with unit and counit , let (u�◦, 𝑄, 𝑝) be
a left deformation retract for 𝐹 , and let (u�◦, 𝑅, 𝑖) be a right deformation retract
for 𝐺. Consider the following statements:

(i) For all objects �̃� in u�◦ and all objects ̂𝐵 in u�◦, if 𝐹 �̃� → ̂𝐵 is a weak
equivalence in u�, then its right adjoint transpose �̃� → 𝐺 ̂𝐵 is a weak
equivalence in u�.

(ii) For all objects 𝑋 in u�, The morphism 𝐺𝑖𝐹 𝑄𝑋 ∘ 𝑄𝑋 : 𝑄𝑋 → 𝐺𝑅𝐹 𝑄𝑋 is
a weak equivalence in u�.

(iii) The derived unit ̄ : idHo u� ⇒ (𝐑𝐺)(𝐋𝐹 ) is a natural isomorphism.

(i′) For all objects �̃� in u�◦ and all objects ̂𝐵 in u�◦, if �̃� → 𝐺 ̂𝐵 is a weak equi-
valence in u�, then its left adjoint transpose 𝐹 �̃� → ̂𝐵 is a weak equivalence
in u�.

(ii′) For all objects 𝐵 in u�, the morphism 𝑅𝐵 ∘ 𝐹 𝑝𝐺𝑅𝐵 : 𝐹 𝑄𝐺𝑅𝐵 ⇒ 𝑅𝐵 is a
weak equivalence in u�.

(iii′) The derived counit ̄ : (𝐋𝐹 )(𝐑𝐺) ⇒ idHo u� is a natural isomorphism.

We have the implications (i) ⇒ (ii) ⇒ (iii); if weq u� has the 2-out-of-3 property,
then (ii) ⇒ (i); and if u� is a saturated homotopical category, then (iii) ⇒ (ii).
Dually, (i′) ⇒ (ii′) ⇒ (iii′); if weq u� has the 2-out-of-3 property, then (ii′) ⇒
(i′); and if u� is a saturated homotopical category, then (iii′) ⇒ (ii′).

Proof. (i) ⇒ (ii). We have a weak equivalence 𝑖𝐹 𝑄𝑋 : 𝐹 𝑄𝑋 → 𝑅𝐹 𝑄𝑋, and 𝑄𝑋
is an object in u�◦, so by the hypothesis, its right adjoint transpose 𝐺𝑖𝐹 𝑄𝑋 ∘ 𝑄𝑋
is also a weak equivalence.

(ii) ⇒ (iii). The derived unit is given by �̄�u� = 𝛾u�(𝐺𝑖𝐹 𝑄 ∙ 𝑄) ∘ (𝛾u�𝑝)
−1, which

is certainly a natural isomorphism if 𝐺𝑖𝐹 𝑄𝑋 ∘ 𝑄𝑋 is a weak equivalence for all
𝑋.
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(ii) ⇒ (i). Assume weq u� has the 2-out-of-3 property. Given �̃� in u�◦, the diagram
below commutes,

𝑄�̃� 𝐺𝐹 𝑄�̃� 𝐺𝑅𝐹 𝑄�̃�

�̃� 𝐺𝐹 �̃� 𝐺𝑅𝐹 �̃�

𝑝�̃�

𝑄�̃� 𝐺𝑖𝐹 𝑄�̃�

𝐺𝑅𝐹 𝑝�̃�

�̃� 𝐺𝑖𝐹 �̃�

but the top row and the two vertical arrows are weak equivalences in u�, so the
bottom row must be a weak equivalence as well, by the 2-out-of-3 property.

Let 𝑔 : 𝐹 �̃� → ̂𝐵 be a weak equivalence in u�, and let 𝑓 = 𝐺𝑔 ∘ �̃� be its
right adjoint transpose in u�. We know 𝐺|u�◦ : u�◦ → u� is a relative functor, so
𝐺𝑅𝑔 : 𝐺𝑅𝐹 �̃� → 𝐺𝑅 ̂𝐵 is a weak equivalence in u�; but

𝐺𝑖 ̂𝐵 ∘ 𝑓 = 𝐺𝑖 ̂𝐵 ∘ 𝐺𝑔 ∘ �̃� = 𝐺𝑅𝑔 ∘ (𝐺𝑖𝐹 �̃� ∘ �̃�)

and we know 𝐺𝑖 ̂𝐵 : 𝐺 ̂𝐵 → 𝐺𝑅 ̂𝐵 is a weak equivalence in u�, so by the 2-out-of-3
property again, 𝑓 must be a weak equivalence in u�.

(iii) ⇒ (ii). Now assume u� is a saturated homotopical category. If ̄ is a natural
isomorphism, then each 𝛾u�(𝐺𝑖𝐹 𝑄 ∙ 𝑄) must also be a natural isomorphism, and
so each 𝐺𝑖𝐹 𝑄𝑋 ∘ 𝑄𝑋 is a weak equivalence, by the saturation hypothesis. ■

Corollary 3.3.29. With notation as above, suppose the Quillen equivalence
condition is satisfied:

• For all objects �̃� in u�◦ and all objects ̂𝐵 in u�◦, a morphism 𝐹 �̃� → ̂𝐵 is a
weak equivalence in u� if and only if its right adjoint transpose �̃� → 𝐺 ̂𝐵
is a weak equivalence in u�.

Then the derived adjunction is an adjoint equivalence of categories. ■

3.4 DHKS derived functors
Prerequisites. §§3.1, 3.2, 3.3.

Notice that in theorem 3.3.17, we constructed derived functors by restricting
to a relatively equivalent full subcategory on which the functor respects weak
equivalences. This suggests that, by strengthening the definition of ‘deformation
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retract’, we may be able to construct derived functors without first passing to the
homotopy category.

In this section we follow [DHKS, Ch. VII].

Definition 3.4.1. Let u� and u� be relative categories. A functorial left deform-
ation retract for an ordinary functor 𝐹 : u� → u� is a triple (u�◦, 𝑄, 𝑝) where

• u�◦ is a full subcategory of u� with the induced relative subcategory struc-
ture,

• 𝑄 : u� → u� is a relative functor, and

• 𝑝 : 𝑄 ⇒ idu� is a natural weak equivalence,

and these data are required to have the following properties:

• The restriction 𝐹 |u�◦ : u�◦ → u� is a relative functor.

• For all objects 𝑋 in u�, the object 𝑄𝑋 is in u�◦.

An ordinary functor 𝐹 : u� → u� is functorially left deformable if there exists a
functorial left deformation retract for 𝐹 .

Dually, a functorial right deformation retract for an ordinary functor 𝐺 :
u� → u� is a triple (u�◦, 𝑅, 𝑖) where

• u�◦ is a full subcategory of u� with the induced relative subcategory struc-
ture,

• 𝑅 : u� → u� is a relative functor, and

• 𝑖 : idu� ⇒ 𝑅 is a natural weak equivalence,

and these data are required to have the following properties:

• The restriction 𝐺|u�◦ : u�◦ → u� is a relative functor.

• For all objects 𝐴 in u�, the object 𝑅𝐴 is in u�◦.

An ordinary functor 𝐺 : u� → u� is functorially right deformable if there exists
a functorial right deformation retract for 𝐺.

Remark 3.4.2. Every relative functor is both functorially left deformable and
functorially right deformable, with trivial functorial left and right deformation
retracts.
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3.4. DHKS derived functors

Remark. The definition above is the one found in [DHKS, §40] under the name
‘deformation retract’; they do not consider the non-functorial version.

Lemma 3.4.3. Let u� and u� be relative categories.

• If (u�◦, 𝑄, 𝑝) is a functorial left deformation retract for an ordinary functor
𝐹 : u� → u�, then (u�◦, 𝑄, 𝑝) is also a left deformation retract for 𝐹 .

• If (u�◦, 𝑅, 𝑖) is a functorial right deformation retract for an ordinary functor
𝐺 : u� → u�, then (u�◦, 𝑅, 𝑖) is also a right deformation retract for 𝐺.

Proof. The two claims are formally dual; we will prove the first version.
It is clear that axioms DR1, DR2, and DR4 are satisfied, so we need only

check axiom DR3. For this, we simply observe that the inclusion u�◦ ↪ u� and
the relative functor 𝑄 : u� → u�◦ (together with the natural weak equivalence
𝑝 : 𝑄 ⇒ idu�) constitute a relative equivalence of relative categories; thus, pro-
position 3.1.27 implies the canonical functor Ho u�◦ → Ho u� is fully faithful, as
required. ■

Remark 3.4.4. Conversely, by replacing a relative category with its homotopy
category, we may obtain functorial left (resp. right) deformation retracts from
ordinary left (resp. right) deformation retracts.

Proposition 3.4.5. Let u� and u� be relative categories.

• Let 𝑄 : u� → u� be a relative functor, let 𝑝 : 𝑄 ⇒ idu� be a natural weak
equivalence, and let u�◦ be the full subcategory of u� spanned by the image
of 𝑄. If weq u� has the 2-out-of-3 property in u� and 𝐹 : u� → u� is a
functor such that 𝐹 𝑄 is a relative functor and 𝐹 𝑞𝑄 : 𝐹 𝑄𝑄 ⇒ 𝐹 𝑄 is a
natural weak equivalence, then (u�◦, 𝑄, 𝑝) is a functorial left deformation
retract for 𝐹 .

Dually:

• Let 𝑅 : u� → u� be a relative functor, let 𝑖 : idu� ⇒ 𝑅 be a natural weak
equivalence, and let u�◦ be the full subcategory of u� spanned by the image
of 𝑅. If weq u� has the 2-out-of-3 property in u� and 𝐺 : u� → u� is a functor
such that 𝐺𝑅 is a relative functor and 𝐺𝑖𝑅 : 𝐺𝑅 ⇒ 𝐺𝑅𝑅 is a natural
weak equivalence, then (u�◦, 𝑅, 𝑖) is a functorial right deformation retract
for 𝐺.
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Proof. Let 𝑓 : 𝑄𝑋 → 𝑄𝑌 be a weak equivalence in u�◦. By naturality, the
following diagram commutes:

𝐹 𝑄𝑄𝑋 𝐹 𝑄𝑄𝑌

𝐹 𝑄𝑋 𝐹 𝑄𝑌

𝐹 𝑝𝑄𝑋

𝐹 𝑄𝑓

𝐹 𝑝𝑄𝑌

𝐹 𝑓

We know 𝐹 𝑄𝑓 , 𝐹 𝑝𝑄𝑋 , and 𝐹 𝑝𝑄𝑌 are weak equivalences in u�, so using the
2-out-of-3 property of weq u�, we deduce that 𝐹 𝑓 is also a weak equivalence in
u�. Thus 𝐹 |u�◦ is a relative functor, as required. ■

Definition 3.4.6. Let u� and u� be homotopical categories. A homotopical left
approximation for an ordinary functor 𝐹 : u� → u� is a homotopical right (!)
Kan extension of 𝐹 along idu� . Dually, a homotopical right approximation for
an ordinary functor 𝐺 : u� → u� is a homotopical left (!) Kan extension of 𝐺
along idu�.

Remark 3.4.7. More explicitly, a homotopical left approximation for 𝐹 : u� → u�
is a homotopically terminal object in the homotopical category ([u�, u�]h ↓ 𝐹 )h
described below:

• The objects are pairs (𝐾, 𝛼) where 𝐾 is a homotopical functor u� → u� and
𝛼 is a natural transformation of type 𝐾 ⇒ 𝐹 .

• The morphisms (𝐾′, 𝛼′) → (𝐾, 𝛼) are those natural transformations 𝜓 :
𝐾′ ⇒ 𝐾 such that 𝛼 ∙ 𝜓 = 𝛼′.

• The weak equivalences are the natural weak equivalences.

Dually, a homotopical right approximation for 𝐺 : u� → u� is a homotopically
initial object in the homotopical category (𝐹 ↓ [u�, u�]h)h. By corollary 3.2.12,
homotopical approximations are homotopically unique.

We have the following special case:

Proposition 3.4.8. Let 𝑄 be a homotopical endofunctor on a homotopical cat-
egory u� and let 𝑝 : 𝑄 ⇒ idu� be a natural transformation. The following are
equivalent:

(i) (𝑄, 𝑝) is a homotopical left approximation for idu� .
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3.4. DHKS derived functors

(ii) (u�, 𝑄, 𝑝) is a functorial left deformation retract for idu� .

Dually, let 𝑅 be a homotopical endofunctor on a homotopical category u�, and
let 𝑖 : idu� ⇒ 𝑅 be a natural transformation. The following are equivalent:

(i′) (𝑅, 𝑖) is a homotopical right approximation for idu� .

(ii′) (u�, 𝑅, 𝑖) is a functorial right deformation retract for idu�.

Proof. (i) ⇒ (ii). If (𝑄, 𝑝) is a homotopical left approximation for idu� , then there
must exist a commutative diagram of the form below,

idu� 𝑄1 𝑄2 ⋯ 𝑄

idu� idu� idu� ⋯ idu�

id 𝑝1 𝑝2 𝑝

where all the arrows in the top row are natural weak equivalences. Using 2-out-
of-3 property, we deduce (by induction) that 𝑝1, 𝑝2, … , 𝑝 are also natural weak
equivalences; thus (u�, 𝑄, 𝑝) is indeed a functorial left deformation retract for idu� .

(ii) ⇒ (i). If (u�, 𝑄, 𝑝) is a functorial left deformation retract for idu� , then 𝑝 :
𝑄 ⇒ idu� is a natural weak equivalence; but (idu� , ididu� ) is a terminal object in
([u�, u�]h ↓ idu�)h, so by proposition 3.2.2, (𝑄, 𝑝) must be a homotopically terminal
object. ■

Lemma 3.4.9. Let u� and u� be homotopical categories.

• Let (𝐹 ′, 𝑝′) and (𝐹 ″, 𝑝″) be any two homotopical left approximations for
an ordinary functor 𝐹 : u� → u�. For any object 𝑋 in u�, 𝑝′

𝑋 : 𝐹 ′𝑋 → 𝐹 𝑋
is a weak equivalence in u� if and only if 𝑝″

𝑋 : 𝐹 ″𝑋 → 𝐹 𝑋 is a weak
equivalence in u�.

• Let (𝐺′, 𝑖′) and (𝐺″, 𝑖″) be any two homotopical left approximations for an
ordinary functor 𝐺 : u� → u�. For any object 𝑌 in u�, 𝑖′

𝑌 : 𝐺𝑌 → 𝐺′𝑌 is a
weak equivalence in u� if and only if 𝑖″

𝑌 : 𝐺𝑌 → 𝐺″
𝑌 is a weak equivalence

in u�.

Proof. The two claims are formally dual; we will prove the first version.

391



III. Homotopical categories

By lemma 3.2.5, there is a (finite) commutative diagram of the form below,

𝐹 ′ ⋯ 𝐹 ″

𝐹 ⋯ 𝐹

𝑝′ 𝑝″

where the top row is a zigzag of natural weak equivalences. Thus, using 2-out-of-
3 property, we deduce (by induction) that 𝑝′

𝑋 : 𝐹 ′𝑋 → 𝐹 𝑋 is a weak equivalence
in u� if and only if 𝑝″

𝑋 : 𝐹 ″𝑋 → 𝐹 𝑋 is a weak equivalence in u�. ■

Definition 3.4.10. Let 𝐹 , 𝐹 ′ : u� → u� be ordinary functors between homotop-
ical categories, and let 𝜑 : 𝐹 ⇒ 𝐹 ′ be a natural transformation. We define the
homotopical category ([min 𝟚, [u�, u�]h]h ↓ 𝜑)h

as follows:

• The objects are tuples (𝐻, 𝐻 ′, 𝛼, 𝛼′, ) where 𝐻 and 𝐻 ′ are homotopical
functors u� → u�, 𝛼 and 𝛼′ are natural transformations of type 𝐻 ⇒ 𝐹 and
𝐻 ′ ⇒ 𝐹 ′ (respectively), and : 𝐻 ⇒ 𝐻 ′ is a natural transformation such
that 𝜑 ∙ 𝛼 = 𝛼′ ∙ .

• The morphisms (𝐻, 𝐻 ′, 𝛼, 𝛼′, ) → (𝐾, 𝐾′, 𝛽, 𝛽′, 𝜒) are pairs ( , ′) of
natural transformations, where : 𝐻 ⇒ 𝐾 and ′ : 𝐻 ′ ⇒ 𝐾′, such that
𝜒 ∙ = ′ ∙ , 𝛽 ∙ = 𝛼, and 𝛽′ ∙ ′ = 𝛼′.

• The weak equivalences are those ( , ′) where both and ′ are natural
weak equivalences.

A homotopical left approximation for 𝜑 is a homotopically terminal object
(𝕃𝐹 , 𝕃𝐹 ′, 𝛿, 𝛿′, 𝕃𝜑) in ([min 𝟚, [u�, u�]h]h ↓ 𝜑)h

such that (𝕃𝐹 , 𝛿) is a homotop-
ical left approximation for 𝐹 and (𝕃𝐹 ′, 𝛿′) is a homotopical left approximation
for 𝐹 ′.

Dually, let 𝐺, 𝐺′ : u� → u� be ordinary functors between homotopical cat-
egories, and let 𝜓 : 𝐺′ ⇒ 𝐺 be a natural transformation. We define the homo-
topical category (𝜓 ↓ [min 𝟚, [u�, u�]h]h)h

as follows:

• The objects are tuples (𝐻, 𝐻 ′, 𝛼, 𝛼′, ) where 𝐻 and 𝐻 ′ are homotopical
functors u� → u�, 𝛼 and 𝛼′ are natural transformations of type 𝐺 ⇒ 𝐻 and
𝐺′ ⇒ 𝐻 ′ (respectively), and : 𝐻 ′ ⇒ 𝐻 is a natural transformation such
that 𝛼 ∙ 𝜓 = ∙ 𝛼′.
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• The morphisms (𝐾, 𝐾′, 𝛽, 𝛽′, 𝜒) → (𝐻, 𝐻 ′, 𝛼, 𝛼′, ) are pairs ( , ′) of
natural transformations, where : 𝐾 ⇒ 𝐻 and ′ : 𝐾′ ⇒ 𝐻 ′, such that

∙ 𝜒 = ∙ ′, ∙ 𝛽 = 𝛼, and ′ ∙ 𝛽′ = 𝛼′.

• The weak equivalences are those ( , ′) where both and ′ are natural
weak equivalences.

A homotopical right approximation for 𝜓 is a homotopically initial object
(ℝ𝐺, ℝ𝐺′, 𝛿, 𝛿′, ℝ𝜓) in (𝜓 ↓ [min 𝟚, [u�, u�]h]h)h

such that (ℝ𝐺, 𝛿) is a homo-
topical right approximation for 𝐺 and (ℝ𝐺′, 𝛿′) is a homotopical right approx-
imation for 𝐺′.

Theorem 3.4.11. Let u� and u� be homotopical categories.

(i) Let 𝐹 : u� → u� be an ordinary functor. If (u�◦, 𝑄, 𝑝) is a functorial left
deformation retract for 𝐹 , then (𝐹 𝑄, 𝐹 𝑝) is a homotopical absolute right
Kan extension of 𝐹 along idu� .

(ii) Let 𝐹 , 𝐹 ′ : u� → u� be a parallel pair of ordinary functors. If (u�◦, 𝑄, 𝑝) is a
functorial left deformation retract for both 𝐹 and 𝐹 ′, then for any natural
transformation 𝜑 : 𝐹 ⇒ 𝐹 ′, (𝐹 𝑄, 𝐹 ′𝑄, 𝐹 𝑝, 𝐹 ′𝑝, 𝜑𝑄) is a homotopical
left approximation for 𝜑.

(iii) Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be ordinary functors between homo-
topical categories. If (𝐺, 𝐹 ) is strongly left deformable, then, for any ho-
motopical left approximation ((𝕃𝐹 ), 𝛿𝐹 ) for 𝐹 and any homotopical left
approximation ((𝕃𝐺), 𝛿𝐺) for 𝐺, ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) is a homotopical
left approximation for 𝐺𝐹 .

Dually:

(i′) Let 𝐺 : u� → u� be an ordinary functor. If (u�◦, 𝑅, 𝑖) is a functorial right
deformation retract for 𝐹 , then (𝐺𝑅, 𝐺𝑖) is a homotopical absolute left
Kan extension of 𝐺 along idu�.

(ii′) Let 𝐺, 𝐺′ : u� → u� be a parallel pair of ordinary functors. If (u�◦, 𝑅, 𝑖) is a
functorial right deformation retract for both 𝐺 and 𝐺′, then for any natural
transformation 𝜓 : 𝐺′ ⇒ 𝐺, (𝐺𝑅, 𝐺′𝑅, 𝐺𝑖, 𝐺′𝑖, 𝜓𝑅) is a homotopical
right approximation for 𝜓 .
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(iii′) Let 𝐹 : u� → ℬ and 𝐺 : u� → u� be ordinary functors between homotopical
categories. If (𝐹 , 𝐺) is strongly right deformable, then, for any homo-
topical right approximation ((ℝ𝐹 ), 𝛿𝐹 ) for 𝐹 and any homotopical right
approximation ((ℝ𝐺), 𝛿𝐺) for 𝐺, ((ℝ𝐹 )(ℝ𝐺), 𝛿𝐹 ∘ 𝛿𝐺) is a homotopical
right approximation for 𝐹 𝐺.

Proof. (i). Let 𝐻 : u� → ℰ and 𝐾 : u� → ℰ be any two homotopical functors,
and let 𝛼 : 𝐾 ⇒ 𝐻𝐹 be any natural transformation. Then, we have the following
commutative diagram of natural transformations,

𝐾 𝐾𝑄 𝐻𝐹 𝑄

𝐻𝐹
𝛼

𝐾𝑝 𝛼𝑄

𝐻𝐹 𝑝

and, for any other homotopical functor 𝐾′ : u� → ℰ and natural transformation
𝜓 : 𝐾′ ⇒ 𝐾 , for 𝛼′ = 𝛼 ∙ 𝜓 , the diagram

𝐾′ 𝐾′𝑄 𝐻𝐹 𝑄

𝐾 𝐾𝑄 𝐻𝐹 𝑄

𝐻𝐹

𝜓 𝜓𝑄

𝐾′𝑝 𝛼′𝑄

𝛼

𝐾𝑝 𝛼𝑄

𝐻𝐹 𝑝

also commutes; thus, (𝐻𝐹 𝑄, 𝐻𝐹 𝑝) is indeed a homotopically terminal object
in ([u�, ℰ]h ↓ 𝐻𝐹 )h.

(ii). Suppose (𝐻, 𝐻 ′, 𝛼, 𝛼′, ) is an object in ([min 𝟚, [u�, u�]h]h ↓ 𝜑)h
. The dia-

gram below commutes,

𝐻𝑄 𝐻 ′𝑄

𝐻 𝐻 ′

𝐹 𝑄 𝐹 ′𝑄

𝐹 𝐹 ′

𝛼𝑄

𝑄

𝛼′𝑄

𝜑𝑄

𝐻𝑝 𝐻′𝑝

𝐹 𝑝 𝐹 ′𝑝

𝛼
𝛼′

𝜑
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and (𝐻𝑝, 𝐻 ′𝑝) is a weak equivalence, so (𝐹 𝑄, 𝐹 ′𝑄, 𝐹 𝑝, 𝐹 ′𝑝, 𝜑𝑄) is indeed a
homotopically terminal object in ([min 𝟚, [u�, u�]h]h ↓ 𝜑)h

.

(iii). Let (u�◦, 𝑄u�◦
, 𝑝u�◦

) and (u�◦, 𝑄u�◦
, 𝑝u�◦

) be functorial left deformation re-
tracts for 𝐹 and 𝐺 respectively, and suppose 𝐹 maps objects in u�◦ to objects
in u�◦. To begin, observe that 𝐺𝑝u�◦

𝐹 𝑄u�◦
: 𝐺𝑄u�◦

𝐹 𝑄u�◦
⇒ 𝐺𝐹 𝑄u�◦

is a natural
weak equivalence; and, as established above, both 𝛿𝐹 𝑄u�◦

: (𝕃𝐹 )𝑄u�◦
⇒ 𝐹 𝑄u�◦

and 𝛿𝐺𝑄u�◦
: (𝕃𝐺)𝑄u�◦

⇒ 𝐺𝑄u�◦
are natural weak equivalences, so their hori-

zontal composite (𝛿𝐺𝑄u�◦

) ∘ (𝛿𝐹 𝑄u�◦

) is also a natural weak equivalence. We
also know that (u�◦, 𝑄u�◦

, 𝑝u�◦

) is a functorial left deformation retract for 𝐺𝐹 , so
(𝐺𝐹 𝑄u�◦

, 𝐺𝐹 𝑝u�◦

) is a homotopical left approximation for 𝐺𝐹 . Now, noting that
the following diagram commutes,

(𝕃𝐺)𝑄u�◦
(𝕃𝐹 )𝑄u�◦

𝐺𝑄u�◦
𝐹 𝑄u�◦

𝐺𝐹 𝑄u�◦

(𝕃𝐺)(𝕃𝐹 ) 𝐺𝐹 𝐺𝐹
((𝕃𝐺)𝑝u�◦

)∘((𝕃𝐹 )𝑝u�◦
)

(𝛿𝐺𝑄u�◦
)∘(𝛿𝐹 𝑄u�◦

)

(𝐺𝑝u�◦
)∘(𝐹 𝑝u�◦

)

𝐺𝑝u�◦
𝐹 𝑄u�◦

𝐺𝐹 𝑝u�◦

𝛿𝐺∘𝛿𝐹

we conclude that ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) and (𝐺𝐹 𝑄u�◦
, 𝐺𝐹 𝑝u�◦

) are weakly equi-
valent in ([u�, ℰ]h ↓ 𝐺𝐹 )h, and so ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) is also a homotopical left
approximation for 𝐺𝐹 , by proposition 3.2.2. ■

Remark 3.4.12. Unlike the situation we had with total derived functors, the as-
signment 𝐹 ↦ 𝐹 𝑄 (resp. 𝐺 ↦ 𝐺𝑅) is not a lax (resp. oplax) 2-functor, because
we do not have a natural transformation idu� ⇒ 𝑄 (resp. 𝑅 ⇒ idu�).

Corollary 3.4.13. Let u� and u� be homotopical categories, and let 𝛾u� : u� →
Ho u� and 𝛾u� : u� → Ho u� be the respective localising functors.

• If 𝐹 : u� → u� is a left deformable functor and (𝕃𝐹 , 𝛿) is any homotopical
left approximation for 𝐹 , then (Ho(𝕃𝐹 ), 𝛾u�𝛿) is a total left derived functor
for 𝐹 .

• If 𝐺 : u� → u� is a right deformable functor and (ℝ𝐺, 𝛿) is any homotopical
right approximation for 𝐺, then (Ho(ℝ𝐺), 𝛾u�𝛿) is a total right derived
functor for 𝐺.

Proof. Combine theorems 3.3.17 and 3.4.11. ■
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III. Homotopical categories

3.5 Two-arrow calculi
Prerequisites. §§3.1, a.4.

Definition 3.5.1. Let u� be a relative category.

• We say u� admits a calculus of spans if, for any morphism 𝑓 : 𝑋 → 𝑌 and
any weak equivalence 𝑣 : ̃𝑌 → 𝑌 in u�, there exists a pullback square in u�
of the form below,

�̃� ̃𝑌

𝑋 𝑌

𝑣′

𝑓 ′

𝑣

𝑓

where 𝑣′ : �̃� → 𝑋 is also a weak equivalence in u�.

• We say u� admits a calculus of cospans if, for any weak equivalence 𝑢 :
𝑌 → ̂𝑌 and any morphism 𝑔 : 𝑌 → 𝑍 in u�, there exists a pushout square
in u� of the form below,

𝑌 𝑍

̂𝑌 �̂�

𝑢

𝑔

𝑢′

𝑔′

where 𝑢′ : 𝑍 → �̂� is also a weak equivalence in u�.

We follow Jardine [2009] in using the following terminology:

Definition 3.5.2. Let u� be a relative category.

• A cocycle (𝑓 , 𝑣) : 𝑋 ⇸ 𝑌 in u� is a span of the form below,

𝑋 �̃� 𝑌𝑣 𝑓

where 𝑣 : �̃� → 𝑋 is a weak equivalence in u� and 𝑓 : �̃� → 𝑌 is any
morphism. The cocycle category u�∼→(𝑋, 𝑌 ) is the category whose ob-
jects are cocycles 𝑋 ⇸ 𝑌 in u� and whose morphisms are commutative
diagrams of the following form,

𝑋 �̃� 𝑌

𝑋 �̃�′ 𝑌

𝑣 𝑓

𝑣′ 𝑓 ′
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3.5. Two-arrow calculi

with composition and identities inherited from u�.

• A cycle (𝑢, 𝑓 ) : 𝑋 ⇸ 𝑌 in u� is a cospan of the form below,

𝑋 ̂𝑌 𝑌𝑓 𝑢

where 𝑢 : 𝑌 → ̂𝑌 is a weak equivalence in u� and 𝑓 : 𝑋 → ̂𝑌 is any
morphism. The cycle category u�→∼(𝑋, 𝑌 ) is the category whose objects
are cycles 𝑋 ⇸ 𝑌 in u� and whose morphisms are commutative diagrams
of the following form,

𝑋 ̂𝑌 𝑌

𝑋 ̂𝑌 ′ 𝑌

𝑓 𝑢

𝑓 ′ 𝑢′

with composition and identities inherited from u�.

In many cases of interest, u� will be a relative category where either weq u�
does not have the 2-out-of-3 property, or only a certain subcategory of weq u�
satisfies the condition on pullbacks/pushouts. To cover those situations, we in-
troduce the following:

Definition 3.5.3. Let u� be a category with weak equivalences.

• A calculus of cocycles for u� consists of a subcategory u� ⊆ weq u� that
satisfies the following axioms:

– Every isomorphism in u� is in u� , and the relative category (und u�, u�)
admits a calculus of spans.

– For every weak equivalence 𝑤 : 𝑋 → 𝑌 in u�, there is a factorisation
𝑤 = 𝑣 ∘ 𝑢 where 𝑣 is a morphism in u� and 𝑝 ∘ 𝑢 = id for some
morphism 𝑝 in u� .

Given such a subcategory u� ⊆ weq u�, a u�-cocycle in u� is a cocycle in the
relative category (und u�, u�), and we write u�∼→

u� (𝑋, 𝑌 ) for the category of
u�-cocycles 𝑋 ⇸ 𝑌 .
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III. Homotopical categories

• A calculus of cycles for u� consists of a subcategory u� ⊆ weq u� that
satisfies the following axioms:

– Every isomorphism in u� is in u� , and the relative category (und u�, u� )
admits a calculus of cospans.

– For every weak equivalence 𝑤 : 𝑋 → 𝑌 in u�, there is a factorisation
𝑤 = 𝑣 ∘ 𝑢 where 𝑢 is a morphism in u� and 𝑣 ∘ 𝑖 = id for some
morphism 𝑖 in u� .

Given such a subcategory u� ⊆ weq u�, a u� -cycle in u� is a cycle in the
relative category (und u�, u� ), and we write u�→∼

u� (𝑋, 𝑌 ) for the category of
u� -cycles 𝑋 ⇸ 𝑌 .

Lemma 3.5.4. Let u� be a category with weak equivalences.

• Let u� ⊆ mor weq u� consist of all weak equivalences 𝑣 : 𝑌 → 𝑍 in u�
with the following property: for any morphism 𝑓 : 𝑋 → 𝑍, there exists a
pullback diagram in u� of the form below,

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

𝑤 𝑣

𝑓

where 𝑤 : 𝑋 ×𝑍 𝑌 → 𝑋 is a weak equivalence in u�. Then u� contains all
isomorphisms in u� and is closed under composition and pullback, and u�
admits a calculus of cocycles if and only if u� (considered a subcategory
of weq u�) defines a calculus of cocycles for u�.

• Let u� ⊆ mor weq u� consist of all weak equivalences 𝑢 : 𝑍 → 𝑋 in u�
with the following property: for any morphism 𝑔 : 𝑍 → 𝑌 , there exists a
pushout diagram in u� of the form below,

𝑍 𝑌

𝑋 𝑋 ∪𝑍 𝑌

𝑢

𝑔

𝑤

where 𝑤 : 𝑌 → 𝑋 ∪𝑍 𝑌 is a weak equivalence in u�. Then u� contains all
isomorphisms in u� and is closed under composition and pushout, and u�
admits a calculus of cocycles if and only if u� defines a calculus of cycles
for u�.
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3.5. Two-arrow calculi

Proof. This is a straightforward exercise. ◊

Lemma 3.5.5. Let u� be a category with weak equivalences.

• If a subcategory u� ⊆ weq u� defines a calculus of cocycles for u�, then for
every cocycle (𝑓 , 𝑤) : 𝑋 ⇸ 𝑌 in u�, there is a commutative diagram in u�
of the form below,

𝑋 • 𝑌

𝑋 • 𝑌

𝑤 𝑓

𝑣

where 𝑣 is a morphism in u� .

• If a subcategory u� ⊆ weq u� defines a calculus of cocycles for u�, then for
every cycle (𝑤, 𝑓) : 𝑋 ⇸ 𝑌 in u�, there is a commutative diagram in u� of
the form below,

𝑋 • 𝑌

𝑋 • 𝑌

𝑢

𝑓 𝑤

where 𝑢 is a morphism in u� .

Proof. The two claims are formally dual; we will prove the first version.
Let (𝑓 , 𝑤) : 𝑋 ⇸ 𝑌 be a cocycle in u�. By hypothesis, there exist a morphism

𝑣 : �̂� → 𝑋 in u� and a morphism 𝑢 : 𝑍 → �̂� in u� such that 𝑤 = 𝑣 ∘ 𝑢 and
𝑝 ∘ 𝑢 = id𝑍 for some morphism 𝑝 : �̂� → 𝑍 in u� . Thus, we have the following
commutative diagram in u�,

𝑋 𝑍 𝑌

𝑋 �̂� 𝑌

𝑤

𝑢

𝑓

𝑣 𝑓∘𝑝

which is of the required form. ■

Lemma 3.5.6. Let u� be a category with weak equivalences.

• If a subcategory u� ⊆ weq u� defines a calculus of cocycles for u�, then the
canonical comparison functor

Ho (und u�, u�) → Ho u�
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III. Homotopical categories

is an isomorphism of categories.

• If a subcategory u� ⊆ weq u� defines a calculus of cycles for u�, then the
canonical comparison functor

Ho (und u�, u� ) → Ho u�

is an isomorphism of categories.

Proof. The two claims are formally dual; we will prove the first version.
To show that Ho (und u�, u�) → Ho u� is an isomorphism of categories, it

suffices to check that every weak equivalence in u� becomes an isomorphism
in Ho (und u�, u�). Let 𝑤 : 𝑌 → 𝑋 be a weak equivalence. Then there exist a
morphism 𝑣 : ̂𝑌 → 𝑋 in u� and a morphism 𝑢 : 𝑌 → ̂𝑌 in u� such that 𝑤 = 𝑣 ∘ 𝑢
and 𝑝 ∘ 𝑢 = id𝑌 for some 𝑝 : ̂𝑌 → 𝑌 in u� . Clearly, 𝑢 becomes an isomorphism
in Ho (und u�, u�), and 𝑤 = 𝑣 ∘ 𝑢, so we are done. ■

¶ 3.5.7. Let u� be a relative category that admits a calculus of spans. Given
a pair of cocycles in u�, say (𝑓 , 𝑣) and (𝑔, 𝑣′) as below,

𝑋 �̃� 𝑌 ̃𝑌 𝑍𝑣 𝑓 𝑣′ 𝑔

a composition for the pair is a commutative diagram of the following form,

𝑊

�̃� ̃𝑌

𝑋 𝑌 𝑍

𝑓 ″𝑣″

𝑓 𝑓 ′𝑣 𝑣′

where the diamond is a pullback square with 𝑣″ : 𝑊 → �̃� a weak equivalence in
u�, and the composite is the cocycle (𝑓 ′ ∘ 𝑓 ″, 𝑣 ∘ 𝑣″). It is clear that compositions
exist and are unique up to unique isomorphism (in the appropriate sense). More-
over, composition is associative and unital up to coherent natural isomorphism,
so we get a bicategory of cocycles in u�, which we denote by u�∼→, and we have
an obvious pseudofunctor u� → u�∼→ that sends a morphism 𝑓 : 𝑋 → 𝑌 in u� to
the cocycle (𝑓 , id𝑋).

Dually, if u� is a relative category that admits a calculus of cospans, then we
get a bicategory of cycles in u�, which we denote by u�→∼, and we have an obvious
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3.5. Two-arrow calculi

pseudofunctor u� → u�→∼ that sends a morphism 𝑓 : 𝑋 → 𝑌 in u� to the cycle
(id𝑌 , 𝑓).

Remark 3.5.8. If u� is a small relative category, then the category of cocycles or
cycles between any two objects is a small category; but if u� is merely locally
small, then the category of cocycles or cycles may not even be essentially small.

Theorem 3.5.9 (Fundamental theorem of calculi of spans and cospans). Let u� be
a small relative category and let 𝜋0 : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 be the connected components
functor.[1]

• If u� admits a calculus of spans and 𝜋0[u�∼→] is the category obtained by
applying 𝜋0 to the hom-categories of the bicategory of cocycles, then the
pseudofunctor u� → u�∼→ induces an isomorphism Ho u� → 𝜋0[u�∼→].

• If u� admits a calculus of cospans and 𝜋0[u�→∼] is the category obtained
by applying 𝜋0 to the hom-categories of the bicategory of cycles, then the
pseudofunctor u� → u�→∼ induces an isomorphism Ho u� → 𝜋0[u�→∼].

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑣 : �̃� → 𝑋 be a weak equivalence in u�. We must first show that the

cocycle (𝑣, id�̃�) : �̃� ⇸ 𝑋 becomes an isomorphism in 𝜋0[u�∼→]. Consider the
cocycle (id�̃� , 𝑣) : 𝑋 ⇸ �̃�. The following diagram commutes,

𝑋 �̃� 𝑋

𝑋 𝑋 𝑋

𝑣

𝑣

𝑣

id id

so (𝑣, id�̃�) ∘ (id�̃� , 𝑣) = (id𝑋 , id𝑋) in 𝜋0[u�∼→]. On the other hand, given a
pullback square in u� of the form below,

𝐾 �̃�

�̃� 𝑋

𝑝0

𝑝1

𝑣

𝑣

[1] Recall proposition a.2.15.
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III. Homotopical categories

where 𝑝0 : 𝐾 → �̃� is a weak equivalence, the universal property of 𝐾 yields a
unique morphism Δ : 𝑋 → 𝐾 making the diagram below commute:

𝑋 𝑋 𝑋

𝑋 𝐾 𝑋

id

Δ

id

𝑝0 𝑝1

Thus, (id�̃� , 𝑣) ∘ (𝑣, id�̃�) = (id�̃� , id�̃�) in 𝜋0[u�∼→]. It now follows that every
morphism 𝑋 → 𝑌 in 𝜋0[u�∼→] is of the form (𝑓 , id�̃�)∘(𝑣, id�̃�)

−1 for some weak
equivalence 𝑣 : �̃� → 𝑋 in u� and some morphism 𝑓 : �̃� → 𝑌 ; hence, the
induced functor Ho u� → 𝜋0[u�∼→] is a bijection on objects and full.

It remains to be shown that the functor Ho u� → 𝜋0[u�∼→] is faithful. Suppose
we have the following commutative diagram in u�,

𝑋 �̃� 𝑋

𝑋 �̃�′ 𝑋

𝑣

ℎ

𝑓

𝑣′ 𝑓 ′

where 𝑣 : �̃� → 𝑋 and 𝑣′ : �̃�′ → 𝑋 are weak equivalences in u�. The 2-out-of-3
property of isomorphisms in Ho u� ensures ℎ : �̃� → �̃�′ is an isomorphism in
Ho u�, so:

𝑓 ∘ 𝑣−1 = (𝑓 ′ ∘ ℎ) ∘ (ℎ ∘ 𝑣′)−1 = 𝑓 ′ ∘ 𝑣′−1

We may therefore define a functor 𝜋0[u�∼→] → Ho u� that sends the connected
component of a cocycle (𝑓 , 𝑣) : 𝑋 ⇸ 𝑌 in u� to the morphism 𝑓 ∘𝑣−1 in Ho u�; and
using the fact that localising functor u� → Ho u� is an epimorphism in 𝐂𝐚𝐭, we see
that this functor is a left inverse for the functor Ho u� → 𝜋0[u�∼→] constructed in
the previous paragraph. Thus Ho u� → 𝜋0[u�∼→] is indeed an isomorphism. ■

Corollary 3.5.10. Let u� be a category with weak equivalences.

• If a subcategory u� ⊆ weq u� defines a calculus of cocycles for u�, then every
morphism in Ho u� is of the form 𝑓 ∘ 𝑣−1 for some u�-cocycle (𝑓 , 𝑣).

• If a subcategory u� ⊆ weq u� defines a calculus of cycles for u�, then every
morphism in Ho u� is of the form 𝑢−1 ∘ 𝑔 for some u� -cycle (𝑢, 𝑔).

Proof. Combine lemma 3.5.6 and theorem 3.5.9. ■
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Proposition 3.5.11. Let u� be a relative category in which weq u� has the 2-out-
of-3 property, and let 𝑋 and 𝑌 be objects in u�.

• If u� admits a calculus of spans, then the cocycle category u�∼→(𝑋, 𝑌 ) also
admits a calculus of spans, where the weak equivalences are those morph-
isms of spans 𝑋 ⇸ 𝑌 whose underlying morphism is a weak equivalence
in u�.

• If u� admits a calculus of cospans, then the cycle category u�→∼(𝑋, 𝑌 )
also admits a calculus of cospans, where the weak equivalences are those
morphisms of spans 𝑋 ⇸ 𝑌 whose underlying morphism is a weak equi-
valence in u�.

Proof. The two claims are formally dual; we will prove the first version.
Consider a cospan in u�∼→(𝑋, 𝑌 ), i.e. a commutative diagram in u�

𝑋 𝑍0 𝑌

𝑋 𝑍1 𝑌

𝑋 𝑍2 𝑌

𝑤0

𝑣

𝑓0

𝑤1

𝑧

𝑓1

𝑤2 𝑓2

where 𝑤0, 𝑤1, 𝑤2 and 𝑣 are weak equivalences in u�. By hypothesis, there is a
pullback diagram in u� of the form below,

𝑍′ 𝑍0

𝑍2 𝑍1

𝑣′

𝑧′

𝑣

𝑧

where 𝑣′ : 𝑍′ → 𝑍2 is a weak equivalence in u�, and taking 𝑤′ = 𝑤2 ∘ 𝑣′ and
𝑓 ′ = 𝑓2 ∘ 𝑣′, we obtain the following commutative diagram in u�:

𝑋 𝑍0 𝑌

𝑋 𝑍′ 𝑌

𝑋 𝑍2 𝑌

𝑤0

𝑧′

𝑓0

𝑤′

𝑣′

𝑓 ′

𝑤2 𝑓2
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It is not hard to verify that the cocycle (𝑓 ′, 𝑤′) : 𝑋 ⇸ 𝑌 is (the object part of)
the pullback for the cospan in u�∼→(𝑋, 𝑌 ) under consideration. Thus u�∼→(𝑋, 𝑌 )
indeed admits a calculus of spans. ■

Corollary 3.5.12. Let u� be a relative category in which weq u� has the 2-out-of-3
property.

• Let (𝑓 , 𝑣) and (𝑓 ′, 𝑣′) be two cocycles 𝑋 ⇸ 𝑌 in u�. If u� admits a calculus
of spans, then (𝑓 , 𝑣) and (𝑓 ′, 𝑣′) are in the same connected component of
u�∼→(𝑋, 𝑌 ) if and only if there exists a commutative diagram in u� of the
following form,

𝑋 • 𝑌

𝑋 • 𝑌

𝑋 • 𝑌

𝑣

𝑤1

𝑓

𝑤3

𝑤2

𝑓3

𝑣′ 𝑓 ′

where 𝑤1, 𝑤2, 𝑤3 are weak equivalences in u�.

• Let (𝑢, 𝑔) and (𝑢′, 𝑔′) be two cycles 𝑋 ⇸ 𝑌 in u�. If u� admits a calculus
of cospans, then (𝑢, 𝑔) and (𝑢′, 𝑔′) are in the same connected component
of u�→∼(𝑋, 𝑌 ) if and only if there exists a commutative diagram in u� of the
following form,

𝑋 • 𝑌

𝑋 • 𝑌

𝑋 • 𝑌

𝑔

𝑤1

𝑢

𝑔3

𝑤2

𝑤3

𝑔′ 𝑢′

where 𝑤1, 𝑤2, 𝑤3 are weak equivalences in u�.

Proof. Combine the fundamental theorem of calculi of spans and cospans (3.5.9)
and proposition 3.5.11. ■
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Definition 3.5.13. Let u� be a category with weak equivalences.

• A functorial calculus of cocycles for u� consists of the following data:

– A subcategory u� ⊆ weq u� that contains all isomorphisms in u� and
such that the relative category (und u�, u�) admits a calculus of spans.

– For each weak equivalence 𝑤 : 𝑋 → 𝑌 in u�, a natural diagram in u�
of the form below,

𝑋 𝑋

𝑋 �̂�

𝑋 𝑌

id

𝑝

𝑢

𝑣

𝑤

where both 𝑣 : �̂� → 𝑌 and 𝑝 : �̂� → 𝑋 are in u� .

• A functorial calculus of cycles for u� consists of the following data:

– A subcategory u� ⊆ weq u� that contains all isomorphisms in u� and
such that the relative category (und u�, u� ) admits a calculus of cospans.

– For each weak equivalence 𝑤 : 𝑋 → 𝑌 in u�, a natural diagram in u�
of the form below,

𝑋 𝑌

̃𝑌 𝑌

𝑌 𝑌

𝑢

𝑤

𝑖

𝑣

id

where both 𝑢 : 𝑋 → ̃𝑌 and 𝑖 : ̃𝑌 → 𝑌 are in u� .

Lemma 3.5.14. Let u� be a category with weak equivalences.

• If u� admits a functorial calculus of cocycles for u� with distinguished sub-
category u� ⊆ weq u�, then for any pair (𝑋, 𝑌 ) of objects in u�, the inclusion

u�∼→
u� (𝑋, 𝑌 ) ↪ u�∼→(𝑋, 𝑌 )

is a homotopical equivalence of categories (regarded as maximal relative
categories).
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III. Homotopical categories

• If u� admits a functorial calculus of cycles for u� with distinguished subcat-
egory u� ⊆ weq u�, then for any pair (𝑋, 𝑌 ) of objects in u�, the inclusion

u�→∼
u� (𝑋, 𝑌 ) ↪ u�→∼(𝑋, 𝑌 )

is a homotopical equivalence of categories (regarded as maximal relative
categories).

Proof. The two claims are formally dual; we will prove the first version.
Following (the proof of) lemma 3.5.5, we obtain a functor 𝑅 : u�∼→(𝑋, 𝑌 ) →

u�∼→(𝑋, 𝑌 ) and a natural transformation 𝑢 : idu�∼→(𝑋,𝑌 ) ⇒ 𝑅 such that the im-
age of 𝑅 is contained in u�∼→

u� (𝑋, 𝑌 ). Since u�∼→
u� (𝑋, 𝑌 ) is a full subcategory of

u�∼→(𝑋, 𝑌 ), this suffices to prove the claim. ■

Lemma 3.5.15. Let u� be a category with weak equivalences, let 𝑋 and 𝑌 be
objects in u�, let 𝑘 be a natural number, and let ℋ1 be the category of zigzags in
u� from 𝑋 to 𝑌 of the following type:

• • • •𝑘 arrows

• Let ℋ0 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • •𝑘 arrows

and let 𝑠 : ℋ0 → ℋ1 be the functor defined by inserting an identity morph-
ism. If u� admits a functorial calculus of cocycles, then 𝑠 : ℋ0 → ℋ1 is a
homotopical equivalence of categories (regarded as maximal relative cat-
egories).

• Let ℋ0 be the category of zigzags in u� from 𝑋 to 𝑌 of the following type,

• • •𝑘 arrows

and let 𝑠 : ℋ0 → ℋ1 be the functor defined by inserting an identity morph-
ism. If u� admits a functorial calculus of cycles, then 𝑠 : ℋ0 → ℋ1 is a
homotopical equivalence of categories (regarded as maximal relative cat-
egories).

Proof. The two claims are formally dual; we will prove the first version.
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Consider an object in ℋ1, say

𝑋 �̃�0 ⋯ �̃�𝑘 𝑌𝑤

and write 𝑓𝑗 : �̃�𝑗 → �̃�𝑘 for the evident composite. By hypothesis, we have a
natural commutative diagram in u� of the form below,

𝑌 𝑌

̂𝑌 𝑌

�̃�𝑘 𝑌

𝑝

id

𝑣

𝑢

𝑤

where 𝑣 and 𝑝 are morphisms in u� , so by choosing pullback squares

�̃�′
𝑗

̂𝑌

�̃�𝑗 �̃�𝑘

𝑣𝑗 𝑣

𝑓𝑗

for 0 ≤ 𝑗 < 𝑘, we obtain the following commutative diagram in u�:

𝑋 �̃�′
0 ⋯ 𝑌 𝑌

𝑋 �̃�′
0 ⋯ ̂𝑌 𝑌

𝑋 �̃�0 ⋯ �̃�𝑘 𝑌

𝑝

id

𝑣0 𝑣

𝑢

𝑤

Moreover, when 𝑤 = id𝑌 , there is a unique morphism 𝑐𝑗 : �̃�𝑗 → �̃�′
𝑗 making the

diagram in u� below commute (for 0 ≤ 𝑗 < 𝑘),

�̃�𝑗 𝑌

�̃�′
𝑗

̂𝑌

�̃�𝑗 𝑌

id

𝑐𝑗
𝑢

𝑣𝑗 𝑣

𝑓𝑗
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III. Homotopical categories

so we obtain the following commutative diagram in u�:

𝑋 �̃�0 ⋯ �̃�𝑘−1 𝑌

𝑋 �̃�′
0 ⋯ �̃�′

𝑘−1 𝑌

𝑐0 𝑐𝑘−1

By naturality, the above defines a functor 𝑟 : ℋ1 → ℋ0 such that idℋ1

w≃ 𝑠 ∘ 𝑟 and
𝑟 ∘ 𝑠 w≃ idℋ0

, as required. ■

The following definition is due to Gabriel and Zisman [GZ].

Definition 3.5.16. Let u� be a relative category. We say u� admits a calculus of
right fractions if the following axioms are satisfied:

• (Right Ore condition). Given any morphism 𝑓 : 𝑋 → 𝑌 in u� and any
weak equivalence 𝑣 : 𝑋 → �̃�, there exists a commutative diagram of the
form below,

�̃� ̃𝑌

𝑋 𝑌

𝑣′

𝑓 ′

𝑣

𝑓

where 𝑣′ : �̃� → 𝑋 is also a weak equivalence in u�.

• (Right cancellability). Given any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in u�, if
𝑡 : 𝑌 → 𝑇 is a weak equivalence in u� such that 𝑡 ∘ 𝑓0 = 𝑡 ∘ 𝑓1, then there
exists a weak equivalence 𝑠 : 𝑆 → 𝑋 such that 𝑓0 ∘ 𝑠 = 𝑓1 ∘ 𝑠.

Dually, we say u� admits a calculus of left fractions if the following axioms are
satisfied:

• (Left Ore condition). Given any weak equivalence 𝑢 : 𝑌 → ̂𝑌 and any
morphism 𝑔 : 𝑌 → 𝑍 in u�, there exists a commutative diagram of the
form below,

𝑌 𝑍

̂𝑌 �̂�

𝑢

𝑔

𝑢′

𝑔′

where 𝑢′ : 𝑍 → �̂� is also a weak equivalence in u�.
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• (Left cancellability). Given any parallel pair 𝑔0, 𝑔1 : 𝑌 → 𝑍 in u�, if
𝑠 : 𝑆 → 𝑌 is a weak equivalence in u� such that 𝑔0 ∘ 𝑠 = 𝑔1 ∘ 𝑠, then there
exists a weak equivalence 𝑡 : 𝑍 → 𝑇 such that 𝑡 ∘ 𝑔0 = 𝑡 ∘ 𝑔1.

Remark 3.5.17. Although we cannot compose cocycles (resp. cycles) using pull-
backs (resp. pushouts) and form a bicategory of cocycles (resp. cycles) in a re-
lative category u� with a calculus of right fractions (resp. calculus of left frac-
tions), the axioms are still enough to give a well-defined category 𝜋0[u�∼→] (resp.
𝜋0[u�→∼]).

Lemma 3.5.18. Let 𝑌 be an object in a relative category u�.

• Let (u�∕𝑌 )w be the full subcategory of the slice category u�∕𝑌 spanned by
the objects 𝑣 : ̃𝑌 → 𝑌 where 𝑣 is a weak equivalence in u�. If u� admits a
calculus of right fractions, then (u�∕𝑌 )

op
w

is a filtered category.[2]

• Let (𝑌 ∕u�)w be the full subcategory of the slice category 𝑌 ∕u� spanned by
the objects 𝑢 : 𝑌 → ̂𝑌 where 𝑢 is a weak equivalence in u�. If u� admits a
calculus of left fractions, then (𝑌 ∕u�)w is a filtered category.

Proof. The two claims are formally dual; we will prove the first version.
To begin, we observe that id : 𝑌 → 𝑌 is an object in (u�∕𝑌 )w, so (u�∕𝑌 )w is

indeed an inhabited category. Now suppose we have two objects in (u�∕𝑌 )w, say
𝑣′ : ̃𝑌 → 𝑌 and 𝑣 : ̃𝑌 ′ → 𝑌 . Then the right Ore condition ensures there is a
commutative diagram in u� of the form below,

̃𝑌 ″

̃𝑌 ̃𝑌 ′

𝑌

𝑣″

𝑣 𝑣′

where 𝑣″ : ̃𝑌 ″ → 𝑌 is a weak equivalence in u�. Finally, suppose we have a
parallel pair of morphisms in (u�∕𝑌 )w, say 𝑓0, 𝑓1 : ̃𝑌 → ̃𝑌 ′ such that 𝑣′ ∘ 𝑓0 =
𝑣′ ∘ 𝑓1 = 𝑣. The right cancellability condition then yields a weak equivalence
𝑠 : 𝑆 → ̃𝑌 such that 𝑓0 ∘ 𝑠 = 𝑓1 ∘ 𝑠. This completes the proof that (u�∕𝑌 )w is a
cofiltered category. ■

[2] See definition 0.2.1.
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III. Homotopical categories

Theorem 3.5.19 (Fundamental theorem of calculi of fractions). Let u� be a rel-
ative category.

• Let 𝑌 and 𝑍 be objects in u�. If u� admits a calculus of right fractions, then
the hom-ensemble maps

u�( ̃𝑌 , 𝑍) → Ho u�(𝑌 , 𝑍)
𝑓 ↦ 𝑓 ∘ 𝑣−1

defined by each weak equivalence 𝑣 : ̃𝑌 → 𝑌 in u� constitute a colimiting
cocone over the evident filtered diagram of shape (u�∕𝑌 )

op
w

.

• Let 𝑋 and 𝑌 be objects in u�. If u� admits a calculus of left fractions, then
the hom-ensemble maps

u�(𝑋, ̂𝑌 ) → Ho u�(𝑋, 𝑌 )
𝑔 ↦ 𝑢−1 ∘ 𝑔

defined by each weak equivalence 𝑢 : 𝑌 → ̂𝑌 in u� constitute a colimiting
cocone over the evident filtered diagram of shape (𝑌 ∕u�)w.

Proof. See Proposition 2.4 in [GZ, Ch. I]. □

Proposition 3.5.20. Let u� be a relative category. Let (𝑓 , 𝑣) and (𝑓 ′, 𝑣′) be two
cocycles 𝑌 ⇸ 𝑍 in u�. If u� admits a calculus of right fractions, then the following
are equivalent:

(i) The cocycles (𝑓 , 𝑣) and (𝑓 ′, 𝑣′) are in the same connected component of
the cocycle category u�∼→(𝑌 , 𝑍).

(ii) We have 𝑓 ∘ 𝑣−1 = 𝑓 ′ ∘ 𝑣′−1 in Ho u�.

(iii) There exists a commutative diagram in u� of the form below,

𝑌 • 𝑍

𝑌 • 𝑍

𝑌 • 𝑍

𝑣 𝑓

𝑤3

𝑣′ 𝑓 ′

where 𝑤3 is a weak equivalence in u�.
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Dually, let (𝑢, 𝑔) and (𝑢′, 𝑔′) be two cocycles 𝑋 ⇸ 𝑌 in u�. If u� admits a calculus
of left fractions, then the following are equivalent:

(i′) The cycles (𝑢, 𝑔) and (𝑢′, 𝑔′) are in the same connected component of the
cycle category u�→∼(𝑋, 𝑌 ).

(ii′) We have 𝑢−1 ∘ 𝑔 = 𝑢′−1 ∘ 𝑔′ in Ho u�.

(iii′) There exists a commutative diagram in u� of the form below,

𝑋 • 𝑌

𝑋 • 𝑌

𝑋 • 𝑌

𝑔 𝑢

𝑤3

𝑔′ 𝑢′

where 𝑤3 is a weak equivalence in u�.

Proof. (i) ⇒ (ii). It is clear that any two cocycles in the same connected com-
ponent of u�∼→(𝑌 , 𝑍) must represent the same morphism 𝑌 → 𝑍 in Ho u�.

(ii) ⇒ (iii). Suppose (𝑓 , 𝑣) and (𝑓 ′, 𝑣′) represent the same morphism in Ho u�.
Using the explicit description of filtered colimits of ensembles, we deduce that
there is a commutative diagram in u� of the form below,

̃𝑌 ″

̃𝑌 ̃𝑌 ′

𝑌

ℎ1 ℎ2

𝑣″

𝑣 𝑣′

where 𝑣″ is a weak equivalence in u� and 𝑓 ∘ ℎ1 = 𝑓 ′ ∘ ℎ2. Thus, the following
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III. Homotopical categories

diagram commutes, as required:

𝑌 ̃𝑌 𝑍

𝑌 ̃𝑌 ″ 𝑍

𝑌 ̃𝑌 ′ 𝑍

𝑣

ℎ1

𝑓

𝑣″

ℎ2

𝑣′ 𝑓 ′

(iii) ⇒ (i). Immediate. ■

Proposition 3.5.21. Let u� be a homotopical category. If u� admits

• a calculus of spans, or

• a calculus of cospans, or

• a calculus of right fractions, or

• a calculus of left fractions

then u� is a saturated homotopical category.

Proof. The four cases are similar; we will assume that u� admits a calculus of
spans.

Suppose 𝑓 : 𝑋 → 𝑌 is a morphism that is invertible in Ho u�. Then there
exists a cocycle (𝑔, 𝑣) : 𝑌 ⇸ 𝑋 in u� such that 𝑔 ∘ 𝑣−1 is a two-sided inverse for
𝑓 in Ho u�. Construct a commutative diagram in u� of the form below,

�̃� ̃𝑌

𝑋 𝑌

𝑣′

𝑓 ′

𝑣

𝑓

where 𝑣′ : �̃� → 𝑋 is a weak equivalence in u�. The fundamental theorem of
calculi of spans (3.5.9) implies that (𝑓 ∘ 𝑔, 𝑣) = (id𝑌 , id𝑌 ) and (𝑔 ∘ 𝑓 ′, 𝑣′) =
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(id𝑋 , id𝑋) in 𝜋0[u�∼→], so by corollary 3.5.12, we must have commutative dia-
grams of the form below:

𝑌 ̃𝑌 𝑌

𝑌 • 𝑌

𝑌 𝑌 𝑌

𝑣 𝑓∘𝑔

id id

𝑋 �̃� 𝑋

𝑋 • 𝑋

𝑋 𝑋 𝑋

𝑣′ 𝑔∘𝑓 ′

id id

Thus, by repeatedly using the 2-out-of-3 property of weq u� in u�, we see that 𝑓 ∘𝑔
and 𝑔 ∘ 𝑓 ′ are weak equivalences in u�, and by using the 2-out-of-6 property, we
deduce that 𝑓 (as well as 𝑔 and 𝑓 ′) is indeed a weak equivalence in u�. ■

One advantage of calculi of fractions over calculi of spans and cospans is the
following:

Proposition 3.5.22. Let u� be a relative category and let 𝛾 : u� → Ho u� be the
localising functor.

• If u� admits a calculus of right fractions, then 𝛾 : u� → Ho u� preserves
limits for any finite diagram in u�.

• If u� admits a calculus of left fractions, then 𝛾 : u� → Ho u� preserves
colimits for any finite diagram in u�.

Proof. Apply theorems 0.2.13 and 3.5.19. ■

Definition 3.5.23. Let u� be a relative category.

• A colocal object (or right-closed object) in u� is an object 𝑋 in u� such
that the hom-ensemble map

u�(𝑋, 𝑣) : u�(𝑋, ̃𝑌 ) → u�(𝑋, 𝑌 )

is a bijection for all weak equivalences 𝑣 : ̃𝑌 → 𝑌 in u�.

• A local object (or left-closed object) in u� is an object 𝑌 in u� such that
the hom-ensemble map

u�(𝑢, 𝑌 ) : u�(�̂�, 𝑌 ) → u�(𝑋, 𝑌 )

is a bijection for all weak equivalences 𝑢 : 𝑋 → �̂� in u�.
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Proposition 3.5.24. Let u� be a relative category. If u� admits a calculus of right
fractions, then the following are equivalent for an object 𝑋 in u�:

(i) 𝑋 is a colocal object in u�.

(ii) For all weak equivalences 𝑣 : ̃𝑌 → 𝑌 in u�, the hom-ensemble map

u�(𝑋, 𝑣) : u�(𝑋, ̃𝑌 ) → u�(𝑋, 𝑌 )

is a surjection.

(iii) The map u�(𝑋, 𝑌 ) → Ho u�(𝛾𝑋, 𝛾𝑌 ) induced by the localising functor 𝛾 :
u� → Ho u� is a bijection.

Dually, if u� admits a calculus of left fractions, then the following are equivalent
for an object 𝑌 in u�:

(i′) 𝑌 is a local object in u�.

(ii′) For all weak equivalences 𝑢 : 𝑋 → �̂� in u�, the hom-ensemble map

u�(𝑢, 𝑌 ) : u�(�̂�, 𝑌 ) → u�(𝑋, 𝑌 )

is a surjection.

(iii′) The map u�(𝑋, 𝑌 ) → Ho u�(𝛾𝑋, 𝛾𝑌 ) induced by the localising functor 𝛾 :
u� → Ho u� is a bijection.

Proof. (i) ⇒ (ii). Obvious.

(ii) ⇒ (iii). The fundamental theorem of calculi of fractions (3.5.19) says that
there is a natural bijection

lim−−→
𝑣:(u�∕𝑋)

op
w

u�(dom 𝑣, 𝑌 ) ≅ Ho u�(𝛾𝑋, 𝛾𝑌 )

where 𝑣 varies over the weak equivalences in u� with codomain 𝑋 (considered as
a full subcategory of the slice category u�∕𝑋). Note that each weak equivalence
𝑣 : �̃� → 𝑋 is a split epimorphism, so Ho u�(𝑋, 𝑌 ) is a filtered colimit for a
diagram of injective maps. In particular, the map u�(𝑋, 𝑌 ) → Ho u�(𝛾𝑋, 𝛾𝑌 ) is
injective. On the other hand, if 𝑖 : 𝑋 → �̃� is a section of a weak equivalence
𝑣 : �̃� → 𝑋, then 𝛾(𝑣)−1 = 𝛾(𝑖). Thus, the map u�(𝑋, 𝑌 ) → Ho u�(𝛾𝑋, 𝛾𝑌 ) is also
surjective.
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(iii) ⇒ (i). Let 𝑣 : ̃𝑌 → 𝑌 be any weak equivalence in u�. The hom-ensemble
bijection in the hypothesis is natural, so we have the following commutative dia-
gram:

u�(𝑋, ̃𝑌 ) Ho u�(𝛾𝑋, 𝛾 ̃𝑌 )

u�(𝑋, 𝑌 ) Ho u�(𝛾𝑋, 𝛾𝑌 )

u�(𝑋,𝑣)

𝛾

Ho u�(𝛾(𝑣))

𝛾

Since 𝛾(𝑣) : 𝛾 ̃𝑌 → 𝛾𝑌 is an isomorphism in Ho u�, the map u�(𝑋, 𝑣) must be a
bijection. Thus, 𝑋 is a colocal object in u�. ■

¶ 3.5.25. Given a functor 𝐹 : u� → u�, an 𝐹 -isomorphism is a morphism in
u� that 𝐹 sends to an isomorphism in u�. Note that u�, together with the class of
𝐹 -isomorphisms, is then a saturated homotopical category by lemma 3.1.8.

Proposition 3.5.26. Let u� be a relative category. Consider the following state-
ments:

(i) The localising functor 𝛾 : u� → Ho u� has a left adjoint.

(ii) The localising functor 𝛾 : u� → Ho u� has a fully faithful left adjoint.

(iii) For each object 𝑋 in u�, there exists a colocal object �̃� and a 𝛾-isomorph-
ism 𝑝 : �̃� → 𝑋.

We always have the implications (i) ⇒ (ii) ⇒ (iii), and if u� admits a calculus of
right factions, then (iii) ⇒ (i) as well.

Dually:

(i′) The localising functor 𝛾 : u� → Ho u� has a right adjoint.

(ii′) The localising functor 𝛾 : u� → Ho u� has a fully faithful right adjoint.

(iii′) For each object 𝑌 in u�, there exists a local object ̂𝑌 and a 𝛾-isomorphism
𝑖 : 𝑌 → ̂𝑌 .

We always have the implications (i′) ⇒ (ii′) ⇒ (iii′), and if u� admits a calculus
of left fractions, then (iii′) ⇒ (i′) as well.
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Proof. (i) ⇒ (ii). This is proposition a.4.21.

(ii) ⇒ (iii). Let 𝐿 : Ho u� → u� be a left adjoint for 𝛾 : u� → Ho u�. We then have
the following natural bijection:

u�(𝐿𝛾𝑋, 𝑌 ) ≅ Ho u�(𝛾𝑋, 𝛾𝑌 )

Since 𝛾𝑣 : 𝛾 ̃𝑌 → 𝛾𝑌 is an isomorphism for any weak equivalence 𝑣 : ̃𝑌 → 𝑌 in
u�, it follows that 𝐿𝛾𝑋 is a colocal object in u�.

Now, consider the adjunction counit component 𝑋 : 𝐿𝛾𝑋 → 𝑋. Proposi-
tion a.1.3 says the adjunction unit : idHo u� ⇒ 𝛾𝐿 is a natural isomorphism, so
the right triangle identity implies 𝛾 𝑋 : 𝛾𝐿𝛾𝑋 → 𝛾𝑋 is an isomorphism, i.e. 𝑋
is a 𝛾-isomorphism, as required.

(iii) ⇒ (i). Suppose u� admits a calculus of right fractions. Proposition 3.5.24
says the localising functor 𝛾 : u� → Ho u� induces a natural map

u�(�̃�, 𝑌 ) → Ho u�(𝛾�̃�, 𝛾𝑌 )

that is a bijection whenever �̃� is a colocal object, so if 𝑝 : �̃� → 𝑋 is a 𝛾-iso-
morphism, we obtain a bijection

u�(�̃�, 𝑌 ) ≅ Ho u�(𝛾𝑋, 𝛾𝑌 )

that is natural in 𝑌 . Since 𝛾 is bijective on objects, this implies 𝛾 has a left
adjoint. ■

Theorem 3.5.27 (Reflective localisations). Let 𝑈 : u� → u� be a fully faithful
functor. If 𝑈 has a left adjoint, say 𝐹 : u� → u�, then:

(i) Let u� be the smallest subcategory of u� that contains all identity morph-
isms and the components of the adjunction unit : idu� ⇒ 𝑈𝐹 . Then
(u�, u� ) admits a calculus of left fractions.

(ii) Any localisation of u� at u� is also a localisation of u� at 𝐹 -isomorphisms.

(iii) The canonical functor ̄𝐹 : u�[u� −1] → u� induced by 𝐹 : u� → u� is fully
faithful and essentially surjective on objects.
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Dually, if 𝑈 has a right adjoint, say 𝐻 : u� → u�, then:

(i′) Let u� be the smallest subcategory of u� that contains all identity morphisms
and the components of the adjunction counit : 𝑈𝐻 ⇒ idu� . Then (u�, u�)
admits a calculus of right fractions.

(ii′) Any localisation of u� at u� is also a localisation of u� at 𝐻-isomorphisms.

(iii′) The canonical functor �̄� : u�[u�−1] → u� induced by 𝐻 : u� → u� is fully
faithful and essentially surjective on objects.

Proof. (i). The naturality of ensures that (u�, u� ) satisfies the left Ore condition.
Suppose 𝑓0, 𝑓1 : 𝑈𝐹 𝑋 → 𝑌 are morphisms in u� such that 𝑓0 ∘ 𝑋 = 𝑓1 ∘ 𝑋 . By
proposition a.1.3, the adjunction counit : 𝐹 𝑈 ⇒ idu� is a natural isomorphism,
so the triangle identities imply that 𝑈𝐹 = 𝐹 𝑈 . But 𝑌 ∘ 𝑓0 = 𝑈𝐹 𝑓0 ∘ 𝑈𝐹 𝑋
and 𝑌 ∘ 𝑓1 = 𝑈𝐹 𝑓1 ∘ 𝑈𝐹 𝑋 , so we may deduce that 𝑌 ∘ 𝑓0 = 𝑌 ∘ 𝑓1. Thus
(u�, u� ) is left cancellable.

(ii). Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. By naturality of , the following
diagram commutes:

𝑋 𝑈𝐹 𝑋

𝑌 𝑈𝐹 𝑌

𝑓

𝑋

𝑈𝐹 𝑓

𝑌

Thus, any functor that sends the components of to isomorphisms must also
make 𝐹 -isomorphisms invertible. On the other hand, 𝐹 is a natural isomorph-
ism because is, so any functor that makes 𝐹 -isomorphisms invertible must also
send the components of to isomorphisms.

(iii). Since : 𝐹 𝑈 ⇒ idu� is a natural isomorphism, the functor 𝐹 : u� → u� is
essentially surjective on objects, and so ̄𝐹 : u�[u�−1] → u� must also be essentially
surjective on objects.

It remains to be shown that ̄𝐹 is a fully faithful functor. Let 𝑌 be an object
in u�, and let 𝑓 : 𝑋 → 𝑋′ be an 𝐹 -isomorphism. Since 𝐹 ⊣ 𝑈 , we have the
following commutative diagram:

u�(𝐹 𝑋′, 𝐹 𝑌 ) u�(𝑋′, 𝑈𝐹 𝑌 )

u�(𝐹 𝑋, 𝐹 𝑌 ) u�(𝑋, 𝑈𝐹 𝑌 )

u�(𝐹 𝑓 ,𝐹 𝑌 )

≅

u�(𝑓 ,𝑈𝐹 𝑌 )

≅
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III. Homotopical categories

We then see that 𝑈𝐹 𝑌 is a local object in u� (with respect to 𝐹 -isomorphisms).
Since 𝑌 : 𝑌 → 𝑈𝐹 𝑌 is an 𝐹 -isomorphism, we may then apply proposi-
tion 3.5.26 to deduce that the localising functor 𝛾 : u� → u�[u�−1] has a fully
faithful right adjoint that sends each object 𝛾𝑌 to 𝑈𝐹 𝑌 . Thus ̄𝐹 is indeed fully
faithful. ■

3.6 Three-arrow calculi
Prerequisites. §§3.1, a.4.

In this section, we follow [DHKS, §36] and [Thomas, 2011].

Definition 3.6.1. Let u� be a relative category, let u� = weq u� be the subcategory
of weak equivalences in u�, and let u� and u� be subcategories of u� . We say u�
admits a three-arrow calculus for u� with respect to (u� , u�) if the following
conditions are satisfied:

A1. For each weak equivalence 𝑤 in u�, there exist 𝑢 in u� and 𝑣 in u� such
that 𝑤 = 𝑣 ∘ 𝑢.

A2. Given a diagram of the form ̂𝑌
𝑢

← 𝑌
𝑔

→ 𝑍 in u� with 𝑢 in u� , there exists
a diagram of the form ̂𝑌

𝑔′

→ �̂�
𝑢′

← 𝑍 such that

– 𝑔′ ∘ 𝑢 = 𝑢′ ∘ 𝑔,

– 𝑢′ is in u� , and

– given any diagram of the form ̂𝑌
𝑦

→ 𝑇
𝑧

← 𝑍 such that 𝑦 ∘ 𝑢 = 𝑧 ∘ 𝑔,
there exists a (not necessarily unique) morphism 𝑇 → �̂� making
the diagram below commute:

𝑌 ̂𝑌

𝑍 �̂�

𝑇

𝑔

𝑢

𝑔′

𝑦

𝑧

𝑢′

A3. Given a diagram of the form 𝑋
𝑓
→ 𝑌

𝑣
← ̃𝑌 in u� with 𝑣 in u� , there exists

a diagram of the form 𝑋
𝑣′

← �̃�
𝑓 ′

→ ̃𝑌 such that
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– 𝑓 ∘ 𝑣′ = 𝑣 ∘ 𝑔′,

– 𝑣′ is in u� , and

– given any diagram of the form 𝑋
𝑥

← 𝑆
𝑦

→ 𝑌 such that 𝑓 ∘ 𝑥 = 𝑣 ∘ 𝑦,
there exists a (not necessarily unique) morphism 𝑆 → �̃� making
the diagram below commute:

𝑆

�̃� 𝑋

̃𝑌 𝑌

𝑦

𝑥

𝑓 ′

𝑣′

𝑓

𝑣

A uni-fractionable category is a relative category u� together with a pair of
subcategories (u� , u�) such that weq u� has the 2-out-of-3 property in u� and u�
admits a three-arrow calculus with respect to (u� , u�).

Remark 3.6.2. Note that axiom A1 implies that ob u� = ob u� = ob u�; in partic-
ular, every identity morphism in u� is also in u� and u� .
Remark 3.6.3. Consider diagrams of the following forms,

𝑌

̂𝑌 𝑍

�̂�

𝑢 𝑔

𝑔′ 𝑢′

�̃�

𝑋 𝑌

̃𝑌

𝑣′ 𝑓 ′

𝑓 𝑣

where 𝑢, 𝑢′ are in u� and 𝑣, 𝑣′ are in u� . Under the assumption that u� has the
2-out-of-3 property in u�, the morphism 𝑔 is in u� if and only if 𝑔′ is in u� , and
the morphism 𝑓 is in u� if and only if 𝑓 ′ is in u� .

Definition 3.6.4. Let u� be a relative category, let u� = weq u� be the subcategory
of weak equivalences in u�, and let u� and u� be subcategories of u� . A functorial
three-arrow calculus for u� with respect to (u� , u�) consists of the following data:

FA1. A functorial factorisation system on u� with left class contained in mor u�
and right class contained in mor u� .
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III. Homotopical categories

FA2. A functor from the full subcategory of [{• ← • → •}, u�] spanned by
those diagrams of the form ̂𝑌

𝑢
← 𝑌

𝑔
→ 𝑍, where 𝑢 is in u� , to the cat-

egory [{• → • ← •}, u�], such that each diagram ̂𝑌
𝑢

← 𝑌
𝑔

→ 𝑍 is sent to
a diagram of the form ̂𝑌

𝑔′

→ �̂�
𝑢′

← 𝑍, where 𝑔′ ∘ 𝑢 = 𝑢′ ∘ 𝑔, 𝑢′ is in u� ,
and 𝑢′ is an isomorphism if 𝑢 is.

FA3. A functor from the full subcategory of [{• → • ← •}, u�] spanned by
those diagrams of the form 𝑋

𝑓
→ 𝑌

𝑣
← ̃𝑌 , where 𝑣 is in u� , to the cat-

egory [{• ← • → •}, u�], such that each diagram 𝑋
𝑓
→ 𝑌

𝑣
← ̃𝑌 is sent to

a diagram of the form 𝑋
𝑣′

← �̃�
𝑓 ′

→ ̃𝑌 , where 𝑓 ∘ 𝑣′ = 𝑣 ∘ 𝑔′, 𝑣′ is in u� ,
and 𝑣′ is an isomorphism if 𝑣 is.

If such data exist, then we say u� admits a functorial three-arrow calculus with
respect to (u� , u�).

Remark 3.6.5. If mor u� is closed under pushout in u�, then we may take pushouts
to construct datum FA2; similarly, if mor u� is closed under pullback in u�, then
we may take pullbacks to construct datum FA3.

Remark 3.6.6. A relative category u� admits a (functorial) three-arrow calculus
with respect to (u� , u�) if and only if the opposite relative category u� op admits a
(functorial) three-arrow calculus with respect to (u� , u� ).

Proposition 3.6.7. Let u� be a relative category and let u� and u� be subcat-
egories of u� = weq u� (itself considered as a subcategory of u�). If u� admits a
functorial three-arrow calculus with respect to (u� , u�), then u� admits a three-
arrow calculus with respect to (u� , u�).

Proof. Obviously, having datum FA1 implies axiom A1 is satisfied. Now sup-
pose we have a commutative square of the form below in u�,

𝑌 ̂𝑌

𝑍 𝑇

𝑔

𝑢

𝑦

𝑧
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where 𝑢 is in u� . The datum FA2 then gives us the following commutative dia-
gram,

𝑌 ̂𝑌

𝑇 𝑇

𝑍 �̂�

𝑇 ̂𝑇

𝑔

𝑢

𝑔′

𝑢′

𝑦

𝑧

𝑤

𝑤

and 𝑤 : 𝑇 → ̂𝑇 is an isomorphism, thus, there exists a morphism �̂� → 𝑇
making the diagram below commute:

𝑌 ̂𝑌

𝑍 �̂�

𝑇

𝑔

𝑢

𝑔′

𝑦

𝑧

𝑢′

This shows that axiom A2 is satisfied, and the dual argument proves axiom A3.
■

Proposition 3.6.8. Let u� and u� be relative categories. If u� admits a functorial
three-arrow calculus, and either

• weq u� has the 2-out-of-3 property in u�, or

• u� is a minimal relative category,

then the relative functor category [u�, u�]h admits a functorial three-arrow calcu-
lus constructed componentwise from u�.

Proof. Let (u� , u�) be a functorial three-arrow calculus for u�. It is clear that,
when u� is a minimal relative category, all the data constituting a three-arrow
calculus for u� may be lifted componentwise to define a three-arrow calculus for
[u�, u�]h.

In general, we must check that [u�, u�]h is closed under the various compon-
entwise constructions. However, if 𝑓 : 𝐴 → 𝐵 is a weak equivalence in u� and
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III. Homotopical categories

: 𝑋 ⇒ 𝑌 is a natural weak equivalence of relative functors 𝑋, 𝑌 : u� → ℳ,
and 𝜓∙𝜑 is the componentwise (u� , u�)-factorisation of , then the diagram below
commutes,

𝑋𝐴 𝑍𝐴 𝑌 𝐴

𝑋𝐵 𝑍𝐵 𝑌 𝐵

𝑋𝑓

𝜑𝐴

𝑍𝑓

𝜓𝐴

𝑌 𝑓

𝜑𝐵 𝜓𝐵

and so by the 2-out-of-3 property of weq u�, 𝑍𝑓 is also a weak equivalence in
u�, thus 𝑍 : u� → ℳ is a relative functor. Similarly, one uses the 2-out-of-3
property of weq u� to ensure that the componentwise constructions satisfy the
conditions to be data FA2 and FA3 for a functorial three-arrow calculus. ■

Theorem 3.6.9 (Fundamental theorem of three-arrow calculi). Let u� be a rel-
ative category such that weq u� has the 2-out-of-3 property in u�. If u� admits a
three-arrow calculus with respect to (u� , u�), then:

(i) Every morphism in Ho u� can be represented by a zigzag in u� of the form
below,

𝑋 �̃� ̂𝑌 𝑌𝑣 𝑓 𝑢

where 𝑢 is in u� and 𝑣 is in u� .

(ii) Two such zigzags represent the same morphism in Ho u� if and only if there
exists a commutative diagram in u� of the form

𝑋 �̃� ̂𝑌 𝑌

𝑋 • • 𝑌

𝑋 • • 𝑌

𝑋 �̃�′ ̂𝑌 ′ 𝑌

𝑣

𝑣1

𝑓

𝑣2

𝑢

𝑣3

𝑤1

𝑓3

𝑤2

𝑢3

𝑣4

𝑢1

𝑓4
𝑢2

𝑢4

𝑣′ 𝑓 ′ 𝑢′

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are in u� , 𝑣1, 𝑣2, 𝑣3, 𝑣4 are in u� , and 𝑤1, 𝑤2 are weak
equivalences in u�.

Proof. For the functorial case, see paragraph 36.3 in [DHKS]; for the general
case, see Lemma 4.9 and Theorem 5.13 in [Thomas, 2011]. □
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3.7. Categories of fibrant objects

Proposition 3.6.10. If u� is a homotopical category that admits a three-arrow
calculus, then u� is a saturated homotopical category.

Proof. Suppose u� admits a three-arrow calculus with respect to (u� , u�). Let
𝑓 : 𝑋 → 𝑌 be a morphism in u� whose image in Ho u� is an isomorphism, with
inverse represented by the following zigzag,

𝑌 ̃𝑌 �̂� 𝑋𝑣 𝑔 𝑢

where 𝑢 is in u� and 𝑣 is in u� . Then, by axioms A2 and A3, there exist 𝑣′ in u� ,
𝑓 ′ in u�, 𝑢″ in u� , and 𝑓 ″ in u� such that the diagrams below commute,

�̃� ̃𝑌

𝑋 𝑌

𝑣′

𝑓 ′

𝑣

𝑓

𝑋 𝑌

�̂� ̂𝑌

𝑢

𝑓

𝑢″

𝑓 ″

and by theorem 3.6.9, we have commutative diagrams in u� of the following form,

𝑋 𝑋 𝑋 𝑋

𝑋 • • 𝑋

𝑋 • • 𝑋

𝑋 �̃� �̂� 𝑋
𝑣′ 𝑔∘𝑓 ′ 𝑢

𝑌 𝑌 𝑌 𝑌

𝑌 • • 𝑌

𝑌 • • 𝑌

𝑌 ̃𝑌 ̂𝑌 𝑌𝑣 𝑓 ″∘𝑔 𝑢″

where all leftward- and upward-pointing arrows are weak equivalences in u�. We
may then deduce that every arrow appearing in the above diagrams are in weq u�
by iteratively applying the 2-out-of-3 property of weq u�. In particular, 𝑔 ∘ 𝑓 ′ and
𝑓 ″ ∘ 𝑔 are weak equivalences in u�, so the 2-out-of-6 property of weq u� implies
that 𝑓 ′, 𝑓 ″, 𝑔 are all in weq u�. We then conclude that 𝑓 is in weq u�, by using the
2-out-of-3 property again. ■

3.7 Categories of fibrant objects
Prerequisites. §§3.1, 3.5, a.4.
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III. Homotopical categories

One particularly common kind of relative category with a calculus of spans
is obtained by taking the full subcategory of fibrant objects in a model category.
We can study these categories axiomatically following Brown [1973]:

Definition 3.7.1. A category of fibrant objects is a locally small category ℰ
with finite products and equipped with a pair (u� , ℱ) of subclasses of mor ℰ sat-
isfying these axioms:

(A) (ℰ, u�) is a category with weak equivalences, i.e. every isomorphism is in
u� and u� has the 2-out-of-3 property in ℰ.

(B) Every isomorphism is in ℱ, and ℱ is closed under composition.

(C) Pullbacks along morphisms in ℱ exist, and the pullback of a morphism
that is in ℱ (resp. u� ∩ ℱ) is also a morphism that is in ℱ (resp. u� ∩ ℱ).

(D) For each object 𝑋 in ℰ, there is a commutative diagram of the form below,

𝑋 Path(𝑋)

𝑋 × 𝑋
Δ

𝑖

𝑝

where Δ : 𝑋 → 𝑋 × 𝑋 is the diagonal morphism, 𝑖 : 𝑋 → Path(𝑋) is in
u� , and Path(𝑋) → 𝑋 × 𝑋 is in ℱ.

(E) For any object 𝑋 in ℰ, the unique morphism 𝑋 → 1 is in ℱ.

In a category of fibrant objects as above,

• a weak equivalence is a morphism in u� ,

• a fibration is a morphism in ℱ, and

• a trivial fibration (or acyclic fibration) is a morphism in u� ∩ ℱ.

Definition 3.7.2. Let 𝑋 be an object in a category of fibrant objects ℰ. A path
object for 𝑋 is a quadruple (Path(𝑋), 𝑖, 𝑝0, 𝑝1), where Path(𝑋) is an object in ℰ,
𝑖 : 𝑋 → Path(𝑋) is a weak equivalence, and 𝑝0 and 𝑝1 are retractions of 𝑖 such
that the morphism ⟨𝑝0, 𝑝1⟩ : Path(𝑋) → 𝑋 × 𝑋 is a fibration.

Remark 3.7.3. Axiom D is precisely the statement that path objects exist in a
category of fibrant objects.
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Definition 3.7.4. A path object functor for a category of fibrant objects ℰ con-
sists of the following data:

• A functor Path : ℰ → ℰ.

• Natural transformations 𝑖 : idℰ ⇒ Path and 𝑝0, 𝑝1 : Path ⇒ idℰ such that
(Path(𝑋), 𝑖𝑋 , (𝑝0)𝑋 , (𝑝1)𝑋) is a path object for every object 𝑋 in ℰ.

We say ℰ has functorial path objects if it admits a path object functor.

Lemma 3.7.5. Let 𝑋 be an object in a category of fibrant objects ℰ and let
(Path(𝑋), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑋. Then 𝑝0, 𝑝1 : Path(𝑋) → 𝑋 are
trivial fibrations.

Proof. Axioms C and E imply the two projections 𝑋 × 𝑋 → 𝑋 are fibrations,
so axiom B implies 𝑝0, 𝑝1 : Path(𝑋) → 𝑋 must be fibrations. By definition,
we have 𝑝0 ∘ 𝑖 = 𝑝1 ∘ 𝑖 = id𝑋 , so axiom A implies 𝑝0 and 𝑝1 are both weak
equivalences, as required. ■

Lemma 3.7.6 (Factorisation lemma). Let 𝑓 : 𝑋 → 𝑌 be a morphism in a
category of fibrant objects ℰ.

(i) There exists a commutative diagram in ℰ of the form below,

𝑋 𝑋

𝑋 𝐸𝑓

𝑋 𝑌

id

𝑝

𝑢

𝑣

𝑓

where 𝑢 : 𝑋 → 𝐸𝑓 is a weak equivalence and both 𝑣 : 𝐸𝑓 → 𝑌 and
𝑝 : 𝐸𝑓 → 𝑋 are fibrations.

(ii) Moreover, if ℰ has functorial path objects, then 𝑢, 𝑣, and 𝑝 can be chosen
functorially (with respect to 𝑓 ).
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Proof. Let (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑌 in ℰ. Form a pullback dia-
gram in ℰ of the form below:

𝐸𝑓 Path(𝑌 )

𝑋 𝑌

𝑞

𝑔

𝑝0

𝑓

Note that 𝑝0 : Path(𝑌 ) → 𝑌 is a trivial fibration (by lemma 3.7.5), so this makes
sense, and 𝑞 : 𝐸𝑓 → 𝑋 is also a trivial fibration (by axiom C). Let 𝑢 : 𝑋 → 𝐸𝑓
be the unique morphism such that 𝑞 ∘ 𝑢 = id𝑋 and 𝑔 ∘ 𝑢 = 𝑖 ∘ 𝑓 , and let 𝑣 = 𝑝1 ∘ 𝑔.
Then 𝑢 is a section of a trivial fibration, hence is a weak equivalence by axiom
A, and 𝑣 is a fibration because we have the following commutative diagram,

𝐸𝑓 Path(𝑌 )

𝑋 × 𝑌 𝑌 × 𝑌

𝑌

𝑣

⟨𝑞,𝑝1∘𝑔⟩

𝑔

⟨𝑝0,𝑝1⟩

𝑓×id𝑌

where the square in the diagram is a pullback square and 𝑋 × 𝑌 → 𝑌 is the
product projection (thus, a fibration by axioms C and E). It is clear that 𝑢, 𝑣, and
𝑝 are functorial with respect to 𝑓 and the choice of (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1), so if ℰ has
functorial path objects, then 𝑢, 𝑣, and 𝑝 can be chosen functorially with respect
to 𝑓 . ■

Proposition 3.7.7. Let 𝐴 be an object in a category of fibrant objects ℰ.

(i) Let (ℰ∕𝐴)f be the full subcategory of the slice category ℰ∕𝐴 spanned by
the fibrations over 𝐴. Then (ℰ∕𝐴)f is a category of fibrant objects where
a morphism in (ℰ∕𝐴)f is a weak equivalence (resp. fibration) if and only if
the underlying morphism in ℰ is a weak equivalence (resp. fibration).

(ii) The slice category 𝐴∕ℰ is a category of fibrant objects where a morphism
in 𝐴∕ℰ is a weak equivalence (resp. fibration) if and only if the underlying
morphism in ℰ is a weak equivalence (resp. fibration).

Proof. (i). Since ℰ has pullbacks along fibrations, (ℰ∕𝐴)f has finite products (and
the inclusion (ℰ∕𝐴)f ↪ ℰ∕𝐴 preserves them). It is clear that (ℰ∕𝐴)f with the given
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weak equivalences and fibrations satisfies axioms A, B, C, and E; and for axiom
D, we may apply the factorisation lemma (3.7.6).

(ii). It is not hard to see that 𝐴∕ℰ has finite products and pullbacks along fibrations
(and the forgetful functor 𝐴∕ℰ → ℰ preserves them). Thus 𝐴∕ℰ with the given weak
equivalences and fibrations satisfies axioms A, B, C, and E; and for axiom D, it
is clear that path objects in 𝐴∕ℰ can be constructed as in ℰ. ■

Proposition 3.7.8. Let ℰ be a category of fibrant objects and let 𝔻 be a small
category. If ℰ has functorial path objects, then the functor category [𝔻, ℰ] is
a category of fibrant objects where a natural transformation is a weak equival-
ence (resp. fibration) if and only if its components are weak equivalences (resp.
fibrations) in ℰ.

Proof. Since ℰ has finite products, [𝔻, ℰ] also has finite products, and they are
computed componentwise. It is clear that [𝔻, ℰ] with the given weak equival-
ences and fibrations satisfies axioms A, B, C, and E; and we may construct path
objects in [𝔻, ℰ] using the functorial path objects in ℰ, so axiom D is also satis-
fied. ■

Lemma 3.7.9. Let ℰ be a category of fibrant objects and let u� be a category of
weak equivalences. If 𝐹 : ℰ → u� is a functor that sends trivial fibrations in ℰ
to weak equivalences in u�, then 𝐹 also sends weak equivalences in ℰ to weak
equivalences in u�.

Proof. Let 𝑓 be a weak equivalence in ℰ. By the factorisation lemma (3.7.6),
there exist morphisms 𝑢 and 𝑣 in ℰ such that 𝑓 = 𝑣 ∘ 𝑢, 𝑢 is a section of a trivial
fibration, and 𝑣 is a trivial fibration. Since weak equivalences have the 2-out-of-3
property in u�, 𝐹 𝑢 is a weak equivalence in u�; hence, 𝐹 𝑓 is a weak equivalence
in u�, as required. ■

Corollary 3.7.10. Let ℰ be a category of fibrant objects and let u� be a subclass
of mor ℰ that has the 2-out-of-3 property.

(i) If every trivial fibration in ℰ is in u� , then every weak equivalence in ℰ is
also in u� .

(ii) In particular, the class of weak equivalences in ℰ is the smallest class of
morphisms in ℰ that has the 2-out-of-3 property and contains the trivial
fibrations. ■
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Definition 3.7.11. The homotopy category of a category of fibrant objects ℰ is
the category Ho ℰ obtained by freely inverting the weak equivalences in ℰ, as in
definition a.4.9.

Proposition 3.7.12. Let ℰ be a category of fibrant objects and let u� be the class
of trivial fibrations in ℰ.

(i) u� defines a calculus of cocycles for ℰ.

(ii) If ℰ has functorial path objects, then ℰ admits a functorial calculus of
cocycles.

(iii) Every morphism in Ho ℰ can be represented by a u�-cocycle in ℰ.

Proof. (i) and (ii). This is a consequence of axioms A and C and the factorisation
lemma (3.7.6).

(iii). Apply corollary 3.5.10. ■

Proposition 3.7.13. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a category of fibrant
objects ℰ.

(i) There is a functor 𝑓 ∗ : (ℰ∕𝑌 )f → (ℰ∕𝑋)f sending an fibration over 𝑌 to its
pullback along 𝑓 : 𝑋 → 𝑌 .

(ii) The pullback functor 𝑓 ∗ : (ℰ∕𝑌 )f → (ℰ∕𝑋)f preserves weak equivalences
and fibrations.

Proof. (i). This is just axiom C for a category of fibrant objects.

(ii). Recalling the pullback pasting lemma, this is a consequence of axiom C and
lemma 3.7.9. ■

Lemma 3.7.14. Let ℰ be a category of fibrant objects and let 𝑠 : 𝑋 → 𝑌 be
a section of a trivial fibration in ℰ. Given a pullback diagram in ℰ of the form
below,

𝑋′ 𝑋

𝑌 ′ 𝑌

𝑠′

𝑓

𝑠

𝑔

where 𝑔 : 𝑌 ′ → 𝑌 is a fibration in ℰ, the morphism 𝑠′ : 𝑋′ → 𝑌 ′ is a weak
equivalence in ℰ.
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Proof. Let 𝑝 : 𝑌 → 𝑋 be a trivial fibration in ℰ such that 𝑝 ∘ 𝑠 = id𝑋 . Form the
following pullback diagram in ℰ:

𝑍 𝑌

𝑌 ′ 𝑋

𝑟

𝑞

𝑝

𝑝∘𝑔

By axiom C, 𝑟 : 𝑍 → 𝑌 ′ is a trivial fibration and 𝑞 : 𝑍 → 𝑌 is a fibration.
There is a unique morphism 𝑡 : 𝑌 ′ → 𝑍 such that 𝑟 ∘ 𝑡 = id𝑌 ′ and 𝑞 ∘ 𝑡 = 𝑔; note
that 𝑡 is then a weak equivalence by axiom A. Now, consider the commutative
diagram in ℰ shown below:

𝑌 ′ 𝑋

𝑍 𝑌

𝑌 ′ 𝑋

id

𝑡

𝑝∘𝑔

id

𝑠

𝑟

𝑞

𝑝

𝑝∘𝑔

The lower square and the outer rectangle are pullback diagrams in ℰ, so the pull-
back pasting lemma implies the upper square is also a pullback diagram in ℰ.
Similarly, the following diagram in ℰ commutes,

𝑋′ 𝑌 ′ 𝑋

𝑌 ′ 𝑍 𝑌

𝑠′
𝑠′

𝑓

𝑡

𝑝∘𝑔

𝑠

𝑡

𝑔

𝑞

and both the right square and the outer rectangle are pullback diagrams in ℰ, so
the left square is a pullback diagram in ℰ as well. But proposition 3.7.13 says that
𝑠∗ : (ℰ∕𝑌 )f → (ℰ∕𝑋)f preserves weak equivalences, so 𝑠′ : 𝑋′ → 𝑌 ′ is indeed a
weak equivalence, as required. ■

Proposition 3.7.15. In a category of fibrant objects, the pullback of a weak equi-
valence along a fibration is again a weak equivalence.

Proof. Axiom C says that the pullback of a trivial fibration is a trivial fibration,
so the factorisation lemma (3.7.6) implies it is enough to prove that the pullback

429



III. Homotopical categories

of a section of a trivial fibration is a weak equivalence; but that is precisely the
statement of lemma 3.7.14. ■

Definition 3.7.16. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a
category of fibrant objects ℰ and let (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑌 .

• A right homotopy from 𝑓0 to 𝑓1 with respect to (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) is a
morphism 𝐻 : 𝑋 → Path(𝑌 ) such that 𝑝0 ∘ 𝐻 = 𝑓0 and 𝑝1 ∘ 𝐻 = 𝑓1.

• We say 𝑓0 and 𝑓1 are right homotopic if there exists a right homotopy
from 𝑓0 to 𝑓1 with respect to some path object for 𝑌 .

Remark 3.7.17. If 𝑓0 and 𝑓1 are right homotopic, then 𝑓0 = 𝑓1 in Ho ℰ (be-
cause 𝑝0, 𝑝1 : Path(𝑌 ) → 𝑌 are isomorphisms in Ho ℰ with a common section,
namely 𝑖 : 𝑌 → Path(𝑌 )). The converse is not true in general; but see also
theorem 3.7.35.

Lemma 3.7.18. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a cat-
egory of fibrant objects ℰ.

(i) Given any path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , 𝑖 ∘ 𝑓0 : 𝑋 → Path(𝑌 ) is a
right homotopy from 𝑓0 to itself.

(ii) If 𝐻 : 𝑋 → Path(𝑌 ) is a right homotopy from 𝑓0 to 𝑓1 with respect to a
path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , then the same 𝐻 is a right homotopy
from 𝑓1 to 𝑓0 for the path object (Path(𝑌 ), 𝑖, 𝑝1, 𝑝0).

Proof. Obvious. ⧫

Lemma 3.7.19. Let 𝑌 be an object in a category of fibrant objects ℰ. Given
two path objects for 𝑌 , say (Path(𝑌 )′, 𝑖′, 𝑝′

0, 𝑝′
1) and (Path(𝑌 )″, 𝑖″, 𝑝″

0 , 𝑝″
1 ), then

there exists a third path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) such that the diagram below
commutes,

𝑌

Path(𝑌 )

Path(𝑌 )′ Path(𝑌 )″

𝑌 𝑌 𝑌

𝑖
𝑖′ 𝑖″

𝑞′ 𝑞″

𝑝0 𝑝1

𝑝′
0 𝑝′

1 𝑝″
0 𝑝″

1
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and the diamond is a pullback diagram.

Proof. Axiom C ensures that we can construct a diagram of the required form
in ℰ. Moreover, axiom A and lemma 3.7.5 imply that 𝑝0, 𝑝1 : Path(𝑌 ) → 𝑌 are
trivial fibrations, so 𝑖 : 𝑌 → Path(𝑌 ) is a weak equivalence. Finally, we note
that ⟨𝑝0, 𝑝1⟩ : Path(𝑌 ) → 𝑌 × 𝑌 can be factorised as follows,

Path(𝑌 ) Path(𝑌 )′ × 𝑌 𝑌 × 𝑌⟨𝑞′,𝑝1⟩ 𝑝′
0×id𝑌

but 𝑝′
0 × id𝑌 : Path(𝑌 )′ × 𝑌 → 𝑌 × 𝑌 is a (trivial) fibration, and in the diagram

below,

Path(𝑌 ) Path(𝑌 )′ × 𝑌 Path(𝑌 ′)

Path(𝑌 )″ 𝑌 × 𝑌 𝑌

𝑞″

⟨𝑞′,𝑝1⟩

𝑝′
1×id𝑌

𝜋1

𝑝′
1

⟨𝑝″
0 ,𝑝″

1 ⟩ 𝜋1

the outer rectangle and the right square are pullback diagrams, so the left square
is also a pullback diagram, and therefore ⟨𝑞′, 𝑝1⟩ : Path(𝑌 ) → ⟨𝑞′, 𝑝1⟩ is also a
fibration; thus, ⟨𝑝0, 𝑝1⟩ : Path(𝑌 ) → 𝑌 × 𝑌 is indeed a fibration. ■

Corollary 3.7.20. Let 𝑓0, 𝑓1, 𝑓2 : 𝑋 → 𝑌 be three parallel morphisms in a
category of fibrant objects ℰ. If 𝑓0 and 𝑓1 are right homotopic, and 𝑓1 and 𝑓2
are right homotopic, then 𝑓0 and 𝑓2 are also right homotopic. ■

Corollary 3.7.21. Let 𝑋 be an object in a category of fibrant objects ℰ. Any two
path objects for 𝑋 are weakly equivalent as objects in the category Δ𝑋∕(ℰ∕𝑋×𝑋)f,
where Δ𝑋 : 𝑋 → 𝑋 × 𝑋 is the diagonal embedding. ■

Lemma 3.7.22. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a cat-
egory of fibrant objects ℰ.

(i) If 𝑓0 and 𝑓1 are right homotopic and 𝑔 : 𝑊 → 𝑋 is any morphism in ℰ,
then 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are also right homotopic.

(ii) If 𝑓0 and 𝑓1 are right homotopic and 𝑔 : 𝑌 → 𝑍 is any morphism in
ℰ, then for any path object (Path(𝑍), 𝑖, 𝑝0, 𝑝1) for 𝑍, there exist a trivial
fibration 𝑞 : �̃� → 𝑋 and a right homotopy from 𝑔 ∘ 𝑓0 ∘ 𝑞 to 𝑔 ∘ 𝑓1 ∘ 𝑞 with
respect to (Path(𝑍), 𝑖, 𝑝0, 𝑝1).
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Proof. (i). Obvious.

(ii). See Proposition 1 in [Brown, 1973]. □

Definition 3.7.23. A parallel pair of morphisms in a category of fibrant objects
ℰ, say 𝑓0, 𝑓1 : 𝑋 → 𝑌 , are homotopic if there is a trivial fibration 𝑞 : �̃� → 𝑋
in ℰ such that 𝑓0 ∘ 𝑞 and 𝑓1 ∘ 𝑞 are right homotopic.

Remark 3.7.24. Since trivial fibrations are weak equivalences, remark 3.7.17 im-
plies that homotopic pairs of morphisms in ℰ become equal in Ho ℰ. Moreover,
the converse is true: see theorem 3.7.35.

Proposition 3.7.25. Let ℰ be a category of fibrant objects. The relation of ho-
motopy is a congruence on ℰ.

Proof. First, let us show that the relation of homotopy is an equivalence relation
on mor ℰ. It is reflexive and symmetric because the relation of right homotopy is
reflexive and symmetric (lemma 3.7.18). It is also transitive: indeed, given trivial
fibrations 𝑞2 : �̃�2 → 𝑋 and 𝑞0 : �̃�0 → 𝑋 such that 𝑓0 ∘ 𝑞2 and 𝑓1 ∘ 𝑞2 are right
homotopic and 𝑓1 ∘ 𝑞0 and 𝑓2 ∘ 𝑞0 are right homotopic, by taking �̃�1 = �̃�2 ×𝑋 �̃�0
and applying axioms A, B, and C, we can find a trivial fibration 𝑞1 : �̃�1 → 𝑋
such that 𝑓0 ∘ 𝑞1 and 𝑓1 ∘ 𝑞1 are right homotopic and 𝑓1 ∘ 𝑞1 and 𝑓2 ∘ 𝑞1 are right
homotopic; thus, 𝑓0 ∘ 𝑞1 and 𝑓2 ∘ 𝑞1 are right homotopic, by corollary 3.7.20.

It remains to be shown that the relation of homotopy is compatible with com-
position, but this follows by a straightforward application of axioms A, B, and C
to lemma 3.7.22. ■

Definition 3.7.26. The primitive homotopy category of a category of fibrant
objects ℰ is the category Ho𝜋 ℰ obtained by identifying homotopic morphisms.

Remark 3.7.27. The name ‘primitive homotopy category’ alludes to two facts:
first, that homotopic morphisms in ℰ become identified in Ho𝜋 ℰ; and second,
that weak equivalences in ℰ do not necessarily become invertible in Ho𝜋 ℰ.

Lemma 3.7.28. Let ℰ be a category of fibrant objects. If 𝑝 : 𝑊 → 𝑋 is a trivial
fibration in ℰ, then it is an epimorphism in Ho𝜋 ℰ.

Proof. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℰ. Suppose
𝑓0 ∘ 𝑝 = 𝑓1 ∘ 𝑝 in Ho𝜋 ℰ, i.e. there is a trivial fibration 𝑞 : �̃� → 𝑊 such that
𝑓0 ∘ 𝑝 ∘ 𝑞 and 𝑓1 ∘ 𝑝 ∘ 𝑞 are right homotopic. Then 𝑝 ∘ 𝑞 : �̃� → 𝑋 is a trivial
fibration (by axioms A and B) and so we have 𝑓0 = 𝑓1 in Ho𝜋 ℰ, as required. ■
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To relate Ho𝜋 ℰ and Ho ℰ, we will need a homotopy-theoretic generalisation
of pullbacks.

Lemma 3.7.29. Let ℰ be a category of fibrant objects. Given a commutative
diagram in ℰ of the form below,

𝑋0 𝑌0 𝑇0

𝑋1 𝑌1 𝑇1

𝑓

𝑝0

𝑔 ℎ

𝑦0

𝑝1 𝑦1

if 𝑝0 : 𝑋0 → 𝑌0 and 𝑝1 : 𝑋1 → 𝑌1 are fibrations, 𝑓 : 𝑋0 → 𝑋1 and 𝑔 : 𝑌0 → 𝑌1
are trivial fibrations, and ℎ : 𝑇0 → 𝑇1 is a weak equivalence, then the induced
morphism

𝑇0 ×𝑌0
𝑋0 → 𝑇1 ×𝑌1

𝑋1

is a weak equivalence.

Proof. First, construct a pullback square in ℰ of the following form:

𝑇 ′ 𝑌0

𝑇1 𝑌1

ℎ′

𝑦′

𝑔

𝑦1

Axiom C ensures the existence of such a pullback square and that ℎ′ : 𝑇 ′ → 𝑇1
is a trivial fibration. There is then a unique morphism 𝑡′ : 𝑇0 → 𝑇 ′ making the
diagram below commute,

𝑇1 𝑇0 𝑌0

𝑇1 𝑇 ′ 𝑌0

𝑡′

ℎ 𝑦0

ℎ′ 𝑦′

and by axiom A, 𝑡′ : 𝑇0 → 𝑇 ′ is a weak equivalence in ℰ. Next, consider the
following diagram in ℰ:

𝑇0 ×𝑌0
𝑋0 𝑇 ′ ×𝑌0

𝑋0 𝑋0

𝑇0 𝑇 ′ 𝑌0

𝑦0

𝑡′ 𝑦′
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The right square and the outer rectangle are pullback diagrams, so the left square
is also a pullback diagram. Moreover, since 𝑇 ′ ×𝑌0

𝑋0 → 𝑇 ′ is a fibration, by
proposition 3.7.15, the morphism 𝑇0 ×𝑌0

𝑋0 → 𝑇 ′ ×𝑌0
𝑋0 is a weak equivalence

in ℰ. Finally, consider the following diagram in ℰ:

𝑇0 ×𝑌0
𝑋0 𝑇 ′ ×𝑌0

𝑋0 𝑇1 ×𝑌1
𝑋1

𝑇0 𝑇 ′ 𝑇1

ℎ

𝑡′ ℎ′

It is straightforward to verify that 𝑇 ′×𝑌0
𝑋0 → 𝑇1×𝑌1

𝑋1 is the pullback of a trivial
fibration, so using axioms A and C again, we may deduce that the morphism
𝑇0 ×𝑌0

𝑋0 → 𝑇1 ×𝑌1
𝑋1 is a weak equivalence. ■

Definition 3.7.30. Let ℰ be a category of fibrant objects. A homotopy pullback
of a pair of morphisms 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 in ℰ consists of the following
data:

• An object in ℰ, 𝑋
h
×𝑍 𝑌 .

• A pair of morphisms in ℰ, 𝑞0 : 𝑋
h
×𝑍 𝑌 → 𝑋 and 𝑞1 : 𝑋

h
×𝑍 𝑌 → 𝑌 , called

projections.

• A path object (Path(𝑍), 𝑖, 𝑝0, 𝑝1) for 𝑍.

• A morphism 𝑢 : 𝑋
h
×𝑍 𝑌 → Path(𝑍) fitting into a pullback diagram in ℰ

of the following form:

𝑋
h
×𝑍 𝑌 Path(𝑍)

𝑋 × 𝑌 𝑍 × 𝑍

⟨𝑞0,𝑞1⟩

𝑢

⟨𝑝0,𝑝1⟩

𝑓×𝑔

We will often abuse notation and refer to 𝑋
h
×𝑍 𝑌 as the homotopy pullback.

Remark 3.7.31. Given 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍, we may form a category
whose objects are homotopy pullbacks of 𝑓 and 𝑔 and whose morphisms are
tuples of morphisms in ℰ making all the relevant diagrams commute, and co-
rollary 3.7.21 and lemma 3.7.29 imply that any two objects in this category are
connected by a span of weak equivalences.
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Proposition 3.7.32. Let ℰ be a category of fibrant objects and let 𝑓 : 𝑋 → 𝑍
and 𝑔 : 𝑌 → 𝑍 be morphisms in ℰ. Given a path object (Path(𝑍), 𝑖, 𝑝0, 𝑝1) for
𝑍, consider a pullback diagram in ℰ of the following form:

𝑋
h
×𝑍 𝑌 Path(𝑍)

𝑋 × 𝑌 𝑍 × 𝑍

⟨𝑞0,𝑞1⟩

𝑢

⟨𝑝0,𝑝1⟩

𝑓×𝑔

(i) The morphism ⟨𝑞0, 𝑞1⟩ : 𝑋
h
×𝑍 𝑌 → 𝑋 × 𝑌 is a fibration in ℰ, as are the

projections 𝑞0 : 𝑋
h
×𝑍 𝑌 → 𝑋 and 𝑞1 : 𝑋

h
×𝑍 𝑌 → 𝑌 .

(ii) The dotted arrows in the diagram shown below form a limiting cone over
the diagram of solid arrows:

𝑋
h
×𝑍 𝑌 𝑌

Path(𝑍) 𝑍

𝑋 𝑍

𝑞0

𝑢

𝑞1

𝑔

𝑝0

𝑝1

𝑓

In particular, the following diagram commutes in Ho𝜋 ℰ:

𝑋
h
×𝑍 𝑌 𝑌

𝑋 𝑍

𝑞0

𝑞1

𝑔

𝑓

(iii) If 𝑓 : 𝑋 → 𝑍 is a weak equivalence in ℰ, then 𝑞1 : 𝑋
h
×𝑍 𝑌 → 𝑌 is a

trivial fibration in ℰ. Symmetrically, if 𝑔 : 𝑌 → 𝑍 is a weak equivalence
in ℰ, then 𝑞0 : 𝑋

h
×𝑍 𝑌 → 𝑋 is a trivial fibration in ℰ.

(iv) If either 𝑓 : 𝑋 → 𝑍 or 𝑔 : 𝑌 → 𝑍 is a fibration in ℰ, then the comparison
morphism 𝑋 ×𝑍 𝑌 → 𝑋

h
×𝑍 𝑌 induced by 𝑖 : 𝑍 → Path(𝑍) is a weak

equivalence.
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Proof. (i). By definition, ⟨𝑝0, 𝑝1⟩ : Path(𝑍) → 𝑍 × 𝑍 is a fibration in ℰ, so by
axiom C, so is ⟨𝑞0, 𝑞1⟩ : 𝑋

h
×𝑍 𝑌 → 𝑋 × 𝑌 . Axioms C and E imply that the

projections 𝑋 × 𝑌 → 𝑋 and 𝑋 × 𝑌 → 𝑍 are fibrations, so by axiom B, the
projections 𝑋

h
×𝑍 𝑌 → 𝑋 and 𝑋

h
×𝑍 𝑌 → 𝑌 are also fibrations.

(ii). This is a straightforward check.

(iii). We will prove the claim in the case where 𝑓 : 𝑋 → 𝑍 is a weak equivalence
in ℰ. Consider the following diagram in ℰ,

𝑋
h
×𝑍 𝑌 𝑀𝑔 Path(𝑍)

𝑋 × 𝑌 𝑍 × 𝑌 𝑍 × 𝑍

⟨𝑞0,𝑞1⟩

𝑢

⟨𝑝0,𝑝1⟩

𝑓×id𝑌 id𝑍×𝑔

where the outer rectangle and right square are pullback diagrams. The pullback
pasting lemma says the left square is also a pullback diagram, so by proposi-
tion 3.7.15, the morphism 𝑋

h
×𝑍 𝑌 → 𝑀𝑔 is a weak equivalence in ℰ. On the other

hand, lemma 3.7.5 and axiom C imply that the composite 𝑀𝑔 → 𝑍 × 𝑌 → 𝑌 is
a trivial fibration. It is clear that the composite 𝑍

h
×𝑍 𝑌 → 𝑀𝑔 → 𝑍 × 𝑌 → 𝑌

is equal to 𝑞1 : 𝑋
h
×𝑍 𝑌 → 𝑌 , so by axiom A, it is a weak equivalence.

(iv). Assume 𝑓 : 𝑋 → 𝑍 is a fibration in ℰ, and using the factorisation lemma
(3.7.6), factor 𝑔 : 𝑌 → 𝑍 as a weak equivalence 𝑗 : 𝑌 → ̂𝑌 followed by a
fibration ̂𝑔 : ̂𝑌 → 𝑍. Then by axioms B and C, 𝑓 × ̂𝑔 : 𝑋 × ̂𝑌 → 𝑍 × 𝑍 is also
a fibration in ℰ. Thus, there is a diagram in ℰ of the form below,

𝑋 ×𝑍
̂𝑌 𝑍

𝑋
h
×𝑍

̂𝑌 Path(𝑍)

𝑋 × ̂𝑌 𝑍 × 𝑍

𝑖

̂𝑢

⟨𝑝0,𝑝1⟩

𝑓× ̂𝑔

where the outer rectangle and both squares are pullback diagrams. Since 𝑖 :
𝑍 → Path(𝑍) is a weak equivalence and ̂𝑢 : 𝑋

h
×𝑍

̂𝑌 → Path(𝑍) is a fibration
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(by axiom C), we may use proposition 3.7.15 to deduce that 𝑋 ×𝑍
̂𝑌 → 𝑋 ×𝑍

̂𝑌
is a weak equivalence. Similarly, the morphisms id𝑋 ×𝑍 𝑗 : 𝑋 ×𝑍 𝑌 → 𝑋 ×𝑍

̂𝑌
and id𝑋

h
×𝑍 𝑗 : 𝑋

h
×𝑍 𝑌 → 𝑋

h
×𝑍

̂𝑌 induced by 𝑗 : 𝑌 → ̂𝑌 are weak equivalences,
so by considering the following commutative diagram in ℰ,

𝑋 ×𝑍 𝑌 𝑋 ×𝑍
̂𝑌

𝑋
h
×𝑍 𝑌 𝑋

h
×𝑍

̂𝑌

id𝑍×𝑍𝑗

id𝑍
h
×𝑍𝑗

we deduce (using axiom A) that the comparison morphism 𝑋 ×𝑍 𝑌 → 𝑋
h
×𝑍 𝑌

is indeed a weak equivalence in ℰ. ■

Corollary 3.7.33. Let 𝑓 : 𝑋 → 𝑌 be a weak equivalence in a category of fibrant
objects ℰ, let (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑌 , and let 𝐾 be defined by
the following pullback diagram in ℰ:

𝐾 Path(𝑍)

𝑋 × 𝑋 𝑌 × 𝑌

⟨𝑘0,𝑘1⟩

𝑢

⟨𝑝0,𝑝1⟩

𝑓×𝑓

(i) There is a unique morphism 𝑟 : 𝑋 → 𝐾 such that 𝑘0 ∘ 𝑟 = 𝑘1 ∘ 𝑟 = id𝑌 and
𝑢 ∘ 𝑟 = 𝑖 ∘ 𝑓 ; moreover, 𝑟 : 𝑋 → 𝐾 is a weak equivalence.

(ii) (𝐾, 𝑟, 𝑘0, 𝑘1) is a path object for 𝑋.

Proof. (i). The existence and uniqueness of 𝑟 : 𝑋 → 𝐾 is clear. Proposi-
tion 3.7.32 says that 𝑘0, 𝑘1 : 𝐾 → 𝑋 are trivial fibrations in ℰ, so by axiom A,
𝑟 : 𝑋 → 𝐾 is a weak equivalence in ℰ.

(ii). It remains to be shown that ⟨𝑘0, 𝑘1⟩ : 𝐾 → 𝑋 × 𝑋 is a fibration in ℰ; but
that is an immediate consequence of axiom C. ■

Corollary 3.7.34. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a
category of fibrant objects ℰ. If 𝑔 : 𝑌 → 𝑍 is a weak equivalence in ℰ such that
𝑡 ∘ 𝑓0 and 𝑡 ∘ 𝑓1 are right homotopic, then 𝑓0 and 𝑓1 are also right homotopic.
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Proof. Suppose (Path(𝑍), 𝑖, 𝑝0, 𝑝1) is a path object for 𝑌 and 𝐻 : 𝑋 → Path(𝑍)
is a right homotopy from 𝑔 ∘ 𝑓0 to 𝑔 ∘ 𝑓1. Let 𝐾 = 𝑌

h
×𝑍 𝑌 be defined by the

following pullback diagram in ℰ:

𝐾 Path(𝑍)

𝑌 × 𝑌 𝑍 × 𝑍

⟨𝑘0,𝑘1⟩

𝑢

⟨𝑝0,𝑝1⟩

𝑔×𝑔

By construction, there is a unique morphism 𝐹 : 𝑋 → 𝐾 such that 𝑘0 ∘ 𝐹 = 𝑓0,
𝑘1 ∘ 𝐹 = 𝑓1, and 𝑢 ∘ 𝐹 = 𝐻 ; and there is a unique morphism 𝑟 : 𝑌 → 𝐾 such
that 𝑘0 ∘ 𝑟 = id𝑌 , 𝑘1 ∘ 𝑟 = id𝑌 , and 𝑢 ∘ 𝑟 = 𝑖 ∘ 𝑔. Moreover, corollary 3.7.33 says
that (𝐾, 𝑟, 𝑘0, 𝑘1) is a path object for 𝑌 . Thus, 𝐹 : 𝑋 → 𝐾 is a right homotopy
from 𝑓0 to 𝑓1, as required. ■

Theorem 3.7.35 (K. S. Brown). Let ℰ be a category of fibrant objects.

(i) For any weak equivalence 𝑣 : ̃𝑌 → 𝑌 in ℰ and any morphism 𝑓 : 𝑋 → 𝑌
in ℰ, there exists a commutative diagram in Ho𝜋 ℰ of the form below,

�̃� ̃𝑌

𝑋 𝑌
𝑣′

𝑓 ′

𝑣

𝑓

where 𝑣′ : �̃� → 𝑋 is a trivial fibration in ℰ.

(ii) If 𝑡 : 𝑌 → 𝑇 is a weak equivalence in ℰ, then 𝑡 : 𝑌 → 𝑇 is a monomorph-
ism in Ho𝜋 ℰ.

(iii) The localisation functor Ho𝜋 ℰ → Ho ℰ is faithful, i.e. for any parallel pair
𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℰ, we have 𝑓0 = 𝑓1 in Ho ℰ if and only if there exists a
trivial fibration 𝑞 : �̃� → 𝑋 such that 𝑓0 ∘ 𝑞 and 𝑓1 ∘ 𝑞 are right homotopic.

Proof. (i). See proposition 3.7.32.

(ii). Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℰ and suppose
𝑡 : 𝑌 → 𝑇 is a weak equivalence in ℰ such that 𝑡 ∘𝑓0 = 𝑡∘𝑓1 in Ho𝜋 ℰ, i.e. there is
a trivial fibration 𝑞 : �̃� → 𝑋 such that 𝑡 ∘ 𝑓0 ∘ 𝑞 and 𝑡 ∘ 𝑓1 ∘ 𝑞 are right homotopic.
Then, by corollary 3.7.34, 𝑓0 ∘ 𝑞 and 𝑓1 ∘ 𝑞 are right homotopic. Thus, 𝑓0 = 𝑓1
in Ho𝜋 ℰ, as required.
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(iii). It now follows that Ho𝜋 ℰ with the class of trivial fibrations constitute a re-
lative category that admits a calculus of right fractions. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a
parallel pair of morphisms in ℰ. Suppose 𝑓0 = 𝑓1 in Ho ℰ. By proposition 3.5.20,
there must be a commutative diagram in Ho𝜋 ℰ of the form below,

𝑋 𝑋 𝑌

𝑋 �̃�′ 𝑌

𝑋 𝑋 𝑌

𝑓0

𝑞′

𝑓1

where 𝑞′ : �̃�′ → 𝑋 is a trivial fibration in ℰ. In other words, there is a trivial
fibration 𝑞′ : �̃�′ → 𝑋 in ℰ such that 𝑓0 ∘ 𝑞′ = 𝑓1 ∘ 𝑞′ in Ho𝜋 ℰ. But lemma 3.7.28
says 𝑞′ : �̃�′ → 𝑋 is an epimorphism in Ho𝜋 ℰ, so we may deduce that 𝑓0 = 𝑓1
in Ho𝜋 ℰ, as required. ■

Lemma 3.7.36. Let 𝑓 : 𝑋 → 𝑌 be a weak equivalence in a category of fibrant
objects ℰ.

(i) The morphism 𝑓 : 𝑋 → 𝑌 is both a monomorphism and an epimorphism
in Ho𝜋 ℰ.

(ii) If 𝑓 : 𝑋 → 𝑌 has a retraction in ℰ, then 𝑓 : 𝑋 → 𝑌 is an isomorphism in
Ho𝜋 ℰ.

(iii) If 𝑓 : 𝑋 → 𝑌 has a section in ℰ, then 𝑓 : 𝑋 → 𝑌 is an isomorphism in
Ho𝜋 ℰ.

Proof. (i). Since 𝑓 : 𝑋 → 𝑌 becomes invertible in Ho ℰ, it must be both a
monomorphism and an epimorphism in Ho ℰ; but faithful functors reflect mono-
morphisms and epimorphisms, so theorem 3.7.35 implies that 𝑓 : 𝑋 → 𝑌 is
also both a monomorphism and an epimorphism in Ho𝜋 ℰ.

(ii). If 𝑓 : 𝑋 → 𝑌 is a split monomorphism in ℰ, then the same is true in Ho𝜋 ℰ;
but in any category, a split monomorphism that is also an epimorphism must be
an isomorphism.

(iii). Similarly, this follows from the dual fact: in any category, a split epimorph-
ism that is also a monomorphism must be an isomorphism. ■
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Proposition 3.7.37. Let ℰ be a category of fibrant objects. For any functor
𝐹 : ℰ → u�, the following are equivalent:

(i) 𝐹 : ℰ → u� factors through the functor ℰ → Ho𝜋 ℰ be the functor that
sends morphisms to their homotopy classes.

(ii) For any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℰ, if there is a weak equivalence
𝑔 : 𝑊 → 𝑋 in ℰ such that 𝐹 𝑓0 ∘ 𝐹 𝑔 = 𝐹 𝑓1 ∘ 𝐹 𝑔, then 𝐹 𝑓0 = 𝐹 𝑓1.

(iii) For any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℰ, if there is a trivial fibration
𝑝 : 𝑌 → 𝑍 in ℰ such that 𝐹 𝑝 ∘ 𝐹 𝑓0 = 𝐹 𝑝 ∘ 𝐹 𝑓1, then 𝐹 𝑓0 = 𝐹 𝑓1; and if
there is a trivial fibration 𝑔 : 𝑊 → 𝑋 in ℰ such that 𝐹 𝑓0 ∘𝐹 𝑔 = 𝐹 𝑓1 ∘𝐹 𝑔,
then 𝐹 𝑓0 = 𝐹 𝑓1.

Proof. (i) ⇒ (ii), (i) ⇒ (iii). These are consequences of lemma 3.7.36.

(ii) ⇒ (i). First, let us show that 𝐹 : ℰ → u� identifies right homotopic morph-
isms. Let (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be any path object for 𝑌 in ℰ. By definition, 𝑖 : 𝑌 →
Path(𝑌 ) is a weak equivalence and a common section for 𝑝0, 𝑝1 : Path(𝑌 ) → 𝑌 .
In particular, 𝐹 𝑝0 ∘ 𝐹 𝑖 = 𝐹 𝑝1 ∘ 𝐹 𝑖, so the hypothesis implies 𝐹 𝑝0 = 𝐹 𝑝1. Thus,
if 𝑓0, 𝑓1 : 𝑋 → 𝑌 are right homotopic in ℰ, then 𝐹 𝑓0 = 𝐹 𝑓1.

It remains to be shown that 𝐹 : ℰ → u� identifies homotopic morphisms.
Suppose 𝑓0, 𝑓1 : 𝑋 → 𝑌 is a parallel pair of morphisms in ℰ and 𝑞 : �̃� → 𝑋 is a
trivial fibration such that 𝑓0 ∘ 𝑞 and 𝑓1 ∘ 𝑞 are right homotopic. Then 𝐹 𝑓0 ∘ 𝐹 𝑞 =
𝐹 𝑓1 ∘ 𝐹 𝑞, by the above paragraph. But trivial fibrations are weak equivalences,
so the hypothesis implies 𝐹 𝑓0 = 𝐹 𝑓1, as required.

(iii) ⇒ (i). As above, we first show that 𝐹 : ℰ → u� identifies right homotopic
morphisms. Let (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be any path object for 𝑌 in ℰ. Lemma 3.7.5
says that 𝑝0, 𝑝1 : Path(𝑌 ) → 𝑌 are trivial fibrations in ℰ. Since 𝑝0∘𝑖 = 𝑝1∘𝑖 = id𝑌 ,
we have 𝐹 𝑝0 ∘ 𝐹 (𝑖 ∘ 𝑝0) = 𝐹 𝑝0 and 𝐹 𝑝1 ∘ 𝐹 (𝑖 ∘ 𝑝1) = 𝐹 𝑝1; thus, the hypothesis
implies 𝐹 (𝑖 ∘ 𝑝0) = 𝐹 (𝑖 ∘ 𝑝1) = id𝐹 Path(𝑌 ). We may then deduce that 𝐹 𝑝0 = 𝐹 𝑝1,
and it follows that right homotopic morphisms in ℰ become equal in u�.

It remains to be shown that 𝐹 : ℰ → u� identifies homotopic morphisms; but
the argument used above works under these hypotheses. ■

Remark 3.7.38. The above proposition implies that the primitive homotopy cat-
egory Ho𝜋 ℰ we defined is isomorphic to the category 𝜋ℰ defined in [Brown,
1973, §2].
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IV

Model categories

In [1967], Quillen introduced the notion of a ‘closed model category’ (but we
shall say simply ‘model category’) for homotopy theory, so as to formalise the
similarities between the homotopy theory of spaces and homological algebra.
The idea was that, to do homotopy theory, one only really needs to know which
morphisms are cofibrations, which are weak equivalences, and which are fibra-
tions.

4.1 Basics
Prerequisites. §§3.1, 3.5, 3.6, a.3, a.4.

Definition 4.1.1. A model structure on a category ℳ is a triple (u�, u� , ℱ) of
subensembles of mor ℳ satisfying the following axioms:[1]

CM2. u� has the 2-out-of-3 property.

CM3. u�, u� , and ℱ are closed under retracts.

CM4. Given a commutative diagram in ℳ of the form below,

𝑍 𝑋

𝑊 𝑌

𝑖 𝑝

where 𝑖 is in u� and 𝑝 is in ℱ, if at least one of 𝑖 or 𝑝 is also in u� , then
there exists a morphism 𝑊 → 𝑋 making both of the evident triangles
commute.

[1] This presentation is due to Quillen [1969].
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CM5. Any morphism 𝑓 in ℳ may be factored in two ways:

– 𝑓 = 𝑝 ∘ 𝑖 where 𝑖 is in u� ∩ u� and 𝑝 is in ℱ, and

– 𝑓 = 𝑞 ∘ 𝑗, where 𝑗 is in u� and 𝑞 is in u� ∩ ℱ.

Given a model structure (u�, u� , ℱ) on a category ℳ,

• a weak equivalence is a morphism in u� ,

• a cofibration is a morphism in u�,

• a fibration is a morphism in ℱ,

• a trivial cofibration (or acyclic cofibration) is a morphism in u� ∩ u� , and

• a trivial fibration (or acyclic fibration) is a morphism in u� ∩ ℱ;

• a cofibrant object is an object 𝑊 that is projective with respect to the
class of trivial fibrations, i.e. for every trivial fibration 𝑝 : 𝑋 → 𝑌 and
every morphism 𝑤 : 𝑊 → 𝑌 , there exists a morphism 𝑊 → 𝑋 making
the diagram below commute:

𝑋

𝑊 𝑌

𝑝

𝑤

• a fibrant object is an object 𝑋 that is injective with respect to the class
of trivial cofibrations, i.e. for every trivial cofibration 𝑖 : 𝑍 → 𝑊 and
every morphism 𝑧 : 𝑍 → 𝑋, there exists a morphism 𝑊 → 𝑋 making
the diagram below commute:

𝑍 𝑋

𝑊

𝑖

𝑧

• a cofibrant–fibrant object is an object that is both cofibrant and fibrant.

A model category is a locally small category ℳ that is equipped with a
model structure and satisfies the additional axiom below:

CM1. ℳ has finite limits and finite colimits.
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A derivable category is a locally small category ℳ that is equipped with a
model structure and satisfies the additional axioms below:

DC0. For each object 𝑋 in ℳ, there exist

– a trivial cofibration 𝑋 → �̂� where �̂� is a fibrant object in ℳ, and

– a trivial fibration �̃� → 𝑋 where �̃� is a cofibrant object in ℳ.

DC1. ℳ has pushouts along morphisms in u�∩u� , and pullbacks along morph-
isms in u� ∩ ℱ; i.e. given diagrams in ℳ of the form below,

𝑍 𝑍′

𝑊

𝑖

𝑋

𝑌 ′ 𝑌

𝑝

if 𝑖 : 𝑍 → 𝑊 is in u� ∩u� , then the diagram on the left can be completed
to a pushout square; and if 𝑝 : 𝑋 → 𝑌 is in u� ∩ ℱ, then the diagram on
the right can be completed to a pullback square.

Remark 4.1.2. Our definition of ‘cofibrant object’ (resp. ‘fibrant object’) is ne-
cessarily non-standard, because we do not always have initial objects (resp. ter-
minal objects). Nonetheless, in a model category, our definitions agree with the
standard ones: see lemma 4.1.16.

Definition 4.1.3. A DHK model category is a model category satisfying the
following variants of CM1 and CM5:

CM1*. ℳ is complete and cocomplete.

CM5*. The (u� ∩ u� , ℱ) and (u�, u� ∩ ℱ)-factorisations can be chosen functori-
ally in the sense of definition a.3.28.

Remark 4.1.4. Hovey [1999] and Hirschhorn [2003] attribute the stronger defin-
ition of ‘model category’ to Dwyer, Hirschhorn, and Kan [DHK], hence the name
‘DHK model category’; of course, this is the definition used in the cited works,
as well as in [DHKS]. Note also that the definition in [Hovey, 1999] includes the
functorial factorisations as a structure instead of a property. On the other hand,
[DS] and [GJ] use Quillen’s 1969 definition essentially verbatim.
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Example 4.1.5. Let ℳ be any category. The discrete model structure on ℳ
is defined by the following data:

• The weak equivalences are the isomorphisms.

• Every morphism is both a cofibration and a fibration.

It is straightforward to directly verify that the axioms are satisfied in this case.
Notice that if ℳ is complete and cocomplete, then the discrete model structure
even makes ℳ into a DHK model category.

Example 4.1.6. The mono–epi model structure on 𝐒𝐞𝐭 is defined by the fol-
lowing data:

• Every morphism is a weak equivalence.

• The cofibrations are the injective maps.

• The fibrations are the surjective maps.

The key observation is that 𝐒𝐞𝐭 admits a mono–epi weak factorisation system;[2]

in fact, we can even choose the mono–epi factorisations functorially: for ex-
ample, given a map 𝑓 : 𝑋 → 𝑌 , we may take the cograph factorisation 𝑋 →
𝑋 ⨿ 𝑌 → 𝑌 , where 𝑋 → 𝑋 ⨿ 𝑌 is the coproduct insertion and 𝑋 ⨿ 𝑌 → 𝑌 is
the map ⦅𝑓 , id𝑌 ⦆.

Remark 4.1.7. Let ℳ be a category. Then, (u�, u� , ℱ) is a model structure on ℳ
if and only if (ℱop, u� op, u� op) is a model structure on ℳop.

Lemma 4.1.8. Let ℳ be a category equipped with a model structure.

• If 𝑖 : 𝑍 → 𝑊 is a cofibration in ℳ and 𝑍 is a cofibrant object, then 𝑊
is also a cofibrant object.

• If 𝑝 : 𝑋 → 𝑌 is a fibration in ℳ and 𝑌 is a fibrant object, then 𝑋 is also
a fibrant object.

Proof. The two claims are formally dual; we will prove the first version.

[2] — not to be confused with the epi–mono orthogonal factorisation system!
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Let 𝑝 : 𝑋 → 𝑌 be a trivial fibration in ℳ and let 𝑤 : 𝑊 → 𝑌 be any
morphism in ℳ. Since 𝑍 is cofibrant, there exists a morphism 𝑧 : 𝑍 → 𝑋 such
that the diagram below commutes,

𝑍 𝑋

𝑊 𝑌

𝑖

𝑧

𝑝

𝑤

and since 𝑖 : 𝑍 → 𝑊 is a cofibration, axiom CM4 gives a morphism 𝑠 : 𝑊 → 𝑋
such that 𝑝 ∘ 𝑠 = 𝑤. Thus 𝑊 is also cofibrant. ■

Lemma 4.1.9. In a category equipped with a model structure:

• Every trivial fibration with cofibrant codomain is a split epimorphism.

• Every trivial cofibration with fibrant domain is a split monomorphism.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑝 : 𝑋 → 𝑌 be a trivial fibration, and suppose 𝑌 is cofibrant. Consider

the following diagram in ℳ:

𝑋

𝑌 𝑌

𝑝

id

By definition, there exists a morphism 𝑠 : 𝑌 → 𝑋 such that 𝑝 ∘ 𝑠 = id𝑌 . This
shows that 𝑝 : 𝑋 → 𝑌 is a split epimorphism. ■

Lemma 4.1.10. Let ℳ be a category equipped with a model structure. The
following are equivalent for a morphism 𝑓 in ℳ:

(i) 𝑓 is a weak equivalence in ℳ.

(ii) For any factorisation 𝑓 = 𝑝∘𝑗 in ℳ where 𝑝 is a fibration and 𝑗 is a trivial
cofibration, 𝑝 must be a trivial fibration.

(iii) There exist a trivial cofibration 𝑗 and a trivial fibration 𝑞 such that 𝑓 = 𝑞∘𝑗.

Proof. (i) ⇒ (ii). Use axiom CM2.

(ii) ⇒ (iii). Use axiom CM5.

(iii) ⇒ (i). Use axiom CM2 again. ■
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Lemma 4.1.11. Let ℳ be a category with a pair of weak factorisation systems
(u�′, ℱ) and (u�, ℱ′). Assume u� is a subensemble of mor u� satisfying the following
condition:

u� ⊆ {𝑞 ∘ 𝑗 | 𝑗 ∈ u�′, 𝑞 ∈ ℱ′}

(i) u� ∩ u� ⊆ u�′.

(ii) If u�′ ⊆ u� ∩ u� , then ℱ′ ⊆ ℱ and u� ∩ u� = u�′.

Dually:

(i′) u� ∩ ℱ ⊆ ℱ′.

(ii′) If ℱ′ ⊆ u� ∩ ℱ, then u�′ ⊆ u� and u� ∩ ℱ = ℱ′.

In particular, assuming u�′ ∪ ℱ′ ⊆ u� , we have u�′ = u� ∩ u� if and only if
ℱ′ = u� ∩ ℱ.

Proof. (i). Suppose 𝑖 : 𝑋 → 𝑍 is in u� ∩ u� ; then there must be 𝑗 : 𝑋 → 𝑌 in
u�′ and 𝑞 : 𝑌 → 𝑍 in ℱ′ such that 𝑖 = 𝑞 ∘ 𝑗, and so we have the commutative
diagram shown below:

𝑋 𝑌

𝑍 𝑍

𝑖

𝑗

𝑞

id

Since 𝑖 ⧄ 𝑞, 𝑖 must be a retract of 𝑗; hence, by proposition a.3.17, 𝑖 is in u�′, and
therefore u� ∩ u� ⊆ u�′.

(ii). If we know u�′ ⊆ u�, then ℱ′ ⊆ ℱ by proposition a.3.3, and u�′ ⊆ u� ∩ u� , so
from claim (i) it follows that u�′ = u� ∩ u� . ■

Theorem 4.1.12. Let ℳ be a category and let u�, u� , ℱ be subclasses of mor ℳ.
Assuming ℳ has either pushouts along morphisms in u� ∩ u� or pullbacks along
morphisms in u� ∩ ℱ, the following are equivalent:

(i) (u�, u� , ℱ) is a model structure for ℳ.

(ii) u� has the 2-out-of-3 property in ℳ, and both (u� ∩ u� , ℱ) and (u�, u� ∩ ℱ)
are weak factorisation systems for ℳ.
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Proof. (i) ⇒ (ii). Axiom CM5 says that (u� ∩ u� , ℱ)- and (u�, u� ∩ ℱ)-factorisations
exist, and axiom CM4 says we have the following inclusions:

u� ⊆ ⧄(u� ∩ ℱ) u� ∩ ℱ ⊆ u� ⧄

ℱ ⊆ (u� ∩ u�)⧄ u� ∩ u� ⊆ ⧄ℱ

Axiom CM3 implies each one of u�, ℱ, u� ∩ u� , u� ∩ ℱ is closed under retracts, so
we may apply proposition a.3.19 to deduce that both (u�, u� ∩ ℱ) and (u� ∩ u� , ℱ)
are indeed weak factorisation systems.

(ii) ⇒ (i). We may deduce from proposition a.3.17 that u� and ℱ are closed under
retracts, and it remains to be shown that u� is closed under retracts. The two
cases are formally dual; we will assume that ℳ has pushouts along morphisms
in u� ∩ u� .

Let 𝑤 : 𝑋 → 𝑍 be a morphism in u� , and consider a commutative diagram
of the form below:

𝑋′ 𝑋 𝑋′

𝑍′ 𝑍 𝑍′

𝑤′

𝑠𝑋

id

𝑤

𝑟𝑋

𝑤′

id

𝑠𝑍 𝑟𝑍

Choose a (u� ∩ u� , ℱ) factorisation for 𝑤′, say 𝑤′ = 𝑝′ ∘ 𝑗′, with 𝑗′ : 𝑋′ → 𝑌 ′ in
u� ∩ u� and 𝑝′ : 𝑌 ′ → 𝑍′ in ℱ. Construct the following commutative diagram,

𝑋′ 𝑋 𝑋′

𝑌 ′ 𝑌 𝑌 ′

𝑍′ 𝑍 𝑍′

𝑗′

𝑠𝑋

𝑢

𝑟𝑋

𝑗′

𝑝′

𝑠𝑌

𝑣

𝑟𝑌

𝑝′

𝑠𝑍 𝑟𝑍

where the top left square is a pushout square, 𝑣 ∘ 𝑢 = 𝑤, and 𝑟𝑌 ∘ 𝑠𝑌 = id𝑌 .
Since u� ∩ u� is closed under pushouts, 𝑢 is also in u� ∩ u� , and by the 2-out-of-3
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property, 𝑣 is in u� . Thus, 𝑝′ is in ℱ and is a retract of 𝑣:

𝑌 ′ 𝑌 𝑌 ′

𝑍′ 𝑍 𝑍′

𝑝′

𝑠𝑌

id

𝑣

𝑟𝑌

𝑝′

id

𝑠𝑍 𝑟𝑍

Using the 2-out-of-3 property again, choose a (u� ∩ u� , u� ∩ ℱ)-factorisation of
𝑣, say 𝑣 = 𝑞 ∘ 𝑗. Since 𝑗 ⧄ 𝑝′, there exists a morphism 𝑟 such that 𝑟 ∘ 𝑗 = 𝑟𝑌 and
𝑝′ ∘ 𝑟 = 𝑟𝑍 ∘ 𝑞. Putting 𝑠 = 𝑗 ∘ 𝑠𝑌 , we obtain 𝑟 ∘ 𝑠 = 𝑟𝑌 ∘ 𝑠𝑌 = id𝑌 ; thus 𝑝′ is a
retract of 𝑞 and must therefore be in ℱ ∩ u� . Hence, 𝑤′ = 𝑝′ ∘ 𝑗′ is in u� . ■

Corollary 4.1.13. Let ℳ be a derivable category.

• Pushouts of trivial cofibrations along any morphism in ℳ exist, and any
such is a trivial cofibration.

• Pullbacks of trivial fibrations along any morphism in ℳ exist, and any
such is a trivial fibration.

Proof. Apply proposition a.3.17. ■

Remark 4.1.14. May and Ponto [2012, Ch. 14] define ‘model category’ to mean
a complete and cocomplete locally small category ℳ equipped with a triple of
classes (u�, u� , ℱ) satisfying condition (ii) of the above proposition; if the two
weak factorisation systems can be extended to a pair of functorial factorisation
systems, then this is a DHK model category.

Lemma 4.1.15. Let ℳ be a category equipped with a model structure.

• The class of cofibrant objects in ℳ is closed under retracts.

• The class of fibrant objects in ℳ is closed under retracts.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑋 be a cofibrant object and let 𝑠 : 𝑋′ → 𝑋 and 𝑟 : 𝑋 → 𝑋′ be

morphisms in ℳ such that 𝑟 ∘ 𝑠 = id𝑋′. We must show that, for any cofibra-
tion 𝑖 : 𝑍 → 𝑊 in ℳ and any morphism 𝑧′ : 𝑍 → 𝑋′ in ℳ, there is a
morphism ℎ′ : 𝑊 → 𝑋′ in ℳ such that ℎ′ ∘ 𝑖 = 𝑧′. Let 𝑧 = 𝑠 ∘ 𝑧′. Since 𝑋 is
cofibrant, there is a morphism ℎ : 𝑊 → 𝑋 such that ℎ ∘ 𝑖 = 𝑧; so if ℎ′ = 𝑟 ∘ ℎ,
then ℎ′ ∘ 𝑖 = 𝑟 ∘ 𝑠 ∘ 𝑧′ = 𝑧′, as required. ■
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Lemma 4.1.16. Let ℳ be a category equipped with a model structure. If ℳ
has an initial object 0, then the following are equivalent for any object 𝑊 in ℳ:

(i) 𝑊 is a cofibrant object in ℳ.

(ii) The unique morphism 0 → 𝑊 has the left lifting property with respect to
all trivial fibrations in ℳ.

(iii) The unique morphism 0 → 𝑊 is a cofibration.

Dually, if ℳ has a terminal object 1, then the following are equivalent for any
object 𝑋 in ℳ:

(i′) 𝑋 is a fibrant object in ℳ.

(ii′) The unique morphism 𝑋 → 1 has the right lifting property with respect to
all trivial fibrations in ℳ.

(iii′) The unique morphism 𝑋 → 1 is a fibration.

Proof. (i) ⇔ (ii). Obvious.

(ii) ⇔ (iii). By theorem 4.1.12, any morphism that has the left lifting property
with respect to all trivial fibrations must be a cofibration. ■

Proposition 4.1.17. Let ℳ be a category equipped with a model structure. If ℳ
satisfies axiom DC1 and has both an initial object and a terminal object, then
ℳ is a derivable category. In particular, any model category is a derivable
category.

Proof. Use axiom CM5 to factorise the unique morphisms 0 → 𝑋 and 𝑋 → 1,
and then apply lemma 4.1.16 to deduce that axiom DC0 is satisfied. ■

Lemma 4.1.18. Let ℳ be a category equipped with a model structure and let
𝐴 be an object in ℳ.

(i) The slice category ℳ∕𝐴 (resp. 𝐴∕ℳ) admits a slice model structure, where
a morphism in ℳ∕𝐴 (resp. 𝐴∕ℳ) is a weak equivalence, cofibration, or
fibration if it is so in ℳ.

(ii) The slice category ℳ∕𝐴 (resp. 𝐴∕ℳ), equipped with the slice model struc-
ture, is a derivable category if ℳ is a derivable category.
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(iii) The slice category ℳ∕𝐴 (resp. 𝐴∕ℳ), equipped with the slice model struc-
ture, is a model category if ℳ is a model category.

Proof. The two halves of each claim are formally dual; we will prove the versions
for ℳ∕𝐴.

(i). Use lemmas 3.1.6 and a.3.21.

(ii). ℳ∕𝐴 always has a terminal object, so axiom CM5 and lemma 4.1.16 imply
one half of axiom DC0 in ℳ∕𝐴; for the other half, we may use axiom DC0 in ℳ
directly.

It is well known that the projection functor ℳ∕𝐴 → ℳ preserves and reflects
pullbacks and pushouts, so pushouts along trivial cofibrations (resp. pullbacks
along trivial fibrations) exist in ℳ∕𝐴 if pushouts along trivial cofibrations (resp.
pullbacks along trivial fibrations) exist in ℳ. Thus ℳ∕𝐴 satisfies axiom DC1 if
ℳ does.

(iii). The argument above also shows that ℳ∕𝐴 has finite limits and colimits if
ℳ does. ■

Lemma 4.1.19. Let (ℳ𝑖 | 𝑖 ∈ 𝐼) be a sequence of categories equipped with
model structures.

(i) The product category ℳ = ∏𝑖∈𝐼 ℳ𝑖 admits a product model structure,
where a morphism in ℳ is a weak equivalence, cofibration, or fibration if
each component is so.

(ii) ℳ, equipped with the product model structure, is a derivable category if
each ℳ𝑖 is a derivable category.

(iii) ℳ, equipped with the product model structure, is a model category if each
ℳ𝑖 is a model category.

Proof. Everything can be checked componentwise. ⧫

Lemma 4.1.20. Let ℳ be a category equipped with a model structure.

• Suppose we have a commutative diagram in ℳ of the form below,

𝑍

𝑊 ′ 𝑊

𝑖′ 𝑖

𝑔
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where 𝑖 : 𝑍 → 𝑊 and 𝑖′ : 𝑍 → 𝑊 ′ are cofibrations and 𝑔 : 𝑊 ′ → 𝑊 is
a weak equivalence. If a fibration 𝑝 : 𝑋 → 𝑌 has the right lifting property
with respect to 𝑖′ : 𝑍 → 𝑊 ′, then 𝑝 : 𝑋 → 𝑌 also has the right lifting
property with respect to 𝑖 : 𝑍 → 𝑊 .

• Suppose we have a commutative diagram in ℳ of the form below,

𝑋 𝑋′

𝑌
𝑝

𝑓

𝑝′

where 𝑝 : 𝑋 → 𝑌 and 𝑝′ : 𝑋′ → 𝑌 are fibrations and 𝑓 : 𝑋 → 𝑋′ is a
weak equivalence. If a cofibration 𝑖 : 𝑍 → 𝑊 has the left lifting property
with respect to 𝑝′ : 𝑋′ → 𝑌 , then 𝑖 : 𝑍 → 𝑊 also has the left lifting
property with respect to 𝑝 : 𝑋 → 𝑌 .

Proof. The two claims are formally dual; we will prove the first version.
Consider the following lifting problem in ℳ:

𝑍 𝑋

𝑊 𝑌

𝑖

𝑧

𝑝

𝑤

Suppose 𝑝 : 𝑋 → 𝑌 is a fibration that has the right lifting property with respect
to 𝑖′ : 𝑍 → 𝑊 ′. Then there must exist a morphism ℎ′ : 𝑊 ′ → 𝑋 such that the
diagram shown below commutes:

𝑍 𝑋

𝑊 ′ 𝑌

𝑖′

𝑧

𝑝ℎ′

𝑤∘𝑔

Using lemma 4.1.10, choose a trivial cofibration 𝑗 : 𝑊 ′ → 𝑊 ″ and a trivial
fibration 𝑞 : 𝑊 ″ → 𝑊 such that 𝑔 = 𝑞 ∘ 𝑗. Since 𝑝 : 𝑋 → 𝑌 is a fibration, there
is a morphism ℎ″ : 𝑊 ″ → 𝑋 making the following diagram commute:

𝑊 ′ 𝑋

𝑊 ″ 𝑌

𝑗

ℎ′

𝑝ℎ″

𝑤∘𝑞
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On the other hand, 𝑞 : 𝑊 ″ → 𝑊 is a trivial fibration, so there is a morphism
𝑠 : 𝑊 → 𝑊 ″ such that the diagram shown below commutes:

𝑍 𝑊 ″

𝑊 𝑊

𝑖

𝑗∘𝑖′

𝑞𝑠

id

Let ℎ = ℎ″ ∘ 𝑠. Then,

ℎ ∘ 𝑖 = ℎ″ ∘ 𝑠 ∘ 𝑖 = ℎ″ ∘ 𝑗 ∘ 𝑖′ = ℎ′ ∘ 𝑖′ = 𝑧

and since 𝑞 ∘ 𝑠 = id,

𝑝 ∘ ℎ = 𝑝 ∘ ℎ″ ∘ 𝑠 = 𝑤 ∘ 𝑞 ∘ 𝑠 = 𝑤

so ℎ : 𝑊 → 𝑋 is indeed a solution to the lifting problem. ■

Definition 4.1.21. Let 𝑋 be an object in a category ℳ equipped with a model
structure.

• A cofibrant replacement for 𝑋 is a pair (�̃�, 𝑝) where �̃� is a cofibrant
object in ℳ and 𝑝 is a weak equivalence �̃� → 𝑋.

• A fibrant replacement for 𝑋 is a pair (�̂�, 𝑖) where �̂� is a fibrant object
in ℳ and 𝑖 is a weak equivalence 𝑋 → �̂�.

• A fibrant cofibrant replacement for 𝑋 is a cofibrant replacement (�̃�, 𝑝)
where 𝑝 : �̃� → 𝑋 is a trivial fibration.

• A cofibrant fibrant replacement for 𝑋 is a fibrant replacement (�̂�, 𝑖)
where 𝑖 : 𝑋 → �̂� is a trivial cofibration.

Definition 4.1.22. Let ℳ be a category equipped with a model structure.

• A cofibrant replacement functor for ℳ is a pair (𝑄, 𝑝), where 𝑄 is an
endofunctor on ℳ and 𝑝 is a natural transformation 𝑄 ⇒ idℳ such that,
for every object 𝑋 in ℳ, (𝑄𝑋, 𝑝𝑋) is a cofibrant replacement for 𝑋.

• A fibrant replacement functor for ℳ is a pair (𝑅, 𝑖), where 𝑅 is an en-
dofunctor on ℳ and 𝑖 is a natural transformation idℳ ⇒ 𝑅 such that, for
every object 𝑋 in ℳ, (𝑅𝑋, 𝑖𝑋) is a fibrant replacement for 𝑋.
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• A fibrant cofibrant replacement functor for ℳ is a pair (𝑄, 𝑝), where 𝑄
is an endofunctor on ℳ and 𝑝 is a natural transformation 𝑄 ⇒ idℳ such
that, for every object 𝑋 in ℳ, (𝑄𝑋, 𝑝𝑋) is a fibrant cofibrant replacement
for 𝑋.

• A cofibrant fibrant replacement functor for ℳ is a pair (𝑅, 𝑖), where 𝑅
is an endofunctor on ℳ and 𝑖 is a natural transformation idℳ ⇒ 𝑅 such
that, for every object 𝑋 in ℳ, (𝑅𝑋, 𝑖𝑋) is a cofibrant fibrant replacement
for 𝑋.

Remark 4.1.23. Note that a fibrant cofibrant replacement for 𝑋 is precisely a
cofibrant replacement for 𝑋 that is fibrant as an object in ℳ∕𝑋 , and a cofibrant
fibrant replacement for 𝑋 is precisely a fibrant replacement for 𝑋 that is cofibrant
as an object in 𝑋∕ℳ.

Moreover, if 𝑋 is fibrant and (�̃�, 𝑝) is a fibrant cofibrant replacement for 𝑋,
then �̃� is both fibrant and cofibrant in ℳ, and if 𝑋 is cofibrant and (�̂�, 𝑖) is a
cofibrant fibrant replacement for 𝑋, then �̂� is both cofibrant and fibrant in ℳ.

Proposition 4.1.24.
(i) Any object in a derivable category has both a fibrant cofibrant replacement

and a cofibrant fibrant replacement.

(ii) Any DHK model category has both a fibrant cofibrant replacement functor
and a cofibrant fibrant replacement functor.

Proof. (i). This is axiom DC0.

(ii). Use axiom CM5* to factorise the unique natural transformations Δ0 ⇒ idℳ
and idℳ ⇒ Δ1, and then apply lemma 4.1.16. ■

It should go without saying that any two cofibrant or fibrant replacements for
a fixed object are weakly equivalent; however, more is true:

Lemma 4.1.25. Let 𝑋 be an object in a derivable category ℳ.

• Any two cofibrant replacements for 𝑋 are weakly equivalent as objects in
the slice model category ℳ∕𝑋 .

• Any two fibrant replacements for 𝑋 are weakly equivalent as objects in the
slice model category 𝑋∕ℳ.
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Proof. The two claims are formally dual; we will prove the first version.
Let (�̃�, 𝑝) be a fibrant cofibrant replacement for 𝑋; such exist, by proposi-

tion 4.1.24. Let (�̃�′, 𝑝′) be any cofibrant replacement for 𝑋. Then, 𝑝 : �̃� → 𝑋
is a trivial fibration, so there exists a morphism 𝑓 : �̃�′ → �̃� such that 𝑝∘𝑓 = 𝑝′.
The 2-out-of-3 property of weak equivalences implies any such 𝑓 : �̃�′ → �̃� is
a weak equivalence, so we may deduce that every cofibrant replacement for 𝑋 is
weakly equivalent to (�̃�, 𝑝) as objects in ℳ∕𝑋 . ■

In the presence of functorial cofibrant and fibrant replacements, we can say
something stronger still:

Proposition 4.1.26. Let 𝑋 be an object in a derivable category ℳ.

• If ℳ has a cofibrant replacement functor, then the full subcategory of
the slice category ℳ∕𝑋 spanned by the cofibrant replacements for 𝑋 is
homotopically contractible.

• If ℳ has a fibrant replacement functor, then the full subcategory of the
slice category 𝑋∕ℳ spanned by the fibrant replacements for 𝑋 is homo-
topically contractible.

Proof. The two claims are formally dual; we will prove the first version.
Let (𝑄, 𝑝) be a cofibrant replacement functor for ℳ. Then, for each cofibrant

replacement (�̃�, 𝑞) for 𝑋, we have the following commutative diagram in ℳ:

�̃� 𝑄�̃� 𝑄𝑋

𝑋
𝑞

𝑝�̃� 𝑄𝑞

𝑝𝑋

Thus, the constant functor at (𝑄𝑋, 𝑝𝑋) is naturally weakly equivalent to the
identity functor of the category of cofibrant replacements for 𝑋, and we may
then apply proposition 3.1.31 to deduce that it is homotopically contractible. ■

Remark 4.1.27. In other words, cofibrant replacements (resp. fibrant replace-
ments) are homotopically unique in a model category with functorial cofibrant
replacements (resp. functorial fibrant replacements).
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Proposition 4.1.28. Let ℳ be a category with a model structure, let (u�, u� , ℱ)
be the model structure on ℳ, and let u� be a full subcategory of ℳ.

(i) If u� is homotopically replete in ℳ, then the data

(u� ∩ mor u� , u� ∩ mor u� , ℱ ∩ mor u� )

constitute a model structure on u� .

(ii) If 𝑊 is a cofibrant object in ℳ and is in u� , then 𝑊 is a cofibrant object in
u� , i.e. projective with respect to u� ∩ ℱ ∩ mor u� ; dually, if 𝑋 is a fibrant
object in ℳ and is in u� , then 𝑋 is a fibrant object in u� , i.e. injective
with respect to u� ∩ u� ∩ mor u� .

(iii) If ℳ satisfies axiom DC0, then u� also satisfies axiom DC0, and every
cofibrant (resp. fibrant) object in u� is also a cofibrant (resp. fibrant) object
in ℳ.

(iv) If ℳ is a derivable category, then so is u� when equipped with the above
model structure;

Proof. (i). Lemma 3.1.7 implies that axiom CM2 is satisfied. Since u� is a
full subcategory of ℳ, the data (u� ∩ mor u� , u� ∩ mor u� , ℱ ∩ mor u� ) satisfy
axioms CM3 and CM4 because (u�, u� , ℱ) do. Finally, for axiom CM5, we appeal
to the hypothesis that u� is homotopically replete.

(ii). This follows from the assumption that u� is a full subcategory of ℳ.

(iii). Given the above, u� satisfies axiom DC0 if ℳ does. Now, suppose 𝑊
is a cofibrant object in u� . Then, by axiom DC0, there is a cofibrant object �̃�
in ℳ and a trivial fibration �̃� → 𝑊 in ℳ; but u� is a homotopically replete
subcategory, so �̃� → 𝑊 is also a trivial fibration in u� , so by lemma 4.1.9,
𝑊 is a retract of �̃� and is therefore a cofibrant object in ℳ, by lemma 4.1.15.
Dually, if 𝑋 is a fibrant object in u� , then it is a fibrant object in ℳ as well.

(iv). It remains to be shown that pushouts along trivial cofibrations and pullbacks
along trivial fibrations exist in u� . For this, simply apply corollary 4.1.13 to the
hypothesis that u� is homotopically replete and full. ■

Definition 4.1.29. The Quillen homotopy category (or, more simply, homo-
topy category) of a derivable category ℳ is the category Ho ℳ obtained by
freely inverting the weak equivalences in ℳ, as in definition a.4.9.

455



IV. Model categories

Definition 4.1.30. A saturated derivable category is a derivable category that
is saturated as a category with weak equivalences.

Theorem 4.1.31. Let ℳ be a derivable category and let 𝛾 : ℳ → Ho ℳ be the
localising functor.

(i) Let u� and u� be the classes of trivial cofibrations and trivial fibrations in
ℳ, respectively. Then ℳ admits a three-arrow calculus with respect to
(u� , u�), which is functorial if ℳ satisfies axiom CM5*.

(ii) Let 𝑋 and 𝑌 be objects in ℳ, let 𝑣 : 𝑋 → �̃� and 𝑣′ : 𝑋 → �̃�′ be trivial
fibrations, let 𝑢 : 𝑌 → ̂𝑌 and 𝑢′ : 𝑌 → ̂𝑌 ′ be trivial cofibrations, and let
𝑓 : �̃� → ̂𝑌 and 𝑓 ′ : �̃�′ → ̂𝑌 ′ be morphisms in ℳ. Then,

𝛾(𝑢)−1 ∘ 𝛾(𝑓 ) ∘ 𝛾(𝑣)−1 = 𝛾(𝑢′)−1 ∘ 𝛾(𝑓 ′) ∘ 𝛾(𝑣′)−1

if and only if there exists a commutative diagram in ℳ of the form below,

𝑋 �̃� ̂𝑌 𝑌

𝑋 • • 𝑌

𝑋 • • 𝑌

𝑋 �̃�′ ̂𝑌 ′ 𝑌

𝑣

𝑣1

𝑓

𝑣2

𝑢

𝑣3

𝑤1

𝑓3

𝑤2

𝑢3

𝑣4

𝑢1

𝑓4
𝑢2

𝑢4

𝑣′ 𝑓 ′ 𝑢′

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are trivial cofibrations, 𝑣1, 𝑣2, 𝑣3, 𝑣4 are trivial fibra-
tions, and 𝑤1, 𝑤2 are weak equivalences. In any such diagram, 𝑣1 is a
split epimorphism if �̃� is cofibrant, and 𝑢2 is a split monomorphism if ̂𝑌 ′

is fibrant.

(iii) ℳ is a saturated derivable category if and only if the weak equivalences
in ℳ have the 2-out-of-6 property.

(iv) If 𝑋 is a cofibrant object in ℳ and 𝑌 is a fibrant object in ℳ, then the
hom-set map ℳ(𝑋, 𝑌 ) → Ho ℳ(𝛾𝑋, 𝛾𝑌 ) is surjective.

(v) Ho ℳ is a locally small category.
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Proof. (i). Axioms CM2 and CM5 imply axiom A1 is satisfied, and axioms
A2 and A3 follow from the above claims; that we get a functorial three-arrow
calculus under axiom CM5* is an obvious consequence of the universal property
of pushouts and pullbacks.

(ii). This is a special case of the fundamental theorem of three-arrow calculi
(3.6.9), plus lemma 4.1.9.

(iii). Apply proposition 3.6.10 and lemma a.4.14.

(iv). Consider a zigzag of the following form in ℳ,

𝑋 𝑋′ 𝑌 ′ 𝑌𝑣 𝑓 ′ 𝑢

where 𝑢 : 𝑌 → 𝑌 ′ is a trivial cofibration and 𝑣 : 𝑋′ → 𝑋 is a trivial fibration.
Let ̄𝑓 = 𝛾(𝑢)−1 ∘ 𝛾(𝑓 ′) ∘ 𝛾(𝑣)−1 be the corresponding morphism in Ho ℳ; note
that the fundamental theorem of three-arrow calculi says that every morphism
𝛾𝑋 → 𝛾𝑌 in Ho ℳ is of this form. Suppose 𝑋 is cofibrant and 𝑌 is fibrant.
Then lemma 4.1.9 says 𝑢 is a split monomorphism and 𝑣 is a split epimorphism,
so choose 𝑟 : 𝑌 ′ → 𝑌 and 𝑠 : 𝑋 → 𝑋′ such that 𝑟 ∘ 𝑢 = id𝑌 and 𝑣 ∘ 𝑠 = id𝑋 .
Since 𝛾(𝑢) and 𝛾(𝑣) are isomorphisms in Ho ℳ, we must have 𝛾(𝑢)−1 = 𝛾(𝑟) and
𝛾(𝑣)−1 = 𝛾(𝑠). Hence, taking 𝑓 = 𝑟 ∘ 𝑓 ′ ∘ 𝑠, we have ̄𝑓 = 𝛾(𝑓), as required.

(v). By proposition 4.1.24, every object in ℳ is weakly equivalent to both a
cofibrant object and a fibrant object, so we may deduce that Ho ℳ is locally
small from claim (iii). ■

Corollary 4.1.32. Let ℳ be a derivable category. For any two objects 𝑋 and
𝑌 in ℳ, every morphism 𝑋 → 𝑌 in Ho ℳ can be represented by a zigzag of
the following form,

𝑋 �̃� ̂𝑌 𝑌𝑝 𝑖

where (�̃�, 𝑝) is any cofibrant replacement for 𝑋 and ( ̂𝑌 , 𝑖) is any fibrant re-
placement for 𝑌 . ■
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Lemma 4.1.33. Let ℳ be a derivable category and let u� be a relative category
where weq u� has the 2-out-of-3 property and the special 2-out-of-4 property.

• Let ℳc be the full subcategory of cofibrant objects in ℳ. If a functor
𝐹 : ℳc → u� sends trivial cofibrations in ℳc to weak equivalences in u�,
then 𝐹 preserves all weak equivalences.

• Let ℳf be the full subcategory of fibrant objects in ℳ. If a functor 𝐺 :
ℳf → u� sends trivial fibrations in ℳf to weak equivalences in u�, then 𝐺
preserves all weak equivalences.

Proof. The two claims are formally dual; we will prove the first version.
Axioms CM2 and CM5 imply that every weak equivalence in ℳ can be

factored as a trivial cofibration followed by a trivial fibration, so it is enough
to show that 𝐹 sends trivial fibrations in ℳc to weak equivalences in u�. Let
𝑝 : 𝑋 → 𝑌 be a trivial fibration in ℳc. 𝑌 is cofibrant, so lemma 4.1.9 says
𝑝 : 𝑋 → 𝑌 has a section 𝑠 : 𝑌 → 𝑋.

Let 𝑒 = 𝑠 ∘ 𝑝. Since 𝑝 : 𝑋 → 𝑌 is a trivial fibration, we may form a pullback
square in ℳ of the following form:

𝐾 𝑋

𝑋 𝑌

𝑘0

𝑘1

𝑝

𝑝

There is then a unique morphism Δ : 𝑋 → 𝐾 such that 𝑘0 ∘ Δ = 𝑘1 ∘ Δ = id𝑋 .
Since 𝑘0 : 𝐾 → 𝑋 is a trivial fibration (by corollary 4.1.13), Δ : 𝑋 → 𝐾 is a
weak equivalence in ℳ and therefore factorises as 𝑞∘𝑗 for some trivial cofibration
𝑗 : 𝑋 → ̃𝐾 and some trivial fibration 𝑞 : ̃𝐾 → 𝐾; note that ̃𝐾 is a cofibrant
object. There is also a unique morphism 𝑡 : 𝑋 → 𝐾 such that 𝑘0 ∘ 𝑡 = id𝑋 and
𝑘1 ∘ 𝑡 = 𝑒; and 𝑋 is a cofibrant object, so there exists a morphism ℎ : 𝑋 → ̃𝐾
such that 𝑞 ∘ ℎ = 𝑡. Taking 𝑞0 = 𝑘0 ∘ 𝑞 and 𝑞1 = 𝑘1 ∘ 𝑞, we obtain the following
commutative diagram in ℳc:

𝑋 𝑋 𝑋

𝑋 ̃𝐾 𝑋

𝑋 𝑋 𝑋

id

ℎ

𝑒

𝑞0

𝑗

𝑞1

id id
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Consider the image of the above diagram in u�. By hypothesis, 𝐹 𝑗 : 𝐹 𝑋 → 𝐹 ̃𝐾
is a weak equivalence in u�, and by repeatedly applying the 2-out-of-3 property
of weq u�, we may deduce that 𝐹 𝑒 : 𝐹 𝑋 → 𝐹 𝑋 is a weak equivalence in u� as
well. But weq u� has the special 2-out-of-4 property, and 𝐹 𝑒 = 𝐹 𝑠 ∘ 𝐹 𝑝, so we
may conclude that 𝐹 𝑝 : 𝐹 𝑋 → 𝐹 𝑌 is a weak equivalence in u�, as required. ■

Proposition 4.1.34. Let ℳ be a derivable category. Let ℳc be the full subcat-
egory of cofibrant objects in ℳ.

(i) ℳc, considered as a relative category with trivial cofibrations as weak
equivalences, admits a calculus of cospans.

(ii) The localisation of ℳc with respect to trivial cofibrations is isomorphic
to the localisation of ℳc with respect to all weak equivalences.

(iii) Every morphism 𝑋 → 𝑌 in Ho ℳc can be represented by a cycle in ℳc
of the form below,

𝑋 ̂𝑌 𝑌𝑓 𝑖

where ( ̂𝑌 , 𝑖) is any cofibrant fibrant replacement for 𝑌 .

Dually, let ℳf be the full subcategory of fibrant objects in ℳ.

(i′) ℳf, considered as a relative category with trivial fibrations as weak equi-
valences, admits a calculus of spans.

(ii′) The localisation of ℳf with respect to trivial fibrations is isomorphic to
the localisation of ℳf with respect to all weak equivalences.

(iii′) Every morphism 𝑋 → 𝑌 in Ho ℳf can be represented by a cocycle in ℳf
of the form below,

𝑋 �̃� 𝑌𝑝 𝑓

where (�̃�, 𝑝) is any fibrant cofibrant replacement for 𝑋.

Proof. (i). This is an immediate consequence of corollary 4.1.13.

(ii). Suppose 𝐹 : ℳc → u� is a functor that sends trivial cofibrations in ℳc
to isomorphisms in u�. It is clear that isomorphisms have the special 2-out-of-4
property, so we may apply lemma 4.1.33 to deduce that 𝐹 sends weak equival-
ences in ℳc to isomorphisms in u� as well. Hence, any localisation of ℳc with
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respect to trivial cofibrations must also be a localisation of ℳc with respect to
weak equivalences.

(iii). The fundamental theorem of calculi of cospans (3.5.9) says every morphism
𝑋 → 𝑌 in Ho ℳc can be represented by a cycle in ℳc of the form below,

𝑋 𝑌 ′ 𝑌𝑔 𝑢

where 𝑢 : 𝑌 → 𝑌 ′ is a trivial cofibration, and that two such cycles represent the
same morphism if and only if they are in the same connected component of the
cycle category ℳc

→∼(𝑋, 𝑌 ). Let ( ̂𝑌 , 𝑖) be any cofibrant fibrant replacement for
𝑌 . Since 𝑢 : 𝑌 → 𝑌 ′ is a trivial cofibration and ̂𝑌 is fibrant, axiom CM4 yields
a morphism ℎ : 𝑌 ′ → ̂𝑌 such that ℎ ∘ 𝑢 = 𝑖. Taking 𝑓 = ℎ ∘ 𝑔, we have the
following commutative diagram in ℳc:

𝑋 𝑌 ′ 𝑌

𝑋 ̂𝑌 𝑌

𝑔

ℎ

𝑢

𝑓 𝑖

Thus, the cycles (𝑢, 𝑔) and (𝑖, 𝑓 ) represent the same morphism in Ho ℳc. ■

Proposition 4.1.35. Let ℳ be a derivable category.

• Let ℳc be the full subcategory of cofibrant objects in ℳ. The canonical
functor Ho ℳc → Ho ℳ induced by the inclusion ℳc ↪ ℳ is fully
faithful and essentially surjective on objects.

• Let ℳf be the full subcategory of fibrant objects in ℳ. The canonical
functor Ho ℳf → Ho ℳ induced by the inclusion ℳf ↪ ℳ is fully
faithful and essentially surjective on objects.

Proof. The two claims are formally dual; we will prove the first version.
It is clear that proposition 4.1.24 implies the functor Ho ℳc → Ho ℳ is

essentially surjective on objects; it remains to be shown that the functor is fully
faithful. Consider the full subcategory ℳcf spanned by the cofibrant–fibrant
objects in ℳ. By restricting the localising functors, we obtain the following
commutative diagram,

ℳcf Ho ℳc

ℳcf Ho ℳ
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where ℳcf → Ho ℳc and ℳcf → Ho ℳ are essentially surjective on objects.
Theorem 4.1.31 implies ℳcf → Ho ℳ is a full functor, so Ho ℳc → Ho ℳ
must also be full.

Now, consider a parallel pair of morphisms in Ho ℳc. Proposition 4.1.34
says they can be represented by cycles of the following form,

𝑋 ̂𝑌 𝑌𝑓 𝑖 𝑋 ̂𝑌 𝑌𝑓 ′ 𝑖

where ( ̂𝑌 , 𝑖) is any cofibrant fibrant replacement for 𝑌 . Suppose the two morph-
isms are equal in Ho ℳ. Then, there must be a commutative diagram in ℳ of
the form below,

𝑋 𝑋 ̂𝑌 𝑌

𝑋 • • 𝑌

𝑋 • • 𝑌

𝑋 𝑋 ̂𝑌 𝑌

id

𝑣1

𝑓

𝑣2

𝑖

𝑣3

𝑤1

𝑓3

𝑤2

𝑢3

𝑣4

𝑢1

𝑓4
𝑢2

𝑢4

id 𝑓 ′ 𝑖

where 𝑢1, 𝑢2, 𝑢3, 𝑢4 are trivial cofibrations, 𝑣1, 𝑣2, 𝑣3, 𝑣4 are trivial fibrations, and
𝑤1, 𝑤2 are weak equivalences. Since 𝑋 is cofibrant, there exists a morphism 𝑠
in ℳ such that 𝑣1 ∘ 𝑠 = id𝑋 , so (using lemma 4.1.8) we obtain the following
commutative diagram in ℳc:

𝑋 𝑋 ̂𝑌 𝑌

𝑋 𝑋 • 𝑌

𝑋 • • 𝑌

𝑋 𝑋 ̂𝑌 𝑌

id

id

𝑓

𝑣2

𝑖

id

𝑤1∘𝑠

𝑓3∘𝑠

𝑤2

𝑢3

𝑣4

𝑢1

𝑓4
𝑢2

𝑢4

id 𝑓 ′ 𝑖

Noting that axiom CM2 implies 𝑤1 ∘𝑠 is a weak equivalence in ℳc, we may then
deduce that the two zigzags also represent the same morphism in Ho ℳc. Thus,
the functor Ho ℳc → Ho ℳ is indeed faithful. ■
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4.2 Left and right homotopy
Prerequisites. §4.1.

Definition 4.2.1. Let 𝑋 be an object in a model category ℳ.

• A cylinder object for 𝑋 is a quadruple (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝), where Cyl(𝑋)
is an object in ℳ, 𝑝 : Cyl(𝑋) → 𝑋 is a weak equivalence, and 𝑖0 and 𝑖1
are sections of 𝑝 such that the morphism ⦅𝑖0, 𝑖1⦆ : 𝑋 + 𝑋 → Cyl(𝑋) is a
cofibration.

• A path object for 𝑋 is a quadruple (Path(𝑋), 𝑖, 𝑝0, 𝑝1), where Path(𝑋) is
an object in ℳ, 𝑖 : 𝑋 → Path(𝑋) is a weak equivalence, and 𝑝0 and 𝑝1 are
retractions of 𝑖 such that the morphism ⟨𝑝0, 𝑝1⟩ : Path(𝑋) → 𝑋 × 𝑋 is a
fibration.

Remark 4.2.2. Let (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) be a cylinder object for 𝑋. By definition,
𝑝 ∘ 𝑖0 = 𝑝 ∘ 𝑖1 = id𝑋 , and 𝑝 is a weak equivalence, so by the 2-out-of-3 property,
𝑖0 and 𝑖1 must also be weak equivalences 𝑋 → Cyl(𝑋).

Dually, if (Path(𝑋), 𝑖, 𝑝0, 𝑝1) is a path object for 𝑋, then 𝑝0 and 𝑝1 must be
weak equivalences Path(𝑋) → 𝑋.

Proposition 4.2.3. Let 𝑋 be an object in a model category ℳ.

• There exists a cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, where the morphism
𝑝 : Cyl(𝑋) → 𝑋 is a trivial fibration.

• There exists a path object (Path(𝑋), 𝑖, 𝑝0, 𝑝1) for 𝑋, where the morphism
𝑖 : 𝑋 → Path(𝑋) is a trivial cofibration.

Proof. Use axioms CM1 and CM5. ■

Definition 4.2.4. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a
model category ℳ, let (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) be a cylinder object for 𝑋, and let
(Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑌 .

• A left homotopy from 𝑓0 to 𝑓1 with respect to (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) is a
morphism 𝐻 : Cyl(𝑋) → 𝑌 such that 𝐻 ∘ 𝑖0 = 𝑓0 and 𝐻 ∘ 𝑖1 = 𝑓1.

• A right homotopy from 𝑓0 to 𝑓1 with respect to (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) is a
morphism 𝐻 : 𝑋 → Path(𝑌 ) such that 𝑝0 ∘ 𝐻 = 𝑓0 and 𝑝1 ∘ 𝐻 = 𝑓1.
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• We say 𝑓0 and 𝑓1 are left homotopic if there exists a left homotopy from
𝑓0 to 𝑓1 with respect to some cylinder object for 𝑋.

• We say 𝑓0 and 𝑓1 are right homotopic if there exists a right homotopy
from 𝑓0 to 𝑓1 with respect to some path object for 𝑌 .

Remark 4.2.5. If 𝑓0 and 𝑓1 are either left homotopic or right homotopic, then
they must represent the same morphism in Ho ℳ. For definiteness, let us write
𝛾 : ℳ → Ho ℳ for the localising functor, and suppose 𝐻 : Cyl(𝑋) → 𝑌 is
a left homotopy from 𝑓0 to 𝑓1. Since 𝑖0 and 𝑖1 are both sections of the weak
equivalence 𝑝 : Cyl(𝑋) → 𝑋, we must have 𝛾𝑖0 = (𝛾𝑝)−1 = 𝛾𝑖1; but 𝑓0 = 𝐻 ∘ 𝑖0
and 𝑓1 = 𝐻 ∘ 𝑖1, so indeed 𝛾𝑓0 = 𝛾𝑓1. This is one of the reasons for calling
Ho ℳ the homotopy category of ℳ.

However, it is not quite true that 𝛾𝑓0 = 𝛾𝑓1 if and only if 𝑓0 and 𝑓1 are either
left homotopic or right homotopic; this only happens in special cases. In general,
being left/right homotopic fails to even be an equivalence relation.

Definition 4.2.6. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a model category ℳ.

• A left homotopy left inverse for 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋 in ℳ such
that 𝑔 ∘ 𝑓 and id𝑋 are left homotopic.

• A right homotopy right inverse for 𝑓 is a morphism ℎ : 𝑌 → 𝑋 in ℳ
such that 𝑓 ∘ ℎ and id𝑌 are right homotopic.

• A right homotopy left inverse for 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋 in ℳ such
that 𝑔 ∘ 𝑓 and id𝑋 are right homotopic.

• A left homotopy right inverse for 𝑓 is a morphism ℎ : 𝑌 → 𝑋 in ℳ
such that 𝑓 ∘ ℎ and id𝑌 are left homotopic.

A homotopy equivalence in ℳ is a pair (𝑓 , 𝑔) such that 𝑔 (resp. 𝑓 ) is both a left
homotopy left inverse and a right homotopy right inverse for 𝑓 (resp. 𝑔). Two
morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 in ℳ are mutual homotopy inverses
when (𝑓 , 𝑔) constitute a homotopy equivalence in ℳ.

Remark 4.2.7. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be morphisms in a model
category.

• 𝑔 is a left homotopy left inverse for 𝑓 if and only if 𝑓 is a left homotopy
right inverse for 𝑔.
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• 𝑔 is a right homotopy left inverse for 𝑓 if and only if 𝑓 is a right homotopy
left inverse for 𝑔.

However, note that the dual of ‘left homotopy left inverse’ is ‘right homotopy
right inverse’, and the dual of ‘right homotopy left inverse’ is ‘left homotopy
right inverse’!

Lemma 4.2.8. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category, and suppose 𝑓0 and 𝑓1 are either left or right homotopic. Then, 𝑓0 is
a weak equivalence if and only if 𝑓1 is a weak equivalence.

Proof. Assume 𝑓0 and 𝑓1 are left homotopic; the other case is formally dual.
So, there exist a cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋 and a morphism 𝐻 :
Cyl(𝑋) → 𝑌 such that 𝐻 ∘ 𝑖0 = 𝑓0 and 𝐻 ∘ 𝑖1 = 𝑓1. Suppose 𝑓0 is a weak equi-
valence. By remark 4.2.2, 𝑖0 is a weak equivalence, so the 2-out-of-3 property
implies 𝐻 is also a weak equivalence; but 𝑖1 is a weak equivalence as well, so
𝑓1 must be a weak equivalence too. A symmetrical argument proves that 𝑓0 is a
weak equivalence if 𝑓1 is. ■

Lemma 4.2.9. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be morphisms in a model
category ℳ.

(i) If 𝑔 ∘ 𝑓 is either left or right homotopic to id𝑋 , and 𝑓 ∘ 𝑔 is either left or
right homotopic to id𝑌 , then (𝑓 , 𝑔) is an equivalence in ℳ (in the sense of
definition 3.1.17).

(ii) If there exist morphisms 𝑔, ℎ : 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 is either left or right
homotopic to id𝑋 and 𝑓 ∘ ℎ is either left or right homotopic to id𝑌 , then
(the image of) 𝑓 is an isomorphism in Ho ℳ.

Proof. Obvious, given remark 4.2.5. ⧫

Lemma 4.2.10. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

(i) Given any cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, 𝑓0 ∘ 𝑝 : Cyl(𝑋) → 𝑌 is
a left homotopy from 𝑓0 to itself.

(ii) If 𝐻 : Cyl(𝑋) → 𝑌 is a left homotopy from 𝑓0 to 𝑓1 with respect to a
cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, then the same 𝐻 is a left homotopy
from 𝑓1 to 𝑓0 for the cylinder object (Cyl(𝑋), 𝑖1, 𝑖0, 𝑝).
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Dually:

(i′) Given any path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , 𝑖 ∘ 𝑓0 : 𝑋 → Path(𝑌 ) is a
right homotopy from 𝑓0 to itself.

(ii′) If 𝐻 : 𝑋 → Path(𝑌 ) is a right homotopy from 𝑓0 to 𝑓1 with respect to a
path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , then the same 𝐻 is a right homotopy
from 𝑓1 to 𝑓0 for the path object (Path(𝑌 ), 𝑖, 𝑝1, 𝑝0).

Proof. Obvious. ⧫

Lemma 4.2.11. Let ℳ be a model category.

• If (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) is a cylinder object for a cofibrant object in ℳ, then
the insertions 𝑖0, 𝑖1 : 𝑋 → Cyl(𝑋) are trivial cofibrations, and Cyl(𝑋) is
a cofibrant object in ℳ.

• If (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) is a path object for a fibrant object in ℳ, then the
projections 𝑝0, 𝑝1 : 𝑌 → Path(𝑌 ) are trivial fibrations, and Path(𝑋) is a
fibrant object in ℳ.

Proof. See Lemmas 1.5 and 1.7 in [GJ], or Lemma 7.3.6 in [Hirschhorn, 2003].
□

Lemma 4.2.12. Let ℳ be model category.

• Let 𝑋 be a cofibrant object in ℳ. Given two cylinder objects for 𝑋, say
(Cyl(𝑋)′, 𝑖′

0, 𝑖′
1, 𝑝′) and (Cyl(𝑋)″, 𝑖″

0 , 𝑖″
1 , 𝑝″), there exists a third cylinder

object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) such that the diagram below commutes,

𝑋 𝑋 𝑋

Cyl(𝑋)′ Cyl(𝑋)″

Cyl(𝑋)

𝑋

𝑖′
0

𝑖0

𝑖′
1 𝑖″

0 𝑖″
1

𝑖1

𝑝′ 𝑝″
𝑝

and the diamond is a pushout diagram.
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• If 𝑌 is a fibrant object in ℳ, and we have two path objects for 𝑌 , say
(Path(𝑌 )′, 𝑖′, 𝑝′

0, 𝑝′
1) and (Path(𝑌 )″, 𝑖″, 𝑝″

0 , 𝑝″
1 ), then there exists a third

path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) such that the diagram below commutes,

𝑌

Path(𝑌 )

Path(𝑌 )′ Path(𝑌 )″

𝑌 𝑌 𝑌

𝑖
𝑖′ 𝑖″

𝑝0 𝑝1

𝑝′
0 𝑝′

1 𝑝″
0 𝑝″

1

and the diamond is a pullback diagram.

Proof. See Lemmas 1.5 and 1.7 in [GJ, Ch. II], or Lemma 7.4.2 in [Hirschhorn,
2003]. □

Corollary 4.2.13. Let 𝑓0, 𝑓1, 𝑓2 : 𝑋 → 𝑌 be three parallel morphisms in a
model category ℳ.

• Assuming 𝑋 is cofibrant, if 𝑓0 and 𝑓1 are left homotopic, and 𝑓1 and 𝑓2
are left homotopic, then 𝑓0 and 𝑓2 are also left homotopic.

• Assuming 𝑌 is fibrant, if 𝑓0 and 𝑓1 are right homotopic, and 𝑓1 and 𝑓2 are
right homotopic, then 𝑓0 and 𝑓2 are also right homotopic. ■

Lemma 4.2.14. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

• If 𝑋 is cofibrant, and 𝑓0 and 𝑓1 are left homotopic, given any path object
(Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , there is a right homotopy 𝐻 : 𝑋 → Path(𝑌 )
from 𝑓0 to 𝑓1.

• If 𝑌 is fibrant, and 𝑓0 and 𝑓1 are right homotopic, given any cylinder object
(Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, there is a left homotopy 𝐻 : Cyl(𝑋) → 𝑌 from
𝑓0 to 𝑓1.

Proof. See Proposition 1.8 in [GJ, Ch. II], or Proposition 7.4.7 in [Hirschhorn,
2003]. □
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Proposition 4.2.15. Let 𝑋 and 𝑌 be objects in a model category ℳ.

(i) If 𝑋 is cofibrant, then being left homotopic is an equivalence relation on
the hom-set ℳ(𝑋, 𝑌 ).

(ii) If 𝑌 is fibrant, then being right homotopic is an equivalence relation on
the hom-set ℳ(𝑋, 𝑌 ).

(iii) If 𝑋 is cofibrant and 𝑌 is fibrant, then these two equivalence relations on
ℳ(𝑋, 𝑌 ) coincide.

Proof. Use the preceding lemmas. ■

Lemma 4.2.16. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

• If 𝑓0 and 𝑓1 are right homotopic and 𝑔 : 𝑊 → 𝑋 is any morphism in ℳ,
then 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are also right homotopic.

• If 𝑓0 and 𝑓1 are left homotopic and 𝑔 : 𝑌 → 𝑍 is any morphism in ℳ,
then 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1 are also left homotopic.

Proof. Obvious. ⧫

Corollary 4.2.17. Let ℳ be a model category, and let ℳcf be the full subcat-
egory spanned by the cofibrant–fibrant objects. Then the equivalence relation
induced by homotopy is a congruence on ℳcf; in particular, there exist a locally
small category ℳh and a full functor ℳcf → ℳ′ with these properties:

• The objects of ℳh are those of ℳcf.

• The hom-set ℳh(𝑋, 𝑌 ) is ℳ(𝑋, 𝑌 ) modulo homotopy.

• The functor ℳcf → ℳh sends each morphism in ℳcf to its homotopy
class. ■

The next result is a version of Whitehead’s theorem; however, this is a purely
formal consequence of the model category axioms and has no real content, unlike
the original theorem.

Proposition 4.2.18. Let 𝑋 and 𝑌 be cofibrant–fibrant objects in a model cat-
egory ℳ. If 𝑓 : 𝑋 → 𝑌 is a weak equivalence, then 𝑓 has a homotopy inverse
in ℳ.
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Proof. See Theorem 1.10 in [GJ, Ch. II], or Theorem 7.5.10 in [Hirschhorn,
2003]. □

Lemma 4.2.19. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

• If 𝑔 : 𝑊 → 𝑋 is a morphism with a right homotopy right inverse in ℳ,
then 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are right homotopic if and only if 𝑓0 and 𝑓1 are right
homotopic.

• If 𝑔 : 𝑌 → 𝑍 is a morphism with a left homotopy left inverse in ℳ,
then 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1 are left homotopic if and only if 𝑓0 and 𝑓1 are left
homotopic.

Proof. This follows immediately from the definitions and lemma 4.2.16. ■

Corollary 4.2.20. Let 𝑊 , 𝑋, 𝑌 , 𝑍 be cofibrant–fibrant objects in a model cat-
egory ℳ, and let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms.

• If 𝑔 : 𝑊 → 𝑋 is a weak equivalence such that 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are
homotopic, then 𝑓0 and 𝑓1 are homotopic.

• If 𝑔 : 𝑌 → 𝑍 is a weak equivalence such that 𝑔∘𝑓0 and 𝑔∘𝑓1 are homotopic,
then 𝑓0 and 𝑓1 are homotopic.

Proof. Apply proposition 4.2.18 in conjunction with the above lemma. ■

4.3 Quillen functors
Prerequisites. §§3.1, 3.3, 3.4, 4.1, a.5.

Definition 4.3.1.
• A left Quillen functor is a functor between derivable categories that has

a right adjoint and preserves cofibrations and trivial cofibrations.

• A right Quillen functor is a functor between derivable categories that has
a left adjoint and preserves fibrations and trivial fibrations.

• A Quillen adjunction is an adjunction

𝐹 ⊣ 𝐺 : ℳ → u�

where 𝐹 is a left Quillen functor and 𝐺 is a right Quillen functor.
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• A Quillen equivalence is a Quillen adjunction as above satisfying this
additional condition:

– Given a cofibrant object 𝐴 in u� and fibrant object 𝑌 in ℳ, a morph-
ism 𝐹 𝐴 → 𝑌 is a weak equivalence in ℳ if and only if its right
adjoint transpose 𝐴 → 𝐺𝑌 is a weak equivalence in u� .

Proposition 4.3.2. Let 𝐹 ⊣ 𝐺 : ℳ → u� be an adjunction between categories
with model structures. The following are equivalent:

(i) 𝐹 preserves cofibrations and trivial cofibrations.

(ii) 𝐺 preserves fibrations and trivial fibrations.

(iii) 𝐹 preserves cofibrations and 𝐺 preserves fibrations.

(iv) 𝐹 preserves trivial cofibrations and 𝐺 preserves trivial fibrations.

(v) (Assuming ℳ and u� are derivable categories.) 𝐹 ⊣ 𝐺 is a Quillen
adjunction.

Proof. Use proposition a.3.26. ■

Remark 4.3.3. A functor between categories with model structures that pre-
serves both trivial cofibrations and trivial fibrations must also preserve weak
equivalences, since axioms CM2 and CM5 together imply that a morphism is a
weak equivalence if and only if it is of the form 𝑝 ∘ 𝑖 where 𝑖 is a trivial cofibra-
tion and 𝑝 is a trivial fibration. In particular, a functor that is both left and right
Quillen must be homotopical.

Proposition 4.3.4. Let 𝐹 ⊣ 𝐺 : ℳ → u� be a Quillen adjunction.

• 𝐹 sends cofibrant objects in u� to cofibrant objects in ℳ.

• 𝐺 sends fibrant objects in ℳ to fibrant objects in u� .

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐵 be a cofibrant object in u� and let 𝑝 : 𝑋 → 𝑌 be a trivial fibration in

ℳ. Since 𝐹 ⊣ 𝐺, we have the following commutative diagram:

ℳ(𝐹 𝐵, 𝑋) u� (𝐵, 𝐺𝑋)

ℳ(𝐹 𝐵, 𝑌 ) u� (𝐵, 𝐺𝑌 )

ℳ(𝐹 𝐵,𝑝)

≅

ℳ(𝐵,𝐺𝑝)

≅
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IV. Model categories

By hypothesis, 𝐺𝑝 : 𝐺𝑋 → 𝐺𝑌 is a trivial fibration in u� , so the hom-set map
u� (𝐵, 𝐺𝑝) is a surjection. It follows that ℳ(𝐹 𝐵, 𝑝) is also a surjection, and thus
𝐹 𝐵 is a cofibrant object in ℳ. ■

Proposition 4.3.5.
(i) The composite of two Quillen adjunctions is also a Quillen adjunction.

(ii) The composite of two Quillen equivalences is also a Quillen equivalence.

Proof. Obvious. ⧫

Lemma 4.3.6 (Ken Brown’s lemma). Let ℳ be a model category and let u� be
a category with weak equivalences.

• Let ℳc be the full subcategory of cofibrant objects in ℳ. If 𝐹 : ℳc → u�
sends trivial cofibrations in ℳc to weak equivalences in u�, then 𝐹 also
sends weak equivalences in ℳc to weak equivalences in u�.

• Let ℳf be the full subcategory of fibrant objects in ℳ. If 𝐹 : ℳf → u�
sends trivial fibrations in ℳf to weak equivalences in u�, then 𝐹 also sends
weak equivalences in ℳf to weak equivalences in u�.

Proof. See Lemma 9.9 in [DS], Lemma 7.7.1 in [Hirschhorn, 2003], or Lemma
14.5 in [DHKS]. □

The usual proof of the Ken Brown’s lemma uses binary coproducts (or binary
products, as the case may be), so it cannot be used in the case where the domain
is merely a derivable category. Nonetheless, we have already proved something
very similar, namely lemma 4.1.33.

Proposition 4.3.7 (Dugger). Let 𝐹 ⊣ 𝐺 be an adjunction between DHK model
categories. The following are equivalent:

(i) 𝐹 ⊣ 𝐺 is a Quillen adjunction.

(ii) 𝐹 preserves cofibrations between cofibrant objects and all trivial cofibra-
tions.

(iii) 𝐺 preserves fibrations between fibrant objects and all trivial fibrations.

Proof. See Proposition 8.5.4 in [Hirschhorn, 2003], or Corollary a.2 in [Dugger,
2001b]. □
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Proposition 4.3.8. Let 𝐹 ⊣ 𝐺 : ℳ → u� be an adjunction between derivable
categories and assume that both the adjunction unit : idu� ⇒ 𝐺𝐹 and the
adjunction counit : 𝐹 𝐺 ⇒ idℳ are natural weak equivalences. If the functor
𝐺 : ℳ → u� preserves and reflects weak equivalences, then:

(i) A morphism 𝐹 𝐴 → 𝑌 is a weak equivalence in ℳ if and only if its right
adjoint transpose 𝐴 → 𝐺𝑌 is a weak equivalence in u� .

(ii) 𝐹 : u� → ℳ preserves weak equivalences.

(iii) If 𝐹 : u� → ℳ preserves cofibrations, then the adjunction is a Quillen
adjunction.

Dually, if the functor 𝐹 : u� → ℳ preserves and reflects weak equivalences,
then:

(i′) A morphism 𝐹 𝐴 → 𝑌 is a weak equivalence in ℳ if and only if its right
adjoint transpose 𝐴 → 𝐺𝑌 is a weak equivalence in u� .

(ii′) 𝐺 : ℳ → u� preserves weak equivalences.

(iii′) If 𝐺 : ℳ → u� preserves fibrations, then the adjunction is a Quillen
adjunction.

Proof. (i). Let 𝑌 be an object in ℳ, let 𝐴 be an object in u� , let 𝑓 : 𝐹 𝐴 → 𝑌
be a morphism in ℳ, and let 𝑔 : 𝐴 → 𝐺𝑌 be its right adjoint transpose. First,
suppose 𝑓 : 𝐹 𝐴 → 𝑌 is a weak equivalence in ℳ. Then 𝐺𝑓 : 𝐺𝐹 𝐴 → 𝐺𝑌
and 𝑔 = 𝐺𝑓 ∘ 𝐴 : 𝐴 → 𝐺𝑌 are weak equivalences in u� .

Conversely, suppose 𝑔 : 𝐴 → 𝐺𝑌 is a weak equivalence in u� . Then so
are 𝐺𝐹 𝑔 : 𝐺𝐹 𝐴 → 𝐺𝐹 𝐺𝑌 and 𝐺𝑓 = 𝐺 𝑌 ∘ 𝐺𝐹 𝑔 : 𝐺𝐹 𝐴 → 𝐺𝑌 . But
𝐺 : ℳ → u� reflects weak equivalences, so 𝑓 : 𝐹 𝐴 → 𝑌 is a weak equivalence
in ℳ.

(ii). Axiom CM2 implies that 𝐺𝐹 : u� → u� preserves weak equivalences, and
𝐺 : ℳ → u� reflects weak equivalences by hypothesis, so 𝐹 : u� → ℳ must
preserve weak equivalences.

(iii). It now follows that 𝐹 : u� → ℳ preserves trivial cofibrations if it preserves
cofibrations. We may then apply proposition 4.3.2 to complete the proof. ■
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Definition 4.3.9. Let ℳ be a derivable category.

• A left Quillen deformation retract (resp. functorial left Quillen de-
formation retract) of ℳ is a left deformation retract of ℳ of the form
(ℳc, 𝑄, 𝑝) where ℳc is the full subcategory of cofibrant objects in ℳ.

• A right Quillen deformation retract (resp. functorial right Quillen de-
formation retract) of ℳ is a right deformation retract of ℳ of the form
(ℳf, 𝑅, 𝑖) where ℳf is the full subcategory of fibrant objects in ℳ.

Lemma 4.3.10. Let ℳ be a derivable category.

• Left Quillen deformation retracts of ℳ exist.

• Right Quillen deformation retracts of ℳ exist.

Proof. The two claims are formally dual; we will prove the first version.
For each object 𝑋 in ℳ, choose a fibrant cofibrant replacement (𝑄𝑋, 𝑝𝑋);

such exist by proposition 4.1.24. Then, for each morphism 𝑓 : 𝑋 → 𝑌 in ℳ,
there exists a morphism 𝑄𝑓 : 𝑄𝑋 → 𝑄𝑌 making the diagram commute,

𝑄𝑋 𝑋

𝑄𝑌 𝑌

𝑄𝑓

𝑝𝑋

𝑓

𝑝𝑌

because 𝑝𝑌 : 𝑄𝑌 → 𝑌 is a trivial fibration and 𝑄𝑋 is cofibrant; note that axiom
CM2 implies 𝑄𝑓 is a weak equivalence if (and only if!) 𝑓 is. Thus, axioms
DR1–2 are satisfied. For axiom DR3, we refer to proposition 4.1.35. Finally, we
simply need to observe that axiom DR4 is trivial. ■

Lemma 4.3.11. Let ℳ be a derivable category.

• (ℳc, 𝑄, 𝑝) is a functorial left Quillen deformation for ℳ if and only if
(𝑄, 𝑝) is a cofibrant replacement functor for ℳ.

• (ℳf, 𝑅, 𝑖) is a functorial left Quillen deformation for ℳ if and only if
(𝑅, 𝑖) is a cofibrant replacement functor for ℳ.

Proof. Obvious. ⧫
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Theorem 4.3.12. Let ℳ be a derivable category, let u� be a relative category,
and let 𝛾ℳ : ℳ → Ho ℳ and 𝛾u� : u� → Ho u� be the respective localising
functors. Suppose weq u� has the 2-out-of-3 property and the special 2-out-of-4
property. If 𝐹 : ℳ → u� is a functor that sends trivial cofibrations in ℳ to weak
equivalences in u�, then:

(i) Any left Quillen deformation retract of ℳ is a left deformation retract for
𝐹 ; in particular, a total left derived functor for 𝐹 exists.

(ii) If ℳ has a cofibrant replacement functor, then 𝐹 is functorially left de-
formable and has a homotopical left approximation.

(iii) If (𝐋𝐹 , 𝛼) is any total left derived functor for 𝐹 , then the extension counit
component 𝛼𝑋 : (𝐋𝐹 )𝛾ℳ𝑋 → 𝛾u�𝐹 𝑋 is an isomorphism for all cofibrant
objects 𝑋 in ℳ.

Dually, if 𝐹 : ℳ → u� is a functor that sends trivial fibrations in ℳ to weak
equivalences in u�, then:

(i′) Any right Quillen deformation retract of ℳ is a right deformation retract
for 𝐹 ; in particular, a total right derived functor for 𝐹 exists.

(ii′) If ℳ has a fibrant replacement functor, then 𝐹 is functorially right de-
formable and has a homotopical right approximation.

(iii′) If (𝐑𝐹 , 𝛽) is any total right derived functor for 𝐹 , then the extension counit
component 𝛽𝑋 : (𝐑𝐺)𝛾ℳ𝑋 → 𝛾u�𝐹 𝑋 is an isomorphism for all fibrant
objects 𝑋 in ℳ.

Proof. (i). Let (ℳc, 𝑄, 𝑝) be a left Quillen deformation retract of ℳ. Then
𝐹 sends weak equivalences in ℳc to weak equivalences in u� by lemma 4.1.33,
so (ℳc, 𝑄, 𝑝) is indeed a left deformation retract for u�. We may then apply
theorem 3.3.17 to obtain a total left derived functor.

(ii). By the same argument, if (𝑄, 𝑝) is a cofibrant replacement functor for ℳ,
then (ℳc, 𝑄, 𝑝) is a functorial left deformation retract for 𝐹 . We then appeal to
theorem 3.4.11.

(iii). The extension counit has the required property because, for all cofibrant
objects 𝑋 in ℳ, the morphism 𝐹 𝑝𝑋 : 𝐹 𝑄𝑋 → 𝐹 𝑋 is a weak equivalence in u�;
but this is precisely the component of the extension counit at 𝑋. ■
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Theorem 4.3.13. Let 𝐹 ⊣ 𝐺 : ℳ → u� be a Quillen adjunction.

(i) Any left Quillen deformation retract of u� is a left deformation retract for
𝐹 ; dually, any right Quillen deformation retract of ℳ is a right deforma-
tion retract for 𝐺.

(ii) 𝐹 ⊣ 𝐺 is a deformable adjunction; in particular, a derived adjunction
exists.

(iii) If 𝐹 ⊣ 𝐺 is a Quillen equivalence, then the derived adjunction

𝐋𝐹 ⊣ 𝐑𝐺 : Ho ℳ → Ho u�

is an adjoint equivalence of categories; and if ℳ and u� are saturated
derivable categories, then the converse is true.

Proof. (i). Since weak equivalences in derivable categories are closed under
retracts (by axiom CM3), we may use theorem 4.3.12.

(ii). That 𝐹 ⊣ 𝐺 is a derivable adjunction follows immediately; then apply
theorem 3.3.24 for the existence of the derived adjunction.

(iii). This is a special case of proposition 3.3.28. ■

Proposition 4.3.14. Let ℒ, ℳ, and u� be derivable categories.

• If 𝐹 : u� → ℳ and 𝐺 : ℳ → ℒ are left Quillen functors, then the
composite (𝐋𝐺)(𝐋𝐹 ) is (the functor part of) a total left derived functor for
𝐺𝐹 .

• If 𝐹 : u� → u� and 𝐺 : ℳ → u� are right Quillen functors, then the
composite (𝐑𝐹 )(𝐑𝐺) is (the functor part of) a total right derived functor
for 𝐹 𝐺.

Assuming ℳ, u� , and ℒ have fibrant and cofibrant replacement functors:

• If 𝐹 : u� → ℳ and 𝐺 : ℳ → ℒ are left Quillen functors, then the com-
posite (𝕃𝐺)(𝕃𝐹 ) is (the functor part of) a homotopical left approximation
for 𝐺𝐹 .

• If 𝐹 : u� → u� and 𝐺 : ℳ → u� are right Quillen functors, then the
composite (ℝ𝐹 )(ℝ𝐺) is (the functor part of) a homotopical right approx-
imation for 𝐹 𝐺.
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Proof. Use theorems 3.3.17, 3.4.11, and 4.3.12 with proposition 4.3.5. ■

Definition 4.3.15. Let 𝔸 be a small category and let ℳ be a category equipped
with a model structure.

• The injective model structure on the functor category [𝔸, ℳ] is a model
structure such that a morphism in [𝔸, ℳ] is a cofibration (resp. weak equi-
valence) if and only if all its components are cofibrations (resp. weak equi-
valences) in ℳ.

• The projective model structure on the functor category [𝔸, ℳ] is a model
structure such that a morphism in [𝔸, ℳ] is a fibration (resp. weak equi-
valence) if and only if all its components are fibrations (resp. weak equi-
valences) in ℳ.

Remark 4.3.16. The injective (resp. projective) model structure on [𝔸, ℳ] is
unique if it exists, by theorem 4.1.12.

Proposition 4.3.17. Let ℳ be a derivable category, let 𝔸 be a small category,
and let Δ : ℳ → [𝔸, ℳ] be the functor that sends an object 𝑋 in ℳ to the
constant functor Δ𝑋 : 𝔸 → ℳ with value 𝑋.

• If ℳ has colimits for diagrams of shape 𝔸, then Δ : ℳ → [𝔸, ℳ] is
a right Quillen functor with respect to the projective model structure on
[𝔸, ℳ] when it exists.

• If ℳ has limits for diagrams of shape 𝔸, then Δ : ℳ → [𝔸, ℳ] is a left
Quillen functor with respect to the injective model structure on [𝔸, ℳ]
when it exists.

Proof. Δ certainly preserves fibrations (resp. cofibrations) and weak equival-
ences with respect to the projective (resp. injective) model structure, so by pro-
position 4.3.2, lim−−→𝔸

⊣ Δ (resp. Δ ⊣ lim←−−𝔸
) is a Quillen adjunction.[3] ■

[3] Recall proposition 0.1.12.
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Proposition 4.3.18. Let ℳ be a category and let 𝐼 be a set.

(i) The functor category [𝐼, ℳ] admits a model structure that is simultan-
eously an injective model structure and a projective model structure.

(ii) If ℳ is a derivable category (resp. saturated derivable category, model
category), then [𝐼, ℳ] equipped with the above model structure is a de-
rivable category (resp. saturated derivable category, model category).

(iii) If ℳ is a derivable category and has products and coproducts for families
of objects indexed by 𝐼 , then Δ : ℳ → [𝐼, ℳ] is both a left Quillen
functor and a right Quilen functor.

(iv) If ℳ is a model category, then the canonical exponential comparison func-
tor Ho [𝐼, ℳ] → [𝐼, Ho ℳ] is an isomorphism of categories.

Proof. (i). If we declare the cofibrations (resp. weak equivalences, fibrations)
in [𝐼, ℳ] to be precisely the morphisms that are cofibrations (resp. weak equi-
valences, fibrations) componentwise, then the axioms CM2–5 may be verified
componentwise as well.

(ii). Axioms DC0, DC1, and CM1 can be verified componentwise. If ℳ is
saturated, then we can use lemma 3.1.11 to deduce that [𝐼, ℳ] is also saturated.

(iii). Apply proposition 4.3.17.

(iv). Use theorem 4.4.1 and the fact that the congruence of homotopy is com-
ponentwise in [𝐼, ℳ]. ■

Corollary 4.3.19. Let ℳ be a saturated derivable category and let 𝐼 be a set.

• If ℳ has products for families of objects indexed by 𝐼 , then the product of
an 𝐼-indexed family of weak equivalences between fibrant objects is also
a weak equivalence between fibrant objects.

• If ℳ has coproducts for families of objects indexed by 𝐼 , then the coprod-
uct of an 𝐼-indexed family of weak equivalences between cofibrant objects
is also a weak equivalence between cofibrant objects.

Proof. Apply lemma 4.1.33 to the previous proposition. ■
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Proposition 4.3.20. Let ℳ be a derivable category and let 𝔸 be a small cat-
egory.

• If ℳ has coproducts for families of size ≤ |mor 𝔸|, then the evaluation
functors [𝔸, ℳ] → ℳ are right Quillen functors with respect to the in-
jective model structure on [𝔸, ℳ] (if it exists).

• If ℳ has products for families of size ≤ |mor 𝔸|, then the evaluation func-
tors [𝔸, ℳ] → ℳ are left Quillen functors with respect to the projective
model structure on [𝔸, ℳ] (if it exists).

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐴 be an object in 𝔸 and let 𝐴∗ : [𝔸, ℳ] → ℳ be the functor 𝐹 ↦ 𝐹 𝐴.

It is not hard to check that 𝐴∗ has a left adjoint 𝐴! : ℳ → [𝔸, ℳ], namely the
functor 𝑋 ↦ 𝔸(𝐴, −)⊙𝑋. Since the class of cofibrations and the class of trivial
cofibrations are both closed under coproducts, we see that 𝐴! : ℳ → [𝔸, ℳ]
is a left Quillen functor with respect to the injective model structure. Thus, by
proposition 4.3.2, 𝐴∗ : [𝔸, ℳ] → ℳ is a right Quillen functor. ■

Corollary 4.3.21. Let ℳ be a derivable category and let 𝔸 be a small category.
Suppose the injective and projective model structures on [𝔸, ℳ] both exist. If
ℳ has both coproducts and products for families of size ≤ |mor 𝔸|, then:

• Every fibration (resp. trivial fibration) in the injective model structure on
[𝔸, ℳ] is a fibration (resp. trivial fibration) in the projective model struc-
ture.

• Every cofibration (resp. trivial cofibration) in the projective model struc-
ture on [𝔸, ℳ] is a cofibration (resp. trivial cofibration) in the injective
model structure.

• The trivial adjunction

id ⊣ id : [𝔸, ℳ] → [𝔸, ℳ]

is a Quillen equivalence between the injective and projective model struc-
tures. ■
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4.4 The homotopy category
Prerequisites. §§4.1, 4.2, 4.3, a.4, a.5, a.6.

Theorem 4.4.1. Let ℳ be a model category and let 𝛾 : ℳ → Ho ℳ be the
localising functor.

(i) Ho ℳ is equivalent to the locally small category ℳh defined in corol-
lary 4.2.17, and ℳ is a saturated homotopical category.

(ii) If 𝑋 and 𝑌 are cofibrant–fibrant objects in ℳ, then the hom-set map
ℳ(𝑋, 𝑌 ) → Ho ℳ(𝑋, 𝑌 ) induced by 𝛾 is surjective; and moreover for
any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℳ, we have 𝛾𝑓0 = 𝛾𝑓1 if and only if
𝑓0 and 𝑓1 are homotopic.

Proof. (i). This is Theorem 1.11 in [GJ, Ch. II], or Proposition 5.8 in [DS].

(ii). Implied by claim (i). □

Corollary 4.4.2. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a model category ℳ. If
𝑓 has a quasi-inverse in ℳ (in the sense of definition 3.1.17), then 𝑓 is a weak
equivalence in ℳ.

Proof. If 𝑓 has a quasi-inverse in ℳ, then (the image of) 𝑓 is an isomorph-
ism in Ho ℳ; but ℳ is a saturated homotopical category, so 𝑓 must be a weak
equivalence in ℳ. ■

Corollary 4.4.3. Let ℳ be a model category and let 𝛾 : ℳ → Ho ℳ be the
localising functor.

(i) For any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℳ, if 𝑋 is cofibrant and 𝑌 is
fibrant, we have 𝛾𝑓0 = 𝛾𝑓1 if and only if 𝑓0 and 𝑓1 are homotopic.

(ii) The full subcategory ℳcf of cofibrant–fibrant objects in ℳ has the White-
head property (in the sense of definition 3.1.21).

Proof. (i). As noted in remark 4.2.5, if 𝑓0, 𝑓1 : 𝑋 → 𝑌 are homotopic, then
we must have 𝛾𝑓0 = 𝛾𝑓1. Conversely, suppose 𝛾𝑓0 = 𝛾𝑓1 with 𝑋 cofibrant and
𝑌 fibrant. Let (𝑅𝑋, 𝑖′) be a cofibrant fibrant replacement for 𝑋 and (𝑄𝑌 , 𝑝′)
be a fibrant cofibrant replacement for 𝑌 . Then, there exists morphisms 𝑓 ′

0 , 𝑓 ′
1 :

𝑅𝑋 → 𝑄𝑌 such that 𝑓0 = 𝑝′ ∘ 𝑓 ′
0 ∘ 𝑖′ and 𝑓1 = 𝑝′ ∘ 𝑓 ′

1 ∘ 𝑖′. Since 𝑖′ : 𝑋 → 𝑅𝑋
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and 𝑝′ : 𝑄𝑌 → 𝑌 are weak equivalences, we must have 𝛾𝑓 ′
0 = 𝛾𝑓 ′

1 in Ho ℳ.
The theorem then implies 𝑓 ′

0 and 𝑓 ′
1 are homotopic; thus 𝑓0 and 𝑓1 are also

homotopic, by lemmas 4.2.14 and 4.2.16.

(ii). Apply theorem 3.1.22 in conjunction with lemma 4.2.9 and the above corol-
lary. ■

Corollary 4.4.4. Let 𝑓 : 𝑋 → 𝑌 be a morphism between two cofibrant objects
in a derivable category ℳ. If ℳ is a saturated homotopical category, then the
following are equivalent:

(i) The morphism 𝑓 : 𝑋 → 𝑌 is a weak equivalence in ℳ.

(ii) The hom-set map map Ho ℳ(𝑓 , 𝑍) : Ho ℳ(𝑌 , 𝑍) → Ho ℳ(𝑋, 𝑍) is a
bijection for all cofibrant–fibrant objects 𝑍 in ℳ.

(iii) The hom-set map ℳh(𝑓 , 𝑍) : ℳh(𝑌 , 𝑍) → ℳh(𝑋, 𝑍) is a bijection for
all cofibrant–fibrant objects 𝑍 in ℳ, where ℳh(𝑌 , 𝑍) (resp. ℳh(𝑋, 𝑍))
denotes the set of all morphisms 𝑌 → 𝑍 (resp. 𝑋 → 𝑍) in ℳ modulo
homotopy.

Proof. (i) ⇒ (ii). Every weak equivalence in ℳ becomes an isomorphism in
Ho ℳ, so in particular Ho ℳ(𝑓 , 𝑍) : Ho ℳ(𝑌 , 𝑍) → Ho ℳ(𝑋, 𝑍) must be a
bijection.

(ii) ⇔ (iii). Corollary 4.4.3 implies that the horizontal arrows in the following
commutative diagram are bijections,

ℳh(𝑌 , 𝑍) Ho ℳ(𝑌 , 𝑍)

ℳh(𝑋, 𝑍) Ho ℳ(𝑋, 𝑍)

ℳ′(𝑓 ,𝑍) Ho ℳ(𝑓 ,𝑍)

and so ℳh(𝑓 , 𝑍) is a bijection if and only if Ho ℳ(𝑓 , 𝑍) is a bijection.

(ii) ⇒ (i). Suppose (�̂�, 𝑖𝑋) is a cofibrant fibrant replacement for 𝑋 and ( ̂𝑌 , 𝑖𝑌 )
is a cofibrant fibrant replacement for 𝑌 . Then, (by axiom CM4) there exists a
morphism ̂𝑓 : �̂� → ̂𝑌 making the diagram below commute,

𝑋 𝑌

�̂� ̂𝑌

𝑖𝑋

𝑓

𝑖𝑌

̂𝑓
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and by the 2-out-of-3 property, 𝑓 is a weak equivalence if and only if ̂𝑓 is a weak
equivalence. On the other hand, the following diagram also commutes,

Ho ℳ( ̂𝑌 , 𝑍) Ho ℳ(�̂�, 𝑍)

Ho ℳ(𝑌 , 𝑍) Ho ℳ(𝑋, 𝑍)

Ho ℳ(𝑖𝑌 ,𝑍)

Ho ℳ( ̂𝑓 ,𝑍)

Ho ℳ(𝑖𝑋 ,𝑍)

Ho ℳ(𝑓 ,𝑍)

and so Ho ℳ(𝑓 , 𝑍) is a bijection if and only if Ho ℳ( ̂𝑓 , 𝑍) is a bijection; but
�̂� and ̂𝑌 are both cofibrant–fibrant objects, so if Ho ℳ(𝑓 , 𝑍) is a bijection for
all cofibrant–fibrant objects 𝑍, then ̂𝑓 must be a weak equivalence (because ℳ
is a saturated homotopical category). ■

Proposition 4.4.5. Let u� be a locally small relative category, let 𝛾 : u� → Ho u�
let 𝑋 and 𝑌 be objects in u�, and let 𝐻 : u� op × u� → 𝐒𝐞𝐭 be defined by the
following formula:

𝐻(𝐶′, 𝐶) = Ho u�(𝛾𝐶′, 𝛾𝑌 ) × Ho u�(𝛾𝑋, 𝛾𝐶)

Then the evident maps 𝐻(𝐶, 𝐶) → Ho u�(𝛾𝑋, 𝛾𝑌 ) defined by composition exhibit
Ho u�(𝛾𝑋, 𝛾𝑌 ) as the coend of 𝐻 .

Proof. By proposition a.6.6, the coend ∫𝐶:u� Ho u�(𝛾𝐶, 𝛾𝑌 ) × Ho u�(𝛾𝑋, 𝛾𝐶) can
be identified with the ensemble of connected components of the following cat-
egory:

• The objects are pairs (𝑔, 𝐶, 𝑓 ), where 𝐶 is an object in u� and 𝑓 : 𝛾𝑋 → 𝛾𝐶
and 𝑔 : 𝛾𝐶 → 𝛾𝑌 are morphisms in Ho u�.

• The morphisms (𝑔′, 𝐶′, 𝑓 ′) → (𝑔, 𝐶, 𝑓) are morphisms ℎ : 𝐶′ → 𝐶 in u�
such that 𝛾ℎ ∘ 𝑓 ′ = 𝑓 and 𝑔 ∘ 𝛾ℎ = 𝑔′.

• Identities and composition are inherited from u�.

Given any object (𝑔, 𝐶, 𝑓 ) in this category, it is not hard to see that there is a
zigzag of morphisms connecting (𝑔, 𝐶, 𝑓 ) to (id𝑌 , 𝑌 , 𝑔 ∘ 𝑓). Thus, the canonical
comparison map ∫𝐶:u� 𝐻(𝐶, 𝐶) → Ho u�(𝑋, 𝑌 ) is a bijection, as claimed. ■

Corollary 4.4.6. Let u� be a locally small relative category. Then the hom-
functor

u�(−, −) : u� op × u� → 𝐒𝐞𝐭
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admits a pointwise left Kan extension along the localising functor 𝛾 op ×𝛾 : u� op ×
u� → Ho u� op × Ho u�, namely the hom-functor

Ho u�(−, −) : Ho u� op × Ho u� → 𝐒𝐞𝐭

with unit u�(−, −) ⇒ Ho u�(𝛾−, 𝛾−) induced by 𝛾 : u� → Ho u�.

Proof. By theorem a.5.15, the value of a pointwise left Kan extension of u�(−, −)
along 𝛾 op × 𝛾 is computed by the following coend,

∫
(𝐶′,𝐶):u� op×u�

Ho u�(𝛾𝐶′, 𝛾−) × Ho u�(𝛾−, 𝛾𝐶) × u�(𝐶′, 𝐶)

and by the interchange law (theorem a.6.17) and the Yoneda lemma (proposi-
tion a.6.18) for coends, there is a natural bijection between the above and the
coend

∫
𝐶:u�

Ho u�(𝛾𝐶, 𝛾−) × Ho u�(𝛾−, 𝛾𝐶)

so the claim is a consequence of proposition 4.4.5. ■

Proposition 4.4.7. Let ℳ be a derivable category, let u� be the class of trivial
cofibrations in ℳ, and let u� be the class of trivial fibrations in ℳ.

• Let (ℳc, 𝑄, 𝑝) be a left Quillen deformation retract of ℳ and let ℳ[u� −1]
be the localisation of ℳ with respect to the trivial cofibrations. Then the
inclusion ℳc ↪ ℳ induces a fully faithful functor Ho ℳc → ℳ[u� −1],
and (𝑄, 𝑝) induces a right adjoint for that functor.

• Let (ℳf, 𝑅, 𝑖) be a right Quillen deformation retract of ℳ and let ℳ[u�−1]
be the localisation of ℳ with respect to the trivial fibrations. Then the in-
clusion ℳf ↪ ℳ induces a fully faithful functor Ho ℳf → ℳ[u�−1], and
(𝑅, 𝑖) induces a left adjoint for that functor.

Proof. The two claims are formally dual; we will prove the first version.
By corollary 4.1.13, (ℳ, u� ) admits a calculus of cospans, so we may use the

fundamental theorem of calculi of cospans (3.5.9) and lemma 4.1.8 to deduce
that the canonical functor Ho ℳc → ℳ[u� −1] is indeed fully faithful.

On the other hand, lemma 4.1.33 says the localising functor ℳ → ℳ[u� −1]
sends weak equivalences in ℳc to isomorphisms in ℳ[u� −1], so we may apply
proposition 3.3.19 to deduce that the canonical functor ℳ[u� −1] → Ho ℳ has
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a fully faithful left adjoint defined by 𝑄. On the other hand, proposition 4.1.35
implies that the canonical functor Ho ℳc → Ho ℳ is fully faithful with a right
adjoint defined by 𝑄. Thus, we have the following hom-set bijections,

Ho ℳc(𝑋, 𝑄𝑌 ) ≅ Ho ℳ(𝑋, 𝑌 ) ≅ ℳ[u� −1](𝑄𝑋, 𝑌 )

and these bijections are moreover natural in 𝑋. Since 𝑋 is a cofibrant object,
the morphism 𝑝𝑋 : 𝑄𝑋 → 𝑋 is invertible in ℳ[u� −1]; and 𝑝 defines a natural
transformation of functors Ho ℳc → ℳ[u� −1], so we have obtained from (𝑄, 𝑝)
a right adjoint for the functor Ho ℳc → ℳ[u� −1] induced by the inclusion
ℳc ↪ ℳ, as required. ■

The following proposition extends a result of Joyal [2010].

Proposition 4.4.8. Let ℳ and ℳ′ be two saturated derivable categories with
the same underlying category and let ℳf and ℳ′

f be the full subcategories of
fibrant objects in ℳ and ℳ′, respectively. Consider the following statements:

(i) Every weak equivalence in ℳ is a weak equivalence in ℳ′.

(ii) ℳ′
f is a full relative subcategory of ℳf.

(iii) Every fibrant object in ℳ′ is a fibrant object in ℳ.

If ℳ and ℳ′ have the same cofibrations, then (i) ⇒ (ii); we always have (ii) ⇒
(iii); and if ℳ′ is a saturated derivable category with the same cofibrations as
ℳ, then (iii) ⇒ (i).

Proof. (i) ⇒ (ii). Every trivial cofibration in ℳ is a trivial cofibration in ℳ′, so
every fibrant object in ℳ′ is a fibrant object in ℳ. Since ℳ and ℳ′ have the
same cofibrations, they also have the same trivial fibrations (by theorem 4.1.12),
so lemma 4.1.33 implies every weak equivalence in ℳ′

f is also a weak equival-
ence in ℳf. But we assumed every weak equivalence in ℳ is a weak equivalence
in ℳ′

f , so this implies that a morphism in ℳ′
f is a weak equivalence if and only

if it is a weak equivalence in ℳf, as required.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Since ℳ and ℳ′ have the same cofibrations, ℳ′
f is a full relat-

ive subcategory of ℳf, and proposition 4.4.7 implies that the induced functor
Ho ℳ′

f → Ho ℳf has a left adjoint, say 𝐿 : Ho ℳf → Ho ℳ′
f .
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Let (𝑅, 𝑖) and (𝑅′, 𝑖′) be right Quillen deformations for ℳ and ℳ′, respect-
ively. Axiom CM2 implies a morphism 𝑓 : 𝑋 → 𝑌 is a weak equivalence in
ℳ (resp. in ℳ′) if and only if 𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 is a weak equivalence in ℳ
(resp. 𝑅′𝑓 : 𝑅′𝑋 → 𝑅′𝑌 is a weak equivalence in ℳ′). The uniqueness of left
adjoints implies 𝐿𝑅 ≅ 𝑅′ as functors ℳ[u�−1] → Ho ℳ′

f , where u� is the class
of trivial fibrations in ℳ (or ℳ′), so if ℳ′ is a saturated derivable category, it
follows that every weak equivalence in ℳ is also a weak equivalence in ℳ′. ■

Theorem 4.4.9 (Determination principle). The model structure on a derivable
category is uniquely determined by any one of the following sets of data:

(i) The cofibrations and the weak equivalences.

(ii) The cofibrations and the trivial cofibrations.

(iii) The cofibrations and the fibrant objects.

(iv) The cofibrations and the fibrations.

(v) The trivial cofibrations and the trivial fibrations.

(i′) The fibrations and the weak equivalences.

(ii′) The fibrations and the trivial fibrations.

(iii′) The fibrations and the cofibrant objects.

Proof. (i) and (ii). By theorem 4.1.12, the fibrations are precisely the morphisms
with the right lifting property with respect to every trivial cofibration.

(iii). Apply proposition 4.4.8 and reduce to case (i).

(iv). The trivial cofibrations are precisely the morphisms with the left lifting
property with respect to all fibrations, and the trivial fibrations are precisely the
morphisms with the right lifting property with respect to all cofibrations, so this
reduces to case (v).

(v). Axioms CM2 and CM5 imply that every weak equivalence is of the form
𝑝 ∘ 𝑖 where 𝑖 is a trivial cofibration and 𝑝 is a trivial fibration. Thus, the trivial
cofibrations and the trivial fibrations together determine the weak equivalences.
On the other hand, the trivial cofibrations determine the fibrations, and the trivial
fibrations determine the cofibrations, thus the entire model structure is determ-
ined. ■

483



IV. Model categories

4.5 Reedy diagrams
Prerequisites. §§0.2, 0.5, a.3, a.5, a.6.

Definition 4.5.1.
• A direct category is a category u� for which there exists a function deg :

ob u� → ℕ such that, if 𝑓 : 𝐴 → 𝐵 is a morphism in u�, then deg 𝐴 ≤ deg 𝐵
with equality if and only if 𝑓 = id𝐴 = id𝐵.

• An inverse category is a category u� for which there exists a function deg :
ob u� → ℕ such that, if 𝑓 : 𝐴 → 𝐵 is a morphism in u�, then deg 𝐴 ≥ deg 𝐵
with equality if and only if 𝑓 = id𝐴 = id𝐵.

Proposition 4.5.2. Let u� be a category and let ≼ be the binary relation on ob u�
defined below:

𝐴 ≼ 𝐵 if and only if there is a morphism 𝐴 → 𝐵

Then the following are equivalent:

(i) There exists a function deg : ob u� → ℕ making u� a direct category.

(ii) If 𝑓 : 𝐴 → 𝐴 is an endomorphism in u�, then 𝑓 = id𝐴; ≼ is an antisymmet-
ric relation on ob u�; and for any object 𝐴 in u�, there is a natural number
deg 𝐴 such that, for any chain in ob u� of the form below,

𝐴0 ≼ ⋯ ≼ 𝐴𝑛 = 𝐴

if 𝐴0, … , 𝐴𝑛 are distinct, then 𝑛 ≤ deg 𝐴. (In particular, ≼ is a well-
founded partial order.)

Dually, let ≼ be the binary relation on ob u� defined below:

𝐴 ≼ 𝐵 if and only if there is a morphism 𝐵 → 𝐴

Then the following are equivalent:

(i′) There exists a function deg : ob u� → ℕ making u� an inverse category.

(ii′) If 𝑓 : 𝐴 → 𝐴 is an endomorphism in u�, then 𝑓 = id𝐴; ≼ is an antisymmet-
ric relation on ob u�; and for any object 𝐴 in u�, there is a natural number
deg 𝐴 such that, for any chain in ob u� of the form below,

𝐴0 ≼ ⋯ ≼ 𝐴𝑛 = 𝐴
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if 𝐴0, … , 𝐴𝑛 are distinct, then 𝑛 ≤ deg 𝐴. (In particular, ≼ is a well-
founded partial order.)

Proof. This is a straightforward exercise. ◊

Remark 4.5.3. The degree function for a direct or inverse category is not de-
termined by the underlying category: for example, if deg is a degree function for
u�, then so is 𝐴 ↦ 1 + deg 𝐴. Nonetheless, the above proposition shows that any
direct or inverse category has a canonical degree function.

Definition 4.5.4. A Reedy category is a category u� equipped with two subcat-
egories, the direct subcategory u�→ and the inverse subcategory u�←, such that
the following conditions are satisfied:

• ob u� = ob u�→ = ob u�←.

• There exists a function deg : ob u� → ℕ simultaneously making u�→ a direct
category and u�← an inverse category.

• Every morphism in u� admits a unique factorisation of the form 𝜎 ∘𝛿, where
𝛿 is in u�← and 𝜎 is in u�→.

A Reedy diagram in a category ℳ is a functor u� → ℳ, where u� is a Reedy
category.

Remark 4.5.5. Any direct (resp. inverse) category is a Reedy category in a trivial
way: take the whole category as the direct (resp. inverse) subcategory, and take
disc ob u� as the inverse (resp. direct) subcategory.

Example 4.5.6. The simplex category 𝚫 is a Reedy category, where the direct
subcategory consists of all injective maps, and the inverse subcategory consists
of all surjective maps; note that the unique factorisation condition is implied by
theorem 1.1.4.

Remark 4.5.7. The opposite of any Reedy category is automatically a Reedy
category, after exchanging the direct and inverse subcategories.

Proposition 4.5.8. Let u� be a category, let u�→ and u�← be subcategories with
ob u� = ob u�→ = ob u�←, and let ≼ be the smallest transitive binary relation on
ob u� such that 𝐴 ≼ 𝐵 if there is either a morphism 𝐴 → 𝐵 in u�→ or a morphism
𝐵 → 𝐴 in u�←. The following are equivalent:

485



IV. Model categories

(i) u� is a Reedy category with direct category u�→ and inverse category u�←.

(ii) u�→ is a direct category; u�← is an inverse category; ≼ is an antisymmetric
relation on ob u�; and for any object 𝐴 in u�, there is a natural number
deg 𝐴 such that, for any chain in ob u� of the form below,

𝐴0 ≼ ⋯ ≼ 𝐴𝑛 = 𝐴

if 𝐴0, … , 𝐴𝑛 are distinct, then 𝑛 ≤ deg 𝐴. (In particular, ≼ is a well-
founded partial order.)

Proof. This is a straightforward exercise. ◊

Lemma 4.5.9. Let u� be a Reedy category, let 𝛼 : 𝐴 → 𝐵 and 𝛽 : 𝐵 → 𝐶 be
morphisms in u�, let 𝛿 : 𝐴 → 𝐷 be in u�← and let 𝜎 : 𝐷 → 𝐶 be in u�→.

(i) If 𝛽 ∘ 𝛼 = 𝜎 ∘ 𝛿, then deg 𝐷 ≤ deg 𝐵.

(ii) If 𝛽 ∘ 𝛼 is in u�→, then 𝛼 is also in u�→.

(iii) If 𝛽 ∘ 𝛼 is in u�←, then 𝛽 is also in u�←.

Proof. See (the proof of) Lemma 2.9 in [Riehl and Verity, 2014]. ■

Definition 4.5.10. Let 𝐴 be an object in a Reedy category u�.

• The latching category of u� at 𝐴, denoted by 𝜕u�→𝐴, is the largest full sub-
category of the slice category (u�→ ↓ 𝐴) that does not contain the object
id𝐴 : 𝐴 → 𝐴.

• The matching category of u� at 𝐴, denoted by 𝜕u�←𝐴, is the largest full
subcategory of the slice category (𝐴 ↓ u�←) that does not contain the object
id𝐴 : 𝐴 → 𝐴.

Remark 4.5.11. If u� is a Reedy category whose direct (resp. inverse) subcategory
is discrete, then all its latching (resp. matching) categories are empty.
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Proposition 4.5.12. Let u� be a Reedy category with degree function deg : ob u� →
ℕ. For any natural number 𝑛:

(i) The full subcategory u�≤𝑛 spanned by the objects 𝐴 in u� such that deg 𝐴 ≤ 𝑛
is a Reedy category.

(ii) Let 𝐴 be an object in u� with deg 𝐴 = 𝑛 + 1. Then the inclusion 𝜕u�→𝐴 ↪
(u�≤𝑛 ↓ 𝐴) is cofinal, and the inclusion 𝜕u�←𝐴 ↪ (𝐴 ↓ u�≤𝑛) is coinitial.

Proof. (i). This is a straightforward exercise.

(ii). See Proposition 15.2.8 in [Hirschhorn, 2003]. □

Definition 4.5.13. A locally finite Reedy category is a Reedy category such
that every latching category and every matching category is finite.

Remark 4.5.14. The factorisation axiom implies that a locally finite Reedy cat-
egory is a category whose hom-sets are finite; but not every Reedy category with
that property is locally finite.

Example 4.5.15. The simplex category 𝚫 is a locally finite Reedy category.

Definition 4.5.16. Let 𝐴 be an object in a small Reedy category u�.

• The boundary of the representable functor h𝐴 : u� op → 𝐒𝐞𝐭 is the subfunc-
tor 𝜕h𝐴 ⊆ h𝐴 consisting of all morphisms 𝐴′ → 𝐴 in u� that are not in the
inverse subcategory u�←.

• The boundary of the representable functor h𝐴 : u� → 𝐒𝐞𝐭 is the subfunctor
𝜕h𝐴 ⊆ h𝐴 consisting of all morphisms 𝐴 → 𝐴′ in u� that are not in the
direct subcategory u�→.

Remark 4.5.17. Lemma 4.5.9 ensures that 𝜕h𝐴 and 𝜕h𝐴 are indeed subfunctors.

Lemma 4.5.18. Let 𝐴 be an object in a small Reedy category u�.

• Let 𝑃 : 𝜕u�→𝐴 → [u� op, 𝐒𝐞𝐭] be the functor that sends an object 𝐴′ →
𝐴 in 𝜕u�→𝐴 to h𝐴′. Then the canonical morphism lim−−→𝜕u�→𝐴

𝑃 → h𝐴 is a
monomorphism and has 𝜕h𝐴 as its image.

• Let 𝑃 : (𝜕u�←𝐴)
op → [u�, 𝐒𝐞𝐭] be the functor that sends an object 𝐴 →

𝐴′ in 𝜕u�←𝐴 to h𝐴′
. Then the canonical morphism lim−−→𝜕u�←𝐴

𝑃 → h𝐴 is a
monomorphism and has 𝜕h𝐴 as its image.
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Proof. Apply proposition 4.5.12 to Observation 3.18 in [Riehl and Verity, 2014].
■

Definition 4.5.19. Let u� be a small Reedy category.

• A Reedy-acyclic morphism in [u� op, 𝐒𝐞𝐭] is a morphism that has the right
lifting property with respect to every boundary inclusion 𝜕h𝐴 ↪ h𝐴.

• A Reedy-acyclic morphism in [u�, 𝐒𝐞𝐭] is a morphism that has the right
lifting property with respect to every boundary inclusion 𝜕h𝐴 ↪ h𝐴.

Remark 4.5.20. In the special case of the simplex category 𝚫, we have 𝜕h[𝑛] =
𝜕Δ𝑛, as expected. Thus, the Reedy-acyclic morphisms in [𝚫op, 𝐒𝐞𝐭] = 𝐬𝐒𝐞𝐭 are
the trivial Kan fibrations.

Definition 4.5.21. Let u� be a small Reedy category, let ℳ be a locally small
category, and let 𝑋 : u� → ℳ be a diagram.

• A latching object L𝐴(𝑋) is a weighted colimit 𝜕h𝐴 ⋆u� 𝑋 in ℳ. The
latching morphism L𝐴(𝑋) → 𝑋𝐴 is the morphism in ℳ induced by the
boundary inclusion 𝜕h𝐴 ↪ h𝐴.

• A matching object M𝐴(𝑋) is a weighted limit {𝜕h𝐴, 𝑋}
u� in ℳ. The

matching morphism 𝑋𝐴 → M𝐴(𝑋) is the morphism in ℳ induced by
the boundary inclusion 𝜕h𝐴 ↪ h𝐴.

Remark 4.5.22. Assuming existence, the latching object L𝐴(𝑋) is functorial in
𝐴 (as 𝐴 varies in the direct subcategory), and the matching object M𝐴(𝑋) is
functorial in 𝐴 (as 𝐴 varies in the inverse subcategory). Of course, it should go
without saying that L𝐴(𝑋) and M𝐴(𝑋) are both functorial in 𝑋 (as 𝑋 varies in
[u�, ℳ]), and moreover, we have the following natural bijections:

ℳ(L𝐴(𝑋), −) ≅ M𝐴(ℳ(𝑋, −))
ℳ(−, M𝐴(𝑋)) ≅ M𝐴(ℳ(−, 𝑋))
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Definition 4.5.23. Let u� be a small Reedy category, let ℳ be a locally small
category, and let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams ℂ → ℳ.

• A relative latching object L𝐴(𝑋, 𝑌 , 𝜑) is an object in ℳ equipped with
a pullback diagram in [ℳ, 𝐒𝐞𝐭] of the form below,

ℳ(L𝐴(𝑋, 𝑌 , 𝜑), −) {𝜕h𝐴, ℳ(𝑌 , −)}
u� op

{h𝐴, ℳ(𝑋, −)}
u� op

{𝜕h𝐴, ℳ(𝑋, −)}
u� op

{𝜕h𝐴,ℳ(𝜑,−)}
u� op

where the bottom horizontal arrow is induced by the boundary inclusion
𝜕h𝐴 ↪ h𝐴, the relative latching morphism L𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴 corres-
ponds to 𝜑𝐴 : 𝑋𝐴 → 𝑌 𝐴, and the insertion 𝑋𝐴 → L𝐴(𝑋, 𝑌 , 𝜑) corres-
ponds to id : L𝐴(𝑋, 𝑌 , 𝜑) → L𝐴(𝑋, 𝑌 , 𝜑).

• A relative matching object M𝐴(𝑋, 𝑌 , 𝜑) is an object in ℳ equipped with
a pullback diagram in [ℳop, 𝐒𝐞𝐭] of the form below,

ℳ(−, M𝐴(𝑋, 𝑌 , 𝜑)) {𝜕h𝐴, ℳ(−, 𝑋)}
u�

{h𝐴, ℳ(−, 𝑌 )}
u�

{𝜕h𝐴, ℳ(−, 𝑌 )}
u�

{𝜕h𝐴,ℳ(−,𝜑)}
u�

where the bottom horizontal arrow is induced by the boundary inclusion
𝜕h𝐴 ↪ h𝐴, the relative matching morphism 𝑋𝐴 → M𝐴(𝑋, 𝑌 , 𝜑) cor-
responds to 𝜑𝐴 : 𝑋𝐴 → 𝑌 𝐴, and the projection M𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴
corresponds to id : M𝐴(𝑋, 𝑌 , 𝜑) → M𝐴(𝑋, 𝑌 , 𝜑).

Remark 4.5.24. Recalling lemma 4.5.18:

• If the latching category 𝜕u�→𝐴 is empty, then we may identify the relative
latching morphism L𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴 with the component 𝜑𝐴 : 𝑋𝐴 →
𝑌 𝐴.

• If the matching category 𝜕u�←𝐴 is empty, then we may identify the relative
matching morphism 𝑋𝐴 → M𝐴(𝑋, 𝑌 , 𝜑) with the component 𝜑𝐴 : 𝑋𝐴 →
𝑌 𝐴.
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Remark 4.5.25.
• If ℳ has enough colimits, then we have a pushout diagram in ℳ of the

form below,
L𝐴(𝑋) 𝑋𝐴

L𝐴(𝑌 ) L𝐴(𝑋, 𝑌 , 𝜑)

L𝐴(𝜑)

where the right vertical arrow is the insertion.

• If ℳ has enough limits, then we have a pullback diagram in ℳ of the form
below,

M𝐴(𝑋, 𝑌 , 𝜑) M𝐴(𝑋)

𝑌 𝐴 M𝐴(𝑌 )

M𝐴(𝜑)

where the left vertical arrow is the projection.

Definition 4.5.26. Let u� be a small Reedy category and let ℳ be a locally small
category.

• A natural transformation 𝜑 : 𝑋 ⇒ 𝑌 of diagrams u� → ℳ has the Reedy
left lifting property with respect to a morphism 𝑔 : 𝑀 → 𝑁 in ℳ if the
relative matching morphism h𝑌 𝐴 → M𝐴(h𝑌 , h𝑋 , 𝜑∗) has the right lifting
property with respect to 𝑔∗ : h𝑁 → h𝑀 in [ℳ, 𝐒𝐞𝐭].

• A natural transformation 𝜑 : 𝑋 ⇒ 𝑌 of diagrams u� → ℳ has the Reedy
right lifting property with respect to a morphism 𝑔 : 𝑀 → 𝑁 in ℳ if the
relative matching morphism h𝑋𝐴 → M𝐴(h𝑋 , h𝑌 , 𝜑∗) has the right lifting
property with respect to 𝑔∗ : h𝑀 → h𝑁 in [ℳop, 𝐒𝐞𝐭].

Lemma 4.5.27. Let u� be a small Reedy category, let ℳ be a locally small
category, let (−) : ℳ → ℳ be a fully faithful functor, let 𝜑 : 𝑋 ⇒ 𝑌 be a
natural transformation of diagrams u� → ℳ, and let 𝑔 : 𝑀 → 𝑁 be a morphism
in ℳ.

• Assuming the relative latching object L𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ, 𝜑 : 𝑋 ⇒
𝑌 has the Reedy left lifting property with respect to 𝑔 : 𝑀 → 𝑁 if and
only if the relative latching morphism L𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴 has the left

lifting property with respect to 𝑔 : 𝑀 → 𝑁 .
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• Assuming the relative matching object M𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ, 𝜑 :
𝑋 ⇒ 𝑌 has the Reedy right lifting property with respect to 𝑔 : 𝑀 → 𝑁 if
and only if the relative matching morphism 𝑋𝐴 → M𝐴(𝑋, 𝑌 , 𝜑) has the

right lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. This is a straightforward exercise. ◊

Lemma 4.5.28. Let u� be a small Reedy category and let

𝐹 ⊣ 𝐺 : ℳ → u�

be an adjunction between locally small categories.

• Given a natural transformation 𝜑 : 𝑋 ⇒ 𝑌 of diagrams u� → u� and
a morphism 𝑔 : 𝑀 → 𝑀 ′ in ℳ, 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting
property with respect to 𝐺𝑔 : 𝐺𝑀 → 𝐺𝑀 ′ if and only if 𝐹 𝜑 : 𝐹 𝑋 ⇒ 𝐹 𝑌
has the Reedy left lifting property with respect to 𝑔 : 𝑀 → 𝑀 ′.

• Given a natural transformation 𝜑 : 𝑋 ⇒ 𝑌 of diagrams u� → ℳ and a
morphism 𝑔 : 𝑁 ′ → 𝑁 in u� , 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy right lifting
property with respect to 𝐹 𝑔 : 𝐹 𝑁 ′ → 𝐹 𝑁 if and only if 𝐺𝜑 : 𝐺𝑋 ⇒ 𝐺𝑌
has the Reedy right lifting property with respect to 𝑔 : 𝑁 ′ → 𝑁 .

Proof. This is a straightforward exercise. ◊

Proposition 4.5.29. Let u� be a small Reedy category, let ℳ be a locally small
category, let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → ℳ, and
let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ. The following are equivalent:

(i) 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

(ii) The morphism in [u� op, 𝐒𝐞𝐭]

ℳ(𝑌 , 𝑀) → ℳ(𝑋, 𝑀) ×ℳ(𝑋,𝑁) ℳ(𝑌 , 𝑁)

induced by the evident commutative square is a Reedy-acyclic morphism.

(iii) The morphism in [[u�, ℳ]op, 𝐒𝐞𝐭]

ℳ((−)𝐴, 𝑀) → M𝐴(ℳ(−, 𝑀), ℳ(−, 𝑁), ℳ(−, 𝑔))

induced by the relative matching morphisms has the right lifting property
with respect to 𝜑∗ : h𝑋 → h𝑌 .
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Dually, the following are equivalent:

(i′) 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy right lifting property with respect to 𝑔 : 𝑀 →
𝑁 .

(ii′) The morphism in [u�, 𝐒𝐞𝐭]

ℳ(𝑁, 𝑋) → ℳ(𝑀, 𝑋) ×ℳ(𝑀,𝑌 ) ℳ(𝑁, 𝑌 )

induced by the evident commutative square is a Reedy-acyclic morphism.

(iii′) The morphism in [[u�, ℳ], 𝐒𝐞𝐭]

ℳ(𝑁, (−)𝐴) → M𝐴(ℳ(𝑁, −), ℳ(𝑀, −), ℳ(𝑔, −))

induced by the relative matching morphisms has the right lifting property
with respect to 𝜑∗ : h𝑌 → h𝑋 .

Proof. Let 𝐴 be any object in u�. Consider the following commutative diagram
in 𝐒𝐞𝐭,

ℳ(𝑋𝐴, 𝑁)

ℳ(𝑋𝐴, 𝑀) ℳ(𝑌 𝐴, 𝑁)

M𝐴(ℳ(𝑋, 𝑁))

M𝐴(ℳ(𝑋, 𝑀)) M𝐴(ℳ(𝑌 , 𝑁))

M𝐴(ℳ(𝑌 , 𝑀))

ℳ(𝑋𝐴,𝑔) ℳ(𝜑𝐴,𝑁)

M𝐴(ℳ(𝑋,𝑔)) M𝐴(ℳ(𝜑,𝑁))

M𝐴(ℳ(𝑌 ,𝑔))M𝐴(ℳ(𝜑,𝑀))

where the vertical arrows are the respective matching morphisms. Let 𝐿 be the
limit of the above diagram. It is not hard to see that the induced diagrams

(1)
𝐿 M𝐴(ℳ(𝑌 , 𝑀), ℳ(𝑋, 𝑀), ℳ(𝜑, 𝑀))

ℳ(𝑌 𝐴, 𝑁) M𝐴(ℳ(𝑌 , 𝑁), ℳ(𝑋, 𝑁), ℳ(𝜑, 𝑁))
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(2)

𝐿 ℳ(𝑋𝐴, 𝑁) ×ℳ(𝑋𝐴,𝑁) ℳ(𝑌 𝐴, 𝑁)

M𝐴(ℳ(𝑌 , 𝑀)) M𝐴(ℳ(𝑋, 𝑁) ×ℳ(𝑋,𝑁) ℳ(𝑌 , 𝑁))

(3)
𝐿 M𝐴(ℳ(𝑌 , 𝑀), ℳ(𝑌 , 𝑁), ℳ(𝑌 , 𝑔))

ℳ(𝑋𝐴, 𝑀) M𝐴(ℳ(𝑋, 𝑀), ℳ(𝑋, 𝑁), ℳ(𝑋, 𝑔))

are pullback diagrams in 𝐒𝐞𝐭. Thus, by the Yoneda lemma, the set 𝐿 can be
identified with the following:

1. The set of all commutative squares of the form

h𝑁 h𝑌 𝐴

h𝑀 M𝐴(h𝑌 , h𝑋 , 𝜑∗)

𝑔∗

in [ℳ, 𝐒𝐞𝐭], where the right vertical arrow is the relative matching morph-
ism.

2. The set of all commutative squares of the form

𝜕h𝐴 ℳ(𝑌 , 𝑀)

h𝐴 ℳ(𝑋, 𝑁) ×ℳ(𝑋,𝑁) ℳ(𝑌 , 𝑁)

in [u� op, 𝐒𝐞𝐭], where the right vertical arrow is induced by the evident com-
mutative square.

3. The set of all commutative squares of the form

h𝑋 ℳ((−)𝐴, 𝑀)

h𝑌 M𝐴(ℳ(−, 𝑀), ℳ(−, 𝑁), ℳ(−, 𝑔))

𝜑∗

in [[u�, ℳ]op, 𝐒𝐞𝐭], where the right vertical arrow is induced by the relative
matching morphisms.
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Thus, the surjectivity of the comparison map ℳ(𝑌 𝐴, 𝑀) → 𝐿 is equivalent to
each of conditions (i), (ii), and (iii). ■

Proposition 4.5.30. Let u� be a small Reedy category, let 𝑈 : ℳ′ → ℳ be an
orthogonality-reflecting functor between locally small categories, let 𝜑 : 𝑋 ⇒ 𝑌
be a natural transformation of diagrams u� → ℳ′, and let 𝑔 : 𝑀 → 𝑁 be a
morphism in ℳ′.

• If 𝑈𝜑 : 𝑈𝑋 ⇒ 𝑈𝑌 has the Reedy left lifting property with respect to
𝑈𝑔 : 𝑈𝑀 → 𝑈𝑁 , then 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting property
with respect to 𝑔 : 𝑀 → 𝑁 .

• If 𝑈𝜑 : 𝑈𝑋 ⇒ 𝑈𝑌 has the Reedy right lifting property with respect to
𝑈𝑔 : 𝑈𝑀 → 𝑈𝑁 , then 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy right lifting property
with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. The two claims are formally dual; we will prove the first version.
Consider the following commutative diagram in [u� op, 𝐒𝐞𝐭]:

ℳ′(𝑌 , 𝑀) ℳ′(𝑋, 𝑀) ×ℳ′(𝑋,𝑁) ℳ′(𝑌 , 𝑁)

ℳ(𝑈𝑌 , 𝑈𝑀) ℳ(𝑈𝑋, 𝑈𝑀) ×ℳ(𝑈𝑋,𝑈𝑁) ℳ(𝑈𝑌 , 𝑈𝑁)

𝑈 𝑈

By lemma a.3.6, the above diagram is a pullback square in [u� op, 𝐒𝐞𝐭], and by
proposition 4.5.29, 𝑈𝜑 : 𝑈𝑋 ⇒ 𝑈𝑌 has the Reedy left lifting property with
respect to 𝑈𝑔 : 𝑈𝑀 → 𝑈𝑁 if and only if the bottom horizontal arrow in the dia-
gram is a Reedy-acyclic morphism in [u� op, 𝐒𝐞𝐭]. Since the class of Reedy-acyclic
morphisms is closed under pullback (by proposition a.3.17), we conclude that
𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting property with respect to 𝑔 : 𝑀 → 𝑁 . ■

Definition 4.5.31. Let u� be a small Reedy category and let ℳ be a locally small
category.

• A diagram 𝑌 : u� → ℳ is Reedy-projective with respect to a morphism
𝑔 : 𝑀 → 𝑁 if the matching morphism h𝑌 𝐴 → M𝐴(h𝑌 ) has the right
lifting property with respect to 𝑔∗ : h𝑁 → h𝑀 in [ℳ, 𝐒𝐞𝐭].

• A diagram 𝑋 : u� → ℳ is Reedy-injective with respect to a morphism
𝑔 : 𝑀 → 𝑁 if the matching morphism h𝑋𝐴 → M𝐴(h𝑌 ) has the right
lifting property with respect to 𝑔∗ : h𝑀 → h𝑁 in [ℳop, 𝐒𝐞𝐭].
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Lemma 4.5.32. Let u� be a small Reedy category, let ℳ be a locally small
category, let (−) : ℳ → ℳ be a fully faithful functor, and let 𝑔 : 𝑀 → 𝑁 be a
morphism in ℳ.

• Assuming ℳ has an initial object 0, a diagram 𝑌 : u� → ℳ is Reedy-
projective with respect to 𝑔 : 𝑀 → 𝑁 if and only if the unique natural
transformation Δ0 ⇒ 𝑌 has the Reedy left lifting property with respect to
𝑔 : 𝑀 → 𝑁 .

• Assuming ℳ has a terminal object 1, a diagram 𝑋 : u� → ℳ is Reedy-
injective with respect to 𝑔 : 𝑀 → 𝑁 if and only if the unique natural
transformation 𝑋 ⇒ Δ1 has the Reedy right lifting property with respect
to 𝑔 : 𝑀 → 𝑁 .

Proof. This is a straightforward exercise. □

Lemma 4.5.33. Let u� be a small Reedy category and let

𝐹 ⊣ 𝐺 : ℳ → u�

be an adjunction.

• Given a diagram 𝑌 : u� → ℳ and a morphism 𝑔 : 𝑀 → 𝑀 ′ in ℳ, 𝑌 is
Reedy-projective with respect to 𝐺𝑔 : 𝐺𝑀 → 𝐺𝑀 ′ if and only if 𝐹 𝑌 is
Reedy-projective with respect to 𝑔 : 𝑀 → 𝑀 ′.

• Given a diagram 𝑋 : u� → ℳ and a morphism 𝑔 : 𝑁 ′ → 𝑁 in u� , 𝑋
is Reedy-injective with respect to 𝐹 𝑔 : 𝐹 𝑁 ′ → 𝐹 𝑁 if and only if 𝐺𝑋 is
Reedy-injective with respect to 𝑔 : 𝑁 ′ → 𝑁 .

Proof. This is a straightforward exercise. ◊

Proposition 4.5.34. Let u� be a small Reedy category, let ℳ be a locally small
category and let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ. The following are equivalent
for a diagram 𝑌 : u� → ℳ:

(i) 𝑌 is Reedy-projective with respect to 𝑔 : 𝑀 → 𝑁 .

(ii) The morphism in [u� op, 𝐒𝐞𝐭]

ℳ(𝑌 , 𝑔) : ℳ(𝑌 , 𝑀) → ℳ(𝑌 , 𝑁)

has the right lifting property with respect to every boundary inclusion
𝜕h𝐴 ↪ h𝐴.
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(iii) The morphism in [[u�, ℳ]op, 𝐒𝐞𝐭]

ℳ((−)𝐴, 𝑀) → M𝐴(ℳ(−, 𝑀), ℳ(−, 𝑁), ℳ(−, 𝑔))

induced by the relative matching morphisms has the right lifting property
with respect to the unique morphism 0 → h𝑌 .

Dually, the following are equivalent for a diagram 𝑋 : u� → ℳ:

(i′) 𝑋 is Reedy-injective with respect to 𝑔 : 𝑀 → 𝑁 .

(ii′) The morphism in [u�, 𝐒𝐞𝐭]

ℳ(𝑔, 𝑋) : ℳ(𝑁, 𝑋) → ℳ(𝑀, 𝑋)

has the right lifting property with respect to every boundary inclusion
𝜕h𝐴 ↪ h𝐴.

(iii′) The morphism in [[u�, ℳ], 𝐒𝐞𝐭]

ℳ(𝑁, (−)𝐴) → M𝐴(ℳ(𝑁, −), ℳ(𝑀, −), ℳ(𝑔, −))

induced by the relative matching morphisms has the right lifting property
with respect to the unique morphism 0 → h𝑋 .

Proof. The proof is essentially the same as proposition 4.5.29. ■

Proposition 4.5.35. Let u� be a small Reedy category, let 𝑈 : ℳ′ → ℳ be
an orthogonality-reflecting functor between locally small categories, and let 𝑔 :
𝑀 → 𝑁 be a morphism in ℳ′.

• Let 𝑌 : u� → ℳ′ be a diagram. If 𝑈𝑌 is Reedy-projective with respect to
𝑈𝑔 : 𝑈𝑀 → 𝑈𝑁 , then 𝑌 is Reedy-projective with respect to 𝑔 : 𝑀 → 𝑁 .

• Let 𝑋 : u� → ℳ′ be a diagram. If 𝑈𝑋 is Reedy-injective with respect to
𝑈𝑔 : 𝑈𝑀 → 𝑈𝑁 , then 𝑋 is Reedy-injective with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. The proof is essentially the same as proposition 4.5.30. ■

Definition 4.5.36. Let u� be a small Reedy category.

• A Reedy cell complex (resp. relative Reedy cell complex) in [u� op, 𝐒𝐞𝐭]
is an ℐ-cell complex (resp. relative ℐ-cell complex), where ℐ is the set of
all boundary inclusions 𝜕h𝐴 ↪ h𝐴.
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• A Reedy cell complex (resp. relative Reedy cell complex) in [u�, 𝐒𝐞𝐭] is
an ℐ-cell complex (resp. relative ℐ-cell complex), where ℐ is the set of all
boundary inclusions 𝜕h𝐴 ↪ h𝐴.

Lemma 4.5.37. Let u� be a small Reedy category with degree function deg :
ob u� → ℕ, let u�≤𝑛 be the full subcategory spanned by the objects 𝐴 in u� such
that deg 𝐴 ≤ 𝑛, and let 𝑗 : u�≤𝑛 ↪ u� be the inclusion.

• The restriction functor 𝑗∗ : [u� op, 𝐒𝐞𝐭] → [(u�≤𝑛)
op, 𝐒𝐞𝐭] preserves relative

Reedy cell complexes.

• The restriction functor 𝑗∗ : [u�, 𝐒𝐞𝐭] → [u�≤𝑛, 𝐒𝐞𝐭] preserves relative Reedy
cell complexes.

Proof. The two claims are formally dual; we will prove the first version.
Since 𝑗∗ : [u� op, 𝐒𝐞𝐭] → [(u�≤𝑛)

op, 𝐒𝐞𝐭] preserve colimits, it suffices to verify
that it sends boundary inclusions to relative Reedy cell complexes. Let 𝐴 be
an object in u�. If deg 𝐴 ≤ 𝑛, then 𝑗∗𝜕h𝐴 ↪ 𝑗∗h𝐴 is (isomorphic to) a boundary
inclusion in [(u�≤𝑛)

op, 𝐒𝐞𝐭]. Otherwise, deg 𝐴 > 𝑛, and since no morphism 𝐴′ →
𝐴 with deg 𝐴′ ≤ 𝑛 is in the inverse subcategory u�←, we deduce that 𝑗∗𝜕h𝐴 ↪
𝑗∗h𝐴 is an isomorphism (so a relative Reedy cell complex a fortiori). ■

Proposition 4.5.38. Let u� be a small Reedy category.

• For any object 𝐴 in u�, both h𝐴 and its boundary 𝜕h𝐴 are Reedy cell com-
plexes in [u� op, 𝐬𝐒𝐞𝐭].

• For any object 𝐴 in u�, both h𝐴 and its boundary 𝜕h𝐴 are Reedy cell com-
plexes in [u�, 𝐬𝐒𝐞𝐭].

Proof. See Observation 6.2 in [Riehl and Verity, 2014]. □

Lemma 4.5.39. Let u� be a locally finite Reedy category with degree function
deg : ob u� → ℕ, let u�≤𝑛 be the full subcategory spanned by the objects 𝐴 in u�
such that deg 𝐴 ≤ 𝑛, and let 𝑗 : u�≤𝑛 ↪ u� be the inclusion.

• If deg 𝐴 = 𝑛 + 1, then 𝑗∗𝜕h𝐴 is an ℵ0-compact object in [(u�≤𝑛)
op, 𝐒𝐞𝐭].

• If deg 𝐴 = 𝑛 + 1, then 𝑗∗𝜕h𝐴 is an ℵ0-compact object in [u�≤𝑛, 𝐒𝐞𝐭].

Proof. Apply proposition 0.2.46 to lemma 4.5.18. (Recall that the latching cat-
egory 𝜕u�→𝐴 is finite by hypothesis.) ■
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Proposition 4.5.40. Let u� be a small Reedy category.

• A morphism in [u� op, 𝐒𝐞𝐭] is a relative Reedy cell complex if and only if its
relative latching morphisms are injective maps.

• A morphism in [u�, 𝐒𝐞𝐭] is a relative Reedy cell complex if and only if its
relative latching morphisms are injective maps.

Proof. See Corollary 6.8 in [Riehl and Verity, 2014]. □

Proposition 4.5.41. Let u� be a small Reedy category, let ℳ be a locally small
category, let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → ℳ, and
let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ.

• Assuming ℳ is cocomplete, if 𝛼 : 𝐹 → 𝐺 is a relative Reedy cell complex
in [u� op, 𝐒𝐞𝐭] and 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting property with
respect to 𝑔 : 𝑀 → 𝑁 , then in the commutative diagram in ℳ shown
below,

𝐹 ⋆u� 𝑋 𝐺 ⋆u� 𝑋

𝐹 ⋆u� 𝑌 𝐹 ⋆u� 𝑌 ∪𝐹 ⋆u�𝑋 𝐺 ⋆u� 𝑌

𝐺 ⋆u� 𝑌

id𝐹 ⋆u�𝜑

𝛼⋆u� id𝑋

id𝐺⋆u�𝜑

𝛼⋆u� id𝑌

where the square is a pushout, the indicated arrow

𝐹 ⋆u� 𝑌 ∪𝐹 ⋆u�𝑋 𝐺 ⋆u� 𝑌 → 𝐺 ⋆u� 𝑌

has the left lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

• Assuming ℳ is complete, if 𝛼 : 𝐹 → 𝐺 is a relative Reedy cell complex in
[u�, 𝐒𝐞𝐭] and 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy right lifting property with respect
to 𝑔 : 𝑀 → 𝑁 , then in the commutative diagram in ℳ shown below,

{𝐺, 𝑋}u�

{𝐹 , 𝑋}u� ×{𝐹 ,𝑌 }u� {𝐺, 𝑌 }u� {𝐺, 𝑌 }u�

{𝐹 , 𝑋}u� {𝐹 , 𝑌 }u�

{𝛼,𝑋}u�

{𝐺,𝜑}u�

{𝛼,𝑌 }u�

{𝐹 ,𝜑}u�
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where the square is a pushout, the indicated arrow

{𝐺, 𝑋}u� → {𝐹 , 𝑋}u� ×{𝐹 ,𝑌 }u� {𝐺, 𝑌 }u�

has the right lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. Apply proposition a.3.17 to Lemma 5.7 in [Riehl and Verity, 2014]. ■

Corollary 4.5.42. Let u� be a small Reedy category, let ℳ be a locally small
category and let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ.

• If 𝛼 : 𝐹 → 𝐺 is a relative Reedy cell complex in [u� op, 𝐒𝐞𝐭] and 𝑌 : u� → ℳ
is Reedy-projective with respect to 𝑔 : 𝑀 → 𝑁 , then the morphism

𝛼 ⋆u� id𝑌 : 𝐹 ⋆u� 𝑌 → 𝐺 ⋆u� 𝑌

has the left lifting property with respect to 𝑔 : 𝑀 → 𝑁 (if it exists in ℳ).

• If 𝛼 : 𝐹 → 𝐺 is a relative Reedy cell complex in [u�, 𝐒𝐞𝐭] and 𝑋 : u� → ℳ
is Reedy-injective with respect to 𝑔 : 𝑀 → 𝑁 , then the morphism

{𝛼, 𝑋}u� : {𝐺, 𝑋}u� → {𝐹 , 𝑋}u�

has the right lifting property with respect to 𝑔 : 𝑀 → 𝑁 (if it exists in
ℳ).

Proof. The two claims are formally dual; we will prove the first version.
By enlarging the universe or shrinking ℳ if necessary, we may assume ℳ

is a small category. The Yoneda embedding h• : ℳ → [ℳ, 𝐒𝐞𝐭]op is then fully
faithful and preserves all colimits that exist in ℳ, and [ℳ, 𝐒𝐞𝐭]op is a cocomplete
locally small category. We then apply lemma 4.5.32 and proposition 4.5.41. ■

Corollary 4.5.43. Let u� be a small Reedy category, let ℳ be a locally small
category, let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → ℳ, and
let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ.

• If 𝐹 is a Reedy cell complex in [u� op, 𝐒𝐞𝐭] and 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy
left lifting property with respect to 𝑔 : 𝑀 → 𝑁 , then the morphism

id𝐹 ⋆u� 𝜑 : 𝐹 ⋆u� 𝑋 → 𝐹 ⋆u� 𝑌

has the left lifting property with respect to 𝑔 : 𝑀 → 𝑁 (if it exists in ℳ).
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• If 𝐹 is a Reedy cell complex in [u�, 𝐒𝐞𝐭] and 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy
right lifting property with respect to 𝑔 : 𝑀 → 𝑁 , then the morphism

{𝐹 , 𝜑}u� : {𝐹 , 𝑋}u� → {𝐹 , 𝑌 }u�

has the right lifting property with respect to 𝑔 : 𝑀 → 𝑁 (if it exists in
ℳ).

Proof. The two claims are formally dual; we will prove the first version.
By enlarging the universe or shrinking ℳ if necessary, we may assume ℳ

is a small category. The Yoneda embedding h• : ℳ → [ℳ, 𝐒𝐞𝐭]op is then fully
faithful and preserves all colimits that exist in ℳ, and [ℳ, 𝐒𝐞𝐭]op is a cocomplete
locally small category. We then apply lemma 4.5.27 and proposition 4.5.41. ■

Corollary 4.5.44. Let u� be a small Reedy category with degree function deg :
ob u� → ℕ, let 𝐴 be an object in u� with deg 𝐴 = 𝑛 + 1, let ℳ be a locally small
category, let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → ℳ, and
let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ.

• If the restriction of 𝜑 : 𝑋 ⇒ 𝑌 in [u�≤𝑛, ℳ] has the Reedy left lifting
property with respect to 𝑔 : 𝑀 → 𝑁 and the relative latching object
L𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ, then the insertion 𝑋𝐴 → L𝐴(𝑋, 𝑌 , 𝜑) has the
left lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

• If the restriction of 𝜑 : 𝑋 ⇒ 𝑌 in [u�≤𝑛, ℳ] has the Reedy right lifting
property with respect to 𝑔 : 𝑀 → 𝑁 and the relative matching object
M𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ, then the projection M𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴 has the
right lifting property with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. The two claims are formally dual; we will prove the first version.
By enlarging the universe or shrinking ℳ if necessary, we may assume ℳ

is a small category. The Yoneda embedding h• : ℳ → [ℳ, 𝐒𝐞𝐭]op is then fully
faithful and preserves all colimits that exist in ℳ, and [ℳ, 𝐒𝐞𝐭]op is a cocomplete
locally small category. We may then apply lemma 4.5.27 and replace ℳ with
[ℳ, 𝐒𝐞𝐭]op, i.e. we may assume ℳ is a cocomplete locally small category.

Now, as in remark 4.5.25, we have a pushout diagram in ℳ of the form
below:

L𝐴(𝑋) 𝑋𝐴

L𝐴(𝑌 ) L𝐴(𝑋, 𝑌 , 𝜑)

L𝐴(𝜑)

500



4.5. Reedy diagrams

Proposition 4.5.38 says that the boundary 𝜕h𝐴 is a Reedy cell complex, so by
corollary 4.5.43, L𝐴(𝜑) : L𝐴(𝑋) → L𝐴(𝑌 ) has the left lifting property with
respect to 𝑔 : 𝑀 → 𝑁 ; hence, by proposition a.3.17, the right vertical arrow
in the above pushout diagram has the same left lifting property. This proves the
claim. ■

Proposition 4.5.45. Let u� be a small Reedy category, let ℳ be a locally small
category, let (ℒ, ℛ) be a pair of subclasses of mor ℳ such that ℒ = ⧄ℛ and
ℛ = ℒ⧄, let 𝜓 : 𝑍 ⇒ 𝑊 be a morphism in [u�, ℳ] that has the Reedy left lifting
property with respect to (every morphism that is in) ℛ, and let 𝜑 : 𝑋 ⇒ 𝑌 be
a morphism in [u�, ℳ] that has the Reedy right lifting property with respect to
(every morphism that is in) ℒ.

• If the relative latching objects L𝐴(𝑍, 𝑊 , 𝜓) exist in ℳ for all objects 𝐴 in
u�, then 𝜑 : 𝑍 ⇒ 𝑊 has the left lifting property with respect to 𝜑 : 𝑋 ⇒ 𝑌 .

• If the relative matching objects M𝐴(𝑋, 𝑌 , 𝜑) exist in ℳ for all objects
𝐴 in u�, then 𝜑 : 𝑋 ⇒ 𝑌 has the right lifting property with respect to
𝜓 : 𝑍 ⇒ 𝑊 .

Proof. The two claims are formally dual; we will prove the first version.
Suppose we have a commutative square in [u�, ℳ] of the form below:

𝑍 𝑋

𝑊 𝑌

𝜓 𝜑

𝜔

Choose a degree function deg : ob u� → ℕ and let 𝐴 be an object in u� with
deg 𝐴 = 𝑛+1. Suppose we have defined for all objects 𝐴′ in u�≤𝑛 a morphism 𝐴′ :
𝑋𝐴′ → 𝑊 𝐴′, such that these morphisms constitute a natural transformation of
diagrams u�≤𝑛 → ℳ such that the following diagram commute in [u�≤𝑛, ℳ]:

𝑍 𝑋

𝑊 𝑌

𝜓 𝜑

𝜔

Note that the relative latching morphism L𝐴(𝑍, 𝑊 , 𝜓) → 𝑊 𝐴 exists in ℳ
and is in ℒ by hypothesis. Thus (by passing through the Yoneda embedding
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ℳ → [ℳop, 𝐒𝐞𝐭] if necessary), there is an induced commutative diagram

L𝐴(𝑍, 𝑊 , 𝜓) 𝑋𝐴

𝑊 𝐴 M𝐴(𝑋, 𝑌 , 𝜑)

in which the right vertical arrow has the right lifting property with respect to the
left vertical arrow (by lemma 4.5.27). We thus obtain a morphism 𝐴 : 𝑊 𝐴 →
𝑋𝐴 making the evident triangles commute. Using lemma 4.5.18, we deduce that
the diagram

𝑋𝐴′ 𝑊 𝐴′

𝑋𝐴 𝑊 𝐴

𝑋𝛿

𝐴′

𝑊 𝛿

𝐴

commutes for every morphism 𝛿 : 𝐴′ → 𝐴 in u�→, and similarly, the diagram

𝑋𝐴 𝑊 𝐴

𝑋𝐴′ 𝑊 𝐴′

𝑋𝜎

𝐴

𝑊 𝜎

𝐴′

commutes for every morphism 𝜎 : 𝐴 → 𝐴′ in u�←; so by using the factorisation
axiom, we can extend to a natural transformation of diagrams u�≤𝑛+1. Hence,
by induction, we obtain a solution to our original lifting problem in [u�, ℳ]. ■

Proposition 4.5.46. Let u� be a small Reedy category, let ℳ be a locally small
category, let (ℒ, ℛ) be a pair of subclasses of mor ℳ such that ℒ = ⧄ℛ and
ℛ = ℒ⧄.

• If 𝑋 : u� → ℳ is Reedy-injective with respect to (every morphism that is
in) ℒ, 𝜓 : 𝑍 ⇒ 𝑊 is a morphism in [u�, ℳ] that has the Reedy left lifting
property with respect to ℛ, and the relative latching objects L𝐴(𝑍, 𝑊 , 𝜓)
exist in ℳ for all objects 𝐴 in u�, then 𝑋 is injective with respect to 𝜓 :
𝑍 ⇒ 𝑊 .

• If 𝑊 : u� → ℳ is Reedy-projective with respect to (every morphism that is
in) ℛ, 𝜑 : 𝑋 ⇒ 𝑌 is a morphism in [u�, ℳ] that has the Reedy right lifting
property with respect to ℒ, and the relative matching objects M𝐴(𝑋, 𝑌 , 𝜑)
exist in ℳ for all objects 𝐴 in u�, then 𝑊 is projective with respect to
𝜑 : 𝑋 ⇒ 𝑌 .
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Proof. The proof is essentially the same as that of proposition 4.5.45. ■

Proposition 4.5.47. Let u� and u� be Reedy categories. Then u� × u� is a Reedy
category, with direct subcategory u�→ × u�→ and inverse subcategory u�← × u�←.

Proof. See Proposition 15.1.6 in [Hirschhorn, 2003]. □

¶ 4.5.48. Given functor 𝐹 : u� → 𝐒𝐞𝐭 and 𝐺 : u� → 𝐒𝐞𝐭, let 𝐹 ⊠ 𝐺 :
u� × u� → 𝐒𝐞𝐭 be the functor defined by (𝐹 ⊠ 𝐺)(𝐶, 𝐷) = 𝐹 (𝐶) × 𝐺(𝐷). Note
that we may identify h (𝐶,𝐷) with h𝐶 ⊠ h𝐷.

Lemma 4.5.49. Let u� and u� be small Reedy categories.

• For any object 𝐶 in u� and any object 𝐷 in u�, the following diagram is a
pushout square in [u� op × u�op, 𝐒𝐞𝐭]:

𝜕h𝐶 ⊠ 𝜕h𝐷 𝜕h𝐶 ⊠ h𝐷

h𝐶 ⊠ 𝜕h𝐷 𝜕(h𝐶 ⊠ h𝐷)

• For any object 𝐶 in u� and any object 𝐷 in u�, the following diagram is a
pushout square in [u� × u�, 𝐒𝐞𝐭]:

𝜕h𝐶 ⊠ 𝜕h𝐷 𝜕h𝐶 ⊠ h𝐷

h𝐶 ⊠ 𝜕h𝐷 𝜕(h𝐶 ⊠ h𝐷)

Proof. This is a straightforward exercise. ◊

Lemma 4.5.50. Let u� and u� be small Reedy categories, let ℳ be a locally small
category, let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → [u�, ℳ],
and let 𝑔 : 𝑀 → 𝑁 be a morphism in ℳ.

• Let ℒ be the class of morphisms in [u�, ℳ] that have the Reedy left lifting
property with respect to 𝑔 : 𝑀 → 𝑁 . Assuming the relative latching
objects L𝐶(𝑋, 𝑌 , 𝜑) exist in [u�, ℳ] for every object 𝐶 in u�, the relative
latching morphisms L𝐶(𝑋, 𝑌 , 𝜑) → 𝑌 𝐶 are in ℒ if and only if 𝜑 : 𝑋 ⇒ 𝑌
(regarded as a morphism in [u� × u�, ℳ]) has the Reedy left lifting property
with respect to 𝑔 : 𝑀 → 𝑁 .
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• Let ℛ be the class of morphisms in [u�, ℳ] that have the Reedy right lifting
property with respect to 𝑔 : 𝑀 → 𝑁 . Assuming the relative matching
objects M𝐶(𝑋, 𝑌 , 𝜑) exist in [u�, ℳ] for every object 𝐶 in u�, the relative
matching morphisms 𝑋𝐶 → M𝐶(𝑋, 𝑌 , 𝜑) are in ℛ if and only if 𝜑 : 𝑋 ⇒
𝑌 (regarded as a morphism in [u� × u�, ℳ]) has the Reedy right lifting
property with respect to 𝑔 : 𝑀 → 𝑁 .

Proof. The two claims are formally dual; we will prove the first version.
By enlarging the universe or shrinking ℳ if necessary, we may assume ℳ

is a small category. The Yoneda embedding h• : ℳ → [ℳ, 𝐒𝐞𝐭]op is then fully
faithful and preserves all colimits that exist in ℳ, and [ℳ, 𝐒𝐞𝐭]op is a cocomplete
locally small category. We may then apply lemma 4.5.27 and replace ℳ with
[ℳ, 𝐒𝐞𝐭]op, i.e. we may assume ℳ is a cocomplete locally small category.

Let 𝐶 be an object in u�, let 𝐶 : L𝐶(𝑋, 𝑌 , 𝜑) → 𝑌 𝐶 be the relative latching
morphism, and let 𝐷 be an object in u�. It can be shown that the relative latching
object L𝐷(L𝐶(𝑋, 𝑌 , 𝜑), 𝑌 𝐶, 𝐶) is a the colimit for the commutative diagram
in ℳ shown below:

𝑋(𝐶)(𝐷)

L𝐷(𝑋𝐶) L𝐶(𝑋)(𝐷)

L𝐷(L𝐶(𝑋))

L𝐷(𝑌 𝐶) L𝐶(𝑌 )(𝐷)

L𝐷(L𝐶(𝑌 ))

L𝐷(𝜑𝐶) L𝐶 (𝜑)𝐷

L𝐷(L𝐶 (𝜑))

Indeed, by remark 4.5.25 and proposition a.6.15, we have the following pushout
square in ℳ,

L𝐷(L𝐶(𝑋)) L𝐷(𝑋𝐶)

L𝐷(L𝐶(𝑋)) L𝐷(L𝐶(𝑋, 𝑌 , 𝜑))

L𝐷(L𝐶 (𝜑))
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and since (weighted) colimits in [u�, ℳ] can be computed componentwise, we
also have the pushout square shown below:

L𝐶(𝑋)(𝐷) 𝑋(𝐶)(𝐷)

L𝐶(𝑌 )(𝐷) L𝐶(𝑋, 𝑌 , 𝜑)(𝐷)

L𝐶 (𝜑)𝐷

On the other hand, by lemma 4.5.49, the following are pushout squares in ℳ,

L𝐷(L𝐶(𝑋)) L𝐷(𝑋𝐶)

L𝐶(𝑋)(𝐷) L(𝐶,𝐷)(𝑋)

L𝐷(L𝐶(𝑌 )) L𝐷(𝑌 𝐶)

L𝐶(𝑌 )(𝐷) L(𝐶,𝐷)(𝑌 )

L(𝐶,𝐷)(𝑋) 𝑋(𝐶)(𝐷)

L(𝐶,𝐷)(𝑌 ) L(𝐶,𝐷)(𝑋, 𝑌 , 𝜑)

L(𝐶,𝐷)(𝜑)

thus,
L𝐷(L𝐶(𝑋, 𝑌 , 𝜑), 𝑌 𝐶, 𝐶) ≅ L(𝐶,𝐷)(𝑋, 𝑌 , 𝜑)

and moreover, this isomorphism is compatible with the relative latching morph-
isms. Thus, the relative latching morphisms 𝐶 : L𝐶(𝑋, 𝑌 , 𝜑) → 𝑌 𝐶 has the
Reedy left lifting property with respect to 𝑔 : 𝑀 → 𝑁 (for every 𝐶) if and only if
the relative latching morphisms L(𝐶,𝐷)(𝑋, 𝑌 , 𝜑) → 𝑌 (𝐶)(𝐷) have the left lifting
property with respect to 𝑔 : 𝑀 → 𝑁 (for every 𝐶 and 𝐷), as claimed. ■

4.6 Reedy model structures
Prerequisites. §§4.1, 4.3, 4.5.

Definition 4.6.1. Let u� be a small Reedy category and let ℳ be a locally small
category with a model structure.

• A Reedy weak equivalence in [u�, ℳ] is a natural transformation such that
all its components are weak equivalences in ℳ.

• A Reedy cofibration in [u�, ℳ] is a natural transformation that has the
Reedy left lifting property with respect to all trivial fibrations in ℳ.
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• A Reedy trivial cofibration in [u�, ℳ] is a natural transformation that has
the Reedy left lifting property with respect to all fibrations in ℳ.

• A Reedy fibration in [u�, ℳ] is a natural transformation that has the Reedy
right lifting property with respect to all trivial cofibrations in ℳ.

• A Reedy trivial fibration in [u�, ℳ] is a natural transformation that has
the Reedy right lifting property with respect to all cofibrations in ℳ.

• A Reedy-cofibrant object in [u�, ℳ] is a diagram that is Reedy-projective
with respect to all trivial fibrations in ℳ.

• A Reedy-fibrant object in [u�, ℳ] is a diagram that is Reedy-injective
with respect to all trivial cofibrations in ℳ.

Remark 4.6.2. Since every trivial cofibration is a cofibration, every Reedy trivial
fibration is a Reedy fibration; dually, since every trivial fibration is a fibration,
every Reedy trivial cofibration is a Reedy cofibration.

Proposition 4.6.3. Let u� be a small Reedy category and let ℳ be a locally small
category with a model structure.

• If 𝑌 : u� → ℳ is a Reedy-cofibrant diagram, then, for each object 𝐴 in u�,
the object 𝑌 𝐴 is cofibrant in ℳ.

• If 𝑋 : u� → ℳ is a Reedy-fibrant diagram, then, for each object 𝐴 in u�,
the object 𝑋𝐴 is fibrant in ℳ.

Proof. Recalling proposition 4.5.38, this is a special case of corollary 4.5.42.
■

Proposition 4.6.4. Let u� be a small Reedy category and let ℳ be a locally small
category with a model structure.

• If 𝜑 : 𝑋 ⇒ 𝑌 is a Reedy cofibration (resp. Reedy trivial cofibration) in
[u�, ℳ], then, for each object 𝐴 in u�, the morphisms L𝐴(𝜑) : L𝐴(𝑋) →
L𝐴(𝑌 ) (if it exists) and 𝜑𝐴 : 𝑋𝐴 → 𝑌 𝐴 are cofibrations (resp trivial
cofibrations).

• If 𝜑 : 𝑋 ⇒ 𝑌 is a Reedy fibration (resp. Reedy trivial fibration) in [u�, ℳ],
then, for each object 𝐴 in u�, the morphisms M𝐴(𝜑) : M𝐴(𝑋) → M𝐴(𝑌 ) (if
it exists) and 𝜑𝐴 : 𝑋𝐴 → 𝑌 𝐴 are fibrations (resp trivial fibrations).
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Proof. Recalling proposition 4.5.38, this is a special case of corollary 4.5.43.
■

Proposition 4.6.5. Let u� be a small Reedy category and let ℳ be a locally
small category with a model structure. For each object 𝑆 in ℳ, assuming 𝑆∕ℳ
is equipped with the slice model structure:

(i) A natural transformation of diagrams u� → 𝑆∕ℳ is a Reedy weak equival-
ence if and only if the underlying natural transformation of diagrams

(ii) A natural transformation of diagrams u� → 𝑆∕ℳ is a Reedy cofibration
(resp. Reedy trivial cofibration, Reedy fibration, Reedy trivial fibration) if
underlying natural transformation of diagrams u� → ℳ is.

(iii) A diagram u� → 𝑆∕ℳ is a Reedy-cofibrant (resp. Reedy-fibrant) object if
the underlying diagram u� → ℳ is.

Dually, for each object 𝑇 in ℳ, assuming ℳ∕𝑇 is equipped with the slice model
structure:

(i) A natural transformation of diagrams u� → ℳ∕𝑇 is a Reedy weak equival-
ence if and only if the underlying natural transformation of diagrams

(ii) A natural transformation of diagrams u� → ℳ∕𝑇 is a Reedy cofibration
(resp. Reedy trivial cofibration, Reedy fibration, Reedy trivial fibration) if
underlying natural transformation of diagrams u� → ℳ is.

(iii) A diagram u� → ℳ∕𝑇 is a Reedy-cofibrant (resp. Reedy-fibrant) object if
the underlying diagram u� → ℳ is.

Proof. (i). This is an immediate consequence of the definition of weak equival-
ence in 𝑆∕ℳ.

(ii). The four subclaims are similar; we will prove the first.
Let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation of diagrams u� → 𝑆∕ℳ and let

𝑈 : 𝑆∕ℳ → ℳ be the projection. By proposition 4.5.30 and lemma a.3.7, if
𝑈𝜑 : 𝑈𝑋 ⇒ 𝑈𝑌 has the Reedy left lifting property with respect to all trivial
fibrations in ℳ, then 𝜑 : 𝑋 ⇒ 𝑌 has the Reedy left lifting property with respect
to all trivial fibrations in 𝑆∕ℳ. In other words, if 𝑈𝜑 : 𝑈𝑋 ⇒ 𝑈𝑌 is a Reedy
cofibration in [u�, ℳ], then 𝜑 : 𝑋 ⇒ 𝑌 is a Reedy cofibration in [u�, 𝑆∕ℳ].

507



IV. Model categories

(iii). The two subclaims are similar; we will prove the first.
Let 𝑌 : u� → ℳ be a diagram (and let proposition 4.5.30 and lemma a.3.7).

By proposition 4.5.35 (and lemma a.3.7 again), if 𝑈𝑌 is Reedy-projective with
respect to all trivial fibrations in ℳ, then 𝑌 is Reedy-projective with respect to
all trivial fibrations in 𝑆∕ℳ. Thus, if 𝑈𝑌 is a Reedy-cofibrant object in [u�, ℳ],
then 𝑌 is a Reedy-cofibrant object in [u�, 𝑆∕ℳ]. ■

Definition 4.6.6. Let u� be a small Reedy category and let ℳ be a locally small
category with a model structure. A sub-Reedy model structure on [u�, ℳ] is a
model structure that satisfies the following conditions:

• The weak equivalences are the Reedy weak equivalences.

• Every cofibration (resp. trivial cofibration, fibration, trivial fibration) in
[u�, ℳ] is a Reedy cofibration (resp. Reedy trivial cofibration, Reedy fibra-
tion, Reedy trivial fibration).

• Every cofibrant (resp. fibrant) object in [u�, ℳ] is a Reedy-cofibrant (resp.
Reedy-fibrant) object.

Proposition 4.6.7. Let u� be a small Reedy category, let ℳ is a locally small
category with a model structure, and let u� be a homotopically replete full sub-
category of ℳ. Given a sub-Reedy model structure on [u�, ℳ], if [u�, ℳ] sat-
isfies axiom DC0, then its restriction to [u�, u� ] is a sub-Reedy model structure
(with respect to the model structure on u� restricted from ℳ), and [u�, u� ] also
satisfies axiom DC0.

Proof. By proposition 4.1.28, the model structure on [u�, ℳ] restricted to [u�, u� ]
is a model structure, and if [u�, ℳ] satisfies axiom DC0, then so does [u�, u� ],
and moreover the cofibrant (resp. fibrant) objects in [u�, u� ] are cofibrant (resp.
fibrant) objects in [u�, ℳ].

It remains to be shown that the model structure on [u�, u� ] is sub-Reedy if the
model structure on [u�, ℳ] is. Clearly, the Reedy weak equivalences in [u�, u� ]
are the Reedy weak equivalences in [u�, ℳ] that are in [u�, u� ]. On the other
hand, every Reedy cofibration (resp. Reedy trivial cofibration, etc.) in [u�, ℳ]
that is in [u�, u� ] is also a Reedy cofibration (resp. Reedy trivial cofibration, etc.)
in [u�, u� ], so we indeed have a sub-Reedy model structure on [u�, u� ]. ■

Definition 4.6.8. A Reedy-admissible derivable category is a derivable cat-
egory ℳ that satisfies the following additional axioms:
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RD0. For any locally finite Reedy category u� and any diagram 𝑋 : u� → ℳ,
there exist

– a Reedy trivial cofibration 𝑋 → �̂� where �̂� is a Reedy-fibrant
object in [u�, ℳ], and

– a Reedy trivial fibration �̃� → 𝑋 where �̃� is a Reedy-cofibrant
object in [u�, ℳ].

RD1. For any locally finite Reedy category u� with degree function deg :
ob u� → ℕ and any object 𝐴 in u� with deg 𝐴 = 𝑛 + 1:

– For every morphism 𝜑 : 𝑋 ⇒ 𝑌 in [u�, ℳ] whose restriction is a
Reedy trivial cofibration in [u�≤𝑛, ℳ], the relative latching object
L𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ.

– For every morphism 𝜑 : 𝑋 ⇒ 𝑌 in [u�, ℳ] whose restriction is
a Reedy trivial fibration in [u�≤𝑛, ℳ], the relative matching object
M𝐴(𝑋, 𝑌 , 𝜑) exists in ℳ.

RD5. For any locally finite Reedy category u�, every morphism in [u�, ℳ] can
be factored in two ways:

– a Reedy trivial cofibration followed by a Reedy fibration, and

– a Reedy cofibration followed by a Reedy trivial fibration.

Remark 4.6.9. By remark 4.5.25, every model category automatically satisfies
axiom RD1; and by lemma 4.1.16, if a model category satisfies axiom RD5, then
it also satisfies axiom RD0.

Lemma 4.6.10. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a derivable category that satisfies axiom RD1 (resp.
axiom CM1*).

• A morphism in [u�, ℳ] is a Reedy trivial cofibration if and only if it is both
a Reedy cofibration and a Reedy weak equivalence.

• A morphism in [u�, ℳ] is a Reedy trivial fibration if and only if it is both a
Reedy fibration and a Reedy weak equivalence.
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Proof. The two claims are formally dual; we will prove the first version.
We have already noted that every Reedy trivial cofibration is a Reedy cofibra-

tion, and proposition 4.6.4 says that every Reedy trivial cofibration is a compon-
entwise trivial cofibration, hence is a Reedy weak equivalence a fortiori.

Now suppose 𝜑 : 𝑋 ⇒ 𝑌 is a natural transformation of diagrams u� → ℳ
that is both a Reedy cofibration and a Reedy weak equivalence. Choose a degree
function deg : ob u� → ℕ. Let 𝐴 be an object in u� and suppose that the relative
latching morphism L𝐴′(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴′ exists and is a trivial cofibration in
ℳ for any object 𝐴′ in u� with deg 𝐴′ < deg 𝐴. Then, by lemma 4.5.27, the
restriction of 𝜑 : 𝑋 ⇒ 𝑌 in [u�≤deg 𝐴−1, ℳ] is a Reedy trivial cofibration, so
the relative latching object L𝐴(𝑋, 𝑌 , 𝜑) also exists in ℳ. Moreover, we have a
commutative diagram in ℳ of the form below,

𝑋𝐴

L𝐴(𝑋, 𝑌 , 𝜑)

𝑌 𝐴

𝜑𝐴

and corollary 4.5.44 says that the insertion 𝑋𝐴 → L𝐴(𝑋, 𝑌 , 𝜑) is a trivial
cofibration in ℳ, so by axiom CM2, L𝐴(𝑋, 𝑌 , 𝜑) → 𝑌 𝐴 is a weak equival-
ence. But 𝜑 : 𝑋 ⇒ 𝑌 is a Reedy cofibration by hypothesis, so the relative
latching morphism is also a cofibration in ℳ, so this proves that the relative
latching morphism is a trivial cofibration. Thus, by induction, we deduce that
𝜑 : 𝑋 ⇒ 𝑌 is indeed a Reedy trivial cofibration in [u�, ℳ]. ■

Lemma 4.6.11. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a derivable category that satisfies axiom RD1 (resp.
axiom CM1*).

• The Reedy trivial cofibrations in [u�, ℳ] have the left lifting property with
respect to the Reedy fibrations in [u�, ℳ].

• The Reedy cofibrations in [u�, ℳ] have the left lifting property with respect
to the Reedy trivial fibrations in [u�, ℳ].

Proof. This is a special case of proposition 4.5.45. ■
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Proposition 4.6.12. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a locally small category with a model structure that
satisfies axiom RD1 (resp. axiom CM1*). Then there is at most one sub-Reedy
model structure on [u�, ℳ], namely the one defined by the following data:

• The weak equivalences are the Reedy weak equivalences.

• The cofibrations are the Reedy cofibrations.

• The fibrations are the Reedy fibrations.

This model structure (if it exists) is called the Reedy model structure on [u�, ℳ].
In addition, in the Reedy model structure:

(i) The trivial cofibrations (resp. trivial fibrations) are the Reedy trivial cofibra-
tions (resp. Reedy trivial fibrations).

(ii) The cofibrant (resp. fibrant) objects are the Reedy-cofibrant (resp. Reedy-
fibrant) objects in [u�, ℳ].

Proof. Suppose we have a sub-Reedy model structure on [u�, ℳ]. Lemma 4.6.11
implies that every Reedy cofibration (resp. Reedy fibration) in [u�, ℳ] has the left
lifting property (resp. right lifting property) with respect to every trivial fibration
(resp. trivial cofibration) in [u�, ℳ], hence is a cofibration (resp. fibration) in
[u�, ℳ] (by theorem 4.1.12). To identify the trivial cofibrations and the trivial
fibrations, we apply lemma 4.6.10; and to identify the cofibrant objects and the
fibrant objects, we apply proposition 4.5.46. ■

Corollary 4.6.13. Let ℳ be a derivable category that satisfies axiom RD1. The
following are equivalent:

(i) ℳ is a Reedy-admissible derivable category.

(ii) For every locally finite Reedy category, [u�, ℳ] (with the Reedy model
structure) is a derivable category where the cofibrant (resp. fibrant) ob-
jects are the Reedy-cofibrant (resp. Reedy-fibrant) objects. ■

Corollary 4.6.14. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a Reedy-admissible derivable category (resp. a complete
and cocomplete model category).
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• If u� = u�→, then the Reedy model structure on [u�, ℳ] is the injective model
structure.

• If u� = u�←, then the Reedy model structure on [u�, ℳ] is the projective
model structure.

Proof. This follows from corollary 4.6.13 and remark 4.5.24. ■

Theorem 4.6.15 (Kan). Let u� be a locally finite Reedy category (resp. a small
Reedy category) and let ℳ be a model category with limits and colimits for finite
(resp. small) diagrams. The following data define a model structure on [u�, ℳ]:

• The weak equivalences are the Reedy weak equivalences.

• The cofibrations are the Reedy cofibrations.

• The fibrations are the Reedy fibrations.

This model structure is called the Reedy model structure on [u�, ℳ]. Moreover,
if ℳ satisfies axiom CM5*, then so does [u�, ℳ].

Proof. See Theorem 5.2.5 in [Hovey, 1999], or Theorem 15.3.4 in [Hirschhorn,
2003]. □

Corollary 4.6.16. If ℳ is a model category, then ℳ is a Reedy-admissible
derivable category.

Proof. Combine corollary 4.6.13 and theorem 4.6.15. ■

Proposition 4.6.17. Let u� be a small Reedy category and let ℳ be a locally
small category with a model structure.

• If the injective model structure on [u�, ℳ] exists, then the trivial adjunction

id ⊣ id : [u�, ℳ] → [u�, ℳ]

is a Quillen equivalence between the injective model structure and any
sub-Reedy model structure.

• If the projective model structure on [u�, ℳ] exists, then the trivial adjunc-
tion

id ⊣ id : [u�, ℳ] → [u�, ℳ]

is a Quillen equivalence between any sub-Reedy model structure and the
projective model structure.
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Proof. This is an immediate consequence of proposition 4.6.4. ■

Proposition 4.6.18. Let ℳ and u� be derivable categories, let u� be a small
Reedy category, and let

𝐹 ⊣ 𝐺 : ℳ → u�

be a Quillen adjunction.

• The induced left adjoint [u�, 𝐹 ] : [u�, u� ] → [u�, ℳ] preserves Reedy
cofibrations, Reedy trivial cofibrations, and Reedy-cofibrant objects.

• The induced right adjoint [u�, 𝐺] : [u�, ℳ] → [u�, u� ] preserves Reedy
fibrations, Reedy trivial fibrations, and Reedy-fibrant objects.

In particular, the induced adjunction

[u�, 𝐹 ] ⊣ [u�, 𝐺] : [u�, ℳ] → [u�, u� ]

is a Quillen adjunction with respect to the Reedy model structures on [u�, ℳ] and
[u�, u� ] (if they exist).

Proof. Apply lemmas 4.5.28 and 4.5.33. ■

Lemma 4.6.19. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a model category with limits and colimits for all finite
(resp. small) diagrams.

• A diagram 𝑋 : u� → ℳ is Reedy-cofibrant if and only if every latching
morphism L𝐴(𝑋) → 𝑋𝐴 is a cofibration in ℳ.

• A diagram 𝑋 : u� → ℳ is Reedy-fibrant if and only if every matching
morphism 𝑋𝐴 → M𝐴(𝑋) is a fibration in ℳ.

Proof. Let 0 be an initial object in ℳ and let 1 be a terminal object in ℳ.
It is a standard fact that Δ0 is an initial object in [u�, ℳ] and Δ1 is a terminal
object in [u�, ℳ], so the claims follow from lemma 4.1.16, remark 4.5.25, and the
observation that the latching morphism L𝐴(Δ0) → 0 and the matching morphism
1 → M𝐴(Δ1) are isomorphisms for all objects 𝐴 in u�. ■

Lemma 4.6.20. Let u� be a locally finite Reedy category (resp. a small Reedy
category) and let ℳ be a model category with limits and colimits for all finite
(resp. small) diagrams.
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• If 𝑌 : u� → ℳ is a Reedy cofibrant diagram, then, for every object 𝐴 in u�,
the latching object L𝐴(𝑌 ) are cofibrant objects in ℳ.

• If 𝑋 : u� → ℳ is a Reedy fibrant diagram, then, for every object 𝐴 in u�,
the matching object M𝐴(𝑋) are fibrant objects in ℳ.

Proof. Recalling proposition 4.5.38, this is a special case of corollary 4.5.42.
■

Theorem 4.6.21. Let u� and u� be locally finite Reedy categories (resp. small
Reedy categories) and let ℳ be a model category with limits and colimits for
finite (resp. small) diagrams. Then the canonical isomorphisms

[u�, [u�, ℳ]] ≅ [u� × u�, ℳ] ≅ [u�, [u�, ℳ]]

are compatible with the respective (iterated) Reedy model structures.

Proof. It is clear that the above isomorphisms are compatible with the weak
equivalences in each model structure. To see that they are also compatible with
the Reedy cofibrations and the Reedy fibrations, apply lemma 4.5.50. ■

Definition 4.6.22. Let u� be a Reedy category.

• u� has cofibrant constants if, for every object 𝐴 in ℂ, the latching category
𝜕u�→𝐴 has at most one connected component.

• u� has fibrant constants if, for every object 𝐴 in ℂ, the matching category
𝜕u�←𝐴 has at most one connected component.

Example 4.6.23. Let u� be a Reedy category.

• If u� = u�←, then u� has cofibrant constants. (In fact, every latching category
is empty.)

• If u� = u�→, then u� has fibrant constants. (In fact, every matching category
is empty.)

Proposition 4.6.24. Let ℳ be a model category, let u� be a finite (resp. small)
Reedy category, and assume ℳ has limits and colimits for all finite (resp. small)
diagrams.

• If u� has cofibrant constants, then the functor Δ : ℳ → [u�, ℳ] is a left
Quillen functor.
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• If u� has fibrant constants, then the functor Δ : ℳ → [u�, ℳ] is a right
Quillen functor.

Proof. The two claims are formally dual; we will prove the second version.
If the matching category 𝜕u�←𝐴 is empty, then the matching object of Δ𝑋 at

𝐴 is a terminal object in ℳ, so the relative matching morphism of Δ𝑓 at 𝐴 is
isomorphic to 𝑓 : 𝑋 → 𝑌 in this case.

On the other hand, if the matching category 𝜕u�←𝐴 of u� has only one con-
nected component, then the matching morphism 𝑋 → M𝐴(Δ𝑋) must be an
isomorphism, so the relative matching morphism of Δ𝑓 at 𝐴 is an isomorphism,
hence a (trivial) fibration in particular.

We now conclude that, for any fibration 𝑓 : 𝑋 → 𝑌 in ℳ, every relative
matching morphism of Δ𝑓 : Δ𝑋 → Δ𝑌 is a fibration. Clearly, the functor
Δ : ℳ → [u�, ℳ] preserves weak equivalences, so this completes the proof that
Δ is a right Quillen functor. ■

Theorem 4.6.25 (Hirschhorn). Let u� be a small Reedy category.

(i) u� has cofibrant constants.

(ii) Δ : ℳ → [u�, ℳ] is a left Quillen functor for all DHK model categories
ℳ.

(iii) For every cofibrant object 𝑋 in any DHK model category ℳ, the constant
diagram Δ𝑋 : u� → ℳ is Reedy cofibrant.

Dually, the following are equivalent:

(i′) u� has fibrant constants.

(ii′) Δ : ℳ → [u�, ℳ] is a right Quillen functor for all DHK model categories
ℳ.

(iii′) For every fibrant object 𝑋 in any DHK model category ℳ, the constant
diagram Δ𝑋 : u� → ℳ is Reedy fibrant.

Proof. (i) ⇒ (ii). This is proposition 4.6.24.

(ii) ⇒ (iii). Left Quillen functors preserve cofibrant objects, by proposition 4.3.4.
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(iii) ⇒ (i). Take ℳ to be 𝐒𝐞𝐭 equipped with the mono–epi model structure,[4]

and consider the constant diagram Δ1. Since 1 is a cofibrant object in ℳ, Δ1
must be a Reedy cofibrant object in [ℂ, ℳ]. It is not hard to see that the latching
object L𝐴(Δ1) is the set of connected components of the latching category 𝜕u�→𝐴,
so by lemma 4.6.19, 𝜕u�→𝐴 has at most one connected component. ■

Corollary 4.6.26. Let ℳ be a DHK model category and let u� be a small Reedy
category.

• If u� has fibrant constants, then the adjunction lim−−→u�
⊣ Δ : ℳ → [u�, ℳ]

is deformable.

• If u� has cofibrant constants, then the adjunction Δ ⊣ lim←−−u�
: [u�, ℳ] → ℳ

is deformable.

Proof. Apply theorem 4.3.13 to the above result. ■

For the remainder of this section, we follow [Barwick, 2007a] and discuss
the functoriality of the Reedy model structure.

Definition 4.6.27. Let u� and u� be Reedy categories. A morphism of Reedy
categories u� → u� is a functor 𝐹 : u� → u� that sends every morphism in u�→ to
u�→ and every morphism in u�← to u�←, or equivalently, a commutative diagram
of functors of the form below:

u�→ u�→

u� u�

u�← u�←

𝐹→

𝐹

𝐹 ←

Lemma 4.6.28. Let 𝐹 : u� → u� be a morphism of Reedy categories. If 𝐷 is any
object in u�, then:

• There is a unique Reedy category structure on the comma category (𝐹 ↓ 𝐷)
making the projection (𝐹 ↓ 𝐷) → u� a morphism of Reedy categories.

[4] See example 4.1.6.
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• There is a unique Reedy category structure on the comma category (𝐷 ↓ 𝐹 )
making the projection (𝐷 ↓ 𝐹 ) → u� a morphism of Reedy categories.

Proof. Obvious. ⧫

While it is true that any functor 𝐹 : u� → u� induces a homotopical functor
𝐹 ∗ : [u�, ℳ] → [u�, ℳ], even if 𝐹 is a morphism of Reedy categories, 𝐹 ∗ need
not be either a left Quillen functor or a right Quillen functor. Instead, we must
consider the following:

Definition 4.6.29. Let u� and u� be Reedy categories.

• A left fibration of Reedy categories is a morphism 𝐹 : u� → u� such that,
for any object 𝐷 in u�, the comma category (𝐹 ↓ 𝐷) has fibrant constants.

• A right fibration of Reedy categories is a morphism 𝐹 : u� → u� such
that, for any object 𝐷 in u�, the comma category (𝐷 ↓ 𝐹 ) has cofibrant
constants.

Remark 4.6.30. A Reedy category u� has fibrant (resp. cofibrant) constants if
and only if the unique morphism u� → 𝟙 is a left (resp. right) fibration.
Remark 4.6.31. A morphism 𝐹 : u� → u� of Reedy categories is a left (resp.
right) fibration if and only if 𝐹 op : u� op → u�op is a right (resp. left) fibration.

Theorem 4.6.32 (Barwick). Let 𝐹 : u� → u� be a morphism between small
Reedy categories. The following are equivalent:

(i) The morphism 𝐹 : u� → u� is a left fibration of Reedy categories.

(ii) For every object 𝐷 in u� and every object (𝐶, ℎ) in (𝐹 ↓ 𝐷), the matching
category 𝜕(𝐹 ↓ 𝐷)←(𝐶,ℎ) has at most one connected component.

(iii) The functor 𝐹 ∗ : [u�, ℳ] → [u�, ℳ] is a right Quillen functor for all DHK
model categories ℳ.

Dually, the following are equivalent:

(i′) The morphism 𝐹 : u� → u� is a right fibration of Reedy categories.

(ii′) For every object 𝐷 in u� and every object (𝐶, ℎ) in (𝐷 ↓ 𝐹 ), the latching
category 𝜕(𝐷 ↓ 𝐹 )→(𝐶,ℎ) has at most one connected component.
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(iii′) The functor 𝐹 ∗ : [u�, ℳ] → [u�, ℳ] is a left Quillen functor for all DHK
model categories ℳ.

Proof. See Lemma 2.6 and Theorem 2.7 in [Barwick, 2007a], or Lemma 3.20
and Theorem 3.22 in [Barwick, 2010]. ■

4.7 Framings and resolutions
Prerequisites. §§1.1, 1.2, 1.5, 2.3, 4.1, 4.2, 4.3, 4.5, 4.6.

In homological algebra, one studies objects in categories without homotop-
ical structure by embedding them in one that does, in such a way that objects
in the original category become weakly equivalent to their presentations. The
notion of ‘resolution’ in the sense of Dwyer and Kan [1980c] was invented for
similar reasons: though not every model category has a simplicial enrichment,
we can still replace objects with homotopically better-behaved simplicial (or co-
simplicial) ones. It is also useful to simultaneously discuss the closely related
notion of ‘framing’ introduced by Dwyer, Hirschhorn, and Kan [DHK].

In this section, we follow [Hirschhorn, 2003, Ch. 16].
¶ 4.7.1. Throughout this section, 𝐜ℳ and 𝐬ℳ will always be equipped with

the Reedy model structure, which exists (by theorem 4.6.15) when ℳ is a model
category.

Proposition 4.7.2. Let ℳ be a model category.

• A cosimplicial object 𝐵• in ℳ is Reedy-cofibrant if and only if, for all
monomorphisms 𝑖 : 𝑍 → 𝑊 between finite simplicial sets, the morphism

𝑖 ⋆ id𝐵 : 𝑍 ⋆ 𝐵 → 𝑊 ⋆ 𝐵

induced by 𝑖 is a cofibration in ℳ.

• A simplicial object 𝐴• in ℳ is Reedy-fibrant if and only if, for all mono-
morphisms 𝑖 : 𝑍 → 𝑊 between finite simplicial sets, the morphism

{𝑖, 𝐴} : {𝑊 , 𝐴} → {𝑍, 𝐴}

induced by 𝑖 is a fibration in ℳ.
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Proof. The two claims are formally dual; we will prove the first version.
Proposition 1.2.23 implies that the class of monomorphisms between finite

simplicial sets is the smallest class of morphisms between finite simplicial sets
that contains the boundary inclusions 𝜕Δ𝑛 ↪ Δ𝑛 and is closed under pushout and
composition. Thus, by corollary 4.5.43, 𝑖⋆id𝐵 : 𝑍⋆𝐵 → 𝑊 ⋆𝐵 is a cofibration
in ℳ for any monomorphism 𝑖 : 𝑍 → 𝑊 between finite simplicial sets and
any Reedy-cofibrant cosimplicial object 𝐵•. Conversely, any such cosimplicial
object must be Reedy-cofibrant. ■

Lemma 4.7.3. Let ℳ be any category.

(i) There exist adjunctions of the form below,

(−)0 ⊣ cosk0 : ℳ → 𝐜ℳ
sk0 ⊣ (−)0 : 𝐬ℳ → ℳ

where (−)0 : 𝐜ℳ → ℳ is the functor that sends a cosimplicial object 𝐴•

to the object 𝐴0, and dually, (−)0 : 𝐬ℳ → ℳ is the functor that sends a
simplicial object 𝐴• to the object 𝐴0.

(ii) Moreover, if ℳ has finite powers, then (−)0 : 𝐜ℳ → ℳ has a left adjoint
sk0 : ℳ → 𝐜ℳ; dually, if ℳ has finite copowers, then (−)0 : ℳ → 𝐬ℳ
has a right adjoint cosk0 : ℳ → 𝐬ℳ.

Proof. It is straightforward to verify that the following formulae work,

sk0(𝐴)𝑛 = 𝐴 cosk0(𝐴)𝑛 = [𝑛] ⋔ 𝐴
sk0(𝐴)𝑛 = [𝑛] ⊙ 𝐴 cosk0(𝐴)𝑛 = 𝐴

where [𝑛] ⋔ 𝐴 is the (𝑛 + 1)-fold power of 𝐴, and [𝑛] ⊙ 𝐴 is the (𝑛 + 1)-fold
copower of 𝐴. ■

Definition 4.7.4. Let 𝐴 be an object in a derivable category ℳ.

• A cosimplicial resolution of 𝐴 is a Reedy-cofibrant replacement in 𝐜ℳ
for the cosimplicial object cosk0(𝐴).

• A simplicial resolution of 𝐴 is a Reedy-fibrant replacement in 𝐬ℳ for the
simplicial object sk0(𝐴).
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Remark 4.7.5. Proposition 4.7.2 implies that (in the case of a model category)
the above definition is equivalent to the original definition of ‘resolution’ given
by Dwyer and Kan [1980c].

Definition 4.7.6.
• A cosimplicially resolvable category is a derivable category ℳ that sat-

isfies the following additional axioms:

– For every object 𝐵 in ℳ, there is a cosimplicial resolution ( ̃𝐵•, 𝑝•)
of 𝐵 where 𝑝• : ̃𝐵• → cosk0(𝐴) is a degreewise trivial fibration.

– For every weak equivalence 𝑤 : 𝐴 → 𝐵 in ℳ, there exist a Reedy
cofibration 𝑢• : cosk0(𝐴) → ̃𝐵• and a degreewise trivial fibration
𝑣• : ̃𝐵• → cosk0(𝐵) such that 𝑣• ∘ 𝑢• = cosk0(𝑤).

• A simplicially resolvable category is a derivable category ℳ that satis-
fies the following additional axioms:

– For every object 𝐴 in ℳ, there is a simplicial resolution ( ̂𝐴•, 𝑖•) of
𝐴 where 𝑖• : sk0(𝐴) → ̂𝐴• is a Reedy trivial cofibration.

– For every weak equivalence 𝑤 : 𝐴 → 𝐵 in ℳ, there exist a de-
greewise trivial cofibration 𝑢• : sk0(𝐴) → ̂𝐴• and a Reedy fibration
𝑣• : ̂𝐴• → sk0(𝐵) such that 𝑣• ∘ 𝑢• = sk0(𝑤).

• A resolvable category is a derivable category that is both a cosimplicially
resolvable category and a simplicially resolvable category.

Proposition 4.7.7. Let ℳ be a derivable category.

(i) If ℳ is a Reedy-admissible derivable category, then ℳ is a resolvable
category.

(ii) If ℳ is a model category, then ℳ is a resolvable category.

(iii) If ℳ is a DHK model category, then cosimplicial resolutions and simpli-
cial resolutions can both be chosen functorially.

Proof. This follows from proposition 4.1.24 and theorem 4.6.15. ■

Proposition 4.7.8. Let ℳ be a resolvable category and let u� be a homotopic-
ally replete full subcategory of ℳ.
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• If ℳ is a cosimplicially resolvable category, then so is u� (with the model
structure on u� inherited from ℳ).

• If ℳ is a simplicially resolvable category, then so is u� (with the model
structure on u� inherited from ℳ).

• If ℳ is a resolvable category, then so is u� (with the model structure on
u� inherited from ℳ).

Proof. The first two claims are formally dual and the third claim is their con-
junction; we will prove the first claim.

By the proof of proposition 4.6.7, Reedy-cofibrant objects (resp. Reedy cofibra-
tions) in 𝐜ℳ are also Reedy-cofibrant objects (resp. Reedy cofibrations) in 𝐜u� ,
so u� is a cosimplicially resolvable category if ℳ is. ■

Proposition 4.7.9. Let 𝐶 be an object in a DHK model category ℳ.

• The full subcategory of the slice category 𝐜ℳ∕cosk0(𝐶) spanned by the co-
simplicial resolutions of 𝐶 is homotopically contractible.[5]

• The full subcategory of the slice category sk0(𝐶)∕𝐬ℳ spanned by the simpli-
cial resolutions of 𝐴 is homotopically contractible.

Proof. This follows from proposition 4.1.26 and theorem 4.6.15. ■

Lemma 4.7.10. Let ℳ be a model category.

• cosk0 : ℳ → 𝐬ℳ is a right Quillen functor.

• sk0 : ℳ → 𝐜ℳ is a left Quillen functor.

Proof. The two claims are formally dual; we will prove the first version.
By proposition 4.3.2, it is enough to show that (−)0 : 𝐬ℳ → ℳ preserves

cofibrations and trivial cofibrations. However, the latching category at [0] is
empty, so if 𝑓 : 𝐴• → 𝐵• is a Reedy cofibration, then 𝑓0 : 𝐴0 → 𝐵0 must be a
cofibration in ℳ. Since (−)0 preserves weak equivalences, it follows that (−)0
preserves trivial cofibrations. ■

[5] See definition 3.1.30.
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Lemma 4.7.11. Let ℳ be a model category.

• There is a unique natural transformation Δ : sk0 ⇒ cosk0 such that 𝐴 ∘
(Δ𝐴)0 ∘ 𝐴 = id𝐴 for all objects 𝐴 in ℳ, where 𝐴 : 𝐴 → sk0(𝐴)0 and

𝐴 : cosk0(𝐴)0 → 𝐴 are the components of the unit and counit of the
respective adjunctions.

• There is a unique natural transformation ∇ : sk0 ⇒ cosk0 such that 𝐴 ∘
(∇𝐴)0 ∘ 𝐴 = id𝐴 for all objects 𝐴 in ℳ, where 𝐴 : 𝐴 → sk0(𝐴)0 and

𝐴 : cosk0(𝐴)0 → 𝐴 are the components of the unit and counit of the
respective adjunctions.

Proof. The two claims are formally dual; we will prove the first version.
It is not hard to check that 𝐴 is an isomorphism, so 𝐴 ∘(Δ𝐴)0 is uniquely de-

termined. The universal property of cosk0(𝐴) implies Δ𝐴 : sk0(𝐴) → cosk0(𝐴)
is determined by its adjoint transpose 𝐴 ∘ (Δ𝐴)0 : sk0(𝐴)0 → 𝐴, so Δ𝐴 is also
uniquely determined. ■

Definition 4.7.12. Let 𝐴 be an object in a model category ℳ.

• A cosimplicial frame on 𝐴 is a pair ( ̃𝐴•, 𝑝•), where ̃𝐴• is a cosimpli-
cial object in ℳ, 𝑝• : ̃𝐴• → cosk0(𝐴) is a Reedy weak equivalence with
𝑝0 : ̃𝐴0 → cosk0(𝐴)0 an isomorphism, and ̃𝐴• is Reedy-cofibrant if 𝐴 is
cofibrant.

• A simplicial frame on 𝐴 is a pair ( ̂𝐴•, 𝑖•), where ̂𝐴• is a simplicial object
in ℳ, 𝑖• : sk0(𝐴) → ̂𝐴• is a Reedy weak equivalence with 𝑖0 : sk0(𝐴)0 →

̂𝐴0 an isomorphism, and ̂𝐴• is Reedy-fibrant if 𝐴 is fibrant.

• A left frame on 𝐴 is a tuple ( ̃𝐴•, 𝑖•, 𝑝•), where ̃𝐴• is a cosimplicial object
in ℳ, 𝑝• : ̃𝐴• → cosk0(𝐴) is a Reedy weak equivalence with 𝑝0 : ̃𝐴0 →
cosk0(𝐴)0 an isomorphism, 𝑖• is a Reedy cofibration, and 𝑝• ∘ 𝑖• = ∇𝐴.

• A right frame on 𝐴 is a tuple ( ̂𝐴•, 𝑖•, 𝑝•), where ̂𝐴• is a simplicial object in
ℳ, 𝑖• : sk0(𝐴) → ̂𝐴• is a Reedy weak equivalence with 𝑖0 : sk0(𝐴)0 → ̂𝐴0
an isomorphism, 𝑝• is a Reedy fibration, and 𝑝• ∘ 𝑖• = Δ𝐴.

Proposition 4.7.13. Let 𝐴 be an object in a model category ℳ.

(i) If ( ̃𝐴•, 𝑖•, 𝑝•) is a left frame on 𝐴, then ( ̃𝐴•, 𝑝•) is a cosimplicial frame on
𝐴.
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(ii) If 𝐴 is cofibrant, then every cosimplicial frame on 𝐴 is a cosimplicial res-
olution of 𝐴.

(iii) If ( ̃𝐴•, 𝑝•) is a cosimplicial resolution of 𝐴, then ̃𝐴• is (the underlying
cosimplicial object of) a cosimplicial frame on ̃𝐴0, and ( ̃𝐴0, 𝑝0) is (iso-
morphic to) a cofibrant replacement for 𝐴.

Dually:

(i′) If ( ̂𝐴•, 𝑖•, 𝑝•) is a right frame on 𝐴, then ( ̂𝐴•, 𝑖•) is a simplicial frame on
𝐴.

(ii′) If 𝐴 is fibrant, then every simplicial frame on 𝐴 is a simplicial resolution
of 𝐴.

(iii′) If ( ̂𝐴•, 𝑖•) is a simplicial resolution of 𝐴, then ̂𝐴• is (the underlying sim-
plicial object of) a simplicial frame on ̂𝐴0, and ( ̂𝐴0, 𝑖0) is (isomorphic to)
a fibrant replacement for 𝐴.

Proof. (i). Suppose ( ̃𝐴•, 𝑖•, 𝑝•) is a left frame on 𝐴. Lemma 4.7.10 implies that
cosk0(𝐴) is Reedy-cofibrant when 𝐴 is cofibrant, so ̃𝐴• is Reedy-cofibrant when
𝐴 is cofibrant. Thus ( ̃𝐴•, 𝑝•) is indeed a cosimplicial frame on 𝐴.

(ii). If 𝐴 is cofibrant and ( ̃𝐴•, 𝑝•) is a cosimplicial frame on 𝐴, then ̃𝐴• is Reedy-
cofibrant, and hence ( ̃𝐴•, 𝑝•) is a Reedy-cofibrant replacement for cosk0(𝐴).

(iii). Let 𝑞• : ̃𝐴• → cosk0( ̃𝐴0) be the component of the adjunction unit at
̃𝐴•. Since 𝑝• : ̃𝐴• → cosk0(𝐴) is a Reedy weak equivalence, the 2-out-of-3

property of weak equivalences in ℳ implies 𝑞• is also a Reedy weak equivalence.
Now, ̃𝐴• is Reedy-cofibrant by definition, it follows that ( ̃𝐴•, 𝑞•) is a cosimplicial
frame on ̃𝐴0.

Finally, we note that proposition 4.7.2 implies that ̃𝐴0 is a cofibrant object in
ℳ, and 𝑝0 : ̃𝐴0 → cosk0(𝐴)0 is a weak equivalence by definition, so ( ̃𝐴0, 𝑝0) is
(isomorphic to) a cofibrant replacement for 𝐴. ■

Remark 4.7.14. The notions of ‘left frame’ and ‘right frame’ are originally due
to Hovey [1999, §5.2], but he calls them ‘cosimplicial frame’ and ‘simplicial
frame’ and does not give a name to the weaker notion. It is explained in loc. cit.
that a left (resp. right) frame on 𝐴 is a cosimplicial (resp. simplicial) frame that
is almost Reedy-cofibrant (resp. Reedy-fibrant), in the sense that all but one of
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its latching (resp. matching) morphisms are cofibrations (resp. fibrations). One
consequence of this is given in proposition 4.7.21.

Definition 4.7.15. Let ℳ be a model category.

• A left framing for ℳ is a tuple (𝑄•, 𝑖•, 𝑝•), where 𝑄• : ℳ → 𝐜ℳ is a
functor, 𝑖• : sk0 ⇒ 𝑄• and 𝑝• : 𝑄• ⇒ cosk0 are natural transformations,
and (𝑄•𝐴, (𝑖𝐴)•, (𝑝𝐴)•) is a left frame for all cofibrant objects 𝐴 in ℳ.

• A right framing for ℳ is a tuple (𝑅•, 𝑖•, 𝑝•), where 𝑅• : ℳ → 𝐬ℳ is a
functor, 𝑖• : sk0 ⇒ 𝑅• and 𝑝• : 𝑅• ⇒ cosk0 are natural transformations,
and (𝑅•𝐴, (𝑖𝐴)•, (𝑝𝐴)•) is a right frame for all fibrant objects 𝐴 in ℳ.

A framed model category is a model category equipped with a left framing and
a right framing.

Theorem 4.7.16. Let ℳ be a model category.

(i) On each object 𝐴 in ℳ, there exist a left frame ( ̃𝐴•, 𝑖•, 𝑝•) and a right
frame ( ̂𝐴•, 𝑖•, 𝑝•) such that 𝑝• : ̃𝐴• → cosk0(𝐴) is a trivial Reedy fibration
and 𝑖• : sk0(𝐴) → ̂𝐴• is a trivial Reedy cofibration.

(ii) If ℳ satisfies axiom CM5*, then the left and right frames in (i) can be
chosen functorially; in particular, left and right framings for ℳ exist.

Proof. See Theorem 5.2.8 in [Hovey, 1999]. □

Theorem 4.7.17. Let 𝐴 be an object in a DHK model category ℳ.

• The nerve of the full subcategory of the slice category 𝐜ℳ∕cosk0(𝐴) spanned
by the cosimplicial frames on 𝐴 is weakly contractible.

• The nerve of the full subcategory of the slice category sk0(𝐴)∕𝐬u� spanned
by the simplicial frames on 𝐴 is weakly contractible.

Proof. See Theorem 16.6.18 in [Hirschhorn, 2003]. □
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Proposition 4.7.18. Let ℳ be a model category.

• If 𝐴 is a cofibrant object in ℳ and ( ̃𝐴•, 𝑝•) is a cosimplicial frame on 𝐴,
then the morphism

Λ𝑛
𝑘 ⋆ ̃𝐴 → Δ𝑛 ⋆ ̃𝐴

induced by any horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is a trivial cofibration in ℳ.

• If 𝐵 is a fibrant object in ℳ and ( ̂𝐵•, 𝑖•) is a simplicial frame on 𝐵, then
the morphism

{Δ𝑛, ̂𝐵} → {Λ𝑛
𝑘, ̂𝐵}

induced by any horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is a trivial fibration in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
First, note that proposition 4.7.2 implies that Λ𝑛

𝑘⋆ ̃𝐴 → Δ𝑛⋆ ̃𝐴 is a cofibration
in ℳ. Since 𝑝• : ̃𝐴• → cosk0(𝐴) is a Reedy weak equivalence, the 2-out-of-3
property of weak equivalences in ℳ implies that the morphism Δ𝑛 ⋆ ̃𝐴 → Δ0 ⋆ ̃𝐴
is a weak equivalence in ℳ for all 𝑛 ≥ 0. It is clear that − ⋆ ̃𝐴 preserves finite
colimits of finite simplicial sets, so we may then apply lemma 1.5.22. □

Corollary 4.7.19. Let ℳ be a model category and let 𝑖 : 𝑍 → 𝑊 be an anodyne
extension between finite simplicial sets.

• If 𝐴 is a cofibrant object in ℳ and ( ̃𝐴•, 𝑝•) is a cosimplicial frame on 𝐴,
then the morphism

𝑖 ⋆ id ̃𝐴 : 𝑍 ⋆ ̃𝐴 → 𝑊 ⋆ ̃𝐴

induced by 𝑖 : 𝑍 → 𝑊 is a trivial cofibration in ℳ.

• If 𝐵 is a fibrant object in ℳ and ( ̂𝐵•, 𝑖•) is a simplicial frame on 𝐵, then
the morphism

{𝑖, ̂𝐵} : {𝑊 , ̂𝐵} → {𝑍, ̂𝐵}

induced by 𝑖 : 𝑍 → 𝑊 is a trivial fibration in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
By proposition 1.4.12, the class of anodyne extensions between finite sim-

plicial sets is generated by the boundary inclusions under composition, push-
outs, and retracts. We already know that − ⋆ ̃𝐴 sends horn inclusions to trivial
cofibrations in ℳ, and it is clear that − ⋆ ̃𝐴 preserves composition, pushouts,

525



IV. Model categories

and retracts, so theorem 4.1.12 and proposition a.3.17 imply that 𝑖⋆id ̃𝐴 is a trivial
cofibration in ℳ. ■

Cosimplicial frames and left frames (resp. simplicial frames and right frames)
should be regarded as higher cylinder objects (resp. higher path objects). We can
make this precise in two different ways:

Proposition 4.7.20. Let ℳ be a model category.

• If 𝐴 is a cofibrant object in ℳ and ( ̃𝐴•, 𝑝•) is a cosimplicial frame on 𝐴,
then ( ̃𝐴1, 𝛿1, 𝛿0, 𝜎0) is a cylinder object for ̃𝐴0 (and hence, isomorphic to
a cylinder object for 𝐴).

• If 𝐵 is a fibrant object in ℳ and ( ̂𝐵•, 𝑖•) is a simplicial frame on 𝐵, then
( ̂𝐵1, 𝑑1, 𝑑0, 𝑠0) is a path object for ̂𝐵0 (and hence, isomorphic to a path
object for 𝐵).

Proof. The two claims are formally dual; we will prove the first version.
It is not hard to see that the morphism ⦅𝛿1, 𝛿0⦆ : ̃𝐴0+ ̃𝐴0 → ̃𝐴1 is isomorphic

to the morphism 𝜕Δ1 ⋆ ̃𝐴 → Δ1 ⋆ ̃𝐴 induced by 𝜕Δ1 ↪ Δ1, and the latter is a
cofibration by proposition 4.7.2. On the other hand, the morphism 𝜎0 : ̃𝐴1 → ̃𝐴0

is a retraction for 𝛿1 : ̃𝐴0 → ̃𝐴1, and proposition 4.7.18 implies the latter is
(isomorphic to) a trivial cofibration; thus, by the 2-out-of-3 property of weak
equivalences, 𝜎0 : ̃𝐴1 → ̃𝐴0 must be a weak equivalence. ■

Proposition 4.7.21. Let ℳ be a model category.

• If ( ̃𝐴•, 𝑖•, 𝑝•) is a left frame on an object in ℳ, then ( ̃𝐴1, 𝛿1, 𝛿0, 𝜎0) is a
cylinder object for ̃𝐴0.

• If ( ̃𝐵•, 𝑖•, 𝑝•) is a right frame on an object in ℳ, then ( ̃𝐵1, 𝑑1, 𝑑0, 𝑠0) is a
path object for ̂𝐵0.

Proof. The two claims are formally dual; we will prove the first version.
It is not hard to see that the morphism ⦅𝛿1, 𝛿0⦆ : ̃𝐴0+ ̃𝐴0 → ̃𝐴1 is isomorphic

to the relative latching morphism at [1] for 𝑖• : sk0(𝐴) → ̃𝐴•, and the latter is
a Reedy cofibration, so ⦅𝛿1, 𝛿0⦆ is a cofibration in ℳ. On the other hand, we
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have the following commutative diagram,

̃𝐴1 cosk0(𝐴)1

̃𝐴0 cosk0(𝐴)0

𝜎0

𝑝1

𝜎0

𝑝0

where 𝑝0 and 𝑝1 are weak equivalences in ℳ. Since 𝜎0 : cosk0(𝐴)1 → cosk(𝐴)0

is an isomorphism (and so a weak equivalence a fortiori), the 2-out-of-3 property
of weak equivalences implies 𝜎0 : ̃𝐴1 → ̃𝐴0 is also a weak equivalence. ■

Proposition 4.7.22. Let ℳ be a model category and let 𝑋 be a finite simplicial
set.

• If ( ̃𝐴•, 𝑝•) is a cosimplicial frame on a cofibrant object 𝐴 in ℳ, then the
cosimplicial object (𝑋 ⊙ ̃𝐴)• is (the object part of) a cosimplicial frame
on 𝑋 ⋆ ̃𝐴.

• If ( ̂𝐵•, 𝑖•) is a simplicial frame on a fibrant object 𝐵 in ℳ, then the simpli-
cial object (𝑋 ⋔ ̂𝐵)• is (the object part of) a simplicial frame on {𝑋, ̂𝐵}.

Proof. The two claims are formally dual; we will prove the first version.
To show that the cosimplicial object (𝑋 ⊙ ̃𝐴)• is indeed (the object part of)

a cosimplicial frame on 𝑋 ⋆ ̃𝐴, it suffices to verify that (𝑋 ⊙ ̃𝐴)• is Reedy-
cofibrant and all its codegeneracy operators are weak equivalences: the latter
condition ensures that the counit component (𝑋 ⊙ ̃𝐴)• → cosk0((𝑋 ⊙ ̃𝐴)0) is
a Reedy weak equivalence, and we know that (𝑋 ⊙ ̃𝐴)0 ≅ 𝑋 ⋆ ̃𝐴. By definition,
we have the following natural bijections:

ℳ(𝑍 ⋆ (𝑋 ⊙ ̃𝐴), 𝐵) ≅ 𝐬𝐒𝐞𝐭(𝑍, ℳ((𝑋 ⊙ ̃𝐴)•, 𝐵))
≅ 𝐬𝐒𝐞𝐭(𝑍, [𝑋, ℳ( ̃𝐴•, 𝐵)])
≅ 𝐬𝐒𝐞𝐭(𝑍 × 𝑋, ℳ( ̃𝐴•, 𝐵))
≅ ℳ((𝑍 × 𝑋) ⋆ ̃𝐴, 𝐵)

Since 𝑖 × id𝑋 : 𝑍 × 𝑋 → 𝑊 × 𝑋 is a monomorphism between finite simplicial
sets when 𝑖 : 𝑍 → 𝑊 is, we may then use proposition 4.7.2 to deduce that
(𝑋 ⊙ ̃𝐴)• is indeed Reedy-cofibrant.

It remains to be shown that the codegeneracy operators of (𝑋 ⊙ ̃𝐴)• are weak
equivalences. The cosimplicial identities and axiom CM2 implies it is enough to
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show that each coface operator 𝛿𝑖
𝑛 : (𝑋 ⊙ ̃𝐴)𝑛−1 → (𝑋 ⊙ ̃𝐴)𝑛 is a weak equival-

ence. Since the unique morphism Δ𝑛 → Δ0 is a (weak) homotopy equivalence,
we can use proposition 1.5.17 and the 2-out-of-3 property of weak homotopy
equivalences to deduce that, for each 𝛿𝑖

𝑛 : Δ𝑛−1 → Δ𝑛, the induced morphism
𝛿𝑖

𝑛 × id𝑋 : Δ0 × 𝑋 → Δ𝑛 × 𝑋 is a weak homotopy equivalence. Proposition 1.5.12
then says that 𝛿𝑖

𝑛 × id𝑋 is an anodyne extension, so by corollary 4.7.19, the in-
duced morphism (Δ𝑛−1 × 𝑋) ⋆ ̃𝐴 → (Δ𝑛 × 𝑋) ⋆ ̃𝐴 is a trivial cofibration in ℳ.
Thus, every coface operator (𝑋 ⊙ ̃𝐴)0 → (𝑋 ⊙ ̃𝐴)𝑛 is a weak equivalence in
ℳ. ■

4.8 Derived hom-spaces
Prerequisites. §§1.5, 1.6, 3.1, 3.3, 4.1, 4.3, 4.5, 4.6, 4.7.

Given a cofibrant object 𝐴 and a fibrant object 𝐵 in a model category ℳ,
there ought to be a space of morphisms 𝐴 → 𝐵, at least well-defined up to weak
equivalence, such that the set of connected components is in natural bijection
with the hom-set Ho ℳ(𝐴, 𝐵), while homotopy classes of paths correspond to
homotopy classes of homotopies of morphisms 𝐴 → 𝐵, and so on. For this, we
will use the notion of ‘resolution’ introduced in the previous section.

Definition 4.8.1. Let ℳ be a category with weak equivalences.

• A weakly constant cosimplicial object in ℳ is a cosimplicial object in ℳ
such that every coface and codegeneracy operator is a weak equivalence in
ℳ. We write 𝐜wℳ for the full subcategory of 𝐜ℳ spanned by the weakly
constant cosimplicial objects in ℳ.

• A weakly constant simplicial object in ℳ is a simplicial object in ℳ
such that every face and degeneracy operator is a weak equivalence in ℳ.
We write 𝐬wℳ for the full subcategory of 𝐬ℳ spanned by the weakly con-
stant simplicial objects in ℳ.

Lemma 4.8.2. Let ℳ be a category with weak equivalences.

• A cosimplicial object 𝐴• in ℳ is weakly constant if and only if 𝑑0 : 𝐴𝑛 →
𝐴𝑛+1 is a weak equivalence in ℳ for every natural number 𝑛.

• A simplicial object 𝐵• in ℳ is weakly constant if and only if 𝑑0 : 𝐵𝑛+1 →
𝐵𝑛 is a weak equivalence in ℳ for every natural number 𝑛.
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Proof. The two claims are formally dual; we will prove the first version.
Suppose 𝑑0 : 𝐴𝑛 → 𝐴𝑛+1 is a weak equivalence. Then, by the cosimplicial

identities (theorem 1.1.4), 𝑑0 ∘ 𝑠0 = id𝐴𝑛, so by the 2-out-of-3 property of weak
equivalences in ℳ, 𝑠0 : 𝐴𝑛+1 → 𝐴𝑛 is also a weak equivalence in ℳ. But
𝑑1 ∘ 𝑠0 = id𝐴𝑛, so 𝑑1 : 𝐴𝑛 → 𝐴𝑛+1 is a weak equivalence in ℳ, etc. ■

Lemma 4.8.3. Let ℳ be a category with weak equivalences.

• Let 𝐴• be a cosimplicial object in ℳ and let 𝑝• : 𝐴• → cosk0(𝐴0) be
the component of the adjunction unit at 𝐴•. Then 𝐴• is a weakly constant
cosimplicial object in ℳ if and only if the morphism 𝑝• : 𝐴• → cosk0(𝐴0)
is a Reedy weak equivalence.

• Let 𝐵• be a simplicial object in ℳ and let 𝑖• : sk0(𝐵0) → 𝐵 be the
component of the adjunction counit at 𝐵•. Then 𝐵• is a weakly constant
simplicial object in ℳ if and only if the morphism 𝑖• : sk0(𝐵0) → 𝐵• is a
Reedy weak equivalence.

Proof. This is a straightforward exercise in using the 2-out-of-3 property of weak
equivalences. ◊

Definition 4.8.4. Let ℳ be a derivable category.

• A cosimplicial resolution in ℳ is a cosimplicial object ̃𝐴• in ℳ for which
there exist an object 𝐴 and a morphism 𝑝• : ̃𝐴• → cosk0(𝐴) such that
( ̃𝐴•, 𝑝•) is a cosimplicial resolution on 𝐴. We write 𝐜rℳ for the full sub-
category of 𝐜ℳ spanned by the cosimplicial resolutions in ℳ.

• A simplicial resolution in ℳ is a simplicial object ̂𝐵• in ℳ for which
there exist an object 𝐵 and a morphism 𝑖• : sk0(𝐵) → ̂𝐵• such that ( ̂𝐵•, 𝑖•)
is a simplicial resolution on 𝐵. We write 𝐬rℳ for the full subcategory of
𝐬ℳ spanned by the simplicial resolutions in ℳ.

Lemma 4.8.5. Let ℳ be a derivable category. Let 𝐴• be a cosimplicial object
in ℳ and let 𝑝• : 𝐴• → cosk0(𝐴0) be the component of the adjunction unit at
𝐴•.

(i) 𝐴• is a cosimplicial resolution in ℳ if and only if (𝐴•, 𝑝•) is a cosimplicial
resolution of 𝐴0.
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(ii) 𝐴• is a cosimplicial resolution in ℳ if and only if 𝐴• is Reedy-cofibrant
and weakly constant.

Dually, let 𝐵• be a simplicial object in ℳ and let 𝑖• : sk0(𝐵0) → 𝐵 be the
component of the adjunction counit at 𝐵•.

(i′) 𝐵• is a simplicial resolution in ℳ if and only if (𝐵•, 𝑖•) is a simplicial
resolution of 𝐵0.

(ii′) 𝐵• is a simplicial resolution in ℳ if and only if 𝐵• is Reedy-fibrant and
weakly constant.

Proof. These are straightforward consequences of the definitions and proposi-
tion 4.7.13. ⧫

Lemma 4.8.6. Let ℳ be a derivable category.

• If ℳ is a cosimplicially resolvable category, then there is a left deforma-
tion retract of 𝐜wℳ of the form (𝐜rℳ, 𝑄•, 𝑝•).

• If ℳ is a simplicially resolvable category, then there is a right deformation
retract of 𝐬wℳ of the form (𝐬rℳ, 𝑅•, 𝑖•).

Proof. This is a straightforward matter of unwinding the definitions. ⧫

Proposition 4.8.7. Let ℳ be a homotopical category.

• The following adjunction is an adjoint homotopical equivalence of homo-
topical categories:

(−)0 ⊣ cosk0 : ℳ → 𝐜wℳ

In particular, we have an adjoint equivalence of homotopy categories:

Ho (−)0 ⊣ Ho cosk0 : Ho ℳ → Ho 𝐜wℳ

• The following adjunction is an adjoint homotopical equivalence of homo-
topical categories:

sk0 ⊣ (−)0 : 𝐬wℳ → ℳ

In particular, we have an adjoint equivalence of homotopy categories:

Ho sk0 ⊣ Ho (−)0 : Ho 𝐬wℳ → Ho ℳ
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Proof. The two claims are formally dual; we will prove the first version.
First of all, we note that cosk0(𝐴) is a weakly constant cosimplicial object in

ℳ for every object 𝐴 in ℳ, so the adjunction in lemma 4.7.3 restricts to an ad-
junction between ℳ and 𝐜wℳ. It is clear that the adjunction counit is a natural
isomorphism, and lemma 4.8.3 says that the adjunction unit is a natural weak
equivalence, so we indeed have an adjoint homotopical equivalence of homo-
topical categories. Finally, we use proposition 3.1.29 to deduce the claim about
homotopy categories. ■

Definition 4.8.8. Let ℳ be locally small category.

• Let 𝐴• be a cosimplicial object in ℳ and let 𝐵 be an object in ℳ. The
left hom-complex Homℳ(𝐴, 𝐵) is the simplicial set defined by the formula
below:

(Homℳ(𝐴, 𝐵))𝑛 = ℳ(𝐴𝑛, 𝐵)

• Let 𝐴 be an object in ℳ and let 𝐵• be a simplicial object in ℳ. The right
hom-complex Homℳ(𝐴, 𝐵) is the simplicial set defined by the formula
below:

(Homℳ(𝐴, 𝐵))𝑚 = ℳ(𝐴, 𝐵𝑚)

• Let 𝐴• be a cosimplicial object in ℳ and let 𝐵• be a simplicial object in
ℳ. The total hom-complex Homℳ(𝐴, 𝐵) is the simplicial set defined by
the formula below:

(Homℳ(𝐴, 𝐵))𝑘 = ℳ(𝐴𝑘, 𝐵𝑘)

Remark 4.8.9. Let ℳ be a locally small category.

• For each pair (𝐴, 𝐵) of objects in ℳ, we have the following natural iso-
morphisms:

Homℳ(cosk0(𝐴), 𝐵) ≅ disc ℳ(𝐴, 𝐵)
Homℳ(𝐴, sk0(𝐵)) ≅ disc ℳ(𝐴, 𝐵)

• For each cosimplicial object 𝐴• in ℳ and each object 𝐵 in ℳ, we have
the following natural isomorphism:

Homℳ(𝐴, sk0(𝐵)) ≅ Homℳ(𝐴, 𝐵)
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• For each object 𝐴 in ℳ and each simplicial object 𝐵• in ℳ, we have the
following natural isomorphism:

Homℳ(cosk0(𝐴), 𝐵) ≅ Homℳ(𝐴, 𝐵)

This justifies our use of the same notation for left, right, and total hom-complexes.
Remark 4.8.10. Let ℳ be a model category.

• For each finite simplicial set 𝑍, each cosimplicial object 𝐴• in ℳ, and
each object 𝐵 in ℳ, we have the following natural bijections:

𝐬𝐒𝐞𝐭(𝑍, Homℳ(𝐴, 𝐵)) ≅ ℳ(𝑍 ⋆ 𝐴, 𝐵) ≅ 𝐜ℳ(𝐴, 𝑍 ⋔ 𝐵)

• For each finite simplicial set 𝑍, each object 𝐴 in ℳ, and each simplicial
object 𝐵• in ℳ, we have the following natural bijections:

𝐬𝐒𝐞𝐭(𝑍, Homℳ(𝐴, 𝐵)) ≅ 𝐬ℳ(𝑍 ⊙ 𝐴, 𝐵) ≅ ℳ(𝐴, {𝑍, 𝐵})

Lemma 4.8.11. Let ℳ be a category with weak equivalences.

• Let 𝐴• be a weakly constant cosimplicial object in ℳ and let 𝐵 be an
object in ℳ. Given a parallel pair 𝑓0, 𝑓1 : 𝐴0 → 𝐵 in ℳ such that the
corresponding vertices in the left hom-complex Homℳ(𝐴, 𝐵) are in the
same connected component, we have 𝑓0 = 𝑓1 in Ho ℳ, and 𝑓0 : 𝐴0 → 𝐵 is
a weak equivalence in ℳ if and only if 𝑓1 : 𝐴0 → 𝐵 is a weak equivalence
in ℳ.

• Let 𝐴 be an object in ℳ and let 𝐵 be a weakly constant simplicial object
in ℳ. Given a parallel pair 𝑓 0, 𝑓 1 : 𝐴 → 𝐵0 in ℳ such that the corres-
ponding vertices in the right hom-complex Homℳ(𝐴, 𝐵) are in the same
connected component, we have 𝑓 0 = 𝑓 1 in Ho ℳ, and 𝑓 0 : 𝐴 → 𝐵0 is a
weak equivalence in ℳ if and only if 𝑓 1 : 𝐴 → 𝐵0 is a weak equivalence
in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
By induction, we may assume that there is an edge in Homℳ(𝐴, 𝐵) from 𝑓0

to 𝑓1, i.e. that there is a morphism ℎ : 𝐴1 → 𝐵 making the following diagram in
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ℳ commute:
𝐴0 𝐵

𝐴1 𝐵

𝐴0 𝐵

𝛿1

𝑓0

ℎ

𝛿0

𝑓1

Since 𝐴• is weakly constant, the coface operators 𝛿0, 𝛿1 : 𝐴0 → 𝐴1 are weak
equivalences in ℳ; but 𝜎0 ∘ 𝛿0 = 𝜎0 ∘ 𝛿1 = id𝐴0, so we must have 𝑓0 = 𝑓1
in Ho ℳ, as required. Similarly, the 2-out-of-3 property of weak equivalences
ensures that 𝑓0 : 𝐴0 → 𝐵 is a weak equivalence in ℳ if and only if 𝑓1 : 𝐴0 → 𝐵
is a weak equivalence in ℳ. ■

Lemma 4.8.12. Let ℳ be a derivable category.

• A cofibrant object with respect to any cosimplicial resolution model struc-
ture on 𝐜wℳ in ℳ is a degreewise cofibrant as a cosimplicial object in
ℳ.

• A fibrant object with respect to any simplicial resolution model structure
on 𝐬wℳ in ℳ is a degreewise fibrant as a simplicial object in ℳ.

Proof. This is a special case of proposition 4.6.3 ■

Lemma 4.8.13. Let ℳ be a derivable category.

• If 𝑖• : 𝐴• → 𝐵• is a Reedy cofibration (resp. trivial Reedy cofibration) in
𝐜ℳ, 𝑝 : 𝐶 → 𝐷 is a trivial fibration (resp. fibration) in ℳ, and the square
in the diagram below is a pullback square in 𝐬𝐒𝐞𝐭,

Homℳ(𝐵, 𝐶)

• Homℳ(𝐵, 𝐷)

Homℳ(𝐴, 𝐶) Homℳ(𝐴, 𝐷)

Homℳ(𝑖,𝐶)

Homℳ(𝐵,𝑝)

𝑖∗◰𝑝∗

Homℳ(𝑖,𝐷)

Homℳ(𝐴,𝑝)

then the unique morphism 𝑖∗ ◰𝑝∗ making the diagram commute is a trivial
Kan fibration.
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• If 𝑖 : 𝐴 → 𝐵 is a cofibration (resp. trivial cofibration) in ℳ, 𝑝• : 𝐶• → 𝐷•
is a trivial Reedy fibration (resp. Reedy fibration) in 𝐬ℳ, and the square
in the diagram below is a pullback square in 𝐬𝐒𝐞𝐭,

Homℳ(𝐵, 𝐶)

• Homℳ(𝐵, 𝐷)

Homℳ(𝐴, 𝐶) Homℳ(𝐴, 𝐷)

Homℳ(𝑖,𝐶)

Homℳ(𝐵,𝑝)

𝑖∗◰𝑝∗

Homℳ(𝑖,𝐷)

Homℳ(𝐴,𝑝)

then the unique morphism 𝑖∗ ◰𝑝∗ making the diagram commute is a trivial
Kan fibration.

Proof. This is a special case of proposition 4.5.29. ■

Lemma 4.8.14. Let ℳ be a derivable category.

• If 𝐵• is a Reedy-cofibrant cosimplicial object in ℳ, then the left hom-
complex functor Homℳ(𝐵, −) : ℳ → 𝐬𝐒𝐞𝐭 sends trivial fibrations in ℳ
to trivial Kan fibrations.

• If 𝐶• is a Reedy-fibrant simplicial object in ℳ, then the right hom-complex
functor Homℳ(−, 𝐶) : ℳop → 𝐬𝐒𝐞𝐭 sends trivial cofibrations in ℳ to
trivial Kan fibrations.

Proof. This is a special case of proposition 4.5.34. ■

Corollary 4.8.15. Let ℳ be a derivable category. For any cosimplicial resolu-
tion ̃𝐴• in ℳ:

(i) The left hom-complex functor Homℳ(𝐴, −) : ℳ → 𝐬𝐒𝐞𝐭 sends weak equi-
valences between fibrant objects in ℳ to weak homotopy equivalences of
simplicial sets.

(ii) The total hom-complex functor Homℳ(𝐴, −) : 𝐬ℳ → 𝐬𝐒𝐞𝐭 sends Reedy
weak equivalences between degreewise fibrant simplicial objects in ℳ to
weak homotopy equivalences of simplicial sets.
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Dually, for any simplicial resolution 𝐵• in ℳ:

(i′) The right hom-complex functor Homℳ(−, 𝐵) : ℳop → 𝐬𝐒𝐞𝐭 sends weak
equivalences between cofibrant objects in ℳ to weak homotopy equival-
ences of simplicial sets.

(ii′) The total hom-complex functor Homℳ(−, 𝐵) : (𝐜ℳ)op → 𝐬𝐒𝐞𝐭 sends
Reedy weak equivalences between degreewise cofibrant cosimplicial ob-
jects in ℳ to weak homotopy equivalences of simplicial sets.

Proof. (i). Apply lemma 4.1.33 to lemma 4.8.14.

(ii). Consider the functor ℳ(𝐴•, −) : 𝐬ℳ → 𝐬𝐬𝐒𝐞𝐭 that sends an object 𝐵• in
𝐬ℳ to the bisimplicial set defined by the formula below:

(ℳ(𝐴•, 𝐵•))𝑚 = Homℳ(𝐴, 𝐵𝑚)

Then, by claim (i), ℳ(𝐴•, −) sends Reedy weak equivalences between degree-
wise fibrant simplicial objects in ℳ to Reedy weak equivalences in 𝐬𝐬𝐒𝐞𝐭. We
may then use lemma 1.6.8 and theorem 1.6.10 to deduce that the total hom-
complex functor has the required property. ■

Proposition 4.8.16. Let ℳ be a derivable category.

• If ̃𝐴• is a cosimplicial resolution in ℳ, then for each fibrant object 𝐵 in
ℳ, there is a natural bijection

Ho ℳ( ̃𝐴0, 𝐵) → 𝜋0Homℳ( ̃𝐴, 𝐵)

sending the class (in Ho ℳ) of a morphism ̃𝐴0 → 𝐵 in ℳ to the connected
component of the corresponding vertex of Homℳ( ̃𝐴, 𝐵).

• If ̂𝐵• is a simplicial resolution in ℳ, then for each cofibrant object 𝐴 in
ℳ, there is a natural bijection

Ho ℳ(𝐴, ̂𝐵0) → 𝜋0Homℳ(𝐴, ̂𝐵0)

sending the class (in Ho ℳ) of a morphism 𝐴 → ̂𝐵0 in ℳ to the connected
component of the corresponding vertex of Homℳ(𝐴, ̂𝐵).
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Proof. The two claims are formally dual; we will prove the first version.
Let ̃𝐴• be a Reedy-cofibrant cosimplicial object in ℳ and let u� be the class

of trivial fibrations in ℳ. By lemma 4.8.14, know Homℳ( ̃𝐴, −) : ℳ → 𝐬𝐒𝐞𝐭
preserves trivial fibrations, and lemma 1.3.27 implies that 𝜋0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 sends
trivial Kan fibrations to bijections, so we have an induced functor

𝜋0Homℳ( ̃𝐴, −) : ℳ[u�−1] → 𝐒𝐞𝐭

and in particular, we have natural maps

ℳ[u�−1]( ̃𝐴0, 𝐵) → 𝐒𝐞𝐭(𝜋0Homℳ( ̃𝐴, ̃𝐴0), 𝜋0Homℳ( ̃𝐴, 𝐵))

so by evaluating at the vertex of Homℳ( ̃𝐴, ̃𝐴0) corresponding to id : ̃𝐴0 →
̃𝐴0, we obtain a natural map ℳ[u�−1]( ̃𝐴0, 𝐵) → 𝜋0Homℳ( ̃𝐴, 𝐵). However, by

propositions 4.1.35 and 4.4.7, the natural map

ℳ[u�−1]( ̃𝐴0, 𝐵) → Ho ℳ( ̃𝐴0, 𝐵)

induced by the localising functor ℳ[u�−1] → Ho ℳ is a bijection for each fibrant
object 𝐵 in ℳ, so we have a natural map Ho ℳ( ̃𝐴0, 𝐵) → 𝜋0Homℳ( ̃𝐴, 𝐵) of
the required form.

Observe that we have the following commutative diagram in 𝐒𝐞𝐭,

ℳ( ̃𝐴0, 𝐵) Ho ℳ( ̃𝐴0, 𝐵)

ℳ( ̃𝐴0, 𝐵) 𝜋0Homℳ( ̃𝐴, 𝐵)

where the top horizontal arrow is the map that sends a morphism in ℳ to its
class in Ho ℳ. The bottom horizontal arrow is a surjective map, so the right
vertical arrow must also be a surjective map. To complete the proof of the claim,
it now suffices to show that it is also an injective map; but this is implied by
lemma 4.8.11, so we are done. ■

Proposition 4.8.17. Let ℳ be a derivable category.

• If 𝐴• is a degreewise cofibrant weakly constant cosimplicial object in ℳ,
then the functor Homℳ(𝐴, −) : 𝐬ℳ → 𝐬𝐒𝐞𝐭 preserves Reedy weak equi-
valences between simplicial resolutions.
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• If 𝐵• is a degreewise fibrant weakly constant simplicial object in ℳ, then
the functor Homℳ(−, 𝐵) : (𝐜ℳ)op → 𝐬𝐒𝐞𝐭 preserves Reedy weak equival-
ences between cosimplicial resolutions.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐴• be a degreewise cofibrant weakly constant cosimplicial object in ℳ

and let 𝑝• : 𝐴• → cosk0(𝐴0) be the component of the adjunction unit. By
lemma 4.8.5, 𝑝• is a Reedy weak equivalence. Let 𝑓• : 𝐵• → 𝐶• be a Reedy
weak equivalence between simplicial resolutions. We then have the following
commutative diagram in 𝐬𝐒𝐞𝐭:

Homℳ(𝐴, 𝐵) Homℳ(cosk0(𝐴0), 𝐵)

Homℳ(𝐴, 𝐶) Homℳ(cosk0(𝐴0), 𝐶)

Homℳ(𝐴,𝑓)

Homℳ(𝑝,𝐵)

Homℳ(cosk0(𝐴0),𝑓)

Homℳ(𝑝,𝐶)

Corollary 4.8.15 says that Homℳ(𝑝, 𝐵) and Homℳ(𝑝, 𝐶) are weak homotopy
equivalences; but recalling lemma 4.8.12, we may then use remark 4.8.9 to de-
duce that Homℳ(cosk0(𝐴0), 𝑓) is a weak homotopy equivalence. Finally, we
apply the 2-out-of-3 property of weak homotopy equivalences to conclude that
Homℳ(𝐴, 𝑓 ) itself is a weak homotopy equivalence. ■

Corollary 4.8.18. For any derivable category ℳ, the total hom-complex functor

Homℳ : (𝐜rℳ)
op × 𝐬rℳ → 𝐬𝐒𝐞𝐭

preserves weak equivalences.

Proof. Apply lemma 4.8.12 to proposition 4.8.17. ■

Proposition 4.8.19. Let ℳ be a derivable category. If 𝐴• is a cosimplicial
resolution in ℳ and 𝐵• is a simplicial resolution in ℳ, then there is a natural
diagram of weak homotopy equivalences in 𝐬𝐒𝐞𝐭 of the form below,

Homℳ(𝐴, 𝐵0) Homℳ(𝐴, 𝐵) Homℳ(𝐴0, 𝐵)

where Homℳ(𝐴, 𝐵0) is the left hom-complex, Homℳ(𝐴0, 𝐵) is the right hom-
complex, Homℳ(𝐴, 𝐵) is the total hom-complex, the rightward arrow is the
morphism induced by the adjunction counit component 𝑖• : sk0(𝐵0) → 𝐵•, and
the leftward arrow is the morphism induced by the adjunction unit component
𝑝• : 𝐴• → cosk0(𝐴0).
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Proof. The two halves of the claim are formally dual; we will show that there is
a natural weak homotopy equivalence Homℳ(𝐴, 𝐵0) → Homℳ(𝐴, 𝐵).

Lemma 4.8.12 says that each 𝐵𝑚 is a fibrant object in ℳ, so by lemma 4.8.5,
𝑖• : sk0(𝐵0) → 𝐵• is a Reedy weak equivalence between degreewise fibrant
objects. Thus, Homℳ(𝐴, sk0(𝐵0)) → Homℳ(𝐴, 𝐵) is a weak homotopy equi-
valence, by corollary 4.8.15. Since the total hom-complex Homℳ(𝐴, sk0(𝐵0)) is
naturally isomorphic to the left hom-complex Homℳ(𝐴, 𝐵0) (by remark 4.8.9),
this is the required natural weak homotopy equivalence. ■

Definition 4.8.20. Let 𝐴 and 𝐵 be objects in a derivable category ℳ.

• A left homotopy function complex from 𝐴 to 𝐵 consists of the data
( ̃𝐴•, 𝑝•, ̂𝐵, 𝑖, Homℳ( ̃𝐴, ̂𝐵)), where ( ̃𝐴•, 𝑝•) is a cosimplicial resolution
of 𝐴, ( ̂𝐵, 𝑖) is a fibrant replacement for 𝐵, and Homℳ( ̃𝐴, ̂𝐵) is the left
hom-complex.

• A right homotopy function complex from 𝐴 to 𝐵 consists of the data
( ̃𝐴, 𝑝, ̂𝐵•, 𝑖•, Homℳ( ̃𝐴, ̂𝐵)), where (𝐴, 𝑝) is a cofibrant replacement for
𝐴, ( ̂𝐵•, 𝑖•) is a simplicial resolution of 𝐵, and Homℳ( ̃𝐴, ̂𝐵) is the right
hom-complex.

• A two-sided homotopy function complex from 𝐴 to 𝐵 consists of the data
( ̃𝐴•, 𝑝•, ̂𝐵•, 𝑖•, Homℳ( ̃𝐴, ̂𝐵)), where ( ̃𝐴•, 𝑝•) is a cosimplicial resolution
of 𝐴, ( ̂𝐵•, 𝑖) is a simplicial resolution of 𝐵, and Homℳ( ̃𝐴, ̂𝐵) is the total
hom-complex.

We will often abuse notation and say Homℳ( ̃𝐴, ̂𝐵) is a (left, right, or two-sided)
homotopy function complex from 𝐴 to 𝐵, omitting mention of the other data.

Remark 4.8.21. The weak homotopy type of Homℳ( ̃𝐴, ̂𝐵) depends only on the
isomorphism class of 𝐴 and 𝐵 in Ho ℳ, by corollary 4.8.15.

Proposition 4.8.22. Let 𝑓 : 𝐴 → 𝐵 be a morphism in a derivable category ℳ.

• Let ( ̂𝐴, 𝑖𝐴) and ( ̂𝐵, 𝑖𝐵) be fibrant replacements for 𝐴 and 𝐵, respectively,
and let ̂𝑓 : ̂𝐴 → ̂𝐵 be any morphism in ℳ making the diagram below
commute:

𝐴 ̂𝐴

𝐵 ̂𝐵

𝑓

𝑖𝐴

̂𝑓

𝑖𝐵
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Assuming ℳ is a cosimplicially resolvable category, 𝑓 : 𝐴 → 𝐵 is an
isomorphism in Ho ℳ if and only if the induced morphism of left homotopy
function complexes

Homℳ(𝐶, ̂𝑓) : Homℳ(𝐶, ̂𝐴) → Homℳ(𝐶, ̂𝐵)

is a weak homotopy equivalence for all cosimplicial resolutions 𝐶•.

• Let ( ̃𝐴, 𝑝𝐴) and ( ̃𝐵, 𝑝𝐵) be cofibrant replacements for 𝐴 and 𝐵, respect-
ively, and let ̃𝑓 : ̃𝐴 → ̃𝐵 be any morphism in ℳ making the diagram
below commute:

̃𝐴 𝐴

̃𝐵 𝐵

̃𝑓

𝑝𝐴

𝑓

𝑝𝐵

Assuming ℳ is a simplicially resolvable category, 𝑓 : 𝐴 → 𝐵 is an iso-
morphism in Ho ℳ if and only if the induced morphism of right homotopy
function complexes

Homℳ( ̃𝑓 , 𝐶) : Homℳ( ̃𝐵, 𝐶) → Homℳ( ̃𝐴, 𝐶)

is a weak homotopy equivalence for all simplicial resolutions 𝐶•.

Proof. The two claims are formally dual; we will prove the first version.
First, suppose 𝑓 : 𝐴 → 𝐵 is an isomorphism in Ho ℳ. Then, by propos-

ition 4.1.35, ̂𝑓 : ̂𝐴 → ̂𝐵 is an isomorphism in Ho ℳf, so we may use corol-
lary 4.8.15 (and lemma 1.5.2) to deduce that Homℳ(𝐶, ̂𝑓) is a weak homotopy
equivalence for all cosimplicial resolutions 𝐶•.

Conversely, suppose Homℳ(𝐶, ̂𝑓) is a weak homotopy equivalence for all
cosimplicial resolutions 𝐶•. Proposition 4.8.16 then implies that the hom-set
map

Ho ℳ(𝐶0, ̂𝑓) : Ho ℳ(𝐶0, ̂𝐴) → Ho ℳ(𝐶0, ̂𝐵)

is a bijection for all cosimplicial resolutions 𝐶•; but by hypothesis, every ob-
ject in ℳ is weakly equivalent to one that occurs as 𝐶0 for some cosimplicial
resolution 𝐶•, so ̂𝑓 : ̂𝐴 → ̂𝐵 and 𝑓 : 𝐴 → 𝐵 are isomorphisms in Ho ℳ. ■
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Definition 4.8.23. Let ℳ be a derivable category.

• Assuming ℳ is a cosimplicially resolvable category, a derived left hom-
space functor for an object 𝐵 in ℳ is a functor

𝐑Homℳ(−, 𝐵) : (Ho ℳ)op → Ho 𝐬𝐒𝐞𝐭

equipped with natural isomorphisms

𝐑Homℳ(𝐴0, 𝐵) ≅ Homℳ(𝐴, ̂𝐵)

in Ho 𝐬𝐒𝐞𝐭, where 𝐴• varies over the cosimplicial resolutions in ℳ, ( ̂𝐵, 𝑖)
varies over the fibrant replacements for 𝐵, and Homℳ(𝐴, ̂𝐵) is the left
hom-complex.

• Assuming ℳ is a simplicially resolvable category, a derived right hom-
space functor for an object 𝐴 in ℳ is a functor

𝐑Homℳ(𝐴, −) : Ho ℳ → Ho 𝐬𝐒𝐞𝐭

equipped with natural isomorphisms

𝐑Homℳ(𝐴, 𝐵0) ≅ Homℳ( ̃𝐴, 𝐵)

in Ho 𝐬𝐒𝐞𝐭, where ( ̃𝐴, 𝑝) varies over the cofibrant replacements for 𝐴, 𝐵•
varies over the simplicial resolutions in ℳ, and Homℳ( ̃𝐴, 𝐵) is the right
hom-complex.

• Assuming ℳ is a resolvable category, a derived hom-space functor for
ℳ is a functor 𝐑Homℳ : (Ho ℳ)op × Ho ℳ → Ho 𝐬𝐒𝐞𝐭 equipped with
natural isomorphisms

𝐑Homℳ(𝐴0, 𝐵0) ≅ Homℳ(𝐴, 𝐵)

in Ho 𝐬𝐒𝐞𝐭, where 𝐴• varies over the cosimplicial resolutions in ℳ, 𝐵•
varies over the simplicial resolutions in ℳ, and Homℳ(𝐴, 𝐵) is the total
hom-complex.

We will often refer to the object 𝐑Homℳ(𝐴, 𝐵) as a derived hom-space, omit-
ting mention of the other data.
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The name ‘derived hom-space’ is justified by the following theorem.

Theorem 4.8.24. Let ℳ be a resolvable category, let (𝐜rℳ, 𝑄•, 𝑝•) be a left
deformation retract of 𝐜wℳ, and let (𝐬rℳ, 𝑅•, 𝑖•) be a right deformation retract
of 𝐬wℳ.

(i) ((𝐜rℳ)
op × 𝐬rℳ, 𝑄• × 𝑅•, (𝑝•, 𝑖•)) is a right deformation retract for the

total hom-complex functor Homℳ : (𝐜wℳ)
op × 𝐬wℳ → 𝐬𝐒𝐞𝐭.

(ii) Homℳ : (𝐜wℳ)
op × 𝐬wℳ → 𝐬𝐒𝐞𝐭 has a total right derived functor; fur-

thermore, if (𝐜rℳ, 𝑄•, 𝑝•) and (𝐬rℳ, 𝑅•, 𝑖•) are functorial deformation
retracts, then Homℳ also has a homotopical right approximation.

(iii) The functor 𝐑Homℳ(cosk0(−), sk0(−)) : (Ho ℳ)op × Ho ℳ → Ho 𝐬𝐒𝐞𝐭
is a derived hom-space functor for ℳ.

Proof. (i). It suffices to show that the restriction the total hom-complex functor
Homℳ preserves weak equivalences as a functor (𝐜rℳ)

op × 𝐬rℳ → 𝐬𝐒𝐞𝐭; but
this is a consequence of lemma 4.8.12 and corollary 4.8.18.

(ii). Apply theorems 3.3.17 and 3.4.11.

(iii). This follows from claims (i) and (ii). ■

Theorem 4.8.25. Let ℳ be a resolvable category. If 𝐵 is a fibrant object in ℳ,
then:

(i) The left hom-complex functor Homℳ(−, 𝐵) : (𝐜ℳ)op → 𝐬𝐒𝐞𝐭 sends de-
greewise trivial cofibrations in 𝐜ℳ and Reedy weak equivalences in 𝐜rℳ
to weak homotopy equivalences in 𝐬𝐒𝐞𝐭.

(ii) The left hom-complex functor Homℳ(−, 𝐵) : (𝐜wℳ)
op → 𝐬𝐒𝐞𝐭 admits a

total right derived functor.

(iii) The functor 𝐑Homℳ(cosk0(−), 𝐵) : (Ho ℳ)op → Ho 𝐬𝐒𝐞𝐭 is a derived
left hom-space functor.
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Dually, if 𝐴 is a cofibrant object in ℳ, then:

(i′) The right hom-complex functor Homℳ(𝐴, −) : 𝐬ℳ → 𝐬𝐒𝐞𝐭 sends degree-
wise trivial fibrations in 𝐬ℳ and Reedy weak equivalences in 𝐬rℳ to weak
homotopy equivalences in 𝐬𝐒𝐞𝐭.

(ii′) The right hom-complex functor Homℳ(𝐴, −) : 𝐬wℳ → 𝐬𝐒𝐞𝐭 admits a
total right derived functor.

(iii′) The functor 𝐑Homℳ(𝐴, sk0(−)) : Ho ℳ → Ho 𝐬𝐒𝐞𝐭 is a derived right
hom-space functor.

Proof. (i). Let 𝑓 • : 𝐴• → 𝐶• be a degreewise trivial cofibration in 𝐜ℳ (resp.
Reedy weak equivalence in 𝐜rℳ), and choose a simplicial resolution ( ̂𝐵•, 𝑖•) of
𝐵. We then have a morphism of bisimplicial sets

ℳ(𝑓 •, ̂𝐵•) : ℳ(𝐶•, ̂𝐵•) → ℳ(𝐴•, ̂𝐵•)

and since each 𝑓 𝑛 : 𝐴𝑛 → 𝐶𝑛 is a trivial cofibration (resp. weak equivalence) in
ℳ, lemma 4.8.14 (resp. corollary 4.8.15) says that the components

ℳ(𝑓 𝑛, ̂𝐵•) : ℳ(𝐶𝑛, ̂𝐵•) → ℳ(𝐴𝑛, ̂𝐵•)

are trivial Kan fibrations, hence weak homotopy equivalences a fortiori. Thus,
applying lemma 1.6.8 and theorem 1.6.10, we deduce that the morphism

Homℳ(𝑓 , ̂𝐵) : Homℳ(𝐶, ̂𝐵) → Homℳ(𝐴, ̂𝐵)

is a weak homotopy equivalence. Using corollary 4.8.15, proposition 4.8.19, and
the 2-out-of-3 property of weak homotopy equivalences, we then conclude that
the morphism Homℳ(𝑓 , 𝐵) : Homℳ(𝐶, 𝐵) → Homℳ(𝐴, 𝐵) is indeed a weak
homotopy equivalence.

(ii). By lemma 4.8.6, there is a left deformation retract (𝐜rℳ, 𝑄•, 𝑝•) of 𝐜wℳ;
and we have seen that Homℳ(−, 𝐵) preserves weak equivalences as a functor
(𝐜rℳ)

op → 𝐬𝐒𝐞𝐭, so we may apply theorem 3.3.17.

(iii). The total derived functor theorem implies that 𝐑Homℳ(cosk0(𝐴), 𝐵) is
naturally isomorphic to the weak homotopy type of Homℳ( ̃𝐴, 𝐵) for any co-
simplicial resolution ( ̃𝐴•, 𝑝•) of cosk0(𝐴), so 𝐑Homℳ(cosk0(−), 𝐵) is indeed a
derived left hom-space functor. ■
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Definition 4.8.26. Let ℳ be a derivable category. A cosimplicial resolution
model structure on 𝐜wℳ is a model structure that satisfies the following condi-
tions:

• 𝐜wℳ is a derivable category with this model structure.

• The weak equivalences in 𝐜wℳ are the Reedy weak equivalences.

• Every fibration (resp. trivial fibration) in 𝐜wℳ is a degreewise fibration
(resp. degreewise trivial fibration) in 𝐜ℳ.

• Every cofibration (resp. trivial cofibration) in 𝐜wℳ is a Reedy cofibration
(resp. Reedy trivial cofibration) in 𝐜ℳ.

• Every cofibrant object in 𝐜wℳ is a Reedy-cofibrant object in 𝐜ℳ.

• If ̃𝐴• is a cofibrant object in 𝐜wℳ, then the left hom-complex functor

Homℳ( ̃𝐴, −) : ℳ → 𝐬𝐒𝐞𝐭

sends fibrations (resp. fibrant objects) in ℳ to Kan fibrations (resp. Kan
complexes).

• If 𝑖• : 𝐴• → 𝐵• is a cofibration between cofibrant objects in 𝐜wℳ, 𝑝 : 𝐶 →
𝐷 is a fibration in ℳ, and the square in the diagram below is a pullback
square in 𝐬𝐒𝐞𝐭,

Homℳ(𝐵, 𝐶)

• Homℳ(𝐵, 𝐷)

Homℳ(𝐴, 𝐶) Homℳ(𝐴, 𝐷)

Homℳ(𝑖,𝐶)

Homℳ(𝐵,𝑝)

𝑖∗◰𝑝∗

Homℳ(𝑖,𝐷)

Homℳ(𝐴,𝑝)

then the unique morphism 𝑖∗ ◰ 𝑝∗ making the diagram commute is a Kan
fibration.

Dually, a simplicial resolution model structure on 𝐬wℳ is a model structure
that satisfies the following conditions:

• 𝐬wℳ is a derivable category with this model structure.
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• The weak equivalences in 𝐬wℳ are the Reedy weak equivalences.

• Every cofibration (resp. trivial cofibration) in 𝐬wℳ is a degreewise cofibra-
tion (resp. degreewise trivial cofibration) in 𝐬ℳ.

• Every fibration (resp. trivial fibration) in 𝐬wℳ is a Reedy fibration (resp.
Reedy trivial fibration) in 𝐬ℳ.

• Every fibrant object in 𝐬wℳ is a Reedy-fibrant object in 𝐬ℳ.

• If ̂𝐵• is a fibrant object in 𝐬wℳ, then the right hom-complex functor

Homℳ(−, ̂𝐵) : ℳop → 𝐬𝐒𝐞𝐭

sends cofibrations (resp. cofibrant objects) in ℳ to Kan fibrations (resp.
Kan complexes).

• If 𝑖 : 𝐴 → 𝐵 is a cofibration in ℳ, 𝑝• : 𝐶• → 𝐷• is a fibration between
fibrant objects in 𝐬wℳ, and the square in the diagram below is a pullback
square in 𝐬𝐒𝐞𝐭,

Homℳ(𝐵, 𝐶)

• Homℳ(𝐵, 𝐷)

Homℳ(𝐴, 𝐶) Homℳ(𝐴, 𝐷)

Homℳ(𝑖,𝐶)

Homℳ(𝐵,𝑝)

𝑖∗◰𝑝∗

Homℳ(𝑖,𝐷)

Homℳ(𝐴,𝑝)

then the unique morphism 𝑖∗ ◰ 𝑝∗ making the diagram commute is a Kan
fibration.

Remark 4.8.27. If ℳ has initial and terminal objects, then the first condition on
left hom-complexes (resp. right hom-complexes) is a special case of the second
condition.
Remark 4.8.28. If there is a cosimplicial resolution model structure on 𝐜wℳ,
then ℳ is a cosimplicially resolvable category; dually, if there is a simplicial
resolution model structure on 𝐬wℳ, then ℳ is a simplicially resolvable category.
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Remark 4.8.29. If ℳ is a model category, then:

• A cofibrant object with respect to any cosimplicial resolution model struc-
ture on 𝐜wℳ is a cosimplicial resolution in ℳ.

• A fibrant object with respect to any simplicial resolution model structure
on 𝐬wℳ is a simplicial resolution in ℳ.

Conversely, we will show (as theorem 4.8.34) that there exist a cosimplicial (resp.
simplicial) resolution model structure on 𝐜wℳ (resp. 𝐬wℳ) where the cofibrant
(resp. fibrant) objects are precisely the cosimplicial (resp. simplicial) resolutions
in ℳ.

Proposition 4.8.30. Let ℳ be a derivable category.

• For any cosimplicial resolution model structure on 𝐜wℳ, the following
adjunction is a Quillen equivalence of derivable categories:

(−)0 ⊣ cosk0 : ℳ → 𝐜wℳ

• For any simplicial resolution model structure on 𝐬wℳ, the following ad-
junction is a Quillen equivalence of derivable categories:

sk0 ⊣ (−)0 : 𝐬wℳ → ℳ

Proof. The two claims are formally dual; we will prove the first version.
Proposition 4.6.4 implies that (−)0 : 𝐜wℳ → ℳ is a left Quillen functor,

so by proposition 4.3.2, we indeed have a Quillen adjunction. Moreover, for
any weakly constant cosimplicial object 𝐴• in ℳ and any object 𝐵 in ℳ, a
morphism 𝐴0 → 𝐵 is a weak equivalence in ℳ if and only if its right adjoint
transpose 𝐴• → cosk0(𝐴) is a weak equivalence in 𝐜wℳ, so the adjunction is a
Quillen equivalence. ■

Proposition 4.8.31. Let ℳ be a derivable category and let u� be a homotopic-
ally replete full subcategory of ℳ.

• Given a cosimplicial resolution model structure on 𝐜wℳ, its restriction to
𝐜wu� is cosimplicial resolution model structure (with respect to the model
structure on u� inherited from ℳ).
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• Given a simplicial resolution model structure on 𝐬wℳ, its restriction to
𝐬wu� is cosimplicial resolution model structure (with respect to the model
structure on u� inherited from ℳ).

Proof. The two claims are formally dual; we will prove the first version.
By proposition 4.1.28, the model structure on 𝐜wℳ restricted to 𝐜wu� is a

model structure; and by the proof of proposition 4.6.7, the weak equivalences
(resp. cofibrations, trivial cofibrations, cofibrant objects) in 𝐜wu� are Reedy weak
equivalences (resp. Reedy cofibrations, Reedy trivial cofibrations, Reedy-cofibrant
objects), as required. Finally, it is clear that the conditions on left hom-complexes
are satisfied by 𝐜wu� if they are satisfied by 𝐜wℳ. ■

Lemma 4.8.32. Let ℳ be a model category.

• A morphism 𝐴• → 𝐵• in ℳ is a Reedy cofibration if and only if the induced
morphism

(𝑊 ⋆ 𝐴) ∪𝑊 ⋆𝐴 (𝑍 ⋆ 𝐵) → 𝑊 ⋆ 𝐵

is a cofibration in ℳ for all monomorphisms 𝑍 → 𝑊 between finite sim-
plicial sets.

• A morphism 𝐴• → 𝐵• in ℳ is a Reedy fibration if and only if the induced
morphism

{𝑊 , 𝐴} → {𝑍, 𝐴} ×{𝑍,𝐵} {𝑊 , 𝐵}

is a fibration in ℳ for all monomorphisms 𝑍 → 𝑊 between finite simpli-
cial sets.

Proof. Since monomorphisms in 𝐬𝐒𝐞𝐭 are relative Reedy cell complexes (by pro-
position 1.2.23), this is just a special case of proposition 4.5.41. ■

Lemma 4.8.33. Let ℳ be a model category.

• Given a Reedy cofibration 𝐴• → 𝐵• between cosimplicial resolutions in
ℳ, the morphism

(Δ𝑛 ⋆ 𝐴) ∪Λ𝑛
𝑘⋆𝐴 (Λ𝑛

𝑘 ⋆ 𝐵) → Δ𝑛 ⋆ 𝐵

induced by any horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is a trivial cofibration in ℳ.
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• Given a Reedy fibration 𝐴• → 𝐵• between simplicial resolutions in ℳ,
the morphism

{Δ𝑛, 𝐴} → {Λ𝑛
𝑘, 𝐴} ×{Λ𝑛

𝑘,𝐵} {Δ𝑛, 𝐵}

induced by any horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is a trivial fibration in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
Consider the following commutative square in ℳ:

Λ𝑛
𝑘 ⋆ 𝐴 Λ𝑛

𝑘 ⋆ 𝐵

Δ𝑛 ⋆ 𝐴 Δ𝑛 ⋆ 𝐵

Since 𝐴• and 𝐵• are cosimplicial resolutions in ℳ, we may apply proposi-
tion 4.7.18 to deduce that the vertical arrows are trivial cofibrations in ℳ. Thus,
by axiom CM2 and corollary 4.1.13, the morphism (Δ𝑛 ⋆ 𝐴) ∪Λ𝑛

𝑘⋆𝐴 (Λ𝑛
𝑘 ⋆ 𝐵) →

Δ𝑛⋆𝐵 is a weak equivalence in ℳ. It remains to be shown that the morphism is a
cofibration in ℳ; but that is a special case of lemma 4.8.32, so we are done. ■

Theorem 4.8.34. Let ℳ be a model category.

• The restriction of the Reedy model structure on 𝐜ℳ is a cosimplicial res-
olution model structure on 𝐜wℳ.

• The restriction of the Reedy model structure on 𝐬ℳ is a simplicial resolu-
tion model structure on 𝐬wℳ.

Proof. The two claims are formally dual; we will prove the first version.
By proposition 4.1.28, the restriction of the Reedy model structure on 𝐜ℳ

makes 𝐜wℳ a derivable category where the weak equivalences, cofibrations,
trivial cofibrations, and cofibrant objects are the expected ones. The condition
on left hom-complexes remains to be verified; but recalling lemma 4.8.33 and
remark 4.8.10, this is (essentially) a special case of proposition 5.5.1. ■

Theorem 4.8.35. Let ℳ be a derivable category. If 𝐜wℳ has a cosimplicial res-
olution model structure and h• : ℳ → [(𝐜cℳ)

op, 𝐬𝐒𝐞𝐭]h is the functor defined
by

h𝐵(𝐴) = Homℳ(𝐴, 𝐵)

where Homℳ(𝐴, 𝐵) is the left hom-complex and 𝐜cℳ is the full subcategory of
cofibrant objects in 𝐜wℳ, then:
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(i) h• sends fibrations (resp. fibrant objects, trivial fibrations) in ℳ to com-
ponentwise Kan fibrations (resp. componentwise Kan complexes, compon-
entwise trivial Kan fibrations).

(ii) h• admits a total right derived functor.

(iii) For each cofibrant object 𝐴• in 𝐜wℳ and each object 𝐵 in ℳ, 𝐑h𝐵(𝐴) is
a derived hom-space 𝐑Homℳ(𝐴0, 𝐵).

Dually, if 𝐬wℳ has a simplicial resolution model structure and h• : ℳop →
[𝐬fℳ, 𝐬𝐒𝐞𝐭]h is the functor defined by

h𝐴(𝐵) = Homℳ(𝐴, 𝐵)

where Homℳ(𝐴, 𝐵) is the right hom-complex and 𝐬fℳ is the full subcategory of
fibrant objects in 𝐬wℳ, then:

(i′) h• sends cofibrations (resp. trivial cofibrations) in ℳ to componentwise
Kan fibrations (resp. componentwise trivial Kan fibrations).

(ii′) h• admits a total right derived functor.

(iii′) For each object 𝐴 in ℳ and each simplicial resolution 𝐵• in ℳ, 𝐑h𝐴(𝐵)
is a derived hom-space 𝐑Homℳ(𝐴, 𝐵0).

Proof. (i). The preservation of fibrations and fibrant objects is a consequence
of the hypothesis that 𝐜wℳ has a cosimplicial resolution model structure, and
the preservation of trivial fibrations is lemma 4.8.13; note that corollary 4.8.15
implies that each h𝐵 : (𝐜rℳ)

op → 𝐬𝐒𝐞𝐭 indeed preserves weak equivalences.

(ii). Since the weak equivalences in [(𝐜rℳ)
op, 𝐬𝐒𝐞𝐭]h are componentwise (by

definition), we may apply theorem 4.3.12.

(iii). The total derived functor theorem implies that 𝐑h𝐵(𝐴) is isomorphic to the
weak homotopy type of the left hom-complex Homℳ(𝐴, ̂𝐵), where ( ̂𝐵, 𝑖) is any
fibrant replacement for 𝐵, so 𝐑h𝐵(𝐴) is a derived hom-space 𝐑Homℳ(𝐴0, 𝐵).

■

Lemma 4.8.36. Let ℳ and u� be derivable categories and let

𝐹 ⊣ 𝐺 : u� → ℳ

be a Quillen adjunction.
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• The induced functor 𝐜𝐹 : 𝐜ℳ → 𝐜u� sends cosimplicial resolutions in
ℳ to cosimplicial resolutions in u� .

• The induced functor 𝐬𝐺 : 𝐬u� → 𝐬ℳ sends simplicial resolutions in u� to
simplicial resolutions in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
By propositions 4.3.4 and 4.6.18, 𝐜𝐹 sends Reedy-cofibrant cosimplicial ob-

jects in ℳ to Reedy-cofibrant cosimplicial objects in u� . Lemma 4.1.33 implies
that 𝐜𝐹 preserves weak constancy for degreewise cofibrant cosimplicial objects;
but lemma 4.8.12 says cosimplicial resolutions are degreewise cofibrant, so we
are done. ■

Theorem 4.8.37. Let ℳ and u� be derivable categories, let

𝐹 ⊣ 𝐺 : u� → ℳ

be a Quillen adjunction, and let

𝐋𝐹 ⊣ 𝐑𝐺 : Ho u� → Ho ℳ

be the derived adjunction. If either

• both ℳ and u� are cosimplicially resolvable categories, or

• both ℳ and u� are simplicially resolvable categories,

then there are natural isomorphisms

𝐑Homu� ((𝐋𝐹 )𝐴, 𝐵) ≅ 𝐑Homℳ(𝐴, (𝐑𝐺)𝐵)

in Ho 𝐬𝐒𝐞𝐭, where 𝐴 varies in Ho ℳ and 𝐵 varies in Ho u� .

Proof. The two subclaims are formally dual; we will prove the first version.
Let ̃𝐴 be a cosimplicial resolution in ℳ and let 𝐵 be a fibrant object in u� .

Since 𝐹 ⊣ 𝐺 is an adjunction, we have the following natural isomorphism of left
hom-complexes;

Homu� (𝐹 ̃𝐴, 𝐵) ≅ Homℳ( ̃𝐴, 𝐺𝐵)
moreover, by proposition 4.3.4 and lemma 4.8.36, both simplicial sets are (part
of) left homotopy function complexes. Theorem 4.3.12 and proposition 4.8.30
then imply we have the required natural isomorphism in Ho 𝐬𝐒𝐞𝐭. ■
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Lemma 4.8.38. Let ℳ be a derivable category.

• If 𝑖• : 𝐴• → 𝐵• is a cofibration between cofibrant objects with respect to a
cosimplicial resolution model structure on 𝐜wℳ, 𝑝 : 𝐶 → 𝐷 is a fibration
in ℳ, and the induced morphism

Homℳ(𝐵, 𝐶) → Homℳ(𝐴, 𝐶) ×Homℳ(𝐴,𝐷) Homℳ(𝐵, 𝐷)

is a weak homotopy equivalence, then 𝑝 : 𝐶 → 𝐷 has the right lifting
property with respect to each 𝑖𝑛 : 𝐴𝑛 → 𝐵𝑛.

• If 𝑖 : 𝐴 → 𝐵 is a cofibration in ℳ, 𝑝• : 𝐶• → 𝐷• is a fibration between
fibrant objects with respect to a simplicial resolution model structure on
𝐬wℳ, and the induced morphism

Homℳ(𝐵, 𝐶) → Homℳ(𝐴, 𝐶) ×Homℳ(𝐴,𝐷) Homℳ(𝐵, 𝐷)

is a weak homotopy equivalence, then 𝑖 : 𝐴 → 𝐵 has the left lifting prop-
erty with respect to each 𝑝𝑛 : 𝐶𝑛 → 𝐷𝑛.

Proof. The two claims are formally dual; we will prove the first version.
By definition, the indicated morphism of simplicial sets is a Kan fibration, so

the hypothesis implies it is a trivial Kan fibration. Since every simplicial set is
cofibrant, the morphism is a (split) epimorphism; thus, for each natural number
𝑛, the map

ℳ(𝐵𝑛, 𝐶) → ℳ(𝐴𝑛, 𝐶) ×ℳ(𝐴𝑛,𝐷) ℳ(𝐵𝑛, 𝐷)

is a surjection. We may then apply lemma a.3.2 to deduce that 𝑝 : 𝐶 → 𝐷 has
the right lifting property with respect to each 𝑖𝑛 : 𝐴𝑛 → 𝐵𝑛. ■

4.9 The Dwyer–Kan comparison theorem
Prerequisites. §§1.1, 1.5, 1.6, 1.9, 1.11, 2.8, 4.1, 4.6, 4.7, 4.8, a.4.

In this section, following Dwyer and Kan [1980c], we examine the relation-
ship between the derived hom-spaces of a resolvable category ℳ and the hom-
spaces of its hammock localisation 𝐋𝐨H(ℳ).
Remark 4.9.1. If we do not restrict our attention to small resolvable categories,
then it will be necessary to work with categories that may not be essentially
small as well as various simplicial ensembles constructed from the nerves of such
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categories. Fortunately, the main result of this section says that many of these
(large) simplicial ensembles of interest are actually weakly homotopy equivalent
to (small) simplicial sets.

It will be convenient to make the following definition:

Definition 4.9.2. Let ℳ be a category with a model structure.

• A marked zigzag type (𝑇 , 𝑉 ′, 𝑉 ″) is a zigzag type 𝑇 , regarded as a re-
lative category, equipped with a pair of subcategories 𝑉 ′ and 𝑉 ″ of the
subcategory of weak equivalences.

• A zigzag in ℳ of type (𝑇 , 𝑉 ′, 𝑉 ″) is a zigzag of type 𝑇 where the morph-
isms in 𝑉 ′ (resp. 𝑉 ″) are mapped to trivial cofibrations (resp. trivial fibra-
tions) in ℳ.

Proposition 4.9.3. Let ℳ be a derivable category and let u� be the following
category:

• The objects are zigzags in ℳ of the following type:

• • • •t. fib. t. cofib.

• The morphisms are commutative diagrams in ℳ of the form below,

• • • •

• • • •

where the top row is the domain and the bottom row is the codomain. (We
do not put any restrictions on the vertical arrows.)

• Composition and identities are inherited from ℳ.

Let dom : u� → ℳ (resp. codom : u� → ℳ) be the functor defined by sending a
zigzag to its leftmost (resp. rightmost) vertex.

• The functor dom : u� → ℳ is a Grothendieck fibration.

• The functor codom : u� → ℳ is a Grothendieck opfibration.
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Moreover:

• Let 𝐵 be an object in ℳ and let u�𝐵 be the fibre of codom : u� → ℳ over
{𝐵}. Then dom : u�𝐵 → ℳ is a Grothendieck fibration.

• Let 𝐴 be an object in ℳ and let u� 𝐴 be the fibre of dom : u� → ℳ over
{𝐴}. Then codom : u� 𝐴 → ℳ is a Grothendieck fibration.

Proof. The two parts of each set of claims are formally dual; we will prove the
first version of each.

Consider a morphism in u� , i.e. a commutative diagram in ℳ of the form
below:

𝐴′ ̃𝐴′ ̂𝐵 𝐵

𝐴 ̃𝐴 ̂𝐵 𝐵

It is not hard to verify that this is a dom-prone morphism if (and only if) the
leftmost square is a pullback diagram in ℳ and the arrows ̂𝐵′ → ̂𝐵 and 𝐵′ → 𝐵
are isomorphisms. Recalling corollary 4.1.13, it follows that dom : u� → ℳ is
a Grothendieck fibration. A similar argument shows that dom : u�𝐵 → ℳ is a
Grothendieck fibration (with the same prone morphisms). ■

Corollary 4.9.4. Let ℳ be a derivable category.

(i) There is a (ℳ × ℳop)-indexed category whose fibre over (𝐴, 𝐵) is the
category u� (𝐴, 𝐵) of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

• • • •t. fib. t. cofib.

where reindexing in the first variable is pullback and reindexing in the
second variable is pushout.

(ii) Assuming ℳ is small, (𝐴, 𝐵) ↦ N(u� (𝐴, 𝐵)) defines a functor ℳop ×
ℳ → Ho 𝐬𝐒𝐞𝐭.

Proof. (i). This is a straightforward consequence of proposition 4.9.3.

(ii). Apply lemma 1.3.10 and corollary 1.5.5. ■
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Proposition 4.9.5. Let 𝐶 be an object in a derivable category ℳ.

• Let (ℳ∕𝐶)wf be the full subcategory of ℳ∕𝐶 spanned by the trivial fibra-
tions 𝐵 → 𝐶 and let ( ̃𝐴•, 𝑝•) be a cosimplicial resolution of 𝐴. If 𝑝• :

̃𝐴• → cosk0(𝐶) is a degreewise trivial fibration in 𝐜ℳ, then the corres-
ponding functor 𝑃 : 𝚫 → (ℳ∕𝐶)wf is a right aspherical functor.

• Let (𝐶∕ℳ)wc be the full subcategory of 𝐶∕ℳ spanned by the trivial cofibra-
tions 𝐶 → 𝐴 and let ( ̂𝐵•, 𝑖•) be a simplicial resolution of 𝐶 . If 𝑖• :
sk0(𝐶) → ̂𝐵• is a degreewise trivial cofibration in 𝐬ℳ, then the corres-
ponding functor 𝐼 : 𝚫op → (𝐶∕ℳ)wc is a left aspherical functor.

Proof. The two claims are formally dual; we will prove the first version. We
follow the proof of Proposition 6.12 in [Dwyer and Kan, 1980c].

Let (𝐵, 𝑞) be an object in (ℳ∕𝐶)wf, i.e. a trivial fibration 𝑞 : 𝐵 → 𝐶 in ℳ.
We must show that the comma category (𝑃 ↓ (𝐵, 𝑞)) is aspherical, i.e. that the
nerve N((𝑃 ↓ (𝐵, 𝑞))) is weakly contractible. By corollary 1.9.31,

N((𝑃 ↓ (𝐵, 𝑞))) ≃ Homℳ∕𝐶 (( ̃𝐴, 𝑝), (𝐵, 𝑞))

and we have the following pullback diagram in 𝐬𝐒𝐞𝐭,

Homℳ∕𝐶 (( ̃𝐴, 𝑝), (𝐵, 𝑞)) Homℳ( ̃𝐴, 𝐵)

Δ0 Homℳ( ̃𝐴, 𝐶)

ℳ( ̃𝐴,𝑞)

where the bottom horizontal arrow corresponds to the vertex 𝑖0 : ̃𝐴0 → 𝐶
and (by lemma 4.8.14) the right vertical arrow is a trivial Kan fibration, so (by
proposition a.3.17) the left vertical arrow is also a trivial Kan fibration. Thus,
(𝑃 ↓ (𝐵, 𝑞)) is indeed an aspherical category. ■

Corollary 4.9.6. Let 𝐶 be an object in a derivable category ℳ.

• Let (ℳ∕𝐶)c,wf be the full subcategory of ℳ∕𝐶 spanned by the fibrant co-
fibrant replacements for 𝐶 . If ℳ is a cosimplicially resolvable category,
then (ℳ∕𝐶)c,wf is an aspherical category.

• Let (𝐶∕ℳ)f,wc be the full subcategory of 𝐶∕ℳ spanned by the cofibrant
fibrant replacements for 𝐶 . If ℳ is a simplicially resolvable category,
then (𝐶∕ℳ)f,wc is an aspherical category.
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Proof. Since 𝚫 is aspherical (by remark 1.11.10), and cosimplicial (resp. sim-
plicial) resolutions are degreewise cofibrant (resp. fibrant) by lemma 4.8.12, the
claim is a consequence of proposition 1.11.19 and Quillen’s Theorem A (corol-
lary 1.11.21) applied to proposition 4.9.5. ■

Proposition 4.9.7. Let ℳ be a small derivable category and, for each pair
(𝐴, 𝐵) of objects in ℳ, let u� (𝐴, 𝐵) be the category of zigzags in ℳ from 𝐴
to 𝐵 of the following type:

• • • •t. fib. t. cofib.

(i) Let 𝐴 and 𝐵 be objects in ℳ, let ( ̃𝐴•, 𝑝•) be a cosimplicial resolution of
𝐴, and let ( ̂𝐵•, 𝑖•) be a simplicial resolution of 𝐵. If 𝑝• : ̃𝐴• → cosk0(𝐴) is
a degreewise trivial fibration and 𝑖• : sk0(𝐵) → ̂𝐵• is a degreewise trivial
cofibration, then we have a diagram of weak homotopy equivalences of the
form below:

lim−−→
KB
𝑛:𝚫op

lim−−→
BK
𝑚:𝚫op

disc ℳ( ̃𝐴𝑛, ̂𝐵𝑚)

Homℳ( ̃𝐴, ̂𝐵) N(u� (𝐴, 𝐵))

(ii) Moreover, the above diagram is natural in the following sense: given com-
mutative diagrams in 𝐜ℳ and 𝐬ℳ of the forms below,

cosk0(𝐴) ̃𝐴•

cosk0(𝐴′) ̃𝐴′•

̂𝐵• sk0(𝐵)

̂𝐵′ sk0(𝐵′)

the following diagram commutes in Ho 𝐬𝐒𝐞𝐭,

lim−−→
KB
𝑛:𝚫op

lim−−→
BK
𝑚:𝚫op

disc ℳ( ̃𝐴𝑛, ̂𝐵𝑚)

Homℳ( ̃𝐴, ̂𝐵) N(u� (𝐴, 𝐵))

lim−−→
KB
𝑛:𝚫op

lim−−→
BK
𝑚:𝚫op

disc ℳ( ̃𝐴′𝑛, ̂𝐵′
𝑚)

Homℳ( ̃𝐴′, ̂𝐵′) N(u� (𝐴′, 𝐵′))
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where the vertical arrows are the evident induced morphisms.

Proof. (i). Considering Homℳ( ̃𝐴•, ̂𝐵) as a diagram 𝚫op → 𝐬𝐒𝐞𝐭, by (lemma 1.9.28
and) corollary 1.9.30, we have a natural weak homotopy equivalence

lim−−→
KB

𝚫op

Homℳ( ̃𝐴•, ̂𝐵) → Homℳ( ̃𝐴, ̂𝐵)

where we have used lemma 1.6.8 to identify the realisation |Homℳ( ̃𝐴•, ̂𝐵)| with
the two-sided hom-complex Homℳ( ̃𝐴, ̂𝐵); similarly, by corollary 1.6.9, there is
a natural weak homotopy equivalence

lim−−→
BK

𝚫op

disc ℳ( ̃𝐴𝑛, ̂𝐵•) → Homℳ( ̃𝐴𝑛, ̂𝐵)

so applying Ken Brown’s lemma (4.3.6) to theorem 1.6.10 and proposition 1.9.19,
we have a natural weak homotopy equivalence

lim−−→
KB

𝚫op

lim−−→
BK

𝚫op

disc ℳ( ̃𝐴•, ̂𝐵•) → Homℳ( ̃𝐴, ̂𝐵)

but by remark 1.8.5,

lim−−→
BK

𝚫op

disc ℳ( ̃𝐴𝑛, ̂𝐵•) ≅ 𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴𝑛, ̂𝐵•))

so Thomason’s homotopy colimit theorem (1.11.23) yields a weak homotopy equi-
valence of the following type:

lim−−→
KB

𝚫op

lim−−→
BK

𝚫op

disc ℳ( ̃𝐴•, ̂𝐵•) → N(𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵•)), 𝚫, Δ𝟙))

Now, let 𝑄 : (ℳ∕𝐴)wf → ℳ and 𝑅 : (𝐵∕ℳ)wc → ℳ for the evident projec-
tions. Recalling lemma b.5.39 and corollary 1.11.24, Quillen’s Theorem A (co-
rollary 1.11.21) and propositions 1.11.33 and 4.9.5 imply that the induced functor

𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵•)), 𝚫, Δ𝟙)
→ 𝐆(𝐆(Δ𝟙, (𝐵∕ℳ)wc, disc ℳ(𝑄, 𝑅)), (ℳ∕𝐴)wf, Δ𝟙)

is a weak homotopy equivalence of categories; but it is straightforward to verify
that the codomain is (isomorphic to) u� (𝐴, 𝐵), so we are done.
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(ii). Naturality implies that the left half of the diagram in question commutes
strictly, i.e.

lim−−→
KB
𝚫op

lim−−→
BK
𝚫op

disc ℳ( ̃𝐴•, ̂𝐵•) Homℳ( ̃𝐴, ̂𝐵)

lim−−→
KB
𝚫op

lim−−→
BK
𝚫op

disc ℳ( ̃𝐴′•, ̂𝐵′
•) Homℳ( ̃𝐴′, ̂𝐵′)

commutes in 𝐬𝐒𝐞𝐭; and similarly,

lim−−→
KB
𝚫op

lim−−→
BK
𝚫op

disc ℳ( ̃𝐴•, ̂𝐵•) N(𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵•)), 𝚫, Δ𝟙))

lim−−→
KB
𝚫op

lim−−→
BK
𝚫op

disc ℳ( ̃𝐴′•, ̂𝐵′
•) N(𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴′•, ̂𝐵′

•)), 𝚫, Δ𝟙))

also commutes in 𝐬𝐒𝐞𝐭, so it suffices to verify that the evident diagram

N(𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵•)), 𝚫, Δ𝟙)) N(u� (𝐴, 𝐵))

N(𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴′•, ̂𝐵′
•)), 𝚫, Δ𝟙)) N(u� (𝐴′, 𝐵′))

commutes in Ho 𝐬𝐒𝐞𝐭. By pasting commutative diagrams, we may reduce the
problem to the following two cases:

• Both ̃𝐴′• → ̃𝐴• and 𝐴′ → 𝐴 are identity morphisms.

• Both ̂𝐵• → ̂𝐵′
• and 𝐵 → 𝐵′ are identity morphisms.

Furthermore, the two cases are formally dual, so it is enough to check the first
case. But the universal property of pushouts yields a natural transformation fit-
ting into the diagram below,

𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵•)), 𝚫, Δ𝟙) u� (𝐴, 𝐵)

𝐆(𝐆(Δ𝟙, 𝚫op, disc ℳ( ̃𝐴•, ̂𝐵′
•)), 𝚫, Δ𝟙) u� (𝐴, 𝐵′)

so the claim follows, by lemma 1.3.10 and corollary 1.5.5. ■
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Proposition 4.9.8. Let ℳ be a small derivable category and, for each pair
(𝐴, 𝐵) of objects in ℳ, let u� (𝐴, 𝐵) be the category of zigzags in ℳ from 𝐴
to 𝐵 of the following type:

• • • •t. fib. t. cofib.

Then the reduction morphism N(u� (𝐴, 𝐵)) → 𝐋𝐨H(ℳ)(𝐴, 𝐵) is natural in the
following sense: given morphisms 𝐴′ → 𝐴 and 𝐵 → 𝐵′ in ℳ, the following
diagram commutes in Ho 𝐬𝐒𝐞𝐭,

N(u� (𝐴, 𝐵)) 𝐋𝐨H(ℳ)(𝐴, 𝐵)

N(u� (𝐴′, 𝐵′)) 𝐋𝐨H(ℳ)(𝐴′, 𝐵′)

where the vertical arrows are the evident induced morphisms.

Proof. By pasting commutative diagrams, we may reduce the problem to the
following two cases:

• 𝐴′ → 𝐴 is an identity morphism.

• 𝐵 → 𝐵′ is an identity morphism.

Furthermore, the two cases are formally dual, so it is enough to check the first
case. Let ℋ1(𝐴, 𝐵′) be the category of zigzags in ℳ from 𝐴 to 𝐵′ of the follow-
ing type:

• • • • •

It is clear that the two composites in question factor through the reduction morph-
ism N(ℋ1(𝐴, 𝐵′)) → 𝐋𝐨H(ℳ)(𝐴, 𝐵′), so recalling lemma 1.3.10 and corol-
lary 1.5.5, it suffices to verify that there is a natural transformation fitting into
the diagram below,

u� (𝐴, 𝐵) u� (𝐴, 𝐵)

u� (𝐴, 𝐵′) ℋ1(𝐴, 𝐵′)

where the bottom horizontal arrow is the functor defined by inserting an identity
morphism and the right vertical arrow is the evident functor defined by sending
an object in u� (𝐴, 𝐵), say

𝐴 ̃𝐴 ̂𝐵 𝐵𝑣 𝑓 𝑢
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to the following zigzag in ℳ:

𝐴 ̃𝐴 ̂𝐵 𝐵 𝐵′𝑣 𝑓 𝑢

On the other hand, the composite through u� (𝐴, 𝐵′) sends the same object to

𝐴 ̃𝐴 ̂𝐵′ 𝐵′ 𝐵′𝑣 𝑓 ′ 𝑢′

fitting into a commutative diagram in ℳ of the form below,

𝐴 ̃𝐴 ̂𝐵 𝐵 𝐵′

𝐴 ̃𝐴 ̂𝐵′ 𝐵′ 𝐵′

𝑣 𝑓 𝑢

𝑣 𝑓 ′ 𝑢′

where the middle-right square is a pushout diagram in ℳ. Thus, we have the
required natural transformation. ■

Lemma 4.9.9. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in ℳ, let
𝑆 and 𝑇 be possibly degenerate marked zigzag types, let ℋ0 be the category of
zigzags in ℳ of the following type,

𝐴 • • 𝐵of type 𝑆 w.e. of type 𝑇

let ℋ1 be the category of zigzags in ℳ of the following type,

𝐴 • • • 𝐵of type 𝑆 t. fib. t. cofib. of type 𝑇

let 𝑑 : ℋ1 → ℋ0 be the functor that composes the two arrows in the middle of
the zigzag, and let 𝑓 be an object in ℋ0, say:

𝐴 𝐶 𝐷 𝐵𝑤

• If 𝑢• : cosk0(𝐷) → ̃𝐶• is a Reedy cofibration in 𝐜ℳ and 𝑣• : ̃𝐶• →
cosk0(𝐶) is a degreewise trivial fibration in 𝐜ℳ such that 𝑣•∘𝑢• = cosk0(𝑤),
then 𝑢• and 𝑣• define a cosimplicial object in the comma category (𝑓 ↓ 𝑑),
and the corresponding functor ̃𝐹 : 𝚫 → (𝑓 ↓ 𝑑) is a right aspherical
functor.
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• If 𝑢• : sk0(𝐷) → �̂�• is a degreewise trivial cofibration and 𝑣• : �̂�• →
sk0(𝐶) is a Reedy fibration in 𝐬ℳ in 𝐬ℳ such that 𝑣• ∘ 𝑢• = sk0(𝑤), then
𝑢• and 𝑣• define a simplicial object in the comma category (𝑑 ↓ 𝑓), and
the corresponding functor ̂𝐹 : 𝚫op → (𝑑 ↓ 𝑓) is a left aspherical functor.

Proof. The two claims are formally dual; we will prove the first version. We
follow paragraph 8.1 in [Dwyer and Kan, 1980c].

First, note that by proposition 4.6.4, each 𝑢𝑛 : 𝐷 → ̃𝐶𝑛 is a cofibration in ℳ,
and since 𝑢𝑛 ∘ 𝑢𝑛 = 𝑤, axiom CM2 implies that each 𝑢𝑛 : 𝐷 → ̃𝐶𝑛 is a trivial
cofibration in ℳ. Thus 𝑢• and 𝑣• do indeed define a cosimplicial object ( ̃𝑓 •, id)
in (𝑓 ↓ 𝑑).

Let ̃𝐹 : 𝚫 → (𝑓 ↓ 𝑑) be the functor corresponding to ( ̃𝑓 •, id), let 𝑔 be an
object in ℋ1, say

𝐴 𝐾 𝑀 𝐿 𝐵𝑞 𝑗

and let ℎ : 𝑓 → 𝑑(𝑔) be a morphism in ℋ0, say:

𝐴 𝐶 𝐷 𝐵

𝐴 𝐾 𝐿 𝐵

𝑘

𝑤

𝑙

𝑞∘𝑗

We must show that the comma category ( ̃𝐹 ↓ (𝑔, ℎ)) is aspherical. But by co-
rollary 1.9.31,

N(( ̃𝐹 ↓ (𝑔, ℎ))) ≃ Hom (𝑓↓𝑑)(( ̃𝑓 , id), (𝑔, ℎ))

and it is not hard to see that there is a pullback diagram in 𝐬𝐒𝐞𝐭 of the form below,

Hom (𝑓↓𝑑)( ̃𝑓 , 𝑔) Hom𝐷∕ℳ(( ̃𝐶, 𝑢), (𝑀, 𝑗 ∘ 𝑙))

Δ0 Hom𝐷∕ℳ(( ̃𝐶, 𝑢), (𝐾, 𝑙))

Hom𝐷∕ℳ(( ̃𝐶,𝑣),𝑞)

where the bottom horizontal arrow corresponds to the vertex 𝑘 ∘ 𝑣0 : ̃𝐶0 →
𝐾; thus (by proposition a.3.17) it suffices to prove that the right vertical ar-
row is a trivial Kan fibration. But by proposition 4.6.5, the unique morphism
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(cosk0(𝐷), id) → ( ̃𝐶, 𝑢) in cosk0(𝐷)∕𝐜ℳ is a Reedy cofibration in 𝐜(𝐷∕ℳ) (be-
cause 𝑢• : cosk0(𝐷) → ̃𝐶• is a Reedy cofibration in 𝐜ℳ), so by lemma 4.1.16,
( ̃𝐶, 𝑢) is a Reedy-cofibrant object in 𝐜(𝐷∕ℳ), and therefore

Hom𝐷∕ℳ(( ̃𝐶, 𝑣), 𝑞) : Hom𝐷∕ℳ(( ̃𝐶, 𝑣), (𝑀, 𝑗 ∘ 𝑙)) → Hom𝐷∕ℳ(( ̃𝐶, 𝑣), (𝐾, 𝑙))

is a trivial Kan fibration by lemma 4.8.14. This shows that ( ̃𝐹 ↓ (𝑔, ℎ)) is an
aspherical category, and since (𝑔, ℎ) is arbitrary, we conclude that ̃𝐹 : 𝚫 →
(𝑓 ↓ 𝑑) is a right aspherical functor. ■

Proposition 4.9.10. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects
in ℳ, let 𝑆 and 𝑇 be possibly degenerate marked zigzag types, let ℋ0 be the
category of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

• • • •of type 𝑆 w.e. of type 𝑇

let ℋ1 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

• • • • •of type 𝑆 t. fib. t. cofib. of type 𝑇

and let 𝑑 : ℋ1 → ℋ0 be the functor that composes the two arrows in the middle
of the zigzag.

• If ℳ is a cosimplicially resolvable category, then 𝑑 : ℋ1 → ℋ0 is a left
aspherical functor.

• If ℳ is a simplicially resolvable category, then 𝑑 : ℋ1 → ℋ0 is a right
aspherical functor.

In particular, if ℳ is either cosimplicially or simplicially resolvable, then 𝑑 :
ℋ1 → ℋ0 is a weak homotopy equivalence of categories.

Proof. The two claims are formally dual; we will prove the first version.
To show that 𝑑 : ℋ1 → ℋ0 is a left aspherical functor, we must verify that

the comma category (𝑓 ↓ 𝑑) is aspherical for every object 𝑓 in ℋ0. Since 𝚫 is
an aspherical category (by remark 1.11.10), it suffices to find a weak homotopy
equivalence 𝚫 → (𝑓 ↓ 𝑑); but Quillen’s Theorem A (corollary 1.11.21) says any
left or right aspherical functor is a weak homotopy equivalence of categories, so
the claim is a consequence of lemma 4.9.9. ■
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Remark 4.9.11. In view of Quillen’s Theorem A (corollary 1.11.21), the above
proposition essentially says that the factorisation of a weak equivalence into a
trivial cofibration and a trivial fibration (as in lemma 4.1.10) is homotopically
unique: indeed, if we take 𝑆 and 𝑇 to be the trivial zigzag types of length 0,
then ℋ0 is a discrete category, and since 𝑑 : ℋ1 → ℋ0 is a weak homotopy
equivalence of categories, the (strict) fibres of 𝑑 must therefore be aspherical
categories.

Lemma 4.9.12. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in ℳ, let
𝑆 and 𝑇 be possibly degenerate marked zigzag types, let 𝑘 be a natural number,
let ℋ𝑖 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

(𝑖 = 1) • • • • •of type 𝑆 𝑘 arrows w.e. of type 𝑇

(𝑖 = 2) • • • • • •of type 𝑆 t. cofib. 𝑘 arrows w.e. of type 𝑇

(𝑖 = 3) • • • • •of type 𝑆 𝑘 arrows t. cofib. of type 𝑇

(𝑖 = 4) • • • • • •of type 𝑆 t. cofib. 𝑘 arrows t. cofib. of type 𝑇

and let ℋ′
𝑖 (0 ≤ 𝑖 ≤ 4) be the category of zigzags in ℳ of the following type:

(𝑖 = 1) • • • • •of type 𝑆 w.e. 𝑘 arrows of type 𝑇

(𝑖 = 2) • • • • • •of type 𝑆 w.e. 𝑘 arrows t. fib. of type 𝑇

(𝑖 = 3) • • • • •of type 𝑆 t. fib. 𝑘 arrows of type 𝑇

(𝑖 = 4) • • • • • •of type 𝑆 t. fib. 𝑘 arrows t. fib. of type 𝑇

• Let 𝑠 : ℋ1 → ℋ2 (resp. 𝑠 : ℋ3 → ℋ4) be the functor defined by inserting
an identity morphism. There is a functor 𝑑 : ℋ2 → ℋ1 (resp. 𝑑 : ℋ4 →
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ℋ3) for which there is a natural transformation idℋ2
⇒ 𝑠 ∘ 𝑑 (resp. idℋ4

⇒
𝑠 ∘ 𝑑) where the component at an object, say

𝐴 • • ⋯ • • 𝐵𝑢 𝑤

is given by the following commutative diagram in ℳ,

𝐴 • • ⋯ • • 𝐵

𝐴 • • ⋯ • • 𝐵

𝑢

𝑢 𝑢′

𝑤

𝑤∘𝑢′

where the middle squares are pushout diagrams in ℳ. Moreover, 𝑑 ∘ 𝑠 ≅
idℋ1

(resp. 𝑑 ∘ 𝑠 ≅ idℋ3
).

• Let 𝑠 : ℋ′
1 → ℋ′

2 (resp. 𝑠 : ℋ′
3 → ℋ′

4) be the functor defined by inserting
an identity morphism. There is a functor 𝑑 : ℋ′

2 → ℋ′
1 (resp. 𝑑 : ℋ′

4 →
ℋ′

3) for which there is a natural transformation idℋ′
2

⇒ 𝑠 ∘ 𝑑 (resp. idℋ′
4

⇒
𝑠 ∘ 𝑑) where the component at an object, say

𝐴 • • ⋯ • • 𝐵𝑤 𝑣

is given by the following commutative diagram in ℳ,

𝐴 • • ⋯ • • 𝐵

𝐴 • • ⋯ • • 𝐵

𝑤∘𝑣′

𝑣′ 𝑣

𝑤 𝑣

where the middle squares are pullback diagrams in ℳ. Moreover, 𝑑 ∘ 𝑠 ≅
idℋ′

1
(resp. 𝑑 ∘ 𝑠 ≅ idℋ′

3
).

Proof. This is a straightforward consequence of corollary 4.1.13. ⧫

Corollary 4.9.13. With notation as in the lemma:

• The functors 𝑠 : ℋ1 → ℋ2 and 𝑠 : ℋ3 → ℋ4 are weak homotopy equival-
ences of categories.

• The functors 𝑠 : ℋ′
1 → ℋ′

2 and 𝑠 : ℋ′
3 → ℋ′

4 are weak homotopy equival-
ences of categories.

562



4.9. The Dwyer–Kan comparison theorem

Proof. Apply lemma 1.3.10 and proposition 1.5.4 to lemma 4.9.12. ■

Proposition 4.9.14. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in
ℳ, let 𝑘 and 𝑙 be natural numbers, let 𝑆 and 𝑇 be possibly degenerate marked
zigzag types, let ℋ0 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following
type,

• • • • • • •of type 𝑆 w.e. 𝑘 arrows 𝑙 arrows w.e. of type 𝑇

let ℋ1 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

• • • • • • • •of type 𝑆 w.e. 𝑘 arrows w.e. 𝑙 arrows w.e. of type 𝑇

and let 𝑠 : ℋ0 → ℋ1 be the functor defined by inserting an identity morphism.
If ℳ is either cosimplicially or simplicially resolvable, then 𝑠 : ℋ0 → ℋ1 is a
weak homotopy equivalence of categories.

Proof. Let ℋ2 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following
type,

• • • • • • • • •of type 𝑆 w.e. 𝑘 arrows t. fib. t. cofib. 𝑙 arrows w.e. of type 𝑇

let 𝑠2 : ℋ0 → ℋ2 be the functor defined by inserting two identity morphisms,
and let 𝑑 : ℋ2 → ℋ1 be the functor defined by composing the two arrows in the
middle. By factoring 𝑠2 appropriately, we may apply corollary 4.9.13 (twice) to
deduce that 𝑠2 : ℋ0 → ℋ2 is a weak homotopy equivalence of categories. On the
other hand, by proposition 4.9.10, if ℳ is either cosimplicially or simplicially
resolvable, then 𝑑 : ℋ2 → ℋ1 is a weak homotopy equivalence of categories. It
is clear that 𝑑 ∘𝑠2 = 𝑠, so (by lemma 1.11.3) 𝑠 : ℋ0 → ℋ1 is also a weak homotopy
equivalence of categories. ■

Corollary 4.9.15. If ℳ is either cosimplicially or simplicially resolvable, then:

(i) ℳ admits a homotopical three-arrow calculus.

(ii) Let 𝐴 and 𝐵 be objects in ℳ and let ℋ(𝐴, 𝐵) be the category of zigzags
in ℳ from 𝐴 to 𝐵 of the following type:

• • • •

Then the reduction morphism N(ℋ(𝐴, 𝐵)) → 𝐋𝐨H(ℳ)(𝐴, 𝐵) is a weak
homotopy equivalence.
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Proof. (i). This is the special case of proposition 4.9.14 where 𝑆 and 𝑇 are the
degenerate zigzag type.

(ii). Apply the fundamental theorem of homotopical three-arrow calculi (2.9.6).
■

Lemma 4.9.16. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in ℳ, let
𝑘 be a natural number, let 𝑆 and 𝑇 be possibly degenerate marked zigzag types,
and consider the categories of zigzags in ℳ from 𝐴 to 𝐵 of the following types:

(ℋ0) • • • • • •of type 𝑆 w.e. 𝑘 arrows w.e. of type 𝑇

(ℋ̃0) • • • • • •of type 𝑆 w.e. 𝑘 arrows t. cofib. of type 𝑇

(ℋ̂0) • • • • • •of type 𝑆 t. fib. 𝑘 arrows w.e. of type 𝑇

If ℳ is either cosimplicially or simplicially resolvable, then:

• The evident inclusion ℋ̃0 ↪ ℋ0 is a weak homotopy equivalence of cat-
egories.

• The evident inclusion ℋ̂0 ↪ ℋ0 is a weak homotopy equivalence of cat-
egories.

Proof. The two claims are formally dual; we will prove the first version.
Let ℋ1 be the category of zigzags in ℳ from 𝐴 to 𝐵 of the following type,

• • • • • • •of type 𝑆 w.e. 𝑘 arrows t. fib. t. cofib. of type 𝑇

let 𝑑 : ℋ1 → ℋ0 be the functor defined by composing the evident pair of morph-
ism, and let 𝑠 : ℋ̃0 → ℋ1 be defined by inserting an identity morphism. By
corollary 4.9.13, 𝑠 : ℋ̃0 → ℋ1 is a weak homotopy equivalence of categories,
and proposition 4.9.10 says that 𝑑 : ℋ1 → ℋ0 is a weak homotopy equival-
ence of categories if ℳ is either cosimplicially or simplicially resolvable; but
it is clear that 𝑑 ∘ 𝑠 : ℋ̃0 → ℋ0 is just the inclusion, so the claim follows (by
lemma 1.11.3). ■
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Lemma 4.9.17. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in ℳ, let
𝑘 be a natural number, let 𝑆 and 𝑇 be possibly degenerate marked zigzag types,
and consider the categories of zigzags in ℳ from 𝐴 to 𝐵 of the following types,

(ℋ0) • • • • • •of type 𝑆 t. fib. 𝑘 arrows w.e. of type 𝑇

(ℋ̃0) • • • • • •of type 𝑆 t. fib. 𝑘 arrows t. cofib. of type 𝑇

(ℋ′
0) • • • • • •of type 𝑆 w.e. 𝑘 arrows t. cofib. of type 𝑇

(ℋ̂′
0) • • • • • •of type 𝑆 t. fib. 𝑘 arrows t. cofib. of type 𝑇

where in the middle we have 𝑘 rightward-pointing arrows. If ℳ is either cosim-
plicially or simplicially resolvable, then:

• The evident inclusion ℋ̃0 ↪ ℋ0 is a weak homotopy equivalence of cat-
egories.

• The evident inclusion ℋ̂′
0 ↪ ℋ′

0 is a weak homotopy equivalence of cat-
egories.

Proof. The proof is essentially the same as lemma 4.9.16. ■

Proposition 4.9.18. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in
ℳ, , let 𝑘 be a natural number, let 𝑆 and 𝑇 be possibly degenerate marked zigzag
types, and consider the categories of zigzags in ℳ from 𝐴 to 𝐵 of the following
types:

(ℋ) • • • • • •of type 𝑆 w.e. 𝑘 arrows w.e. of type 𝑇

(ℋ″) • • • • • •of type 𝑆 t. fib. 𝑘 arrows t. cofib. of type 𝑇

If ℳ is either cosimplicially or simplicially resolvable, then the evident inclusion
ℋ″ ↪ ℋ is a weak homotopy equivalence of categories.

Proof. Recalling that the class of weak homotopy equivalences of categories is
closed under composition (by lemma 1.11.3), this is an immediate consequence
of lemmas 4.9.16 and 4.9.17. ■
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Corollary 4.9.19. Let ℳ be a derivable category, let 𝐴 and 𝐵 be objects in ℳ,
and consider the categories of zigzags in ℳ from 𝐴 to 𝐵 of the following types:

(ℋ) • • • •w.e. w.e.

(ℋ″) • • • •t. fib. t. cofib.

If ℳ is either cosimplicially or simplicially resolvable, then the evident inclusion
ℋ″ ↪ ℋ is a weak homotopy equivalence of categories. ■

Theorem 4.9.20 (Dwyer and Kan). Let ℳ be a small derivable category. If ℳ
is either simplicially or cosimplicially resolvable, then

𝐋𝐨H(ℳ)((−)0, (−)0) : Ho (𝐜wℳ)
op × Ho 𝐬wℳ → Ho 𝐬𝐒𝐞𝐭

is (the functor part of) a right derived functor for the total hom-complex functor
Homℳ : (𝐜wℳ)

op × 𝐬wℳ → 𝐬𝐒𝐞𝐭.

Proof. Recalling proposition 4.8.7, this is a consequence of propositions 4.9.7
and 4.9.8 with corollaries 4.9.15, and 4.9.19. ■

4.10 Virtual cofibrancy and fibrancy
Prerequisites. §§1.1, 3.1, 3.3, 4.1, 4.6, a.1, a.5.

In this section, we follow [DHKS, §23]. As usual, for each natural number
𝑛, let [𝑛] denote the category {0 → ⋯ → 𝑛} corresponding to the finite ordinal
{0, … , 𝑛}, and let 𝚫 be the category whose objects are the [𝑛] and whose morph-
isms are functors.

Definition 4.10.1. The category of simplices of a (small) category ℂ is the cat-
egory 𝚫(ℂ) defined below:

• The objects are functors [𝑛] → ℂ.

• The morphisms (𝑓 : [𝑚] → ℂ) → (𝑔 : [𝑛] → ℂ) are functors [𝑚] → [𝑛]
making the evident triangle commute (strictly).

• Composition and identities are the obvious ones.
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We write 𝜋Δ : 𝚫(ℂ) → 𝚫 for the evident projection functor that sends an object
[𝑛] → ℂ in 𝚫(ℂ) to the object [𝑛] in 𝚫.

¶ 4.10.2. To elucidate the above definition, it is helpful to introduce some
notation for the objects in 𝚫(ℂ). It is not hard to see that a functor 𝑓 : [𝑛] → ℂ
is the same thing as a string of 𝑛 composable morphisms in ℂ, e.g.

𝐴0 𝐴1 ⋯ 𝐴𝑛−1 𝐴𝑛
𝑓1 𝑓𝑛

so let us write [𝐴0
𝑓1→ 𝐴1 ⋯ 𝐴𝑛−1

𝑓𝑛→ 𝐴𝑛] for the corresponding object in 𝚫(ℂ).
Since the projection 𝜋Δ : 𝚫(ℂ) → 𝚫 is faithful, we may borrow the notation
of §1.1 and write e.g. 𝛿1 : [𝐴0] → [𝐴0

𝑓1→ 𝐴1] for the unique morphism whose
image under 𝜋Δ is 𝛿1 : [0] → [1].

Observe that, given a commutative triangle in ℂ of the form below,

𝐴

𝐵

𝐶

𝑓 𝑔

ℎ

we obtain the following commutative diagram in 𝚫(ℂ):

[𝐴
𝑓
→𝐵

𝑔
→𝐶]

[𝐴]

[𝐵]

[𝐶]

[𝐴
𝑓
→𝐵] [𝐵

𝑔
→𝐶]

[𝐴
ℎ
→𝐶]

𝛿1

𝛿1

𝛿1 𝛿0

𝛿0

𝛿0

𝛿2

𝛿0

𝛿1
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Similar phenomena occur for longer strings of composable morphisms. Thus,
one may think of 𝚫(ℂ) as being a kind of barycentric subdivision of ℂ; notice
also that the Mac Lane subdivision category ℂ§ occurs as a subcategory of 𝚫(ℂ).
Remark 4.10.3. There is an obvious natural isomorphism 𝚫(ℂ) ≅ 𝚫(ℂop) such
that the following diagram of functors commutes,

𝚫(ℂ) 𝚫(ℂop)

𝚫 𝚫

𝜋Δ

≅

𝜋Δ

(−)op

but in general there is no isomorphism between 𝚫(ℂ) and 𝚫(ℂ)op.

Proposition 4.10.4. Let 𝑋 be a simplicial set, and let Δ• : 𝚫 → 𝐬𝐒𝐞𝐭 be the
inclusion of the standard simplices.

(i) The comma category (Δ• ↓ 𝑋) is a Reedy category, where the direct sub-
category consists of all face operators and the inverse subcategory consists
of all degeneracy operators.

(ii) Moreover, (Δ• ↓ 𝑋) has fibrant constants.

Proof. (i). The evident projection (Δ• ↓ 𝑋) → 𝚫 is a discrete right fibration, so
the Reedy category structure on 𝚫 induces one on (Δ• ↓ 𝑋).

(ii). See Proposition 15.10.4 in [Hirschhorn, 2003]. □

Corollary 4.10.5. The category 𝚫(ℂ) of simplices of a (small) category ℂ admits
a Reedy category structure with fibrant constants.

Proof. It is not hard to see that the category 𝚫(ℂ) as defined above is isomorphic
to the comma category (Δ• ↓ N(ℂ)), where N(ℂ) is the nerve of ℂ. ■

Corollary 4.10.6. If ℳ is a DHK model category and ℂ is a small category,
then:

• The functor lim−−→𝚫(ℂ)
: [𝚫(ℂ), ℳ] → ℳ sends Reedy weak equivalences

between Reedy-cofibrant diagrams to weak equivalences between cofibrant
objects.
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• The functor lim←−−𝚫(ℂ)op
: [𝚫(ℂ)op, ℳ] → ℳ sends Reedy weak equivalences

between Reedy-fibrant diagrams to weak equivalences between fibrant ob-
jects.

Proof. Apply Ken Brown’s lemma (4.3.6) and corollary 4.6.26. ■

Lemma 4.10.7. Let 𝐹 : ℂ → 𝔻 be a functor between (small) categories.

(i) 𝚫(𝐹 ) : 𝚫(ℂ) → 𝚫(𝔻) is a left fibration of Reedy categories.

(ii) 𝚫(𝐹 ) : 𝚫(ℂ) → 𝚫(𝔻) is a right fibration of Reedy categories.

Proof. (i). Let [𝐷0 ⋯ 𝐷𝑛] be an object in 𝚫(𝔻), let ([𝐶0 ⋯ 𝐶𝑚], ℎ) be an object
in the comma category (𝚫(𝐹 ) ↓ [𝐷0 ⋯ 𝐷𝑛]). We will show that the matching
category

𝜕(([𝐶0 ⋯ 𝐶𝑚], ℎ) ↓ (𝚫(𝐹 ) ↓ [𝐷0 ⋯ 𝐷𝑛])←)
has at most one connected component.

First, note that the objects of this matching category are pairs (𝑘, 𝑙), where 𝑘
is in 𝚫(ℂ)←, 𝑘 ≠ id[𝐶0⋯𝐶𝑚], 𝑙 is in 𝚫(𝔻), and ℎ = 𝑙 ∘ 𝚫(𝐹 )𝑘. Let (𝜎, 𝛿) be the
codegeneracy–coface factorisation of 𝜋Δℎ in 𝚫.

• If 𝜎 = id[𝑚], then the matching category must be empty.

• If 𝜎 ≠ id[𝑚], then we may lift (𝜎, 𝛿) along the respective 𝜋Δ projections to
obtain a terminal object in the matching category, so the matching category
is connected a fortiori.

Thus, by theorem 4.6.32, 𝚫(𝐹 ) : 𝚫(ℂ) → 𝚫(𝔻) is a left fibration of Reedy
categories.

(ii). A similar argument shows that 𝚫(𝐹 ) : 𝚫(ℂ) → 𝚫(𝔻) is a right fibration of
Reedy categories. ■

Corollary 4.10.8. Let ℳ be a DHK model category and let 𝐹 : ℂ → 𝔻 be a
functor between small categories.

(i) The functor 𝚫(𝐹 )∗ : [𝚫(𝔻), ℳ] → [𝚫(ℂ), ℳ] is a right Quillen functor.

(ii) The functor 𝚫(𝐹 )∗ : [𝚫(𝔻), ℳ] → [𝚫(ℂ), ℳ] is a left Quillen functor.

Proof. Apply theorem 4.6.32. ■
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Definition 4.10.9. Let ℂ be a (small) category and let 𝚫(ℂ) be its category of
simplices.

• The left projection functor 𝜋L : 𝚫(ℂ)op → ℂ is the functor defined by
evaluating objects 𝑓 : [𝑛] → ℂ in 𝚫(ℂ) at the initial object in [𝑛].

• The right projection functor 𝜋R : 𝚫(ℂ) → ℂ is the functor defined by
evaluating objects 𝑓 : [𝑛] → ℂ in 𝚫(ℂ) at the terminal object in [𝑛].

• A strong left equivalence in 𝚫(ℂ) is a morphism such that the underlying
map in 𝚫 preserves the initial object.

• A strong right equivalence in 𝚫(ℂ) is a morphism such that the underly-
ing map in 𝚫 preserves the terminal object.

• The class of weak left equivalences in 𝚫(ℂ) is the smallest subcategory
that has the 2-out-of-6 property and contains all the strong left equival-
ences.

• The class of weak right equivalences in 𝚫(ℂ) is the smallest subcategory
that has the 2-out-of-6 property and contains all the strong right equival-
ences.

We write 𝚫(ℂ)L for the category of simplices of ℂ regarded as a relative category
with weak equivalences the strong left equivalences, and we write 𝚫(ℂ)R for the
category of simplices of ℂ regarded as a relative category with weak equival-
ences the strong right equivalences.

Remark 4.10.10. The strong left (resp. right) equivalences in 𝚫(ℂ) are closed
under composition, and the left (resp. right) projection to ℂ sends strong left
(resp. right) equivalences to identity morphisms, so if we regard 𝚫(ℂ) as a rel-
ative category with weak equivalences the strong left (resp. right) equivalences,
then the left (resp. right) projection functor becomes a relative functor.

Unfortunately, the subcategory of strong left (resp. right) equivalences in
𝚫(ℂ) does not generally have the 2-out-of-6 property, or even the 2-out-of-3
property; one may rectify this by instead considering the class of weak left (resp.
right) equivalences. An example of a weak left equivalence that is not a strong
left equivalence is the morphism 𝛿0 : [𝐴

id
→ 𝐴] → [𝐴]: this is a weak left

equivalence because 𝜎0 : [𝐴] → [𝐴
id
→ 𝐴] is a strong left equivalence and
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𝛿0 ∘ 𝜎0 = id[𝐴], but 𝛿0 is not a strong left equivalence because the underlying
cosimplicial operator in 𝚫 sends 0 in [0] to 1 in [1].
Remark 4.10.11. It is not hard to see that 𝚫(−) is a functor 𝐂𝐚𝐭 → 𝐂𝐚𝐭 and that 𝜋L
(resp. 𝜋R) defines a natural transformation 𝚫(−)op ⇒ id𝐂𝐚𝐭 (resp. 𝚫(−) ⇒ id𝐂𝐚𝐭).

Lemma 4.10.12. Let 𝐹 : ℂ → 𝔻 be a functor, let 𝜋L : 𝚫(ℂ)op → ℂ be the left
projection functor, and let 𝜋R : 𝚫(ℂ) → ℂ be the right projection functor. Then,
for any object 𝐷 in 𝔻:

• The canonical comparison functor 𝚫((𝐷 ↓ 𝐹 ))op → (𝐷 ↓ 𝐹 𝜋L) is an iso-
morphism.

• The canonical comparison functor 𝚫((𝐹 ↓ 𝐷)) → (𝐹 𝜋R ↓ 𝐷) is an iso-
morphism.

Proof. The two claims are formally dual; we will prove the first version.
As always, the comma category (𝐷 ↓ 𝐹 ) fits into a comma square,

(𝐷 ↓ 𝐹 ) ℂ

𝟙 𝔻

𝑃

𝐹

𝐷

and the following diagram of functors commutes,

𝚫((𝐷 ↓ 𝐹 ))op 𝚫(ℂ)op

(𝐷 ↓ 𝐹 ) ℂ

𝜋L

𝚫(𝑃 )op

𝜋L

𝑃

so the universal property of (𝐷 ↓ 𝐹 ) gives us a canonical comparison functor
𝚫((𝐷 ↓ 𝐹 ))op → (𝐷 ↓ 𝐹 𝜋L), as claimed. It is not hard to check that the second
diagram is a pullback square, so the pasting lemma for comma squares implies
that the comparison functor is an isomorphism. ■

Proposition 4.10.13. Let ℳ be a DHK model category and let 𝐹 : ℂ → 𝔻 be
a functor between small categories.

• The functor Ran𝐹 𝜋L
: [𝚫(ℂ)op, ℳ] → [𝔻, ℳ] sends Reedy weak equival-

ences between Reedy-fibrant diagrams to componentwise weak equival-
ences between componentwise fibrant diagrams.
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• The functor Lan𝐹 𝜋R
: [𝚫(ℂ), ℳ] → [𝔻, ℳ] sends Reedy weak equival-

ences between Reedy-cofibrant diagrams to componentwise weak equival-
ences between componentwise cofibrant diagrams.

Proof. The two claims are formally dual; we will prove the second version.
Using the formula for Lan𝐹 𝜋R

given by theorem a.5.15, we see that, for each
object 𝐷 in 𝔻, the functor (Lan𝐹 𝜋R

−)(𝐷) : [𝚫(ℂ), ℳ] → ℳ is naturally iso-
morphic to the functor lim−−→ : [(𝐹 𝜋R ↓ 𝐷), ℳ] → ℳ; but by lemma 4.10.12,
there is a canonical isomorphism (𝐹 𝜋R ↓ 𝐷) ≅ 𝚫((𝐹 ↓ 𝐷)), so (Lan𝐹 𝜋R

−)(𝐷)
is in turn naturally isomorphic to lim−−→ : [𝚫((𝐹 ↓ 𝐷)), ℳ] → ℳ. The claim now
follows from corollary 4.10.6. ■

Theorem 4.10.14. Let ℳ be a DHK model category and let ℂ be a small cat-
egory.

• The adjunction shown below is deformable and satisfies the Quillen equi-
valence condition for homotopical categories:

𝜋∗
L ⊣ Ran𝜋L

: [𝚫(ℂ)op
L , ℳ]h → [ℂ, ℳ]

• The adjunction shown below is deformable and satisfies the Quillen equi-
valence condition for homotopical categories:

Lan𝜋R
⊣ 𝜋∗

R : [ℂ, ℳ] → [𝚫(ℂ)R, ℳ]h

Proof. See Proposition 23.2 in [DHKS]. □

Definition 4.10.15. Let ℳ be a DHK model category and let ℂ be a small cat-
egory.

• A virtually cofibrant diagram 𝑋 : ℂ → ℳ is one for which there exists
a Reedy-cofibrant diagram �̃� : 𝚫(ℂ) → ℳ such that �̃� is in [𝚫(ℂ)R, ℳ]h
and 𝑋 ≅ Lan𝜋R

�̃�.

• A virtually fibrant diagram 𝑌 : ℂ → ℳ is one for which there exists a
Reedy-fibrant diagram ̂𝑌 : 𝚫(ℂ)op → ℳ such that ̂𝑌 is in [𝚫(ℂ)op

L , ℳ]h
and 𝑌 ≅ Ran𝜋L

̂𝑌 .

We write [ℂ, ℳ]vc for the full subcategory of [ℂ, ℳ] spanned by the virtually
cofibrant diagrams, and we write [ℂ, ℳ]vf for the full subcategory of [ℂ, ℳ]
spanned by the virtually fibrant diagrams.
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Theorem 4.10.16. Let ℳ be a DHK model category and let 𝐹 : ℂ → 𝔻 be a
functor between small categories.

(i) The functor Lan𝐹 : [ℂ, ℳ] → [𝔻, ℳ] sends virtually cofibrant diagrams
to componentwise cofibrant diagrams and preserves componentwise weak
equivalences between such diagrams.

(ii) If Lan𝚫(𝐹 ) : [𝚫(ℂ), ℳ] → [𝚫(𝔻), ℳ] moreover restricts to a functor
[𝚫(ℂ)R, ℳ]h → [𝚫(𝔻)R, ℳ]h, then Lan𝐹 : [ℂ, ℳ] → [𝔻, ℳ] preserves
virtually cofibrant diagrams.

(iii) If (𝑄, 𝑝) is a cofibrant replacement functor for [𝚫(ℂ), ℳ], then

([ℂ, ℳ]vc, Lan𝜋R
∘ 𝑄 ∘ 𝜋∗

R, ∙ (Lan𝜋R
∘ 𝑝 ∘ 𝜋∗

R))

is a functorial left deformation retract for Lan𝐹 , where is the counit of
the adjunction Lan𝜋R

⊣ 𝜋∗
R.

(iv) The adjunction shown below is deformable:

Lan𝐹 ⊣ 𝐹 ∗ : [𝔻, ℳ] → [ℂ, ℳ]

(v) Given another functor 𝐺 : 𝔻 → 𝔼 between small categories, (Lan𝐺, Lan𝐹 )
is strongly left deformable.

Dually:

(i′) The functor Ran𝐹 : [ℂ, ℳ] → [𝔻, ℳ] sends virtually fibrant diagrams
to componentwise fibrant diagrams and preserves componentwise weak
equivalences between such diagrams.

(ii′) If Ran𝚫(𝐹 ) : [𝚫(ℂ)op, ℳ] → [𝚫(𝔻)op, ℳ] moreover restricts to a functor
[𝚫(ℂ)op

L , ℳ]h → [𝚫(𝔻)op
L , ℳ]h, then Lan𝐹 : [ℂ, ℳ] → [𝔻, ℳ] preserves

virtually cofibrant diagrams.

(iii′) If (𝑅, 𝑖) is a fibrant replacement functor for [𝚫(ℂ)op, ℳ], then

([ℂ, ℳ]vf, Ran𝜋L
∘ 𝑅 ∘ 𝜋∗

L, (Ran𝜋L
∘ 𝑖 ∘ 𝜋∗

L) ∙ )

is a functorial right deformation retract for Ran𝐹 , where is the unit of
the adjunction 𝜋∗

L ⊣ Ran𝜋L
.
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(iv′) The adjunction shown below is deformable:

𝐹 ∗ ⊣ Ran𝐹 : [ℂ, ℳ] → [𝔻, ℳ]

(v′) Given another functor 𝐺 : 𝔻 → 𝔼 between small categories, (Ran𝐺, Ran𝐹 )
is strongly right deformable.

Proof. (i). Let �̃� be a Reedy-cofibrant diagram ℂ → ℳ that is in [𝚫(ℂ)R, ℳ]h
and let 𝑋 = Lan𝜋R

�̃�. There is a canonical isomorphism Lan𝐹 𝜋R
≅ Lan𝐹 ∘Lan𝜋R

,
so proposition 4.10.13 implies Lan𝐹 𝑋 is a componentwise cofibrant diagram
𝔻 → ℳ.

Let ̃𝑌 be another Reedy-cofibrant diagram ℂ → ℳ that is in [𝚫(ℂ)R, ℳ]h,
let 𝑌 = Lan𝜋R

̃𝑌 , and let 𝜑 : 𝑋 ⇒ 𝑌 be a componentwise weak equivalence.
Proposition 3.3.28 applied to theorem 4.10.14 implies the adjunction unit com-
ponents �̃� → 𝜋∗

R𝑋 and ̃𝑌 → 𝜋∗
R𝑌 are Reedy weak equivalences. Using axiom

CM2 and CM5, factor ̃𝑌 → 𝜋∗
R𝑌 as a trivial cofibration : ̃𝑌 → �̃� followed by a

trivial fibration �̃� → 𝜋∗
R𝑌 ; then by axiom CM4 there exists a natural transform-

ation 𝜓 : �̃� ⇒ �̃� making the diagram in [𝚫(ℂ), ℳ] shown below commute:

�̃� �̃� ̃𝑌

𝜋∗
R(𝑋) 𝜋∗

R(𝑌 ) 𝜋∗
R(𝑌 )

𝜓

𝜋∗
R(𝜑)

Since 𝜋∗
R(𝜑) is a Reedy weak equivalence, it follows from axiom CM2 that 𝜓 is

also a Reedy weak equivalence. Transposing across the adjunction Lan𝜋R
⊣ 𝜋∗

R,
we obtain a commutative diagram in [ℂ, ℳ],

Lan𝜋R
�̃� Lan𝜋R

�̃� Lan𝜋R
̃𝑌

𝑋 𝑌 𝑌

Lan𝜋R 𝜓 Lan𝜋R

𝜑

to which we may then apply Lan𝐹 , yielding the following commutative diagram
in [𝔻, ℳ]:

Lan𝐹 𝜋R
�̃� Lan𝐹 𝜋R

�̃� Lan𝐹 𝜋R
̃𝑌

Lan𝐹 𝑋 Lan𝐹 𝑌 Lan𝐹 𝑌

≅

Lan𝐹 𝜋R 𝜓 Lan𝐹 𝜋R

≅

Lan𝐹 𝜑
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Now, Lan𝐹 𝜋R
𝜓 : Lan𝐹 𝜋R

�̃� → Lan𝐹 𝜋R
�̃� and Lan𝐹 𝜋R

: Lan𝐹 𝜋R
̃𝑌 → Lan𝐹 𝜋R

�̃�
are componentwise weak equivalences between componentwise cofibrant dia-
grams, by proposition 4.10.13, so we deduce that Lan𝐹 𝜑 is also a component-
wise weak equivalence between componentwise cofibrant diagrams as claimed,
using the 2-out-of-3 property of weak equivalences in ℳ.

(ii). The following diagram of functors is commutative,

𝚫(ℂ) 𝚫(𝔻)

ℂ 𝔻

𝜋R

𝚫(𝐹 )

𝜋R

𝐹

so there is a canonical natural isomorphism Lan𝐹 ∘ Lan𝜋R
≅ Lan𝜋R

∘ Lan𝚫(𝐹 ).
Corollary 4.10.8 implies Lan𝚫(𝐹 ) : [𝚫(ℂ), ℳ] → [𝚫(𝔻), ℳ] preserves Reedy-
cofibrant diagrams, so it follows from the hypothesis that the functor Lan𝐹 :
[ℂ, ℳ] → [𝔻, ℳ] preserves virtually cofibrant diagrams.

(iii). Having proved claim (i), it is now enough to show that the natural transform-
ation ∙(Lan𝜋R

∘ 𝑝 ∘ 𝜋∗
R) : Lan𝜋R

∘𝑄∘𝜋∗
R ⇒ id[ℂ,ℳ] is a natural weak equivalence;

but this is also a consequence of proposition 3.3.28 applied to theorem 4.10.14.

(iv). The functor 𝐹 ∗ is a homotopical functor, hence trivially right deformable,
and claim (iii) implies Lan𝐹 is left deformable.

(v). Since 𝐹 ∗ and 𝐺∗ are both homotopical functors, (𝐹 ∗, 𝐺∗) is strongly right
deformable, and we may deduce from claim (i) that (Lan𝐺, Lan𝐹 ) is laxly left
deformable. Thus, by lemma 3.1.11, theorem 4.4.1, and corollary 3.3.27, the com-
posable pair (Lan𝐺, Lan𝐹 ) is strongly left deformable. ■

Lemma 4.10.17. Let ℳ be a DHK model category, let 𝐹 : ℂ → 𝔻 be a functor
between small categories, and let 𝐷 be an object in 𝔻.

• Given the following comma square,

𝚫((𝐹 ↓ 𝐷)) 𝟙

𝚫(ℂ) 𝔻

𝚫(𝑃 ) 𝐷

𝐹 𝜋R
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the derived left Beck–Chevalley transformation

(𝐋lim−−→𝚫((𝐹 ↓𝐷))) ∘ (Ho 𝚫(𝑃 )∗) ⇒ (Ho 𝐷∗) ∘ (𝐋Lan𝐹 𝜋R)

is a natural isomorphism.

Dually:

• Given the following comma square,

𝚫((𝐷 ↓ 𝐹 ))op 𝚫(ℂ)op

𝟙 𝔻

𝚫(𝑃 )op

𝐹 𝜋L

𝐷

the derived right Beck–Chevalley transformation

(𝐑lim←−−𝚫((𝐷↓𝐹 ))op) ∘ (Ho 𝚫(𝑃 )∗) ⇒ (Ho 𝐷∗) ∘ (𝐑Ran𝐹 𝜋L)

is a natural isomorphism.

Proof. Lemma 4.10.7 says 𝚫(𝑃 ) : 𝚫((𝐹 ↓ 𝐷)) → 𝚫(ℂ) is a right fibration of
Reedy categories, so by theorem 4.6.32, 𝚫(𝑃 )∗ : [𝚫((𝐹 ↓ 𝐷)), ℳ] → [𝚫(ℂ), ℳ]
preserves Reedy-cofibrant diagrams. Proposition 7.1.19 implies that the left Beck–
Chevalley transformation lim−−→(𝐹 𝜋R↓𝐷)

(−𝚫(𝑃 )) ⇒ (Lan𝐹 𝜋R
−)(𝐷) is a natural iso-

morphism, hence by corollary 3.3.25, so too is its derived natural transforma-
tion. ■

Proposition 4.10.18. Let ℳ be a DHK model category, let 𝐹 : ℂ → 𝔻 be a
functor between small categories, and let 𝐷 be an object in 𝔻.

• Given the following comma square,

(𝐹 ↓ 𝐷) 𝟙

ℂ 𝔻

𝑃 𝐷

𝐹

the derived left Beck–Chevalley transformation

(𝐋lim−−→(𝐹 ↓𝐷)) ∘ (Ho 𝑃 ∗) ⇒ (Ho 𝐷∗) ∘ (𝐋Lan𝐹 )

is a natural isomorphism.
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Dually:

• Given the following comma square,

(𝐷 ↓ 𝐹 ) ℂ

𝟙 𝔻

𝑃

𝐹

𝐷

the derived right Beck–Chevalley transformation

(𝐑lim←−−(𝐷↓𝐹 )) ∘ (Ho 𝑃 ∗) ⇒ (Ho 𝐷∗) ∘ (𝐑Ran𝐹 )

is a natural isomorphism.

Proof. Consider the following diagram, where the 2-cells are the respective left
Beck–Chevalley transformations:

[𝚫(ℂ)R, ℳ]h [𝚫((𝐹 ↓ 𝐷))R, ℳ]h

[𝚫(ℂ), ℳ] [𝚫((𝐹 ↓ 𝐷)), ℳ]

[ℂ, ℳ] [(𝐹 ↓ 𝐷), ℳ]

[𝔻, ℳ] ℳ

𝚫(𝑃 )∗

Lan𝜋R

𝚫(𝑃 )∗

Lan𝜋R

Lan𝐹

𝑃 ∗

lim−→

𝐷∗

The pasting lemma (a.1.11) implies that left Beck–Chevalley transformations
can be pasted together, and the preceding lemma says the derived left Beck–
Chevalley transformation

(𝐋lim−−→𝚫((𝐹 ↓𝐷))) ∘ (Ho 𝚫(𝑃 )∗) ⇒ (Ho 𝐷∗) ∘ (𝐋Lan𝐹 𝜋R)

is a natural isomorphism; but theorem 4.10.14 says that the adjunctions

Lan𝜋R
⊣ 𝜋∗

R : [ℂ, ℳ] → [𝚫(ℂ)R, ℳ]h

Lan𝜋R
⊣ 𝜋∗

R : [(𝐹 ↓ 𝐷), ℳ] → [𝚫((𝐹 ↓ 𝐷))R, ℳ]h
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satisfy the Quillen equivalence condition, so the commutative diagram shown
below automatically satisfies the derived left Beck–Chevalley condition,

[ℂ, ℳ] [(𝐹 ↓ 𝐷), ℳ]

[𝚫(ℂ)R, ℳ]h [𝚫((𝐹 ↓ 𝐷))R, ℳ]h

𝜋∗
R

𝑃 ∗

𝜋∗
R

𝚫(𝑃 )∗

and therefore, by cancelling natural isomorphisms, we conclude that the derived
left Beck–Chevalley transformation

(𝐋lim−−→(𝐹 ↓𝐷)) ∘ (Ho 𝑃 ∗) ⇒ (Ho 𝐷∗) ∘ (𝐋Lan𝐹 )

is a natural isomorphism, as claimed. ■
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V

Topics in model categories

5.1 Proper model categories
Prerequisites. §§3.1, 4.1, 4.3, 4.4, 4.6.

Definition 5.1.1. Let u� be a category with weak equivalences.

• A homotopically quadrable morphism in u� is a morphism 𝑝 : 𝐸 → 𝑌
with the following property: for any morphism 𝑓 : 𝑌 ′ → 𝑌 and any weak
equivalence 𝑣 : 𝑌 ″ → 𝑌 ′, there is a commutative diagram in u� of the form
below,

𝐸″ 𝐸′ 𝐸

𝑌 ″ 𝑌 ′ 𝑌

𝑢

𝑝

𝑣 𝑓

where both squares are pullbacks and 𝑢 : 𝐸″ → 𝐸′ is a weak equivalence
in u�.

• A homotopically coquadrable morphism in u� is a morphism 𝑖 : 𝑍 → 𝑊
with the following property: for any morphism 𝑓 : 𝑍 → 𝑍′ and any weak
equivalence 𝑣 : 𝑍′ → 𝑍″, there is a commutative diagram in u� of the
form below,

𝑍 𝑍′ 𝑍″

𝑊 𝑊 ′ 𝑊 ″

𝑖

𝑓 𝑣

𝑢

where both squares are pushouts and 𝑢 : 𝑊 ′ → 𝑊 ″ is a weak equivalence
in u�.
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Remark. Homotopically quadrable (resp. coquadrable) morphisms are called
‘sharp maps’ (resp. ‘flat maps’) in [Rezk, 1998].
Remark 5.1.2. The pullback (resp. pushout) pasting lemma implies the class of
homotopically quadrable (resp. coquadrable) morphisms in u� is closed under
composition and pullback (resp. pushout).

Lemma 5.1.3. Let ℳ be a derivable category.

• Every trivial fibration in ℳ is homotopically quadrable.

• Every trivial cofibration in ℳ is homotopically coquadrable.

Proof. The two claims are formally dual; we will prove the first version.
Suppose 𝑝 : 𝐸 → 𝑌 is a trivial fibration. By corollary 4.1.13, we have a

commutative diagram in ℳ of the form below,

𝐸″ 𝐸′ 𝐸

𝑌 ″ 𝑌 ′ 𝑌

𝑝″

𝑢

𝑝′ 𝑝

𝑣 𝑓

where both squares are pullbacks, and moreover, 𝑝′ : 𝐸′ → 𝑌 ′ and 𝑝″ : 𝐸″ →
𝑌 ″ are also trivial fibrations. Axiom CM2 then implies 𝑢 : 𝐸″ → 𝐸′ is a weak
equivalence if (and only if) 𝑣 : 𝑌 ″ → 𝑌 ′ is a weak equivalence. ■

Lemma 5.1.4. Let ℳ be a category with weak equivalences.

• Assuming ℳ has a terminal object 1 and binary products, if the class of
weak equivalences in ℳ is closed under binary products, then for any
object 𝑌 in ℳ, the unique morphism 𝑌 → 1 is homotopically quadrable.

• Assuming ℳ has an initial object 0 and binary coproducts, if the class of
weak equivalences in ℳ is closed under binary coproducts, then for any
object 𝑋 in ℳ, the unique morphism 0 → 𝑋 is homotopically coquad-
rable.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑥 : 𝑋′ → 𝑋 be a morphism in ℳ, and consider the following diagram

inℳ,
𝑋′ × 𝑌 𝑋 × 𝑌 𝑌

𝑋′ 𝑋 1

𝑥×id𝑌

𝑥
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where the vertical arrows are the evident projections. By the pullback pasting
lemma, both squares are pullback squares, and by hypothesis, 𝑥 × id𝑌 : 𝑋′ ×
𝑌 → 𝑋 × 𝑌 is a weak equivalence if 𝑥 : 𝑋′ → 𝑋 is. Thus, 𝑌 → 1 is indeed
homotopically quadrable. ■

Lemma 5.1.5. Let ℳ be a model category and let 𝑓 : 𝑋 → 𝑌 be a morphism
in ℳ. Then the base change adjunction[1]

Σ𝑓 ⊣ 𝑓 ∗ : ℳ∕𝑌 → ℳ∕𝑋

is a Quillen adjunction.

Proof. By proposition 4.3.2, it suffices to verify that the dependent sum functor
Σ𝑓 : ℳ∕𝑋 → ℳ∕𝑌 preserves cofibrations and trivial cofibrations; but this is an
immediate consequence of the definition of slice model structures. ■

The following appears as Proposition 2.3 in [Rezk, 2002].

Proposition 5.1.6. Let ℳ be a model category and let 𝑓 : 𝑋 → 𝑌 be a morph-
ism in ℳ. The following are equivalent:

(i) The pullback of 𝑓 : 𝑋 → 𝑌 along any fibration 𝑝 : 𝐸 → 𝑌 in ℳ is a
weak equivalence in ℳ. (In particular, 𝑓 : 𝑋 → 𝑌 is a weak equivalence
in ℳ.)

(ii) The base change adjunction

Σ𝑓 ⊣ 𝑓 ∗ : ℳ∕𝑌 → ℳ∕𝑋

is a Quillen equivalence.

(iii) The derived base change adjunction

𝐋Σ𝑓 ⊣ 𝐑𝑓 ∗ : Ho ℳ∕𝑌 → Ho ℳ∕𝑋

is an adjoint equivalence of categories.

[1] See lemma a.2.17.
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Proof. (i) ⇔ (ii). Consider a fibrant object in ℳ∕𝑌 , i.e. a fibration 𝑝 : 𝐸 → 𝑌 in
ℳ. Then we have a pullback square in ℳ:

𝑓 ∗𝐸 𝐸

𝑋 𝑌

𝑓 ∗𝑝

𝑢

𝑝

𝑓

Let 𝑞 : 𝑇 → 𝑋 be a cofibrant object in ℳ∕𝑋 , i.e. any morphism 𝑞 : 𝑇 → 𝑋 in
ℳ where 𝑇 is a cofibrant object in ℳ. If 𝑢 : 𝑓 ∗𝐸 → 𝐸 is a weak equivalence in
ℳ, then (by axiom CM2) a morphism 𝑞 → 𝑓 ∗𝑝 in ℳ∕𝑋 is a weak equivalence
if and only if its right adjoint transpose Σ𝑓 𝑞 → 𝑝 is a weak equivalence in ℳ∕𝑌 .
Thus, recalling lemma 5.1.5, condition (i) implies condition (ii).

Conversely, suppose ( ̃𝐸, 𝑣) is a cofibrant replacement for 𝑓 ∗𝐸 in ℳ. Let 𝑞 =
𝑓 ∗𝑝∘𝑣. Then 𝑞 : ̃𝐸 → 𝑋 is a cofibrant object in ℳ∕𝑋 and 𝑣 : 𝑞 → 𝑓 ∗𝑝 is a weak
equivalence in ℳ∕𝑋; so if the base change adjunction is a Quillen equivalence,
then the right adjoint transpose Σ𝑓 𝑞 → 𝑝 is a weak equivalence in ℳ∕𝑌 . But the
underlying morphism of the right adjoint transpose is 𝑢 ∘ 𝑣 : ̃𝐸 → 𝐸, and axiom
CM2 implies 𝑢 ∘ 𝑣 is a weak equivalence in ℳ if and only if 𝑢 : 𝑓 ∗𝐸 → 𝐸 is a
weak equivalence in ℳ; thus condition (ii) implies condition (i).

(ii) ⇔ (iii). Since model categories are saturated homotopical categories (by
theorem 4.4.1), we may apply proposition 3.3.28. ■

Definition 5.1.7. Let ℳ be a category.

• A right proper model structure on ℳ is a model structure where every
fibration is homotopically quadrable.

• A left proper model structure on ℳ is a model structure where every
cofibration is homotopically coquadrable.

• A proper model structure on ℳ is a model structure that is both left
proper and right proper.

The following appears as Proposition 2.5 in [Rezk, 2002].

Proposition 5.1.8. Let ℳ be a model category. The following are equivalent:

(i) ℳ is a right proper model category.
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(ii) The pullback of any weak equivalence 𝑓 : 𝑋 → 𝑌 along any fibration
𝑝 : 𝐸 → 𝑌 in ℳ is a weak equivalence in ℳ.

(iii) For any weak equivalence 𝑓 : 𝑋 → 𝑌 , the derived base change adjunction

𝐋Σ𝑓 ⊣ 𝐑𝑓 ∗ : Ho ℳ∕𝑌 → Ho ℳ∕𝑋

is an adjoint equivalence of categories.

Proof. (i) ⇔ (ii). The class of fibrations is closed under pullbacks, by proposi-
tion a.3.17.

(ii) ⇔ (iii). Apply proposition 5.1.6. ■

Proposition 5.1.9 (Reedy). Let ℳ be a model category.

• If all objects in ℳ are cofibrant, then ℳ is a left proper model category.

• If all objects in ℳ are fibrant, then ℳ is a right proper model category.

Proof. See Proposition 13.1.2 in [Hirschhorn, 2003], or use proposition 3.7.15.
□

Proposition 5.1.10. Let ℳ be a model category and let 𝔸 be a small category.

(i) If the injective model structure on [𝔸, ℳ] exists and ℳ is a left proper
model category, then [𝔸, ℳ] (with the injective model structure) is also a
left proper model category.

(ii) If the projective model structure on [𝔸, ℳ] exists and ℳ is a left proper
model category with products for families of size ≤ |mor 𝔸|, then [𝔸, ℳ]
(with the projective model structure) is also a left proper model category.

Dually:

(i′) If the projective model structure on [𝔸, ℳ] exists and ℳ is a right proper
model category, then [𝔸, ℳ] (with the projective model structure) is also
a right proper model category.

(ii′) If the injective model structure on [𝔸, ℳ] exists and ℳ is a right proper
model category with coproducts for families of size ≤ |mor 𝔸|, then [𝔸, ℳ]
(with the injective model structure) is also a right proper model category.
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Proof. (i). Since cofibrations, weak equivalences, and pushouts are all defined
componentwise in [𝔸, ℳ], left properness is indeed inherited from ℳ.

(ii). Corollary 4.3.21 says that the cofibrations in the projective model structure
on [𝔸, ℳ] are also cofibrations in the injective model structure, so the projective
model structure is left proper if the injective model structure is. ■

For the remainder of this section, we study pullbacks (resp. pushouts) in the
context of left (resp. right) proper model categories.

Definition 5.1.11. Let ℳ be a model category.

• A (right) derived pullback for a pair of morphisms 𝑓 : 𝑋 → 𝑍 and
𝑔 : 𝑌 → 𝑍 in ℳ consists of the following data:

– An object in ℳ, 𝑋
𝐑
×𝑍 𝑌 .

– A pullback diagram in ℳ of the form below,

𝑋
𝐑
×𝑍 𝑌 ̂𝑌

�̂� �̂�

̂𝑔

̂𝑓

where ̂𝑓 : �̂� → �̂� and ̂𝑔 : ̂𝑌 → �̂� are fibrations between fibrant
objects in ℳ.

– A commutative diagram in ℳ of the form below,

𝑋 𝑍 𝑌

�̂� �̂� ̂𝑌

𝑓 𝑔

̂𝑓 ̂𝑔

where the vertical arrows are weak equivalences in ℳ.

We will often abuse notation and refer to 𝑋
𝐑
×𝑍 𝑌 as the derived pullback.

• A (left) derived pushout for a pair of morphisms 𝑓 : 𝑍 → 𝑋 and 𝑔 :
𝑍 → 𝑌 in ℳ consists of the following data:

– An object in ℳ, 𝑋 ∪
𝐋

𝑍 𝑌 .

584



5.1. Proper model categories

– A pushout diagram in ℳ of the form below,

�̃� ̃𝑌

�̃� 𝑋 ∪
𝐋

𝑍 𝑌

̃𝑓

̃𝑔

where ̃𝑓 : �̃� → �̃� and ̃𝑔 : �̃� → ̃𝑌 are cofibrations between cofibrant
objects in ℳ.

– A commutative diagram in ℳ of the form below,

�̃� �̃� ̃𝑌

𝑋 𝑍 𝑌

̃𝑓 ̃𝑔

𝑓 𝑔

where the vertical arrows are weak equivalences in ℳ.

We will often abuse notation and refer to 𝑋 ∪
𝐋

𝑍 𝑌 as the derived pushout.

Remark 5.1.12. The free cospan {• → • ← •} is clearly an inverse category;
dually, the free span {• ← • → •} is a direct category.

Lemma 5.1.13. Let ℳ be a model category.

• The injective model structure on the category of cospans in ℳ exists and
coincides with the Reedy model structure.

• The projective model structure on the category of spans in ℳ exists and
coincides with the Reedy model structure.

Proof. In view of remark 5.1.12, this is a special case of corollary 4.6.14. ■

Corollary 5.1.14. Let ℳ be a model category.

• The limit functor lim←−− : [{• → • ← •}, ℳ] → ℳ admits a right derived
functor.

• The colimit functor lim←−− : [{• ← • → •}, ℳ] → ℳ admits a left derived
functor.
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Proof. Apply proposition 4.3.2 and theorem 4.3.12 to proposition 4.3.17. ■

Lemma 5.1.15. Let ℳ be a model category.

• A cospan in ℳ is injective-fibrant if and only if its vertices are fibrant
objects in ℳ and its arrows are fibrations in ℳ.

• A span in ℳ is projective-cofibrant if and only if its vertices are cofibrant
objects in ℳ and its arrows are cofibrations in ℳ.

Proof. Apply lemma 5.1.13 and the explicit description of cofibrations (resp.
fibrations) in the Reedy model structure. ■

Remark 5.1.16. Thus, a derived pullback (resp. derived pushout) for a cospan
(resp. span) is essentially the same thing as a injective-fibrant (resp. projective-
cofibrant) replacement together with a pullback (resp. pushout) for the replace-
ment cospan (resp. span). In particular, by lemma 4.1.25 and Ken Brown’s lemma
(4.3.6), their underlying objects are unique up to weak equivalence.

Definition 5.1.17. Let ℳ be a model category.

• A derived pullback diagram in ℳ is a commutative square in ℳ, say

𝑊 𝑌

𝑋 𝑍

such that the canonical comparison morphism 𝑊 → 𝑋
𝐑
×𝑍 𝑌 is a weak

equivalence for all derived pullbacks 𝑋
𝐑
×𝑍 𝑌 .

• A derived pushout diagram in ℳ is a commutative square in ℳ, say

𝑍 𝑌

𝑋 𝑊

such that the canonical comparison morphism 𝑋 ∪
𝐋

𝑍 𝑌 → 𝑊 is a weak

equivalence for all derived pushouts 𝑋 ∪
𝐋

𝑍 𝑌 .
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Proposition 5.1.18. Let ℳ be a model category.

• Given any pullback diagram in ℳ of the form below,

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

𝑔

𝑓

if 𝑍 is fibrant and either 𝑓 : 𝑋 → 𝑍 or 𝑔 : 𝑌 → 𝑍 is a homotopically
quadrable fibration, then the above diagram is also a derived pullback
diagram.

• Gievn any pushout diagram in ℳ of the form below,

𝑍 𝑌

𝑋 𝑋 ∪𝑍 𝑌

𝑓

𝑔

if 𝑍 is cofibrant and either 𝑓 : 𝑋 → 𝑍 or 𝑔 : 𝑌 → 𝑍 is a homotopically
coquadrable cofibration, then the above diagram is also a derived pushout
diagram.

Proof. The two claims are formally dual; we will prove the first version.
Suppose 𝑓 : 𝑋 → 𝑍 is a homotopically quadrable fibration. By axiom CM5,

the morphism 𝑔 : 𝑌 → 𝑍 admits a factorisation 𝑔 = 𝑝 ∘ 𝑣 where 𝑝 : 𝑌 ′ → 𝑍 is
a fibration and 𝑣 : 𝑌 → 𝑌 ′ is a weak equivalence. Thus, we have a commutative
diagram in ℳ of the form below,

𝑋 ×𝑍 𝑌 𝑋 ×𝑍 𝑌 ′ 𝑋

𝑌 𝑌 ′ 𝑍𝑣 𝑝

where the two squares are pullbacks and the morphism 𝑋 ×𝑍 𝑌 → 𝑋 ×𝑍 𝑌 ′ is
a weak equivalence in ℳ. Recalling lemma 5.1.15, we see that the right square
is (part of) a derived pullback for 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍, so remark 5.1.16
implies that the canonical comparison morphism 𝑋 ×𝑍 𝑌 → 𝑋

𝐑
×𝑍 𝑌 is the

composite of two weak equivalences, hence is itself a weak equivalence by axiom
CM2. ■
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Lemma 5.1.19. Let ℳ be a model category.

• Let 1 be a terminal object in ℳ. If the class of weak equivalences in ℳ
is closed under binary products, then for any pair (𝑋, 𝑌 ) of objects in ℳ,
we have the following derived pullback diagram in ℳ,

𝑋 × 𝑌 𝑌

𝑋 1

where the two non-trivial arrows are the product projections.

• Let 0 be an initial object in ℳ. If the class of weak equivalences in ℳ is
closed under binary coproducts, then for any pair (𝑋, 𝑌 ) of objects in ℳ,
we have the following derived pushout diagram in ℳ,

0 𝑌

𝑋 𝑋 + 𝑌

where the two non-trivial arrows are the coproduct insertions.

Proof. The two claims are formally dual; we will prove the first version.
By proposition 4.1.17, there are fibrant replacements (�̂�, 𝑖𝑋) and ( ̂𝑌 , 𝑖𝑌 ) for

𝑋 and 𝑌 (respectively), and by remark 5.1.16, the diagram in question is a derived
pullback diagram if and only if 𝑖𝑋 × 𝑖𝑌 : 𝑋 × 𝑌 → �̂� × ̂𝑌 is a weak equivalence
in ℳ; but we assumed that the class of weak equivalences in ℳ is closed under
binary products, so we are done. ■

Lemma 5.1.20. Let ℳ be a model category.

• Consider a commutative square in ℳ:

𝑊 𝑌

𝑋 𝑍

𝑝

𝑞

𝑔

𝑓

Assuming 𝑓 : 𝑋 → 𝑍 is a weak equivalence in ℳ, the square is a derived
pullback diagram in ℳ if and only if 𝑞 : 𝑊 → 𝑌 is a weak equivalence
in ℳ.
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• Consider a commutative square in ℳ:

𝑍 𝑌

𝑋 𝑊

𝑓

𝑔

𝑗

𝑖

Assuming 𝑓 : 𝑍 → 𝑋 is a weak equivalence in ℳ, the square is a derived
pushout diagram in ℳ if and only if 𝑗 : 𝑌 → 𝑊 is a weak equivalence in
ℳ.

Proof. The two claims are formally dual; we will prove the first version.
Using proposition 4.1.17 and axiom CM5, we may choose:

• a fibrant replacement (�̂�, 𝑖𝑍) for 𝑍,

• a fibration ̂𝑓 : �̂� → �̂� and a weak equivalence 𝑖𝑋 : 𝑋 → �̂� such that
̂𝑓 ∘ 𝑖𝑋 = 𝑖𝑋 ∘ 𝑓 , and

• a fibration ̂𝑔 : ̂𝑌 → �̂� and a weak equivalence 𝑖𝑌 : 𝑌 → ̂𝑌 such that
̂𝑔 ∘ 𝑖𝑌 = 𝑖𝑍 ∘ 𝑓 .

Observe that axiom CM2 implies that ̂𝑓 : �̂� → �̂� is a trivial fibration in ℳ.
We then construct the following pullback square in ℳ,

�̂� ̂𝑌

�̂� �̂�

̂𝑝

̂𝑞

̂𝑔

̂𝑓

and we note that (by corollary 4.1.13) ̂𝑞 : �̂� → ̂𝑌 is also a trivial fibration in ℳ.
Thus, the canonical comparison morphism 𝑖𝑊 : 𝑊 → �̂� is a weak equivalence
in ℳ if and only if 𝑞 : 𝑊 → 𝑌 is a weak equivalence in ℳ; and recalling
remark 5.1.16, the claim follows. ■

Lemma 5.1.21. Let ℳ be a model category.

• Consider a commutative diagram in ℳ of the form below:

𝑊 ′ 𝑊 𝑌

𝑋′ 𝑋 𝑍

𝑝′

𝑤

𝑝

𝑞

𝑔

𝑥 𝑓
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Assuming the right square is a derived pullback diagram, the outer rect-
angle is a derived pullback diagram if and only if the left square is a derived
pullback diagram.

• Consider a commutative diagram in ℳ of the form below:

𝑍 𝑌 𝑌 ′

𝑋 𝑊 𝑊 ′

𝑓

𝑔

𝑖

𝑦

𝑖′

𝑗 𝑤

Assuming the left square is a derived pushout diagram, the outer rectangle
is a derived pushout diagram if and only if the right square is a derived
pushout diagram.

Proof. The two claims are formally dual; we will prove the first version.
Using proposition 4.1.17 and axiom CM5, we may choose:

• a fibrant replacement (�̂�, 𝑖𝑍) for 𝑍,

• a fibration ̂𝑓 : �̂� → �̂� and a weak equivalence 𝑖𝑋 : 𝑋 → �̂� such that
̂𝑓 ∘ 𝑖𝑋 = 𝑖𝑋 ∘ 𝑓 ,

• a fibration ̂𝑔 : ̂𝑌 → �̂� and a weak equivalence 𝑖𝑌 : 𝑌 → ̂𝑌 such that
̂𝑔 ∘ 𝑖𝑌 = 𝑖𝑍 ∘ 𝑓 , and

• a fibration �̂� : �̂�′ → �̂� and a weak equivalence 𝑖𝑋′ : 𝑋′ → �̂�′ such that
�̂� ∘ 𝑖𝑋′ = 𝑖𝑋 ∘ 𝑥.

We then construct the following diagram in ℳ,

�̂� ′ �̂� ̂𝑌

�̂�′ �̂� �̂�

̂𝑝 ̂𝑔

�̂� ̂𝑓

where both squares are pullback diagram; note that the ordinary pullback past-
ing lemma says that the outer rectangle is then also a pullback diagram. We thus
have canonical comparison morphisms 𝑖𝑊 ′ : 𝑊 ′ → �̂� ′ and 𝑖𝑊 : 𝑊 → �̂� ,
and by hypothesis, 𝑖𝑊 : 𝑊 → �̂� is a weak equivalence. Moreover, by proposi-
tion a.3.17, ̂𝑝 : �̂� → ̂𝑌 is a fibration such that ̂𝑝∘𝑖𝑌 = 𝑖𝑊 ∘𝑝, so by remark 5.1.16,
the following are equivalent:
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(i) 𝑖𝑊 ′ : 𝑊 ′ → �̂� ′ is a weak equivalence.

(ii) The diagram shown below is a derived pullback square in ℳ:

𝑊 ′ 𝑊

𝑋′ 𝑋

𝑝′

𝑤

𝑝

𝑥

(iii) The diagram shown below is a derived pullback square in ℳ:

𝑊 ′ 𝑌

𝑋′ 𝑍

𝑝′

𝑞∘𝑤

𝑔

𝑓∘𝑥

This completes the proof. ■

Proposition 5.1.22. Let ℳ be a model category.

• Consider a commutative cube in ℳ:

𝑊 ′ 𝑌 ′

𝑊 𝑌

𝑋′ 𝑍′

𝑋 𝑍

Assuming the diagonal arrows are weak equivalences in ℳ, the front face
is a derived pullback diagram in ℳ if and only if the back face is a derived
pullback diagram in ℳ.

• Consider a commutative cube in ℳ:

𝑍′ 𝑌 ′

𝑍 𝑌

𝑋′ 𝑊 ′

𝑋 𝑊
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Assuming the diagonal arrows are weak equivalences in ℳ, the front face
is a derived pushout diagram in ℳ if and only if the back face is a derived
pushout diagram in ℳ.

Proof. Apply lemmas 5.1.20 and 5.1.21 (twice for each direction of each claim).
■

Proposition 5.1.23. Let ℳ be a model category.

• Let 𝑓 : 𝑋 → 𝑍 be a morphism in ℳ. If every pullback diagram in ℳ of
the form

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍
𝑓

is also a derived pullback diagram, then 𝑓 : 𝑋 → 𝑍 is a homotopically
quadrable morphism in ℳ.

• Let 𝑓 : 𝑍 → 𝑋 be a morphism in ℳ. If every pushout diagram in ℳ of
the form

𝑍 𝑌

𝑋 𝑋 ∪𝑍 𝑌

𝑓

is also a derived pushout diagram, then 𝑓 : 𝑍 → 𝑋 is a homotopically
coquadrable morphism in ℳ.

Proof. Consider a commutative diagram in ℳ of the form below,

𝑋 ×𝑍 𝑌 ′ 𝑋 ×𝑍 𝑌 𝑋

𝑌 ′ 𝑌 𝑍

𝑓 ∗𝑣

𝑓

𝑣 𝑔

where the squares are pullbacks and 𝑣 : 𝑌 ′ → 𝑌 is a weak equivalence. By hy-
pothesis, the right square and the outer rectangle are derived pullback diagrams,
so by lemma 5.1.21, the left square is also a derived pullback diagram. We can
then apply lemma 5.1.20 to deduce that 𝑓 ∗𝑣 : 𝑋 ×𝑍 𝑌 ′ → 𝑋 ×𝑍 𝑌 is a weak
equivalence in ℳ. ■
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The following appears as Proposition 2.7 in [Rezk, 1998]:

Proposition 5.1.24. The following are equivalent for a morphism 𝑓 : 𝑋 → 𝑍
in a right proper model category ℳ:

(i) The morphism 𝑓 : 𝑋 → 𝑍 is homotopically quadrable in ℳ.

(ii) Every pullback diagram in ℳ of the form

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍
𝑓

is also a derived pullback diagram.

Dually, the following are equivalent for a morphism 𝑓 : 𝑍 → 𝑋 is a left proper
model category ℳ:

(i′) The morphism 𝑓 : 𝑍 → 𝑋 is homotopically coquadrable in ℳ.

(ii′) Every pushout diagram in ℳ of the form

𝑍 𝑌

𝑋 𝑋 ∪𝑍 𝑌

𝑓

is also a derived pushout diagram.

Proof. (i) ⇒ (ii). Suppose we have a commutative diagram in ℳ of the form
below,

𝑋 𝑍 𝑌

�̂� �̂� ̂𝑌

𝑤𝑋

𝑓

𝑤𝑍 𝑤𝑌

𝑔

̂𝑓 ̂𝑔

where the vertical arrows are weak equivalences in ℳ and ̂𝑓 : �̂� → �̂� and
̂𝑔 : ̂𝑌 → �̂� are fibrations between fibrant objects in ℳ for which we have a

pullback diagram in ℳ:

𝑋
𝐑
×𝑍 𝑌 ̂𝑌

�̂� �̂�

̂𝑔

̂𝑓
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Consider the following commutative diagram in ℳ:

𝑋 ×�̂�
̂𝑌 𝑋

𝐑
×𝑍 𝑌 ̂𝑌

𝑋 �̂� �̂�

̂𝑔

𝑤𝑋 ̂𝑓

By the pullback pasting lemma, the left square is a pullback; hence by right pro-
perness, the canonical comparison morphism 𝑋 ×�̂�

̂𝑌 → 𝑋
𝐑
×𝑍 𝑌 is a weak equi-

valence. Applying the pullback pasting lemma again, we find that the squares in
the diagram below are pullbacks:

𝑋 ×𝑍 𝑌 𝑌

𝑋 ×�̂�
̂𝑌 (𝑤𝑍)∗ ̂𝑌 ̂𝑌

𝑋 𝑍 �̂�

𝑤𝑌

(𝑤𝑍)∗ ̂𝑔 ̂𝑔

𝑓 𝑤𝑍

By right properness (and axiom CM2), the morphism 𝑌 → (𝑤𝑍)∗ ̂𝑌 is a weak
equivalence, so if 𝑓 : 𝑋 → 𝑍 is a homotopically quadrable morphism, then the
canonical comparison morphism 𝑋 ×𝑍 𝑌 → 𝑋 ×�̂�

̂𝑌 is a weak equivalence, in
which case the canonical comparison morphism 𝑋 ×𝑍 𝑌 → 𝑋

𝐑
×𝑍 𝑌 is a weak

equivalence (by axiom CM2 again), i.e. the pullback square

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

𝑔

𝑓

is also a derived pullback square in ℳ.

(ii) ⇒ (i). See proposition 5.1.23. ■

5.2 Combinatorial model categories
Prerequisites. §§0.2, 0.3, 0.5, 4.1, a.3.
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Definition 5.2.1. A cofibrantly generated model category is a complete and
cocomplete model category ℳ such that there exist a set ℐ of cofibrations and a
set ℐ′ of trivial cofibrations satisfying these conditions:

• (ℐ, ℳ) admits the small object argument, and cofℳ ℐ is the class of all
cofibrations in ℳ.

• (ℐ′, ℳ) admits the small object argument, and cofℳ ℐ′ is the class of all
trivial cofibrations in ℳ.

Remark 5.2.2. By Quillen’s small object argument (theorem 0.5.12), any cofi-
brantly generated model category satisfies axiom CM5* and thus is a DHK model
category.

Theorem 5.2.3 (Kan’s recognition principle). Let ℳ be a complete and cocom-
plete locally small category, let u� be a subcategory of ℳ containing all the
objects, and let ℐ and ℐ′ be subsets of mor ℳ. Assume the following hypotheses:

• u� is closed under retracts and has the 2-out-of-3 property in ℳ.

• (ℐ, ℳ) and (ℐ′, ℳ) both admit the small object argument.

• injℳ ℐ ⊆ u� ∩ injℳ ℐ′.

• cofℳ ℐ′ ⊆ u� ∩ cofℳ ℐ.

If, in addition, either

• injℳ ℐ = u� ∩ injℳ ℐ′, or

• cofℳ ℐ′ = u� ∩ cofℳ ℐ.

then there exists a unique model structure on ℳ such that cofℳ ℐ is the class
of cofibrations, cofℳ ℐ′ is the class of trivial cofibrations, and u� is the class of
weak equivalences.

Proof. See Theorem 11.3.1 in [Hirschhorn, 2003]. □

Corollary 5.2.4. Let ℳ be a model category, let u� be the class of weak equi-
valences in ℳ, let ℐ be a set of cofibrations in ℳ, and let ℐ′ be a set of trivial
cofibrations in ℳ. Assume the following hypotheses:

• ℳ is complete and cocomplete.
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• (ℐ, ℳ) and (ℐ′, ℳ) both admit the small object argument.

• injℳ ℐ ⊆ u� .

• cofℳ ℐ′ ⊆ cofℳ ℐ.

If, in addition, either

• injℳ ℐ = u� ∩ injℳ ℐ′, or

• cofℳ ℐ′ = u� ∩ cofℳ ℐ.

then there exists a unique model structure on ℳ such that cofℳ ℐ is the class
of cofibrations, cofℳ ℐ′ is the class of trivial cofibrations, and u� is the class of
weak equivalences.

Proof. To use Kan’s recognition principle (theorem 5.2.3), it suffices to verify
that injℳ ℐ ⊆ injℳ ℐ′ and cofℳ ℐ′ ⊆ u� . The first inclusion is a consequence of
proposition a.3.3 and the assumption that every ℐ′-cofibration is a ℐ-cofibration.
To prove the second inclusion, recall that theorem 4.1.12 and proposition a.3.17
imply that the class of trivial cofibrations in ℳ is closed under pushouts, transfin-
ite composition, and retracts, so every ℐ′-cofibration is a trivial cofibration (hence
a weak equivalence a fortiori). ■

Theorem 5.2.5 (Kan’s lifting theorem). Let ℳ be a complete and cocomplete
locally small category and let u� be a cofibrantly generated model category.
Assume the following hypotheses:

• 𝐹 ⊣ 𝐺 : ℳ → u� is an adjunction of categories.

• u� (resp. u� ′) is a generating set of cofibrations (resp. trivial cofibrations)
in u� .

• (ℐ, ℳ) and (ℐ′, ℳ) admit the small object argument, where ℐ and ℐ′ are
the following sets:

ℐ = {𝐹 𝑓 | 𝑓 ∈ u� } ℐ′ = {𝐹 𝑓 | 𝑓 ∈ u� ′}

• 𝐺 sends relative ℐ′-cell complexes in ℳ to weak equivalences in u� .

Then:
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(i) There is a unique model structure on ℳ with cofℳ ℐ as the class of cofibra-
tions and cofℳ ℐ′ as the class of trivial cofibrations.

(ii) A morphism 𝑔 : 𝐴 → 𝐵 in ℳ is a weak equivalence (resp. fibration, trivial
fibration) in this model structure if and only if 𝐺𝑔 : 𝐺𝐴 → 𝐺𝐵 is a weak
equivalence (resp. fibration, trivial fibration) in u� .

(iii) 𝐹 ⊣ 𝐺 : ℳ → u� is a Quillen adjunction with respect to this model
structure.

Proof. See Theorem 11.3.2 in [Hirschhorn, 2003]. □

Corollary 5.2.6. Let ℳ be a complete and cocomplete locally small category,
let u� be a cofibrantly generated model category. Assume the following hypo-
theses:

• 𝐹 ⊣ 𝐺 : ℳ → u� is an adjunction of categories.

• u� (resp. u� ′) is a generating set of cofibrations (resp. trivial cofibrations)
in u� .

• (ℐ, ℳ) and (ℐ′, ℳ) admit the small object argument, where ℐ and ℐ′ are
the following sets:

ℐ = {𝐹 𝑓 | 𝑓 ∈ u� } ℐ′ = {𝐹 𝑓 | 𝑓 ∈ u� ′}

• 𝐺 : ℳ → u� is fully faithful.

• 𝐺 sends relative ℐ-cell complexes in ℳ to cofibrations in u� .

• The adjunction unit : idu� ⇒ 𝐺𝐹 is a natural weak equivalence.

Then:

(i) There is a unique model structure on ℳ with cofℳ ℐ as the class of cofibra-
tions and cofℳ ℐ′ as the class of trivial cofibrations.

(ii) A morphism 𝑔 : 𝐴 → 𝐵 in ℳ is a weak equivalence (resp. fibration, trivial
fibration) in this model structure if and only if 𝐺𝑔 : 𝐺𝐴 → 𝐺𝐵 is a weak
equivalence (resp. fibration, trivial fibration) in u� .

(iii) 𝐹 ⊣ 𝐺 : ℳ → u� is a Quillen equivalence with respect to this model
structure.
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Proof. (i) and (ii). Since : idu� ⇒ 𝐺𝐹 is a natural weak equivalence, a morph-
ism 𝑓 in u� is a weak equivalence if and only if 𝐺𝐹 𝑓 is a weak equivalence.
Thus, 𝐺𝐹 : u� → u� also preserves trivial cofibrations. In particular, if 𝑓 is in
u� ′, then 𝐺𝐹 𝑓 is a trivial cofibration.

Next, consider a diagram 𝑋 : 𝔻 → ℳ. We have the following commutative
diagram in u� ,

𝐺𝑋𝑑 lim−−→𝔻
𝐺𝑋

𝐺𝐹 𝐺𝑋𝑑 𝐺𝐹 lim−−→𝔻
𝐺𝑋

𝐺𝐹 𝐺𝑋𝑑 𝐺 lim−−→𝔻
𝐹 𝐺𝑋

𝐺𝑋𝑑 𝐺 lim−−→𝔻
𝑋

𝐺𝑋𝑑 lim−→𝔻
𝐺𝑋

≅

𝐺 𝑋𝑑 𝐺 lim−→𝔻
𝑋

where the horizontal arrows are either the components of the colimiting cocones
or the images thereof. The right triangle identity says that the composite of the
left column is id𝐺𝑋𝑑 , so the composite of the right column must be the canonical
comparison lim−−→𝔻

𝐺𝑋 → 𝐺 lim−−→𝔻
𝑋; but proposition a.1.3 says : 𝐹 𝐺 ⇒ idℳ is

a natural isomorphism, so the canonical comparison morphism must be a weak
equivalence.

It follows from the observations above (plus theorem 4.1.12 and proposi-
tion a.3.17) that 𝐺 sends relative ℐ′-cell complexes in ℳ to weak equivalences
in u� . We may now apply Kan’s lifting theorem (5.2.5) to deduce that ℐ and ℐ′

cofibrantly generate a model structure on ℳ with the required properties.

(iii). We already know that 𝐹 ⊣ 𝐺 : ℳ → u� is a Quillen adjunction. To
complete the proof, we simply appeal to propositions 4.3.8 and a.1.3. ■

Theorem 5.2.7 (Existence of cofibrantly generated projective model structures).
Let 𝔸 be a small category. If ℳ is a cofibrantly generated model category, then
the projective model structure on [𝔸, ℳ] exists and is cofibrantly generated.

Proof. See Theorem 11.6.1 in [Hirschhorn, 2003]. □

The following is due to Smith [1998].
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Definition 5.2.8. A combinatorial model category is a cofibrantly generated
model category that is also a locally presentable category.

Remark 5.2.9. Since locally presentable categories are automatically complete
and cocomplete,[2] in light of remark 0.5.9, to show that a locally presentable
model category ℳ is a combinatorial model category, it is enough to verify that
there exist sets ℐ and ℐ′ such that cofℳ ℐ is the class of all cofibrations in ℳ and
cofℳ ℐ′ is the class of all trivial cofibrations in ℳ.

Theorem 5.2.10 (Smith’s recognition principle). Let ℳ be a locally presentable
category, let u� be a subcategory of ℳ containing all the objects, and let ℐ be
a subset of mor ℳ. Assume the following hypotheses:

• u� is closed under retracts and has the 2-out-of-3 property in ℳ.

• Every ℐ-injective morphism in ℳ is in u� .

• The class u�∩cofℳ ℐ is closed under pushouts and transfinite composition.

• u� , considered as a full subcategory of [𝟚, ℳ], is an accessible subcat-
egory of [𝟚, ℳ].TODO: Replace

this with the solu-
tion set condition. Then there exists a unique model structure on ℳ such that cofℳ ℐ is the class

of cofibrations and u� is the class of weak equivalences, and this makes ℳ a
combinatorial model category.

Proof. See Theorem 1.7 in [Beke, 2000]. □

Theorem 5.2.11 (Existence of combinatorial injective model structures). Let 𝔸
be a small category. If ℳ is a combinatorial model category, then the injective
model structure on [𝔸, ℳ] exists and is cofibrantly generated.

Proof. This theorem is due to Lurie; see [HTT, Proposition A.2.8.2]. □

Definition 5.2.12. Let and be regular cardinals. A strongly ( , )-combin-
atorial model category is a combinatorial model category ℳ that satisfies these
axioms:

• ℳ is a locally -presentable category, and ⊲ .

• 𝐊 (ℳ) is closed under finite limits in ℳ.

[2] See theorem 0.2.40.
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• Each hom-set in 𝐊 (ℳ) is -small.

• There exist -small sets of morphisms in 𝐊 (ℳ) that cofibrantly generate
the model structure of ℳ.

Proposition 5.2.13. For any combinatorial model category ℳ, there exist reg-
ular cardinals and making ℳ into a strongly ( , )-combinatorial model
category.

Proof. Apply proposition 0.2.35, lemma 0.2.38, and remark 0.3.4. ■

Proposition 5.2.14. Let ℳ be a strongly ( , )-combinatorial model category.

(i) There exist (trivial cofibration, fibration)- and (cofibration, trivial fibra-
tion)-factorisation functors that are -accessible and strongly -accessible.

(ii) Let ℱ (resp. ℱ′) be the full subcategory of [𝟚, ℳ] spanned by the fibrations
(resp. trivial fibrations). Then ℱ and ℱ′ are closed under colimits for small

-filtered diagrams in [𝟚, ℳ].

Proof. (i). Since the weak factorisation systems on ℳ are cofibrantly gener-
ated by -small sets of morphisms in 𝐊 (ℳ) and 𝐊 (ℳ) is locally -small, we
may apply the small object argument of either Quillen (theorem 0.5.12 and co-
rollary 0.5.14) or Garner (proposition 0.5.23 and theorem 0.5.24) to obtain the
required functorial weak factorisation systems.

(ii). This is corollary 0.5.27. ■

Theorem 5.2.15. Let (𝐿′, 𝑅) and (𝐿, 𝑅′) be functorial weak factorisation sys-
tems on a locally presentable category ℳ and let ℱ and ℱ′ be the full subcat-
egories of [𝟚, ℳ] spanned by the morphisms in the right class of of the weak
factorisation systems induced by (𝐿′, 𝑅) and (𝐿, 𝑅′), respectively. Suppose
and are regular cardinals satisfying the following hypotheses:

• ℳ is a locally -presentable category, and ⊲ .

• ℱ and ℱ′ are closed under colimits for small -filtered diagrams in [𝟚, ℳ].

• 𝑅, 𝑅′ : [𝟚, ℳ] → [𝟚, ℳ] preserve colimits for small -filtered diagrams
and are strongly -accessible functors.
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Let u�′ be the full subcategory of [𝟚, ℳ] spanned by the morphisms in the left
class of the weak factorisation system induced by (𝐿′, 𝑅) and let u� be the preim-
age of ℱ′ under the functor 𝑅 : [𝟚, ℳ] → [𝟚, ℳ]. Then:

(i) The functorial weak factorisation systems (𝐿′, 𝑅) and (𝐿, 𝑅′) restrict to
functorial weak factorisation systems on 𝐊 (ℳ).

(ii) The inclusions ℱ ↪ [𝟚, ℳ] and ℱ′ ↪ [𝟚, ℳ] are strongly -accessible
functors.

(iii) u� is closed under colimits for small -filtered diagrams in [𝟚, ℳ], and
the inclusion u� ↪ [𝟚, ℳ] is a strongly -accessible functor.

(iv) u�′ ⊆ u� if and only if the same holds in 𝐊 (ℳ).

(v) ℱ′ = u� ∩ ℱ if and only if the same holds in 𝐊 (ℳ).

(vi) u� (regarded as a class of morphisms in ℳ) has the 2-out-of-3 property
in ℳ if and only if the same is true in 𝐊 (ℳ).

(vii) The weak factorisation systems induced by (𝐿′, 𝑅) and (𝐿, 𝑅′) underlie a
model structure on ℳ if and only if the restrictions to 𝐊 (ℳ) underlie a
model structure on 𝐊 (ℳ).

Proof. (i). It is clear that we can restrict (𝐿′, 𝑅) and (𝐿, 𝑅′) to obtain functorial
factorisation systems on 𝐊 (ℳ), and these are functorial weak factorisation sys-
tems by theorem a.3.35.

(ii). Since 𝑅, 𝑅′ : [𝟚, ℳ] → [𝟚, ℳ] are strongly -accessible, we may use
proposition 0.5.28 to deduce that the inclusions ℱ ↪ [𝟚, ℳ] and ℱ′ ↪ [𝟚, ℳ]
are strongly -accessible.

(iii). Since ℱ′ is a replete subcategory of [𝟚, ℳ], we may use proposition 0.3.30
to deduce that u� is closed under colimits for small -filtered diagrams in [𝟚, ℳ]
and that the inclusion u� ↪ [𝟚, ℳ] is a strongly -accessible functor.

(iv). The endofunctor 𝐿′ : [𝟚, ℳ] → [𝟚, ℳ] is strongly -accessible, and u�
is closed under colimits for small -filtered diagrams, so (recalling propositions
0.2.44 and 0.2.47) if 𝐿′ sends the subcategory [𝟚, 𝐊 (ℳ)] to u� , then the en-
tirety of the image of 𝐿′ must be contained in u� . Proposition a.3.37 implies
every object in u�′ is a retract of an object in the image of 𝐿′, and claim (iii)
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implies u� is closed under retracts, so we may deduce that u�′ ⊆ u� if and only
if u�′ ∩ [𝟚, 𝐊 (ℳ)] ⊆ u� ∩ [𝟚, 𝐊 (ℳ)].

(v). Claims (ii) and (iii) and proposition 0.3.30 imply the inclusion u� ∩ ℱ ↪
[𝟚, ℳ] is strongly -accessible; but by propositions 0.2.47 and 0.3.29,

𝐊 (ℱ′) = ℱ′ ∩ [𝟚, 𝐊 (ℳ)] 𝐊 (u� ∩ ℱ) = (u� ∩ ℱ) ∩ [𝟚, 𝐊 (ℳ)]

so ℱ′ = u� ∩ ℱ if and only if ℱ′ ∩ [𝟚, 𝐊 (ℳ)] = (u� ∩ ℱ) ∩ [𝟚, 𝐊 (ℳ)].

(vi). Consider the three full subcategories Λ2
𝑖 (u�) (where 𝑖 ∈ {0, 1, 2}) of [𝟛, ℳ]

spanned (respectively) by the diagrams of the form below:

• •

•
∈u�

∈u� • •

•

∈u�

∈u�

• •

•
∈u�

∈u�

By proposition 0.3.15, each inclusion Λ2
𝑖 (u�) ↪ [𝟛, ℳ] is the pullback of a

strongly -accessible inclusion of a full subcategory of [𝟚, ℳ]×3 along the evi-
dent projection functor [𝟛, ℳ] → [𝟚, ℳ]×3; thus, each inclusion Λ2

𝑖 (u�) ↪
[𝟛, ℳ] is a strongly -accessible functor. We may then use proposition 0.3.29
as above to prove the claim.

(vii). Apply lemmas 4.1.10 and 4.1.11 and theorem 4.1.12. ■

Corollary 5.2.16. Let ℳ be a strongly ( , )-combinatorial model category.
Then the full subcategory u� of [𝟚, ℳ] spanned by the weak equivalences is
closed under colimits for small -filtered diagrams in [𝟚, ℳ], and the inclusion
u� ↪ [𝟚, ℳ] is a strongly -accessible functor.

Proof. Combine proposition 5.2.14 and theorem 5.2.15. ■

Proposition 5.2.17. Let ℳ be a combinatorial model category and let ℐ be a set
of cofibrations in ℳ. If every ℐ-injective morphism in ℳ is a weak equivalence,
then there exists a unique model structure on ℳ with the same weak equivalences
and cofℳ ℐ as the class of cofibrations, and this makes ℳ a combinatorial model
category.
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Proof. Recalling proposition 5.2.13 and corollary 5.2.16, we see that the full
subcategory of [𝟚, ℳ] spanned by the weak equivalences in ℳ is an access-
ible subcategory. Furthermore, by theorem 4.1.12 and proposition a.3.17, the
class of trivial cofibrations in ℳ is closed under pushouts and transfinite com-
position, and the class of ℐ-cofibrations that are weak equivalences is the in-
tersection of cofℳ ℐ and the class of trivial cofibrations in ℳ. Thus, the class
of ℐ-cofibrations that are weak equivalences is also closed under pushouts and
transfinite composition, so we may apply Smith’s recognition principle (the-
orem 5.2.10) to complete the proof. ■

Definition 5.2.18. Let and be regular cardinals. A ( , )-compact model
category is a model category ℳ that satisfies these axioms:

• ℳ is a ( , )-compactly generated category, and ⊲ .

• ℳ has limits for finite diagrams and colimits for -small diagrams.

• Each hom-set in 𝐊 (ℳ) is -small.

• There exist -small sets of morphisms in 𝐊 (ℳ) that cofibrantly generate
the model structure of ℳ.

Proposition 5.2.19. If ℳ is a strongly ( , )-combinatorial model category,
then 𝐊 (ℳ) is a ( , )-compact model category (with the weak equivalences,
cofibrations, and fibrations inherited from ℳ).

Proof. By proposition 0.3.7, 𝐊 (ℳ) is a ( , )-compactly generated category,
and lemma 0.2.18 implies it is closed under colimits for -small diagrams in ℳ.
Now, choose a pair of functorial factorisation systems as in proposition 5.2.14,
and recall that theorem a.3.35 says a morphism is in the left (resp. right) class of
a functorial weak factorisation system if and only if it is a retract of the left (resp.
right) half of its functorial factorisation. Since we chose factorisation functors
that are strongly -accessible, it follows that the weak factorisation systems on
ℳ restricts to weak factorisation systems on 𝐊 (ℳ). It is then clear that 𝐊 (ℳ)
inherits a model structure from ℳ, and lemma 0.5.30 implies the model structure
on 𝐊 (ℳ) can be cofibrantly generated by -small sets of morphisms in 𝐊 (ℳ).
The remaining axioms for a -compact model category are easily verified. ■

Proposition 5.2.20. Let u� be a ( , )-compact model category and let ℳ be the
free -ind-completion 𝐈𝐧𝐝 (u�). Then there is a unique way of making ℳ into a
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strongly ( , )-combinatorial model category such that the canonical embedding
u� → ℳ preserves and reflects the model structure.

Proof. We will regard u� as a full subcategory of ℳ via the canonical embedding
u� → ℳ. Let ℐ (resp. ℐ′) be a -small set of morphisms in 𝐊 (u�) that generate
the cofibrations (resp. trivial cofibrations) in u�. Let (𝐿′, 𝑅) and (𝐿, 𝑅′) be func-
torial weak factorisation systems cofibrantly generated by ℐ′ and ℐ respectively;
by corollary 0.5.14, we may assume 𝑅, 𝑅′ : [𝟚, ℳ] → [𝟚, ℳ] preserve colimits
for small -filtered diagrams and are strongly -accessible functors.

Let ℱ and ℱ′ be the full subcategories of [𝟚, ℳ] spanned by the right class
of the weak factorisation systems induced by (𝐿′, 𝑅) and (𝐿, 𝑅′), respectively.
It is not hard to see that any morphism in u� is an object in ℱ (resp. ℱ′) if and
only if it is a fibration (resp. trivial fibration) in u�. Corollary 0.5.27 says ℱ
and ℱ′ are closed under colimits for small -filtered diagrams in [𝟚, ℳ], so we
may now apply theorem 5.2.15 to deduce that ℱ and ℱ′ induce a model structure
on ℳ. It is clear that ℳ equipped with this model structure is then a strongly
( , )-combinatorial model category in a way that is compatible with the canon-
ical embedding u� → ℳ.

Finally, to see that the above construction is the unique way of making ℳ into
a strongly ( , )-combinatorial model category satisfying the given conditions,
we simply have to observe that the model structure of a strongly ( , )-combinatorial
model category is necessarily cofibrantly generated by the cofibrations and trivial
cofibrations in (a small skeleton of) 𝐊 (ℳ) (independently of the choice of ℐ
and ℐ′). ■

Remark 5.2.21. Let 𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+, let ℳ be a strongly
( , )-combinatorial model 𝐔-category, and let ℳ ↪ ℳ+ be a ( , 𝐔, 𝐔+)-extension.
By combining propositions 5.2.19 and 5.2.20, we may deduce that there is a
unique way of making ℳ+ into a strongly ( , )-combinatorial model 𝐔+-category
such that the embedding ℳ ↪ ℳ+ preserves and reflects the model structure.
In other words, combinatorial model categories are stable under universe en-
largement.

5.3 Algebraic model categories
Prerequisites. §§0.2, 0.3, 0.5, 4.1, 5.2, a.3.
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Though model categories equipped with functorial factorisations are better-
behaved than general model categories, one can often extract a bit more structure
by using Garner’s small object argument (theorem 0.5.24). This leads to the no-
tion of ‘algebraic model structure’, due to Riehl [2011a,b].

Definition 5.3.1. Let ℳ be a category. An algebraic model structure on ℳ
consists of a pair of algebraic factorisation systems (𝗟′, 𝗥) and (𝗟, 𝗥′) on ℳ and
a morphism (𝗟′, 𝗥) → (𝗟, 𝗥′) satisfying the following condition:

• There exists a model structure on ℳ such that the cofibrations are the left
class of the weak factorisation system induced by (𝗟, 𝗥′) and the fibrations
are the right class of the weak factorisation system induced by (𝗟′, 𝗥).

An algebraic model category is a category with limits and colimits for all finite
diagrams and equipped with an algebraic model structure.

The following lemma, originally part of Theorem 3.8 in [Riehl, 2011b], is
useful in the construction of algebraic model structures:

Lemma 5.3.2. Let ℳ be a category with a model structure, let (𝗟, 𝗥′) be an
algebraic factorisation system on ℳ, and suppose ℐ′ is a generating set of trivial
cofibrations in ℳ. If the left class of the weak factorisation system induced by
(𝗟, 𝗥′) is the class of cofibrations, then there exists a subset ̃ℐ′ with the following
properties:

• ̃ℐ′ has at most as many elements as ℐ′.

• The weak factorisation system on ℳ cofibrantly generated by ℐ′ coincides
with the one cofibrantly generated by ℐ.

• Each morphism in ̃ℐ′ can be equipped with an 𝗟-coalgebra structure.

In particular, if (𝗟′, 𝗥) is a free algebraic factorisation system cofibrantly gen-
erated by ̃ℐ′, then there must exist a morphism (𝗟′, 𝗥) → (𝗟, 𝗥′).

Proof. Let ̃ℐ′ = {𝐿𝑒 | 𝑒 ∈ ℐ′}. Since 𝗟 is a comonad, every morphism in ̃ℐ′

admits an 𝗟-coalgebra structure. Consider the following commutative diagram
in ℳ:

𝑍 𝑊 ′

𝑊 𝑊

𝑒

𝐿𝑒

𝑅′𝑒

id
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Since 𝑒 : 𝑍 → 𝑊 is a trivial cofibration and 𝑅𝑒 : 𝑊 ′ → 𝑊 is a trivial
fibration, there exists a morphism 𝑖 : 𝑊 → 𝑊 ′ filling in the diagram. Hence,
every morphism in ℐ′ is a retract of one in ̃ℐ′, so by propositions a.3.3 and a.3.17,
we have ̃ℐ′ ⧄ ⊆ ℐ′ ⧄. On the other hand, axiom CM2 implies 𝐿𝑒 : 𝑍 → 𝑊 ′ is a
trivial cofibration, and so ̃ℐ′ ⊆ ⧄(ℐ′ ⧄). Thus, we have ℐ′ ⧄ ⊆ ̃ℐ′ ⧄ as well. ■

Proposition 5.3.3. Let ℳ be a combinatorial model category and let ℐ be a set
of generating cofibrations in ℳ.

(i) ℐ cofibrantly generates an algebraically free algebraic factorisation system
(𝗟, 𝗥′) on ℳ.

(ii) There exists a set ̃ℐ′ of generating trivial cofibrations in ℳ such that ̃ℐ′

cofibrantly generates an algebraically free algebraic factorisation system
(𝗟′, 𝗥) on ℳ with a morphism : (𝗟′, 𝗥) → (𝗟, 𝗥′).

In particular, ℳ is the underlying model category of an algebraic model cat-
egory.

Proof. (i). Apply Garner’s small object argument (theorem 0.5.24).

(ii). Use lemma 5.3.2. ■

Definition 5.3.4. Let and be regular cardinals. A strongly ( , )-algebraic
model category is an algebraic model category ℳ that satisfies these axioms:

• ℳ is a locally -presentable category, and ⊲ .

• 𝐊 (ℳ) is closed under finite limits in ℳ.

• The underlying endofunctors of the two given algebraic factorisation sys-
tems on ℳ preserve colimits for small -filtered diagrams and are strongly
-accessible functors.

• The full subcategory ℱ (resp. ℱ′) of [𝟚, ℳ] spanned by the fibrations (resp.
trivial fibrations) in ℳ is closed under colimits for small -filtered dia-
grams in [𝟚, ℳ].

Proposition 5.3.5. If ℳ is a strongly ( , )-combinatorial model category, then
there exist algebraic factorisation systems making ℳ a strongly ( , )-algebraic
model category.
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Proof. Let ℐ (resp. ℐ′) be a -small set of morphisms in 𝐊 (ℳ) that generate
the cofibrations (resp. trivial cofibrations) in ℳ. Replacing ℐ with ℐ ∪ ℐ′ if
necessary, we may assume ℐ′ ⊆ ℐ. Garner’s small object argument (0.5.24)
says that algebraically free algebraic factorisation systems cofibrantly generated
by ℐ and ℐ′ exist and are free, and since ℐ′ ⊆ ℐ, the universal property of free
algebraic factorisation systems ensures we have the required morphism of al-
gebraic factorisation systems. Lemma 0.3.36 and proposition 0.5.23 then say
that the underlying endofunctors of the algebraic factorisation systems preserve
colimits for small -filtered diagrams and are strongly -accessible. Finally, by
corollary 0.5.27, the two full subcategories of [𝟚, ℳ] spanned by the fibrations
and trivial fibrations are closed under colimits for small -filtered diagrams in
[𝟚, ℳ]. ■

Proposition 5.3.6. Let ℳ be a strongly ( , )-algebraic model category.

(i) The algebraic model structure on ℳ restricts to an algebraic model struc-
ture on 𝐊 (ℳ).

(ii) The inclusions ℱ ↪ [𝟚, ℳ] and ℱ′ ↪ [𝟚, ℳ] are strongly -accessible
functors.

(iii) u� is closed under colimits for small -filtered diagrams in [𝟚, ℳ], and
the inclusion u� ↪ [𝟚, ℳ] is a strongly -accessible functor.

Proof. (i). By definition, the underlying endofunctors of the given algebraic fac-
torisation systems are strongly -accessible and so send morphisms in 𝐊 (ℳ)
back to 𝐊 (ℳ). Thus, we obtain algebraic factorisation systems on 𝐊 (ℳ),
and it is clear that the given morphism of algebraic factorisation systems on
ℳ restricts to a morphism of algebraic factorisation systems on 𝐊 (ℳ). Since
𝐊 (ℳ) is a full subcategory of ℳ, it follows that the restricted data define an
algebraic model structure on 𝐊 (ℳ).

(ii) and (iii). Apply theorem 5.2.15. ■

5.4 Cisinski model categories
Prerequisites. §0.5, 3.1, 3.5, 4.1, 5.2, a.3, a.4.

In this section we follow [Cisinski, 2002] and [Cisinski, 2006, Ch. 1].
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V. Topics in model categories

Definition 5.4.1. A Cisinski model category is a combinatorial model category
whose underlying category is a Grothendieck topos and whose cofibrations are
the monomorphisms.

Remark 5.4.2. Grothendieck toposes are always locally presentable categories,
so we may replace ‘combinatorial’ with ‘cofibrantly generated’ in the above
definition.

Example 5.4.3. The Kan–Quillen model structure on 𝐬𝐒𝐞𝐭 makes it into a Cis-
inski model category.

Remark 5.4.4. In any topos, the unique morphism 0 → 𝑋 is always a mono-
morphism; thus, in a Cisinski model category, every object is cofibrant.

Proposition 5.4.5. Let ℳ be a Grothendieck topos and let ℳf be a class of
objects in ℳ. There is at most one model structure on ℳ making it a Cisinski
model category with ℳf as the class of fibrant objects.

Proof. This is a special case of proposition 4.4.8. ■

Proposition 5.4.6. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be cofibrations in a Cisinski
model category ℳ. Suppose the square in the diagram below is a pushout square
in ℳ:

𝑋 × 𝑍 𝑋 × 𝑊

𝑌 × 𝑍 (𝑋 × 𝑊 ) ∪𝑋×𝑍 (𝑌 × 𝑍)

𝑌 × 𝑊

𝑓×id𝑍

id𝑋×𝑔

𝑓×id𝑊

id𝑌 ×𝑔

𝑓◲𝑔

(i) The unique morphism 𝑓 ◲𝑔 making the diagram commute is a cofibration.

(ii) Assuming the class of trivial cofibrations in ℳ is closed under binary
products, if either 𝑓 or 𝑔 is a trivial cofibration, then 𝑓 ◲ 𝑔 is a trivial
cofibration.

Proof. (i). The claim is certainly true when ℳ is a presheaf topos, and since the
associated sheaf functor preserves colimits and finite limits, the claim holds for
all sheaf toposes as well.
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(ii). The two cases are symmetrical; we will assume 𝑓 : 𝑋 → 𝑌 is a trivial
cofibration. Clearly, 𝑓 × id𝑍 : 𝑋 × 𝑍 → 𝑌 × 𝑍 and 𝑓 × id𝑊 : 𝑋 × 𝑊 → 𝑌 × 𝑊
are monomorphisms, so the hypothesis implies they are trivial cofibrations. The
class of trivial cofibrations is closed under pushouts (by proposition a.3.17), so
the morphism 𝑋 × 𝑊 → (𝑋 × 𝑊 ) ∪𝑋×𝑍 (𝑌 × 𝑍) is also a trivial cofibration.
The 2-out-of-3 property of weak equivalences then implies 𝑓 ◲𝑔 must be a weak
equivalence as well; hence, by claim (i), it is a trivial cofibration. ■

¶ 5.4.7. We will now see how to build Cisinski model structures. Through-
out this section, ℳ will be a Grothendieck topos, say ℳ = 𝐒𝐡(ℂ, 𝐽) for a small
category ℂ equipped with a Grothendieck topology 𝐽 .

Definition 5.4.8. A Cisinski cylinder functor for ℳ is a quadruple (𝐼, 0, 1, 𝜌)
where 𝐼 : ℳ → ℳ is a functor, 0, 1 : idℳ ⇒ 𝐼 and 𝜌 : 𝐼 ⇒ idℳ are natural
transformations, such that:

• 𝜌 ∙ 0 = 𝜌 ∙ 1 = ididℳ
.

• The induced morphism 𝑋 = ⦅ 0
𝑋 , 1

𝑋⦆ : 𝑋 ⨿𝑋 → 𝐼𝑋 is a monomorphism
for every object 𝑋 in ℳ.

We will often abuse notation and simply say that 𝐼 is a cylinder functor, with the
natural transformations 0, 1, and 𝜌 understood.

Remark 5.4.9. By symmetry, (𝐼, 0, 1, 𝜌) is a Cisinski cylinder functor if and
only if (𝐼, 1, 0, 𝜌) is a Cisinski cylinder functor.

Definition 5.4.10. Let (𝐼, 0, 1, 𝜌) be a Cisinski cylinder functor for ℳ, and let
𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℳ. An 𝐼-homotopy in ℳ
from 𝑓0 to 𝑓1 is a morphism 𝐻 : 𝐼𝑋 → 𝑌 such that 𝐻 ∘ 0

𝑋 = 𝑓0 and 𝐻 ∘ 1
𝑋 =

𝑓1. We say 𝑓0 and 𝑓1 are 𝐼-homotopic if there is a zigzag of 𝐼-homotopies
connecting 𝑓0 to 𝑓1.

Proposition 5.4.11. Let (𝐼, 0, 1, 𝜌) be a Cisinski cylinder functor for ℳ, and
let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℳ.

(i) For any morphism 𝑔 : 𝑌 → 𝑍 in ℳ, if 𝑓0 and 𝑓1 are 𝐼-homotopic, then
so are 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1.

(ii) For any morphism 𝑔 : 𝑊 → 𝑋 in ℳ, if 𝑓0 and 𝑓1 are 𝐼-homotopic, then
so are 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔.

609



V. Topics in model categories

Proof. Obvious. ⧫

Definition 5.4.12. Let (𝐼, 0, 1, 𝜌) be a Cisinski cylinder functor for ℳ. The
𝐼-homotopy category of ℳ is the category Ho𝐼 ℳ defined below:

• The objects of Ho𝐼 ℳ are those of ℳ.

• The hom-set Ho𝐼 ℳ(𝑋, 𝑌 ) is ℳ(𝑋, 𝑌 ) modulo 𝐼-homotopy.

• Composition and identities are inherited from ℳ.

Proposition 5.4.13. Let (𝐼, 0, 1, 𝜌) be a Cisinski cylinder functor and let 𝛾 :
ℳ → Ho𝐼 ℳ be the functor that sends a morphism in ℳ to its 𝐼-homotopy
class.

(i) The functor 𝛾 : ℳ → Ho𝐼 ℳ is full.

(ii) Let ℋ be the class of morphisms in ℳ that 𝛾 sends to isomorphisms. If
𝛾𝜌 : 𝛾𝐼 ⇒ 𝛾 is a natural isomorphism, then 𝛾 : ℳ → Ho𝐼 ℳ exhibits
Ho𝐼 ℳ as a localisation of ℳ at ℋ.

Proof. (i). Obvious.

(ii). Consider any functor 𝐹 : ℳ → u� such that 𝐹 𝜌 : 𝐹 𝐼 ⇒ 𝐹 is a natural
isomorphism. Then, we have 𝐹 0 = 𝐹 1, so 𝐹 factors through 𝛾 : ℳ → Ho𝐼 ℳ
in a unique way. In particular, if 𝛾𝜌 : 𝛾𝐼 ⇒ 𝛾 itself is a natural isomorphism,
then Ho𝐼 ℳ has the universal property of a localisation of ℳ at ℋ. ■

Definition 5.4.14. A Cisinski trivial fibration in ℳ is a morphism that has the
right lifting property with respect to all monomorphisms.

Proposition 5.4.15. Let 𝑝 : 𝑋 → 𝑌 be a Cisinski trivial fibration in ℳ.

(i) There exists a morphism 𝑠 : 𝑌 → 𝑋 such that 𝑝 ∘ 𝑠 = id𝑌 .

(ii) For any such 𝑠 : 𝑌 → 𝑋 and any Cisinski cylinder functor (𝐼, 0, 1, 𝜌) for
ℳ, there exists an 𝐼-homotopy from id𝑋 to 𝑠 ∘ 𝑝.

(iii) The morphism 𝑝 : 𝑋 → 𝑌 becomes an isomorphism in Ho𝐼 ℳ.
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5.4. Cisinski model categories

Proof. (i). The unique morphism 0 → 𝑌 is a monomorphism in any topos, so
the right lifting property of 𝑝 : 𝑋 → 𝑌 guarantees the existence of a section.

(ii). Consider the following commutative diagram in ℳ:

𝑋 ⨿ 𝑋 𝑋

𝐼𝑋 𝑌

𝑋

⦅id𝑋 ,𝑠∘𝑝⦆

𝑝

𝑝∘𝜌𝑋

By definition, 𝑋 : 𝑋⨿𝑋 → 𝐼𝑋 is a monomorphism, so the right lifting property
of 𝑝 : 𝑋 → 𝑌 yields a morphism 𝐻 : 𝐼𝑋 → 𝑋 such that 𝐻 ∘ 𝑋 = ⦅id𝑋 , 𝑠 ∘ 𝑝⦆
and 𝑝 ∘ 𝐻 = 𝑝 ∘ 𝜌𝑋; in particular, 𝐻 is an 𝐼-homotopy from id𝑋 to 𝑠 ∘ 𝑝.

(iii). Clearly, the morphisms 𝑝 : 𝑋 → 𝑌 and 𝑠 : 𝑌 → 𝑋 become mutual inverses
in Ho𝐼 ℳ. ■

¶ 5.4.16. Let Ω be a subobject classifier for ℳ and let ⊤, ⊥ : 1 → Ω be the
morphisms classifying the top and bottom subobjects of 1, respectively. Then
the following diagram is a pullback square by definition,

0 1

1 Ω

⊤

⊥

so the induced morphism ⦅⊤, ⊥⦆ : 1 ⨿ 1 → Ω is a monomorphism. Since
monomorphisms are stable under pullback, the following definition is legitimate:

Definition 5.4.17. The Lawvere cylinder functor for ℳ is the cylinder functor
(𝐼, 0, 1, 𝜌) defined below:

• 𝐼 : ℳ → ℳ is the functor Ω × −.

• The morphism 0
𝑋 : 𝑋 → Ω × 𝑋 corresponds to ⊤ × id𝑋 .

• The morphism 1
𝑋 : 𝑋 → Ω × 𝑋 corresponds to ⊥ × id𝑋 .

• The morphism 𝜌𝑋 : Ω × 𝑋 → 𝑋 is the product projection.

Proposition 5.4.18. Let 𝑋 be any object in ℳ and let Ω be the subobject clas-
sifier for ℳ.
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V. Topics in model categories

(i) The product projection 𝑝𝑋 : Ω × 𝑋 → 𝑋 is a Cisinski trivial fibration.

(ii) For any Cisinski cylinder functor (𝐼, 0, 1, 𝜌), there exists a commutative
diagram of the following form:

𝑋 ⨿ 𝑋 Ω × 𝑋

𝐼𝑋 𝑋

𝑋

⦅⊤,⊥⦆×id𝑋

𝑝𝑋

𝜌𝑋

Proof. (i). Since the class of Cisinski trivial fibrations is closed under pullbacks
(by proposition a.3.17), it suffices to show that the morphism 𝑝1 : Ω × 1 → 1
is a trivial fibration. However, Ω is canonically an injective object in ℳ (with
respect to the class of monomorphisms), i.e. the unique morphism Ω → 1 has
the right lifting property with respect to all monomorphisms, so 𝑝1 is indeed a
Cisinski trivial fibration.

(ii). This follows from claim (i) and the requirement that 𝑋 : 𝑋 ⨿ 𝑋 → 𝐼𝑋 be
a monomorphism. ■

Remark 5.4.19. Thus, any pair of morphisms that are homotopic with respect to
the Lawvere cylinder functor must also be 𝐼-homotopic for any Cisinski cylinder
functor (𝐼, 0, 1, 𝜌).

Proposition 5.4.20. Let (𝐼, 0, 1, 𝜌) be a cylinder functor for ℳ and let u� be
the class of Cisinski trivial fibrations in ℳ.

(i) There is a canonical identity-on-objects functor ℳ[u�−1] → Ho𝐼 ℳ com-
patible with the localising functors, and it is a full functor.

(ii) If the natural morphism 𝜌𝑋 : 𝐼𝑋 → 𝑋 is a Cisinski trivial fibration for
all objects 𝑋 in ℳ, then the canonical functor ℳ[u�−1] → Ho𝐼 ℳ is an
isomorphism of categories.

(iii) If (𝐼, 0, 1, 𝜌) is the Lawvere cylinder functor for ℳ, then the canonical
functor ℳ[u�−1] → Ho𝐼 ℳ is an isomorphism of categories.

Proof. (i). Recall that Cisinski trivial fibrations are 𝐼-homotopy equivalences
(by proposition 5.4.15), so there is indeed a canonical identity-on-objects functor
ℳ[u�−1] → Ho𝐼 ℳ compatible with the localising functors. Since the localising
functor ℳ → Ho𝐼 ℳ is full, the functor ℳ[u�−1] → Ho𝐼 ℳ must also be full.
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(ii). The hypothesis implies any two 𝐼-homotopic morphisms in ℳ are equal as
morphisms in ℳ[u�−1], so the canonical functor ℳ[u�−1] → Ho𝐼 ℳ is indeed
fully faithful and bijective on objects, as required.

(iii). Proposition 5.4.18 says that the natural morphism 𝜌𝑋 : 𝐼𝑋 → 𝑋 is a
Cisinski trivial fibration for all objects 𝑋 in ℳ when (𝐼, 0, 1, 𝜌) is the Lawvere
cylinder for ℳ. ■

Definition 5.4.21. An elementary Cisinski homotopy structure on ℳ is a
Cisinski cylinder functor (𝐼, 0, 1, 𝜌) satisfying these axioms:

DH1. The functor 𝐼 : ℳ → ℳ preserves monomorphisms and colimits for
all small diagrams.

DH2. For all monomorphisms 𝑔 : 𝑍 → 𝑊 in ℳ, the following diagrams are
pullback squares:

𝑍 𝑊

𝐼𝑍 𝐼𝑊

0
𝑍

𝑔

0
𝑊

𝐼𝑔

𝑍 𝑊

𝐼𝑍 𝐼𝑊

1
𝑍

𝑔

1
𝑊

𝐼𝑔

Proposition 5.4.22. The Lawvere cylinder functor is an elementary Cisinski ho-
motopy structure.

Proof. The functor 𝐴 × − always preserves monomorphisms, and toposes are
cartesian closed, so for any object 𝐴 in ℳ, the functor 𝐴 × − preserves colimits.
Thus the Lawvere cylinder functor satisfies axiom DH1. It is clear that axiom
DH2 is also satisfied. ■

Definition 5.4.23. Let (𝐼, 0, 1, 𝜌) be an elementary Cisinski homotopy struc-
ture on ℳ. A class of 𝐼-anodyne extensions is a class u� of morphisms in ℳ
satisfying these axioms:

An0. There exists a subset Λ ⊆ u� such that the members of Λ are mono-
morphisms in ℳ and u� = ⧄(Λ⧄). We say Λ is a generating set for
u�.
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An1. If 𝑔 : 𝑍 → 𝑊 is a monomorphism in ℳ and 𝑒 ∈ {0, 1}, then given a
commutative diagram

𝑍 𝐼𝑍

𝑊 𝑉𝑒(𝑔)

𝐼𝑊

𝑔

𝑒
𝑍

𝐼𝑔

𝑒
𝑊

𝑗𝑒

where the top-left square is a pushout square, 𝑗𝑒 : 𝑉𝑒(𝑔) → 𝐼𝑊 is in u�.

An2. If 𝑔 : 𝑍 → 𝑊 is in u�, then given a commutative diagram

𝑍 ⨿ 𝑍 𝐼𝑍

𝑊 ⨿ 𝑊 𝑈(𝑔)

𝐼𝑊

𝑔

𝑍

𝐼𝑔

𝑊

𝑗

where the top-left square is a pushout square, 𝑗 : 𝑈(𝑔) → 𝐼𝑊 is in u�.

Remark 5.4.24. Since 𝐼 preserves colimits for all small diagrams, 𝐼0 must be
an initial object in ℳ. Thus, by taking 𝑍 = 0, we see that the morphisms
0
𝑊 , 1

𝑊 : 𝑊 → 𝐼𝑊 are always in any class of 𝐼-anodyne extensions.

Proposition 5.4.25. Let (𝐼, 0, 1, 𝜌) be an elementary Cisinski homotopy struc-
ture on ℳ, let u� be a class of 𝐼-anodyne extensions, and let Λ be a generating
set for u�.

(i) There exists a functorial factorisation system on ℳ with u� as its left class.

(ii) u� is the smallest class of morphisms containing Λ that is closed under
pushouts, transfinite composition, and retracts.

(iii) Every morphism that is in u� is a monomorphism.

Proof. (i). Apply Quillen’s small object argument (theorem 0.5.12).

(ii). This is corollary 0.5.13.
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(iii). The class of monomorphisms in a Grothendieck topos is closed under push-
outs, transfinite composition, and retracts because the class of injections in 𝐒𝐞𝐭
is closed under the same operations. Since Λ is a collection of monomorphisms,
so too is u�. ■

Definition 5.4.26. A Cisinski homotopy structure on ℳ is an elementary Cis-
inski homotopy structure on ℳ together with a class of anodyne extensions.

Definition 5.4.27. Let u� be the class of anodyne extensions of a Cisinski ho-
motopy structure on ℳ. An u�-fibrant object in ℳ is an object 𝑋 such that the
unique morphism 𝑋 → 1 has the right lifting property with respect to u�.

Definition 5.4.28. Let (𝐼, u�) be a Cisinski homotopy structure on ℳ. A weak
equivalence with respect to (𝐼, u�) is a morphism 𝑓 : 𝑊 → 𝑍 in ℳ such that,
for every u�-fibrant object 𝑋, the induced map

Ho𝐼 ℳ(𝑓 , 𝑋) : Ho𝐼 ℳ(𝑍, 𝑋) → Ho𝐼 ℳ(𝑊 , 𝑋)

is a bijection of sets.

Proposition 5.4.29. ℳ together with the class of weak equivalences with re-
spect to a Cisinski homotopy structure (𝐼, u�) constitute a saturated homotopical
category.

Proof. Obvious. ⧫

Proposition 5.4.30. Let (𝐼, u�) be a Cisinski homotopy structure on ℳ. Then
every morphism in u� is a weak equivalence with respect to (𝐼, u�).

Proof. See Proposition 2.23 in [Cisinski, 2002]. □

Corollary 5.4.31. Let u� be the class of weak equivalences with respect to (𝐼, u�)
and let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℳ. If 𝑓0 and 𝑓1 are
𝐼-homotopic, then 𝑓0 and 𝑓1 become equal in Ho(ℳ, u�).

Proof. It suffices to verify the case where there is an 𝐼-homotopy 𝐻 : 𝐼𝑋 → 𝑌
from 𝑓0 to 𝑓1. By remark 5.4.24, the morphisms 0

𝑋 , 1
𝑋 : 𝑋 → 𝐼𝑋 are anodyne

extensions, and so are invertible in Ho(ℳ, u�). We have 𝜌𝑋 ∘ 0
𝑋 = 𝜌𝑋 ∘ 1

𝑋 = id𝑋
by definition, so 0

𝑋 and 1
𝑋 must be equal in Ho(ℳ, u�); but 𝐻 ∘ 0

𝑋 = 𝑓0 and
𝐻 ∘ 1

𝑋 = 𝑓1, so 𝑓0 and 𝑓1 must be equal in Ho(ℳ, u�). ■
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Theorem 5.4.32. Let (𝐼, u�) be a Cisinski homotopy structure on ℳ. Then ℳ
is a combinatorial model category where

• the cofibrations are the monomorphisms in ℳ,

• the weak equivalences are the weak equivalences with respect to (𝐼, u�),
and

• the fibrations are the morphisms that have the right lifting property with
respect to the trivial cofibrations.

This is the Cisinski model structure on ℳ defined by (𝐼, u�).

Proof. See Théorème 2.13 in [Cisinski, 2002]. □

Definition 5.4.33. An ℳ-localiser is a class u� of morphisms in ℳ satisfying
the following axioms:

L1. u� has the 2-out-of-3 property in ℳ.

L2. Every Cisinski trivial fibration is in u� .

L3. The class of monomorphisms that are in u� is closed under pushout and
transfinite composition.

A generating set for u� is a set 𝑆 such that u� is the smallest ℳ-localiser con-
taining 𝑆. An accessible ℳ-localiser is an ℳ-localiser that admits a generating
set.

Proposition 5.4.34. Let u� be a class of morphisms in ℳ satisfying the follow-
ing axioms:

FS1. For any object 𝑋 in ℳ, the morphism id : 𝑋 → 𝑋 is in u� .

FS2. u� has the 2-out-of-3 property in ℳ.

FS3. u� has the special 2-out-of-4 property in ℳ.

Then the following are equivalent:

(i) Every Cisinski trivial fibration is in u� .

(ii) Let (𝐼, 0, 1, 𝜌) be the Lawvere cylinder functor for ℳ. For all objects 𝑋
in ℳ, the morphism 𝜌𝑋 : 𝐼𝑋 → 𝑋 is in u� .
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(iii) There exists a Cisinski cylinder functor (𝐼, 0, 1, 𝜌) for ℳ such that the
morphism 𝜌𝑋 : 𝐼𝑋 → 𝑋 is in u� for all objects 𝑋 in ℳ.

Proof. (i) ⇒ (ii). This was shown in proposition 5.4.18.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let 𝑝 : 𝑋 → 𝑌 be a Cisinski trivial fibration in ℳ. Proposition 5.4.15
then says that there exists a morphism 𝑠 : 𝑌 → 𝑋 and an 𝐼-homotopy from id𝑋
to 𝑠 ∘ 𝑝, i.e. a morphism 𝐻 : 𝐼𝑋 → 𝑋 such that 𝐻 ∘ 0

𝑋 = id𝑋 and 𝐻 ∘ 1
𝑋 = 𝑠 ∘ 𝑝.

Since 𝜌𝑋 : 𝐼𝑋 → 𝑋 is in u� and 𝜌𝑋 ∘ 0
𝑋 = 𝜌𝑋 ∘ 1

𝑋 = id𝑋 , axioms FS1 and FS2
imply that 0

𝑋 , 1
𝑋 : 𝑋 → 𝐼𝑋 are in u� , and so 𝐻 : 𝐼𝑋 → 𝑋 is also in u� , and

hence 𝑠 ∘ 𝑝 : 𝑋 → 𝑋 is in u� as well. We may now use axiom FS3 to deduce
that 𝑝 : 𝑋 → 𝑌 is in u� . ■

Proposition 5.4.35. Let (𝐼, u�) be a Cisinski homotopy structure on ℳ. Then the
class of weak equivalences with respect to (𝐼, u�) is an accessible ℳ-localiser.

Proof. See Proposition 3.8 in [Cisinski, 2002]. □

Theorem 5.4.36. Let u� be any accessible ℳ-localiser. Then ℳ is a combin-
atorial model category where

• the cofibrations are the monomorphisms in ℳ,

• the weak equivalences are the morphisms that are in u� , and

• the fibrations are the morphisms that have the right lifting property with
respect to the trivial cofibrations.

This is the Cisinski model structure on ℳ associated with u� .

Proof. See Théorème 3.9 in [Cisinski, 2002]. □

Corollary 5.4.37. If u� is any ℳ-localiser (not necessarily accessible), then u�
is closed under retracts.

Proof. See Corollaire 3.10 in [Cisinski, 2002]. □
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V. Topics in model categories

5.5 Monoidal model categories
Prerequisites. §§4.1, 4.2, 4.3, b.1, b.4.

Proposition 5.5.1. Let u� and u� be categories with pullbacks, let ℰ be a category
with pushouts, and let ℐ ⊆ mor u�, u� ⊆ mor u� and u� ⊆ mor ℰ be subensembles.
Suppose we have the following functors

⊘ : u� × u� → ℰ
⋔ : u�op × ℰ → u�
⟜ : ℰ × u� op → u�

and natural bijections:

ℰ(𝐶 ⊘ 𝐷, 𝐸) ≅ u�(𝐶, 𝐷 ⋔ 𝐸)
ℰ(𝐶 ⊘ 𝐷, 𝐸) ≅ u�(𝐷, 𝐸 ⟜ 𝐶)
u�(𝐶, 𝐷 ⋔ 𝐸) ≅ u�(𝐷, 𝐸 ⟜ 𝐶)

Then the following are equivalent:

(i) If 𝑓 : 𝐶 → 𝐶′ is in ℐ, 𝑔 : 𝐷 → 𝐷′ is in u� , and the square in the diagram
below is a pushout square in ℰ,

𝐶 ⊘ 𝐷 𝐶 ⊘ 𝐷′

𝐶′ ⊘ 𝐷 (𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷)

𝐶′ ⊘ 𝐷′

𝑓⊘id𝐷

id𝐶⊘𝑔

𝑓⊘id𝐷′

id𝐶′⊘𝑔

𝑓◲𝑔

then the unique morphism 𝑓 ◲ 𝑔 making the diagram commute is in ⧄u�.

(ii) If 𝑔 : 𝐷 → 𝐷′ is in u� , ℎ : 𝐸 → 𝐸′ is in u�, and the square in the diagram
below is a pullback square in u�,

𝐷′ ⋔ 𝐸

(𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸) 𝐷 ⋔ 𝐸

𝐷′ ⋔ 𝐸′ 𝐷 ⋔ 𝐸′

id𝐷′⋔ℎ

𝑔⋔id𝐸

𝑔◰ℎ

id𝐷⋔ℎ

𝑔⋔id𝐸′
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then the unique morphism 𝑔 ◰ ℎ making the diagram commute is in ℐ⧄.

(iii) If ℎ : 𝐸 → 𝐸′ is in u�, 𝑓 : 𝐶 → 𝐶′ is in ℐ and the square in the diagram
below is a pullback square in u�,

𝐸 ⟜ 𝐶′

(𝐸′ ⟜ 𝐶′) ×𝐸′⟜𝐶 (𝐸 ⟜ 𝐶) 𝐸 ⟜ 𝐶

𝐸′ ⟜ 𝐶′ 𝐸′ ⟜ 𝐶

ℎ⟜id𝐶

id𝐸⟜𝑓

ℎ◰𝑓

ℎ⟜id𝐶

id𝐸′⟜𝑓

then the unique morphism ℎ ◰ 𝑓 making the diagram commute is in u� ⧄.

Proof. (i) ⇒ (ii). Let 𝑓 : 𝐶 → 𝐶′ be in ℐ, let 𝑔 : 𝐷 → 𝐷′ be in u� , let
ℎ : 𝐸 → 𝐸′ be in u�, and suppose we have a commutative diagram of the
following form:

𝐶 𝐷′ ⋔ 𝐸

𝐶′ (𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸)

𝑓 𝑔◰ℎ

By the universal property of pullbacks, this corresponds to a commutative dia-
gram in u� of the form below,

𝐶 𝐷′ ⋔ 𝐸

𝐶′ 𝐷′ ⋔ 𝐸′

𝐷 ⋔ 𝐸 𝐷 ⋔ 𝐸′

𝑓

𝑔⋔id𝐸

id𝐷′⋔ℎ

𝑔⋔id𝐸′

id𝐷⋔ℎ

and, by adjoint transposition, to a commutative diagram in ℰ of the form

𝐶 ⊘ 𝐷 𝐶 ⊘ 𝐷′

𝐶′ ⊘ 𝐷 𝐸

𝐶′ ⊘ 𝐷′ 𝐸′

𝑓⊘id𝐷

id𝐶⊘𝑔

𝑓⊗id𝐷′

id𝐶′⊘𝑔
ℎ
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whence, by the universal property of pushouts, commutative diagram in ℰ of the
following form:

(𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷) 𝐸

𝐶′ ⊘ 𝐷′ 𝐸′

𝑓◲𝑔 ℎ

But (𝑓 ◲ 𝑔) ⧄ ℎ, so we conclude that 𝑓 ⧄ (𝑔 ◰ ℎ).

(ii) ⇒ (iii), (i) ⇒ (ii). A similar argument works. ■

Definition 5.5.2. Let u�, u�, and ℰ be three model categories. A Quillen adjunc-
tion of two variables consists of three functors ⊘, ⋔, ⟜ with natural bijections
as in the proposition satisfying the following (equivalent) axioms:

(a) If ℎ : 𝐸 → 𝐸′ is a fibration in ℰ and 𝑓 : 𝐶 → 𝐶′ is a cofibration in u�, then
the morphism ℎ ◰ 𝑓 : 𝐸 ⟜ 𝐶′ → (𝐸′ ⟜ 𝐶′) ×𝐸′⟜𝐶 (𝐸 ⟜ 𝐶) is a fibration
in u�, which is a weak equivalence if either ℎ or 𝑓 is.

(b) If 𝑓 : 𝐶 → 𝐶′ is a cofibration in u� and 𝑔 : 𝐷 → 𝐷′ is a cofibration in
u�, then the morphism 𝑓 ◲ 𝑔 : 𝐶 ⊘ 𝐷 → (𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷) is a
cofibration in ℰ, which is a weak equivalence if either 𝑓 or 𝑔 is.

(c) If 𝑔 : 𝐷 → 𝐷′ is a cofibration in u� and ℎ : 𝐸 → 𝐸′ is a fibration in u�, then
the morphism 𝑔 ◰ ℎ : 𝐷′ ⋔ 𝐸 → (𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸) is a fibration
in u�, which is a weak equivalence if either 𝑔 or ℎ is.

Proposition 5.5.3. Let (⊘, ⋔, ⟜) be a Quillen adjunction of two variables as
above.

(i) For each cofibrant object 𝐶 in u�, the adjunction

𝐶 ⊘ (−) ⊣ (−) ⟜ 𝐶 : ℰ → u�

is a Quillen adjunction.

(ii) For each cofibrant object 𝐷 in u�, the adjunction

(−) ⊘ 𝐷 ⊣ 𝐷 ⋔ (−) : ℰ → u�

is a Quillen adjunction.
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5.5. Monoidal model categories

(iii) For each fibrant object 𝐸 in ℰ, the adjunction

𝐸 ⟜ (−) ⊣ (−) ⋔ 𝐸 : u�op → u�

is a Quillen adjunction.

Proof. Immediate from the definitions. ⧫

Corollary 5.5.4.
(i) For each object 𝐶 in u�, 𝐶 ⊘ (−) preserves weak equivalences between

cofibrant objects, and (−)⊘𝐶 preserves weak equivalences between fibrant
objects.

(ii) For each object 𝐷 in u�, (−) ⊘ 𝐷 preserves weak equivalences between
cofibrant objects, and 𝐷⋔(−) preserves weak equivalences between fibrant
objects.

(iii) For each object 𝐸 in ℰ, 𝐸 ⟜ (−) sends weak equivalences between cofi-
brant objects in u� to weak equivalences between fibrant objects in u�, and
(−) ⋔ 𝐸 sends weak equivalences between cofibrant objects in u� to weak
equivalences between fibrant objects in u�.

Proof. Apply Ken Brown’s lemma (4.3.6). ■

Lemma 5.5.5. Let u� be a monoidal category, let ℳ be a model category with
fibrant and cofibrant replacement functors, and let 𝑝 : ̃𝐼 → 𝐼 be a morphism in
u� , where 𝐼 is the monoidal unit of u� .

If ℳ has a left u�-action ⊘ and right adjoint right u� op-action ⟜ such that
the adjunction

̃𝐼 ⊗ (−) ⊣ (−) ⟜ ̃𝐼 : ℳ → ℳ

is a Quillen adjunction, then the following are equivalent:

(i) For all cofibrant objects 𝑋 in ℳ, 𝑝 ⊘ id𝑋 : ̃𝐼 ⊘ 𝑋 → 𝐼 ⊘ 𝑋 is a weak
equivalence.

(ii) For all fibrant objects 𝑌 in ℳ, id𝑌 ⟜ 𝑝 : 𝑌 ⟜ 𝐼 → 𝑌 ⟜ ̃𝐼 is a weak
equivalence.

If ℳ has a right u�-action ⦸ and a right adjoint left u� op-action ⊸ such that
the adjunction

(−) ⦸ ̃𝐼 ⊣ ̃𝐼 ⊸ (−) : ℳ → ℳ

is a Quillen adjunction, then the following are equivalent:
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(i′) For all cofibrant objects 𝑋 in ℳ, id𝑋 ⦸ 𝑝 : 𝑋 ⦸ ̃𝐼 → 𝑋 ⦸ 𝐼 is a weak
equivalence.

(ii′) For all fibrant objects 𝑌 in ℳ, 𝑝 ⊸ id𝑌 : 𝐼 ⊸ 𝑌 → ̃𝐼 ⊸ 𝑌 is a weak
equivalence.

Proof. Since 𝞰𝑋 : 𝑋 → 𝐼 ⊘ 𝑋 is a natural isomorphism, the adjunction

𝐼 ⊘ (−) ⊣ (−) ⟜ 𝐼 : ℳ → ℳ

is an adjoint equivalence of categories, and a fortiori a Quillen equivalence, and
the natural transformations 𝑝 ⊘ (−) and (−) ⟜ 𝑝 constitute a conjugate pair. The-
orem 3.3.24 says that the derived natural transformations for 𝑝⊘(−) and (−)⟜𝑝
constitute a conjugate pair of natural transformations between the derived ad-
junctions. Applying proposition 3.3.28 to theorem 4.3.13, we deduce that the
following are equivalent:

• For all cofibrant objects 𝑋, 𝑝 ⊘ id𝑋 is a weak equivalence.

• The left derived natural transformation for 𝑝 ⊘ (−) is a natural isomorph-
ism.

• The right derived natural transformation for (−)⊘𝑝 is a natural isomorph-
ism.

• For all fibrant objects 𝑌 , id𝑌 ⟜ 𝑝 is a weak equivalence. ■

The following definition is due to Hovey [1999, §4.2]:

Definition 5.5.6. A monoidal model category is a biclosed monoidal category
ℳ equipped with a model structure satisfying the following additional axioms:

• Pushout–product axiom. The right ℳ-hom system (⊗, ⊸, ⟜), where ⊸
(resp. ⟜) is the right (resp. left) internal hom functor of ℳ, is a Quillen
adjunction of two variables.

• Unit axiom. For each cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼
and each cofibrant object 𝑋 in ℳ, the morphisms 𝑝⊗id𝑋 : ̃𝐼⊗𝑋 → 𝐼⊗𝑋
and id𝑋 ⊗ 𝑝 : 𝑋 ⊗ ̃𝐼 → 𝑋 ⊗ 𝐼 are weak equivalences in ℳ.

Lemma 5.5.7. Let ℳ be a biclosed monoidal category equipped with a model
structure satisfying the pushout–product axiom, and let 𝑋 be any object in ℳ.
The following are equivalent:
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(i) There exists a cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼 such
that 𝑝 ⊗ id𝑋 and id𝑋 ⊗ 𝑝 are weak equivalences in ℳ.

(ii) There exists a fibrant cofibrant replacement (𝑄𝐼, 𝑞) of the monoidal unit
𝐼 such that 𝑞 ⊗ id𝑋 and id𝑋 ⊗ 𝑞 are weak equivalences in ℳ.

(iii) For any cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼 , both 𝑝 ⊗ id𝑋
and id𝑋 ⊗ 𝑝 are weak equivalences in ℳ.

Proof. (i) ⇒ (ii). Let (𝑄𝐼, 𝑞) be a fibrant cofibrant replacement of 𝐼 ; such ex-
ists by proposition 4.1.24. Since ̃𝐼 is cofibrant, axiom CM5 implies there is a
morphism 𝑤 : ̃𝐼 → 𝑄𝐼 such that 𝑞 ∘ 𝑤 = 𝑝, and the 2-out-of-3 property implies
𝑤 is a weak equivalence. Corollary 5.5.4 says 𝑤 ⊗ id𝑋 and id𝑋 ⊗ 𝑤 are weak
equivalences, thus by the 2-out-of-3 property again 𝑞 ⊗ id𝑋 and id𝑋 ⊗ 𝑞 must be
weak equivalences.

(ii) ⇒ (iii). A similar argument works.

(iii) ⇒ (i). Obvious, given the existence of cofibrant replacements. ■

Corollary 5.5.8. Let ℳ be a biclosed monoidal category equipped with a model
structure. If the monoidal unit 𝐼 is a cofibrant object in ℳ, then the following
are equivalent:

(i) ℳ is a monoidal model category.

(ii) ℳ satisfies the pushout–product axiom. ■

Proposition 5.5.9. Let ℳ be a monoidal model category, let 𝐼 be the monoidalTODO: State the
version without the
assumption that the

unit is cofibrant.

unit, and let ⊸ : ℳop × ℳ → ℳ be the right internal hom functor. If 𝐼 is a
cofibrant object and (𝐽 , 𝑖0, 𝑖1, 𝑝) is a cylinder object for 𝐼 , then (𝐽 ⊸ 𝑋, 𝑖, 𝑝0, 𝑝1)
is a path object for all fibrant 𝑋, where 𝑖 : 𝑋 → [𝐽 , 𝑋] is the morphism induced
by 𝑝 : 𝐽 → 𝐼 , and 𝑝0, 𝑝1 : [𝐽 , 𝑋] → 𝑋 are (respectively) the morphisms induced
by 𝑖0, 𝑖1 : 𝐼 → 𝐽 .

Proof. Since 𝐼 is a cofibrant object, 𝐼 +𝐼 is cofibrant (by proposition a.3.17), and
hence 𝐽 itself is cofibrant. Corollary 5.5.4 says the functor (−)⊸𝑋 : ℳop → ℳ
sends weak equivalences between cofibrant objects in ℳ to weak equivalences
between fibrant objects in ℳ when 𝑋 is fibrant, so it follows that the morphism
𝑖 : 𝑋 → [𝐽 , 𝑋] is a weak equivalence. Similarly, since the morphism 𝐼 + 𝐼 → 𝐽
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induced by 𝑖0 and 𝑖1 is a cofibration, the morphism [𝐽 , 𝑋] → 𝑋 × 𝑋 induced by
𝑝0 and 𝑝1 is a fibration, so ([𝐽 , 𝑋], 𝑖, 𝑝0, 𝑝1) is indeed a path object for 𝑋. ■

The following definition can be found in [Rezk, 2010, §2] and [Simpson,
2012, §7.7].

Definition 5.5.10. A cartesian model category is a cartesian closed category
ℳ equipped with a model structure satisfying the following additional axioms:

• Pushout–product axiom. The left ℳ-hom system (×, [−, −], [−, −]) is a
Quillen adjunction of two variables.

• Cofibrant unit axiom. Every terminal object in ℳ is cofibrant.

Example 5.5.11. The Kan–Quillen model structure on 𝐬𝐒𝐞𝐭 makes it a cartesian
model category: 𝐬𝐒𝐞𝐭 is a cartesian closed combinatorial model category (a for-
tiori a DHK model category), all simplicial sets are cofibrant, and the pushout–
product axiom is just proposition 1.4.15.

Proposition 5.5.12. Let ℳ be a Cisinski model category.[3] The following are
equivalent:

(i) ℳ is a cartesian model category.

(ii) The class of weak equivalences in ℳ is closed under binary products.

(iii) The class of trivial cofibrations in ℳ is closed under binary products.

Proof. (i) ⇒ (ii). Since all objects in ℳ are cofibrant, corollary 5.5.4 implies
that, for any object 𝑌 in ℳ, the functor (−) × 𝑌 : ℳ → ℳ preserves weak
equivalences. Thus, the class of weak equivalences in ℳ is closed under binary
products.

(ii) ⇒ (iii). The class of monomorphisms is always closed under binary products,
so the class of trivial cofibrations (i.e. monic weak equivalences) is closed under
binary products if the class of weak equivalences is.

(iii) ⇒ (i). This is the content of proposition 5.4.6. ■

[3] See definition 5.4.1.
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Theorem 5.5.13. If ℳ is a monoidal model category, then there is an induced
monoidal biclosed structure on Ho ℳ where the monoidal product is the left
derived functor of the monoidal product in ℳ and the coherence data is inherited
from ℳ.

Proof. See Theorem 4.3.2 in [Hovey, 1999]. □

Proposition 5.5.14. Let ℳ be a cartesian model category and let ℳf be the full
subcategory of fibrant objects.

(i) ℳf is closed under products of small families of objects in ℳ, and [𝑋, 𝑌 ]
is fibrant if 𝑋 is cofibrant and 𝑌 is fibrant.

(ii) The localising functor 𝛾 : ℳf → Ho ℳ preserves products of small fam-
ilies of objects; in particular, Ho ℳ has products for all small families of
objects.

(iii) Ho ℳ is a cartesian closed category, and 𝛾[𝑋, 𝑌 ] is naturally isomorphic
to [𝛾𝑋, 𝛾𝑌 ] when 𝑋 is cofibrant and 𝑌 is fibrant.

(iv) Let Γ : ℳ → 𝐒𝐞𝐭 be the functor ℳ(1, −) and let 𝜏0 : ℳ → 𝐒𝐞𝐭 be
the functor Ho ℳ(𝛾1, 𝛾−). The functor 𝜏0 preserves small products in
ℳf, and the component 𝜒𝑌 : Γ𝑌 ⇒ 𝜏0𝑌 of the natural transformation
𝜒 : Γ ⇒ 𝜏0 induced by the functor 𝛾 is surjective for all fibrant objects 𝑌
in ℳ.

Proof. (i). That ℳf is closed in ℳ under small products is a straightforward
consequence of proposition a.3.17, and pushout–product axiom for cartesian
model structures implies the other half of the claim.

(ii). Proposition 4.3.18 says Ho [𝐼, ℳ] → [𝐼, Ho ℳ] is an equivalence of cat-
egories for all sets 𝐼 , so products in Ho ℳ coincide with homotopy products.
Homotopy products in ℳf coincide with ordinary products, hence the localising
functor 𝛾 : ℳf → Ho ℳ preserves small products. Since every object in ℳ is
weakly equivalent to one in ℳf, it follows that Ho ℳ has products for all small
families of objects.

(iii). Apply theorem 5.5.13.

(iv). As a representable functor, Ho ℳ(𝛾1, −) : Ho ℳ → 𝐒𝐞𝐭 preserves small
products, and by claim (ii), 𝛾 : ℳf → Ho ℳ preserves small products, so
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𝜏0 : ℳf → 𝐒𝐞𝐭 indeed preserves small products. Theorem 4.1.31 says that the
localising functor induces hom-set maps ℳ(𝑋, 𝑌 ) → Ho ℳ(𝛾𝑋, 𝛾𝑌 ) that are
surjective when 𝑋 is cofibrant and 𝑌 is fibrant; since 1 is cofibrant by hypo-
thesis, it follows that the map 𝜒𝑌 : Γ𝑌 → 𝜏0𝑌 is surjective for all cofibrant
objects 𝑌 . ■

Under stronger hypotheses, the homotopy category of a cartesian model cat-
egory admits a description à la Hurewicz:

Proposition 5.5.15. Let ℳ be a cartesian model category, let ℳf be the full
subcategory of fibrant objects, and let Ho ℳf be the localisation of ℳf at the
weak equivalences. If all fibrant objects in ℳ are cofibrant, then:

(i) ℳf is a cartesian closed category.

(ii) The natural transformation 𝜒 : Γ ⇒ 𝜏0 induces a functor ℳf → 𝜏0[ℳf]
that is a bijection on objects, full, and preserves small products and expo-
nential objects.

(iii) Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in ℳf. Then 𝑓0 and
𝑓1 are (right) homotopic if and only if they are sent to the same morphism
in 𝜏0[ℳf].

(iv) The canonical functor Ho ℳf → 𝜏0[ℳf] is an isomorphism of categories.

Proof. (i). Since all fibrant objects are cofibrant, the exponential object [𝑋, 𝑌 ]
is fibrant for all 𝑋 and 𝑌 in ℳf; and by proposition 5.5.14, ℳf is closed un-
der products of small objects in ℳ, so it follows that ℳf is a cartesian closed
category.

(ii). This is a straightforward consequence of the fact that 𝜏0 : ℳf → 𝐒𝐞𝐭
preserves small products, that we have a natural bijection Γ[𝑋, 𝑌 ] ≅ ℳ(𝑋, 𝑌 )
for all objects 𝑋 and 𝑌 , and that 𝜒𝑍 : Γ𝑍 → 𝜏0𝑍 is a surjection for all fibrant
objects 𝑍.

(iii). Suppose 𝑓0, 𝑓1 : 𝑋 → 𝑌 are related by a right homotopy, i.e. there exists a
path object (𝑃 , 𝑖, 𝑝0, 𝑝1) for 𝑌 and a morphism 𝑓 : 𝑋 → 𝑃 such that 𝑝0 ∘ 𝑓 = 𝑓0
and 𝑝1 ∘ 𝑓 = 𝑓1. Since 𝑝0, 𝑝1 : 𝑃 → 𝑌 are retractions of the weak equivalence
𝑖 : 𝑌 → 𝑃 , the two maps 𝜏0[𝑋, 𝑃 ] → 𝜏0[𝑋, 𝑌 ] induced by 𝑝0 and 𝑝1 must be
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5.5. Monoidal model categories

equal. In particular, 𝜒[𝑋,𝑌 ] : Γ[𝑋, 𝑌 ] → 𝜏0[𝑋, 𝑌 ] must map 𝑓0 and 𝑓1 to the
same element.

Conversely, if 𝑓0 and 𝑓1 are sent to the same morphism in 𝜏0[ℳf], then there
must exist a cylinder object (𝐽 , 𝑖0, 𝑖1, 𝑝) for 1 and a morphism ℎ : 𝐽 → [𝑋, 𝑌 ]
such that ℎ ∘ 𝑖0 (resp. ℎ ∘ 𝑖1) is the exponential transpose of 𝑓0 (resp. 𝑓1). Taking
exponential transposes again and using the fact that [𝐽 , 𝑌 ] is a path object for 𝑌 ,
we deduce that 𝑓0 and 𝑓1 are right homotopic.

(iv). The formal Whitehead theorem implies that weak equivalences in ℳf are
mapped to isomorphisms in 𝜏0[ℳf], so the functor ℳ → 𝜏0[ℳf] induces a
functor Ho ℳf → 𝜏0[ℳf]. A standard argument then shows that it is an iso-
morphism: see e.g. theorem 4.4.1. ■

Proposition 5.5.16. Let ℳ be a cartesian model category. If all objects in ℳ
are cofibrant, then:

(i) The functors 𝛾 : ℳ → Ho ℳ and 𝜏0 : ℳ → 𝐒𝐞𝐭 both preserve finite
products.

(ii) A morphism 𝑓 : 𝑋 → 𝑌 in ℳ is a weak equivalence if and only if the
induced maps

𝜏0[𝑓 , 𝑍] : 𝜏0[𝑌 , 𝑍] → 𝜏0[𝑋, 𝑍]

are bijections for all fibrant objects 𝑍 in ℳ.

(iii) The inclusion ℳf ↪ ℳ induces a fully faithful functor 𝜏0[ℳf] → 𝜏0[ℳ]
with a left adjoint.

Proof. (i). It suffices to to show that 𝛾 : ℳ → Ho ℳ preserves finite products;
that 𝜏0 : ℳ → 𝐒𝐞𝐭 preserves finite products will follow automatically. It is not
hard to check that 𝛾 : ℳ → Ho ℳ preserves terminal objects for all model
categories ℳ, and we will now show that 𝛾 preserves binary products.

The pushout–product axiom implies that, for all cofibrant objects 𝑌 , the func-
tor − × 𝑌 : ℳ → ℳ is a left Quillen functor. Since we are assuming that all
objects are cofibrant, corollary 5.5.4 implies that − × 𝑌 preserves weak equival-
ences. We may then deduce that − × − : ℳ × ℳ → ℳ preserves all weak
equivalences, and hence that it is a homotopical left approximation for itself.
Thus, the localising functor 𝛾 : ℳ → Ho ℳ indeed preserves binary products.
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V. Topics in model categories

(ii). If 𝑓 : 𝑋 → 𝑌 is a weak equivalence, then [𝑓 , 𝑍] : [𝑌 , 𝑍] → [𝑋, 𝑍]
is a weak equivalence for all fibrant objects 𝑍, and hence 𝜏0[𝑓 , 𝑍] must be a
bijection. Conversely, suppose 𝜏0[𝑓 , 𝑍] is a bijection for all fibrant objects 𝑍.
Let 𝑅 : ℳ → ℳ be a fibrant replacement functor for ℳ. Then, the morphism
𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 also induces bijections 𝜏0[𝑅𝑓 , 𝑍] for all fibrant objects 𝑍, and
since 𝑅𝑋 and 𝑅𝑌 are in ℳf, the Yoneda lemma implies that 𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌
is sent to an isomorphism in 𝜏0[ℳf], and hence must be a weak equivalence in
ℳf. The 2-out-of-3 property of weak equivalences then implies 𝑓 : 𝑋 → 𝑌 is
a weak equivalence in ℳ.

(iii). It is clear that the induced functor 𝜏0[ℳf] → 𝜏0[ℳ] is indeed fully faithful,
and it is not hard to check that a fibrant replacement functor provides the required
left adjoint 𝜏0[ℳ] → 𝜏0[ℳf]. ■

Definition 5.5.17. An isocofibration is a functor that is injective on objects. An
isofibration is a functor 𝐹 : u� → u� such that, for every object 𝐶 in u� and every
isomorphism 𝑓 : 𝐹 𝐶 → 𝐷 in u�, there exists an isomorphism ̃𝑓 : 𝐶 → �̃� in u�
such that 𝐹 ̃𝑓 = 𝑓 .

Proposition 5.5.18. Let 𝐂𝐚𝐭 be the category of small categories. The following
data constitute a model structure on 𝐂𝐚𝐭:

• The weak equivalences are the functors that are fully faithful and essen-
tially surjective on objects.

• The cofibrations are the isocofibrations.

• The fibrations are the isofibrations.

Moreover, the factorisations for axiom CM5 may be chosen functorially, so that
𝐂𝐚𝐭 becomes a DHK model category. This model structure is called the canon-
ical model structure on 𝐂𝐚𝐭.

Proof. It is not hard to show that 𝐂𝐚𝐭 has limits and colimits for all small dia-
grams, so axiom CM1* is satisfied. It is also clear that the announced class of
weak equivalences has the 2-out-of-3 property, so by theorem 4.1.12, it is enough
to show that we have a pair of compatible weak factorisation systems.
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Let 𝐼 : 𝔸 → 𝔹 be an isocofibration and 𝑃 : ℂ → 𝔻 be an isofibration, and
suppose we have a commutative diagram of the following form:

𝔸 ℂ

𝔹 𝔻

𝐼

𝐹

𝑃

𝐺

First, suppose 𝑃 is a weak equivalence. Then, 𝑃 must be surjective on objects,
so we may define a map 𝐻 : ob 𝔹 → ob ℂ by taking 𝐻𝐵 = 𝐹 𝐴 if 𝐵 = 𝐼𝐴 for
some 𝐴, and if 𝐵 is not in the image of 𝐴, define 𝐻𝐵 to be any object in ℂ such
that 𝑃 𝐻𝐵 = 𝐺𝐵; there is then a unique way of extending 𝐻 to a functor 𝔹 → ℂ
making the evident diagram commute.

Next, instead suppose 𝐼 is a weak equivalence. Then, 𝐼 may be regarded as
the inclusion of a full subcategory that is essentially surjective on objects. For
each object 𝐵 in 𝔹 that is not in the image of 𝐼 , fix an object 𝐴 in 𝔸 and an
isomorphism 𝐼𝐴

≅
→ 𝐵. Since 𝑃 is an isofibration, for each such 𝐵 we may also

choose an object 𝐶 in ℂ and an isomorphism 𝐹 𝐴
≅
→ 𝐶 whose image under 𝑃 is

𝐺𝐼𝐴
≅
→ 𝐺𝐵. There is then a unique functor 𝐻 : 𝔹 → ℂ that makes the evident

diagram commute and sends 𝐵 to the chosen 𝐶 and 𝐼𝐴
≅
→ 𝐵 to 𝐹 𝐴

≅
→ 𝐶 .

It remains to be shown that every functor can be factorised in the required
manner. Let 𝐹 : ℂ → 𝔻 be any functor. Consider the iso-comma category
(𝐹 ≀ 𝔻):

• The objects are triples (𝐶, 𝐷, 𝛼), where 𝐶 is an object in ℂ, 𝐷 is an object
in 𝔻, and 𝛼 : 𝐹 𝐶 → 𝐷 is an isomorphism in 𝔻.

• The morphisms (𝐶, 𝐷, 𝛼) → (𝐶′, 𝐷′, 𝛼′) is a morphism 𝑓 : 𝐶 → 𝐶′ is in
ℂ together with a morphism 𝑔 : 𝐷 → 𝐷′ in 𝔻 such that 𝑔 ∘ 𝛼 = 𝛼′ ∘ 𝐹 𝑓 .[4]

• Composition and identities are inherited from ℂ and 𝔻.

There is an evident isocofibration 𝐼 : ℂ → (𝐹 ≀ 𝔻) sending an object 𝐶 in ℂ to
the object (𝐶, 𝐹 𝐶, id𝐹 𝐶), and it is easy to see that 𝐼 is a weak equivalence. On
the other hand, the projection 𝑃 : (𝐹 ≀ 𝔻) → 𝔻 is an isofibration by construction,
and obviously 𝐹 = 𝑃 𝐼 . Thus, we have factored 𝐹 as a trivial isocofibration
followed by an isofibration, and it is clear that this construction is functorial in
𝐹 .

Now, consider instead the category 𝐌(𝐹 ) defined below:
[4] However, because 𝛼 and 𝛼′ are isomorphisms, 𝑓 freely and uniquely determines 𝑔.
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V. Topics in model categories

• ob 𝐌(𝐹 ) = ob ℂ ⨿ ob 𝔻.

• If 𝐶 and 𝐶′ are objects in ℂ, while 𝐷 and 𝐷′ are objects in 𝔻, then:

Hom(𝐶, 𝐶′) = 𝔻(𝐹 𝐶, 𝐹 𝐶′)
Hom(𝐶, 𝐷′) = 𝔻(𝐹 𝐶, 𝐷′)
Hom(𝐷, 𝐶′) = 𝔻(𝐷, 𝐹 𝐶′)
Hom(𝐷, 𝐷′) = 𝔻(𝐷, 𝐷′)

• Composition and identities are inherited from 𝔻.

There is an evident isocofibration 𝐼 : ℂ → 𝐌(𝐹 ) that sends an object 𝐶 in ℂ to
the corresponding object in 𝐌(𝐹 ) and sends a morphism 𝑓 : 𝐶 → 𝐶′ in ℂ to
the morphism in 𝐌(𝐹 ) corresponding to 𝐹 𝑓 : 𝐹 𝐶 → 𝐹 𝐶′ in 𝔻. On the other
hand, there is an evident projection 𝑃 : 𝐌(𝐹 ) → 𝔻 that is fully faithful and
surjective on objects, i.e. 𝑃 is a trivial isofibration. Of course, 𝐹 = 𝑃 𝐼 , so this
is a factorisation of 𝐹 as an isocofibration followed by a trivial isofibration, and
it is clear that this construction is functorial in 𝐹 . ■

Theorem 5.5.19. Let 𝐂𝐚𝐭 be considered as a model category via the canonical
model structure.

(i) Every object in 𝐂𝐚𝐭 is both cofibrant and fibrant.

(ii) 𝐂𝐚𝐭 is a combinatorial model category.

(iii) 𝐂𝐚𝐭 is a cartesian model category.

Proof. (i). The unique functor ∅ → ℂ is vacuously an isocofibration, and the
unique functor ℂ → 𝟙 is certainly an isofibration.

(ii). 𝐂𝐚𝐭 is a locally finitely presentable category,[5] and it remains to be shown
that the canonical model structure is a cofibrantly generated model structure.

By the very definition of isofibration, the set {{0} ↪ 𝐈𝟚} is a generating set
of trivial isocofibrations, where 𝐈𝟚 is the groupoid containing only a pair of non-
trivial isomorphisms. It is also straightforward to see that a functor is …

[5] — because e.g. 𝐂𝐚𝐭 is the category of models for a finite limit sketch; see Proposition 1.51 in
[LPAC], or Proposition 5.6.4 in [Borceux, 1994b], or theorem 0.5.34.
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… surjective on objects if and only if it has the right lifting property with
respect to the unique functor ∅ → 𝟙;

… full if and only if it has the right lifting property with respect to the inclu-
sion disc 2 → 𝟚; and

… faithful if and only if it has the right lifting property with respect the sur-
jective functor 𝔼 → 𝟚, where 𝔼 is the category with a parallel pair of
non-trivial morphisms.

However, a functor is a trivial isofibration if and only if it is fully faithful and
surjective on objects, so {∅ → 𝟙, disc 2 → 𝟚, 𝔼 → 𝟚} is a set of generating iso-
cofibrations.

(iii). Let 𝐹 : ℂ → ℂ′ and 𝐺 : 𝔻 → 𝔻′ be isocofibrations, and consider the
functor 𝐹 ◲ 𝐹 ′ defined by the diagram below:

ℂ × 𝔻 ℂ × 𝔻′

ℂ′ ⊗ 𝔻 (ℂ × 𝔻′) ∪ℂ×𝔻 (ℂ′ × 𝔻)

ℂ′ × 𝔻′

𝐹 ×id𝔻

idℂ×𝐺

𝐹 ×id𝔻′

idℂ′×𝐺

𝐹 ◲𝐺

The functor ob : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 has both left and right adjoints, so it is easy to
see that 𝐹 ◲ 𝐺 is an isocofibration. Moreover, if 𝐹 : ℂ → ℂ′ is a trivial
isocofibration, one may directly verify that 𝐹 ×id𝔻 : ℂ×𝔻 → ℂ′×𝔻 and 𝐹 ×id𝔻′ :
ℂ×𝔻′ → ℂ′ ×𝔻′ are trivial isocofibrations; but trivial isocofibrations are closed
under pushout, so applying the 2-out-of-3 property of weak equivalences, we
conclude that 𝐹 ◲𝐺 is a trivial isocofibration if 𝐹 is. The symmetrical argument
shows that 𝐹 ◲ 𝐺 is a trivial isocofibration if 𝐺 is.

Having shown that 𝐂𝐚𝐭 satisfies the pushout–product axiom, we must now
verify that 𝐂𝐚𝐭 is cartesian closed and has a cofibrant unit; but the former is a
very well-known fact, and the latter follows from claim (i). ■

Theorem 5.5.20. Let 𝐆𝐫𝐩𝐝 be the category of small groupoids.

(i) The following data constitute a model structure on 𝐆𝐫𝐩𝐝:
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V. Topics in model categories

• The weak equivalences are the functors that are fully faithful and
essentially surjective on objects.

• The cofibrations are the isocofibrations.

• The fibrations are the isofibrations.

This model structure is called the canonical model structure on 𝐆𝐫𝐩𝐝.

(ii) Every object in 𝐆𝐫𝐩𝐝 is both cofibrant and fibrant.

(iii) 𝐆𝐫𝐩𝐝 is a combinatorial model category.

(iv) 𝐆𝐫𝐩𝐝 is a cartesian model category.

(v) The inclusion und : 𝐆𝐫𝐩𝐝 → 𝐂𝐚𝐭 preserves and reflects weak equival-
ences, isocofibrations, and isofibrations; moreover, it is both a left Quillen
functor and a right Quillen functor.

Proof. (i). The proof of proposition 5.5.18 goes through for 𝐆𝐫𝐩𝐝 without modi-
fications.

(ii)–(iv). These can be proven in essentially the same way as proposition 5.5.18,
though one should note that the generating isocofibrations and generating trivial
isocofibrations for 𝐆𝐫𝐩𝐝 are different.

(v). It is clear that und : 𝐆𝐫𝐩𝐝 → 𝐂𝐚𝐭 has the announced preservation and
reflection properties. One may check that und has a left adjoint 𝐈 : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝
and a right adjoint iso : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝, so und is both a left Quillen functor and
a right Quillen functor. ■

5.6 Bousfield localisation
Prerequisites. §§4.1, 4.3, 4.8, 5.1, 5.2.

Definition 5.6.1. Let u� be a class of morphisms in a model category ℳ.

• An u�-local object in ℳ is a fibrant object 𝑋 in ℳ such that, for every
morphism 𝑔 : 𝑍 → 𝑊 that is in u� , the induced morphism

𝐑Homℳ(𝑔, 𝑋) : 𝐑Homℳ(𝑊 , 𝑋) → 𝐑Homℳ(𝑍, 𝑋)

is an isomorphism in Ho 𝐬𝐒𝐞𝐭.
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• An u�-colocal object in ℳ is a cofibrant object 𝑊 in ℳ such that, for
every morphism 𝑓 : 𝑋 → 𝑌 that is in u� , the induced morphism

𝐑Homℳ(𝑊 , 𝑓) : 𝐑Homℳ(𝑊 , 𝑋) → 𝐑Homℳ(𝑊 , 𝑌 )

is an isomorphism in Ho 𝐬𝐒𝐞𝐭.

Lemma 5.6.2. Let u� be a class of morphisms in a model category ℳ.

• If 𝑓 : 𝑋 → 𝑌 is a weak equivalence between fibrant objects in ℳ, then 𝑋
is an u�-local object in ℳ if and only if 𝑌 is u�-local.

• If 𝑔 : 𝑍 → 𝑊 is a weak equivalence between cofibrant objects in ℳ, then
𝑍 is an u�-colocal object in ℳ if and only if 𝑊 is u�-colocal.

Proof. Immediate, because 𝐑Homℳ is a functor (Ho ℳ)op ×Ho ℳ → Ho 𝐬𝐒𝐞𝐭.
■

Proposition 5.6.3. Let ℳ and u� be model categories and let

𝐹 ⊣ 𝐺 : u� → ℳ

be a Quillen adjunction.

• If u� is a class of morphisms in ℳ and 𝐋𝐹 : Ho ℳ → Ho u� sends
morphisms in (the image of) u� to isomorphisms in Ho u� , then 𝐺 : u� →
ℳ sends fibrant objects in u� to u�-local objects in ℳ.

• If u� is a class of morphisms in u� and 𝐑𝐺 : Ho u� → Ho ℳ sends
morphisms in (the image of) u� to isomorphisms in Ho ℳ, then 𝐹 : ℳ →
u� sends cofibrant objects in ℳ to u� -colocal objects in u� .

Proof. The two claims are formally dual; we will prove the first version.
By proposition 4.3.4, 𝐺 sends fibrant objects in u� to fibrant objects in ℳ,

and by theorem 4.8.37, we have natural isomorphism in Ho 𝐬𝐒𝐞𝐭 of the form
below:

𝐑Homu� ((𝐋𝐹 )𝑍, 𝐵) ≅ 𝐑Homℳ(𝑍, (𝐑𝐺)𝐵)

But (𝐑𝐺)𝐵 is isomorphic to 𝐺𝐵 in Ho ℳ when 𝐵 is fibrant (by theorem 4.3.12),
so 𝐺𝐵 is indeed an u�-local object in ℳ. ■
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Definition 5.6.4. Let u� be a class of morphisms in a model category ℳ.

• An u�-local equivalence in ℳ is a morphism 𝑔 : 𝑍 → 𝑊 in ℳ such that
the induced morphism

𝐑Homℳ(𝑔, 𝑋) : 𝐑Homℳ(𝑊 , 𝑋) → 𝐑Homℳ(𝑍, 𝑋)

is an isomorphism in Ho 𝐬𝐒𝐞𝐭 for all u�-local objects 𝑋 in ℳ.

• An u�-colocal equivalence in ℳ is a morphism 𝑓 : 𝑋 → 𝑌 in ℳ such
that the induced morphism

𝐑Homℳ(𝑊 , 𝑓) : 𝐑Homℳ(𝑊 , 𝑋) → 𝐑Homℳ(𝑊 , 𝑌 )

is an isomorphism in Ho 𝐬𝐒𝐞𝐭 for all u�-colocal objects 𝑊 in ℳ.

Remark 5.6.5. For any given model category ℳ and any class u� of morphisms
in ℳ, the class of u�-local equivalences (resp. u�-colocal equivalences) is satur-
ated (by lemma 3.1.8). Note that every morphism that is in u� is automatically an
u�-local equivalence (resp. u�-colocal equivalence), as is every weak equivalence
in ℳ.

Lemma 5.6.6. Let u� be a class of morphisms in a model category ℳ.

• A morphism between u�-local objects in ℳ is an u�-local equivalence if
and only if it is a weak equivalence in ℳ.

• A morphism between u�-colocal objects in ℳ is an u�-colocal equivalence
if and only if it is a weak equivalence in ℳ.

Proof. The two claims are formally dual; we will prove the first version.
It is clear that every weak equivalence in ℳ is an u�-local equivalence. Con-

versely, suppose 𝑔 : 𝑍 → 𝑊 is an u�-local equivalence between u�-local objects
in ℳ. Corollary 4.8.15 then implies that 𝑔 : 𝑍 → 𝑊 induces bijections

Ho ℳ(𝑔, 𝑋) : Ho ℳ(𝑊 , 𝑋) → Ho ℳ(𝑍, 𝑋)

for all u�-local objects 𝑋, so 𝑔 : 𝑍 → 𝑊 must be an isomorphism in Ho ℳ.
Since ℳ is a saturated homotopical category (by theorem 4.4.1), we may then
deduce that 𝑔 : 𝑍 → 𝑊 is a weak equivalence in ℳ. ■
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Definition 5.6.7. Let u� be a class of morphisms in a model category ℳ and let
𝑋 be an object in ℳ.

• An u�-local replacement for 𝑋 is a pair (�̂�, 𝑖) where �̂� is an u�-local
object in ℳ and 𝑖 : 𝑋 → �̂� is an u�-local equivalence.

• An u�-colocal replacement for 𝑋 in ℳ is a pair (�̃�, 𝑝) where �̃� is an
u�-colocal object in ℳ and 𝑝 : �̃� → 𝑋 is an u�-colocal equivalence.

• A cofibrant u�-local replacement for 𝑋 in ℳ is an u�-local replacement
(�̂�, 𝑖) where 𝑖 : 𝑋 → �̂� is cofibration in ℳ (and also an u�-local equival-
ence).

• A fibrant u�-colocal replacement for 𝑋 in ℳ is an u�-colocal replace-
ment (�̃�, 𝑝) where 𝑝 : �̃� → 𝑋 is a fibration in ℳ (and also an u�-local
equivalence).

Proposition 5.6.8. Let u� be a class of morphisms in a model category ℳ.

• If every cofibrant–fibrant object in ℳ admits an u�-local replacement, then
the full subcategory of Ho ℳ spanned by the u�-local objects is a reflective
subcategory of Ho ℳ.

• If every cofibrant–fibrant object in ℳ admits an u�-colocal replacement,
then the full subcategory of Ho ℳ spanned by the u�-colocal objects is a
coreflective subcategory of Ho ℳ.

Proof. The two claims are formally dual; we will prove the first version.
Let ℒ be the full subcategory of Ho ℳ spanned by the u�-local objects. If

𝑔 : 𝑍 → 𝑊 is an u�-local equivalence in ℳ, then corollary 4.8.15 implies that
𝑔 : 𝑍 → 𝑊 induces bijections

Ho ℳ(𝑔, 𝑋) : Ho ℳ(𝑊 , 𝑋) → Ho ℳ(𝑍, 𝑋)

for all u�-local objects 𝑋. Thus, for any u�-local replacement (�̂�, 𝑖), we have
natural bijections

Ho ℳ(�̂�, 𝑋) ≅ Ho ℳ(𝑍, 𝑋)

where 𝑋 varies among the u�-local objects in Ho ℳ. Proposition 4.1.24 implies
every object in ℳ is weakly equivalent to a cofibrant–fibrant object, so this im-
plies that the inclusion ℒ ↪ Ho ℳ has a left adjoint, as required. ■
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Lemma 5.6.9. Let u� be a class of morphisms in a model category ℳ.

• If ℳ is a left proper model category, then every u�-local object is inject-
ive with respect to the class of cofibrations in ℳ that are also u�-local
equivalences.

• If ℳ is a right proper model category, then every u�-colocal object is pro-
jective with respect to the class of fibrations in ℳ that are also u�-colocal
equivalences.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝑖 : 𝑍 → 𝑊 be a morphism in ℳ that is a cofibration and also an u�-local

equivalence. Using axiom CM5 and theorem 4.6.15, we may choose cosimplicial
resolutions (�̃�•, 𝑝•

𝑍) and (�̃� •, 𝑝•
𝑊 ) for 𝑍 and 𝑊 (respectively) and a Reedy

cofibration ̃𝑖• : �̃�• → �̃� • such that the following diagram in ℳ commutes:

�̃�0 𝑍

�̃� 0 𝑊

̃𝑖0

𝑝0
𝑍

𝑖

𝑝0
𝑊

Let 𝑋 be an u�-local object. We wish to show that the unique morphism 𝑋 → 1
has the right lifting property with respect to 𝑖 : 𝑍 → 𝑊 . Since 𝑖 : 𝑍 → 𝑊 is an
u�-local equivalence, the induced morphism of left homotopy function complexes

Homℳ( ̃𝑖, 𝑋) : Homℳ(�̃� , 𝑋) → Homℳ(�̃�, 𝑋)

is a homotopy equivalence of Kan complexes; but ̃𝑖• : �̃�• → �̃� • is a Reedy
cofibration between cosimplicial resolutions in ℳ and 𝑋 is a fibrant object in
ℳ, so lemma 4.8.38 says the unique morphism 𝑋 → 1 has the right lifting
property with respect to ̃𝑖0 : �̃�0 → �̃� 0.

Now, suppose the square in the diagram below is a pushout diagram in ℳ:

�̃�0 𝑍

�̃� 0 𝑊 ′

𝑊

̃𝑖0

𝑝0
𝑍

𝑖′

𝑖

𝑝0
𝑊

𝑔
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Since ℳ is a left proper model category, axiom CM2 implies 𝑔 : 𝑊 ′ → 𝑊 is
a weak equivalence in ℳ. Proposition a.3.17 says the unique morphism 𝑋 → 1
also has the right lifting property with respect to 𝑖′ : 𝑍 → 𝑊 ′, so we may use
lemma 4.1.20 to deduce that 𝑋 → 1 has the right lifting property with respect to
𝑖 : 𝑍 → 𝑊 . ■

Definition 5.6.10. Let u� be a class of morphisms in a model category ℳ.

• The left Bousfield localisation of ℳ with respect to u� is a model category
𝐋u�ℳ whose underlying category and cofibrations are the same as ℳ and
whose weak equivalences are the u�-local equivalences.

• The right Bousfield localisation of ℳ with respect to u� is a model cat-
egory 𝐑u�ℳ whose underlying category and fibrations are the same as ℳ
and whose weak equivalences are the u�-colocal equivalences.

Remark 5.6.11. The left (resp. right) Bousfield localisation of ℳ with respect to
u� is unique if it exists, by theorem 4.1.12. Note that the theorem also implies that
the trivial fibrations in 𝐋u�ℳ (resp. trivial cofibrations in 𝐑u�ℳ) are the same as
the trivial fibrations (resp. trivial cofibrations) in ℳ.

Proposition 5.6.12. Let ℳ and ℳ′ be model categories with the same under-
lying category.

• If ℳ and ℳ′ have the same cofibrations and weq ℳ ⊆ weq ℳ′, then
the model structure on ℳ′ is the left Bousfield localisation of the model
structure of ℳ with respect to weq ℳ′.

• If ℳ and ℳ′ have the same fibrations and weq ℳ ⊆ weq ℳ′, then the
model structure on ℳ′ is the right Bousfield localisation of the model
structure of ℳ with respect to weq ℳ′.

Proof. The two claims are formally dual; we will prove the first version.
Let u� = weq ℳ′. It suffices to prove that every u�-local equivalence is a

weak equivalence in ℳ′. The hypotheses (plus proposition 4.3.2) imply that the
trivial adjunction

id ⊣ id : ℳ′ → ℳ

is a Quillen adjunction. Let 𝑌 be a fibrant object in ℳ′ and let ̂𝑌• be a simplicial
resolution of 𝑌 in ℳ′. Then 𝑌 is a fibrant object in ℳ and ̂𝑌• is a simplicial
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V. Topics in model categories

resolution of 𝑌 in ℳ, by (proposition 4.3.4 and) lemma 4.8.36. On the other
hand, given an object 𝑋 in ℳ, any fibrant cofibrant replacement for 𝑋 in ℳ
is also a fibrant cofibrant replacement for 𝑋 in ℳ′. Thus, if (�̃�, 𝑝) is a cofi-
brant replacement for 𝑋, then the right hom-complex Homℳ(�̃�, ̂𝑌 ) computes
both 𝐑Homℳ(𝑋, 𝑌 ) and 𝐑Homℳ′(𝑋, 𝑌 ). Hence, by proposition 4.8.22, every
fibrant object in ℳ′ is an u�-local object in ℳ, and every u�-local equivalence
in ℳ is a weak equivalence in ℳ′. ■

Proposition 5.6.13. Let u� be a class of morphisms in a model category ℳ.

• If the left Bousfield localisation 𝐋u�ℳ exists, then the trivial adjunction

id ⊣ id : 𝐋u�ℳ → ℳ

is a Quillen adjunction, and the right derived functor Ho 𝐋u�ℳ → Ho ℳ
is fully faithful.

• If the right Bousfield localisation 𝐑u�ℳ exists, then the trivial adjunction

id ⊣ id : ℳ → 𝐑u�ℳ

is a Quillen adjunction, and the left derived functor Ho 𝐑u�ℳ → Ho ℳ is
fully faithful.

Proof. The two claims are formally dual; we will prove the first version.
By definition, id : ℳ → 𝐋u�ℳ preserves cofibrations, and since every weak

equivalence in ℳ is an u�-local equivalence, id : ℳ → 𝐋u�ℳ also preserves
trivial cofibrations. Proposition 4.3.2 then says the trivial adjunction is indeed a
Quillen adjunction. We then use theorem 4.3.12 and proposition 3.3.28 to deduce
that the derived counit is an isomorphism; thus, by proposition a.1.3, the right
derived functor is fully faithful. ■

Proposition 5.6.14. Let u� be a class of morphisms in a model category ℳ.

• If the left Bousfield localisation 𝐋u�ℳ exists, then fibrant objects in 𝐋u�ℳ
are u�-local objects in ℳ; in addition, if ℳ is left proper, then u�-local
objects in ℳ are fibrant objects in 𝐋u�ℳ.

• If the right Bousfield localisation 𝐑u�ℳ exists, then cofibrant objects in
𝐑u�ℳ are u�-colocal objects in ℳ; in addition, if ℳ is right proper, then
u�-colocal objects in ℳ are cofibrant objects in 𝐑u�ℳ.

638



5.6. Bousfield localisation

Proof. The two claims are formally dual; we will prove the first version.
Consider the Quillen adjunction of proposition 5.6.13:

id ⊣ id : 𝐋u�ℳ → ℳ

Since every morphism that is in u� is an u�-local equivalence, proposition 5.6.3
says every fibrant object in 𝐋u�ℳ is an u�-local object in ℳ. Conversely, if ℳ is
left proper, then lemma 5.6.9 says every u�-local object in ℳ is a fibrant object
in 𝐋u�ℳ. ■

Theorem 5.6.15 (Existence of left Bousfield localisations). Let ℳ be a left
proper combinatorial model category and let u� be a set of morphisms in ℳ.

(i) The left Bousfield localisation 𝐋u�ℳ exists.

(ii) 𝐋u�ℳ is a left proper combinatorial model category.

(iii) If ℳ is the underlying model category of a simplicial model category
ℳ,[6] then the left Bousfield localisation 𝐋u�ℳ is also a simplicial model
structure on ℳ.

Proof. This theorem is due to Smith. See Theorem 2.11 and Theorem 3.18 in
[Barwick, 2007b], or Theorem 4.7 and Theorem 4.46 in [Barwick, 2010]. (By
remark 2.4.13, the weak equivalences in the left Bousfield localisation of a sim-
plicial model category ℳ with respect to u� are precisely the u�-local equival-
ences in ℳ.) □

[6] See §2.4.
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VI

Quasicategories

Quasicategories were first defined by Boardman and Vogt [BV] as simplicial
classes that satisfy the “restricted Kan condition”. The modern name is due to
Joyal [2002], who worked out much of the basic theory.

As the word itself suggests, a quasicategory is a structure that is like a cat-
egory. More precisely, it is a model for an (∞, 1)-category, i.e. a weak higher
category with 𝑛-morphisms for all 𝑛 ≥ 0, such that every 𝑛-morphism with 𝑛 > 1
is (weakly) invertible; alternatively, one may think of quasicategories as being
homotopy-coherent categories, i.e. a structure which is like a category but only
up to a specified, coherent system of homotopies.

6.1 Basics
Prerequisites. §§0.1, 1.1, 1.2, a.2.

In this section we use the explicit universe convention.

Definition 6.1.1. A quasicategory is a simplicial set 𝑋 such that the unique
morphism 𝑋 → 1 has the right lifting property with respect to all inner horn
inclusions.

¶ 6.1.2. Quasicategories are also called ∞-categories (by e.g. Lurie [HTT])
or weak Kan complexes (by e.g. Cordier and Porter [1986]). We will usually use
bold upright calligraphic letters to denote quasicategories, e.g. A,B,C, …. As
with ‘category’, the word ‘quasicategory’ always means a quasicategory that is
not necessarily small, even when we are using the implicit universe convention.
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VI. Quasicategories

Proposition 6.1.3. Let u� be a category and let N(u�) be its nerve. For 𝑛 ≥ 2 and
0 < 𝑘 < 𝑛, the unique morphism N(u�) → 1 is right orthogonal to the inner horn
inclusion Λ𝑛

𝑘 ↪ Δ𝑛; in particular, N(u�) is a quasicategory.

Proof. This is a straightforward exercise using induction on 𝑛. ◊

¶ 6.1.4. We will often refer to vertices of a quasicategory as objects, and
edges as morphisms. The domain of a morphism 𝑓 in a quasicategory is the
object 𝑑1(𝑓 ), and the codomain of 𝑓 is the object 𝑑0(𝑓 ). An identity morphism
is a degenerate edge; we define 𝑓 : 𝑥 → 𝑦 to mean that 𝑥 is the domain of
𝑓 and 𝑦 is the codomain of 𝑓 . The identity morphism of an object 𝑥 in a
quasicategory is the degenerate edge 𝑠0(𝑥), which we also denote by id𝑥. Note
that all this terminology is compatible with the identification of categories u� with
their nerves N(u�).

It is not hard to check that a simplicial set 𝑋 is a quasicategory if and only
if the simplicial set 𝑋 op is a quasicategory.[1] Thus, we may make the following
definition:

Definition 6.1.5. The opposite of a quasicategory C is the simplicial set Cop

(regarded as a quasicategory).

Definition 6.1.6. Let 𝑓0 and 𝑓1 be a parallel pair of morphisms in a quasicate-
gory.

• We say 𝑓0 and 𝑓1 are left homotopic if there exists a 2-simplex 𝛼 such that
𝑑1(𝛼) = 𝑓0, 𝑑0(𝛼) = 𝑓1, and 𝑑2(𝛼) = 𝑠0(𝑑0(𝑓0)).

• We say 𝑓0 and 𝑓1 are right homotopic if there exists a 2-simplex 𝛼 such
that 𝑑2(𝛼) = 𝑓0, 𝑑1(𝛼) = 𝑓1, and 𝑑0(𝛼) = 𝑠0(𝑑0(𝑓0)).

• We say 𝑓0 and 𝑓1 are homotopic if they are both left and right homotopic,
and we write 𝑓0 ∼ 𝑓1 in this case.

Obviously, two edges are left homotopic in a quasicategory C if and only if
they are right homotopic in Cop. In fact:

Lemma 6.1.7. Let 𝑓0 and 𝑓1 be a parallel pair of morphisms in a quasicategory
C. The following are equivalent:

[1] Recall definition 1.1.8.
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6.1. Basics

(i) 𝑓0 and 𝑓1 are left homotopic.

(ii) 𝑓0 and 𝑓1 are right homotopic.

(iii) 𝑓0 and 𝑓1 are homotopic.

Proof. (i) ⇔ (ii). By duality, it suffices to show that (i) ⇒ (ii). Let 𝛼 be a
2-simplex of C such that 𝑑1(𝛼) = 𝑓 , 𝑑0(𝛼) = 𝑓 ′, and 𝑑2(𝛼) = 𝑠0(𝑑0(𝑓 )).
Using the right lifting property of C → 1 with respect to the inner horn in-
clusion Λ3

1 → C, it is straightforward to obtain a 3-simplex 𝜉 such that 𝑑2(𝜉) = 𝛼,
𝑑3(𝜉) = 𝑠0(𝑓1), and 𝑑0(𝜉) = 𝑠1(𝑓1); thus the 2-simplex 𝑑1(𝜉) is the required
witness for the claim that 𝑓0 and 𝑓1 are right homotopic.

(i) and (ii) ⇔ (iii). This is by definition. ■

Lemma 6.1.8. Let C be a quasicategory. The relation of homotopy is an equi-
valence relation on the set of edges of C.

Proof. See Proposition 1.2.3.5 in [HTT], or Lemma 4.11 in [BV]. □

Definition 6.1.9. The homotopy category of a quasicategory C is the category
HoC defined below:

• The objects are the objects in C.

• A morphism 𝑥 → 𝑦 is a homotopy class of morphisms 𝑓 : 𝑥 → 𝑦 in C.

• The identity morphism 𝑥 → 𝑥 is the homotopy class of the morphism id𝑥.

• Composition is induced by the existence of fillers for the inner horn Λ2
1: if

𝛼 is a 2-simplex of C, then we have 𝑑0(𝛼) ∘ 𝑑2(𝛼) = 𝑑1(𝛼).

Lemma 6.1.10. The above construction is indeed a category.

Proof. See Proposition 1.2.3.8 in [HTT]. □

Definition 6.1.11. Let 𝐔 be a universe. A 𝐔-small quasicategory is a quasicat-
egory whose underlying simplicial set is 𝐔-small.

Proposition 6.1.12. Let 𝐔 be a universe, let 𝐬𝐒𝐞𝐭 be the category of simplicial
𝐔-sets, and let 𝐂𝐚𝐭 be the category of 𝐔-small categories.
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(i) The functor N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭 that sends a 𝐔-small category ℂ to its nerve
N(ℂ) has a left adjoint 𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 that sends a simplicial 𝐔-set 𝑋
to its fundamental category 𝜏1𝑋.

(ii) The functor 𝜏1 : 𝐬𝐒𝐞𝐭 → 𝐂𝐚𝐭 preserves finite products.

(iii) For each quasicategory C, there is a canonical isomorphism 𝜏1C ≅ HoC.

Proof. Claims (i) and (ii) were previously proven in proposition 1.2.2, and claim
(iii) is essentially a consequence of the fact that 𝜏1𝑋 can be presented explicitly
in terms of generators and relations as in remark 1.2.4. □

¶ 6.1.13. Henceforth, we will regard all ordinary categories as quasicate-
gories by implicitly identifying a category u� with its nerve N(u�). Continuing
the terminological conventions in paragraph 6.1.4, we now define functors and
natural transformations in the context of quasicategories.

Definition 6.1.14. A functor between quasicategories is a morphism of simpli-
cial sets whose domain and codomain are quasicategories.

Recall that theorem a.2.22 implies that the category of simplicial 𝐔-sets is
cartesian closed for all universes 𝐔. For brevity, we will identify morphisms
𝑋 → 𝑌 with vertices of the exponential object [𝑋, 𝑌 ]; thus, a functor C → D

will be both a morphism between simplicial sets and an vertex in [C,D].

Definition 6.1.15. Let 𝑓0, 𝑓1 : C → D be functors between quasicategories.

• A natural transformation 𝛼 : 𝑓0 ⇒ 𝑓1 is an edge 𝛼 : 𝑓0 → 𝑓1 in the
exponential object [C,D].

• Two natural transformations are homotopic if they are isomorphic in the
fundamental category 𝜏1[C,D].

Remark 6.1.16. It is a fact that the exponential object [𝑋, 𝑌 ] is a quasicategory
when 𝑌 is quasicategory: see corollary 6.2.14. Thus the fundamental category
𝜏1[C,D] can be computed using the homotopy category construction.

Definition 6.1.17. Let C be a quasicategory. An equivalence in C is a morphism
𝑓 whose homotopy class is invertible in HoC, and a quasi-inverse for 𝑓 is a
morphism in C whose homotopy class is an inverse for (the homotopy class of)
𝑓 in HoC.
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One of the requirements for a model of the theory of (∞, 1)-categories is that
the groupoid-like instances should be models of ∞-groupoids. If by ‘∞-groupoid’
one means a (weak) homotopy type of Kan complexes, then the following result
is relevant:

Proposition 6.1.18. Let C be a quasicategory. The following are equivalent:

(i) C (as a simplicial set) is a Kan complex.

(ii) Every morphism in C is an equivalence.

(iii) HoC is a groupoid.

Proof. See Corollary 1.5 in [Joyal, 2002]. □

There is also a homotopy-coherent notion of equivalence. Let 𝐈𝟚 be the
groupoid obtained by freely inverting the arrows in the category 𝟚 freely gen-
erated by a morphism 0 → 1.

Definition 6.1.19. A homotopy-coherent equivalence in a quasicategory C is
a functor 𝐈𝟚 → C.

Remark 6.1.20. More explicitly, a homotopy-coherent equivalence in C consists
of the following data:

• A pair of objects in C, say 𝑥 and 𝑦.

• A pair of morphisms in C, say 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑥.

• A pair of 2-simplices, say 𝛼 and 𝛽, witnessing the fact that id𝑥 ∼ 𝑔 ∘ 𝑓 and
𝑓 ∘ 𝑔 ∼ id𝑦.

• A pair of 3-simplices witnessing the fact that 𝛼 and 𝛽 satisfy (versions of)
the triangle identities for adjunctions.

• etc.

That is, for each natural number 𝑛, we have a pair of (𝑛 + 1)-simplices witnessing
a coherence axiom for the given pair of 𝑛-simplices. Note that the data for 𝑛 ≤ 2
already determine a mutually quasi-inverse pair of equivalences in C; we will
refer to 𝑓 : 𝑥 → 𝑦 as the underlying morphism of the homotopy-coherent
equivalence.

When C is an ordinary category, the 2-simplices are unique if they exist, and
given the 2-simplices, the required 𝑛-simplices exist and are unique for 𝑛 ≥ 2.
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In other words, every isomorphism in an ordinary category can be equipped
with the structure of a homotopy-coherent equivalence. It turns out the same is
true for quasicategories:

Proposition 6.1.21. Let C be a quasicategory. If 𝑓 is an equivalence in C, then
there is a homotopy-coherent equivalence whose underlying morphism is 𝑓 .

Proof. See Corollary 1.6 in [Joyal, 2002], or Theorem 4.14 in [TQA]. □

Definition 6.1.22. Let 𝐔 be a universe. The homotopy 2-category of 𝐔-small
quasicategories is the following 2-category 𝔔𝔠𝔞𝔱:

• The objects are 𝐔-small quasicategories.

• The category of morphisms C → D is the fundamental category 𝜏1[C,D],
which we also denote by 𝐐𝐅𝐮𝐧(C,D).

• Composition and identity morphisms are induced by 𝜏1 from the cartesian
closed structure of 𝐬𝐒𝐞𝐭.

The construction of the 2-category 𝔔𝔠𝔞𝔱 enables us to apply definitions from
formal category theory to the context of quasicategories.

Definition 6.1.23. Let 𝑓0, 𝑓1 : C → D be functors between quasicategories. A
natural equivalence is a natural transformation 𝛼 : 𝑓0 ⇒ 𝑓1 whose image in the
fundamental category 𝜏1[C,D] is an isomorphism.

As with natural transformations of functors between ordinary categories, nat-
ural transformations of functors between quasicategories have components. It is
a non-trivial fact that a natural transformation is a natural equivalence if and only
if its components are equivalences:

Theorem 6.1.24. Let 𝑓0, 𝑓1 : C → D be functors between quasicategories and
let 𝛼 : 𝑓0 ⇒ 𝑓1 be a natural transformation. Then 𝛼 is a natural equivalence
if and only if, for every object 𝑐 in C, the morphism 𝛼𝑐 : 𝑓0(𝑥) → 𝑓1(𝑥) is an
equivalence in D.

Proof. See Theorem 5.14 in [TQA], or Lemma 2.3.8 in [Riehl and Verity, 2013a]
□

Definition 6.1.25. An equivalence of quasicategories is an equivalence in the
2-category 𝔔𝔠𝔞𝔱, i.e. a tuple (𝑓 , 𝑔, , ) where:
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• 𝑓 : C → D and 𝑔 : D → C are functors between quasicategories.

• : idC ⇒ 𝑔 ∘ 𝑓 and : 𝑓 ∘ 𝑔 ⇒ idD are natural equivalences.

We will often abuse notation and say that 𝑓 is an equivalence of quasicategories,
omitting mention of the other data.

Definition 6.1.26. An adjunction of quasicategories is an adjunction in the
2-category 𝔔𝔠𝔞𝔱, i.e. a tuple (𝑓 , 𝑔, , ) where:

• 𝑓 : C → D and 𝑔 : D → C are functors between quasicategories.

• : idC ⇒ 𝑔 ∘ 𝑓 and : 𝑓 ∘ 𝑔 ⇒ idD are natural transformations.

• The triangle identities are satisfied:

( ∘ id𝑓 ) ∙ (id𝑓 ∘ ) = id𝑓 in 𝐐𝐅𝐮𝐧(C,D)

(id𝑔 ∘ ) ∙ ( ∘ id𝑔) = id𝑔 in 𝐐𝐅𝐮𝐧(D,C)

Remark 6.1.27. There also exist homotopy-coherent versions of the above defin-
itions, but it is a theorem of Riehl and Verity [2013b] that every adjunction of
quasicategories can be extended to a homotopy-coherent adjunction.

Lemma 6.1.28. Let 𝐔 be a universe, let 𝐂𝐚𝐭 be the category of 𝐔-small cat-
egories, and let 𝐐𝐜𝐚𝐭 be the category of 𝐔-small quasicategories. The functor
Ho : 𝐐𝐜𝐚𝐭 → 𝐂𝐚𝐭 is isomorphic to (the underlying functor of) a representable
2-functor 𝔔𝔠𝔞𝔱 → ℭ𝔞𝔱.

Proof. This is an immediate consequence of the natural isomorphism [𝟙, −] ≅
id𝐐𝐜𝐚𝐭 and the fact that 𝐐𝐅𝐮𝐧(𝟙, −) is a 2-functor 𝔔𝔠𝔞𝔱 → ℭ𝔞𝔱. ■

6.2 The Joyal model structure
Prerequisites. §§0.5, 1.4, 1.5, 4.1, 5.5, 6.1, a.2, a.4.

Just as there is a model structure on 𝐂𝐚𝐭 whose homotopy category is the
category of small categories modulo natural isomorphism of functors, there is
a model structure on 𝐬𝐒𝐞𝐭, due to Joyal [TQ1], whose homotopy category is the
category of small quasicategories modulo natural equivalence of functors.

¶ 6.2.1. Throughout this section, 𝜏0 denotes the functor 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 that
sends a simplicial set 𝑋 to the set of isomorphism classes of objects in the
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fundamental category 𝜏1𝑋. Note that it can be factored as 𝜋0 ∘ iso ∘ 𝜏1, where
iso : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝 is the right adjoint of the inclusion 𝐆𝐫𝐩𝐝 ↪ 𝐂𝐚𝐭.

Definition 6.2.2. A weak categorical equivalence is a morphism 𝑓 : 𝑍 → 𝑊
of simplicial sets such that the induced map

𝜏0[𝑓 ,K] : 𝜏0[𝑊 ,K] → 𝜏0[𝑍,K]

is a bijection for all small quasicategories K.

Lemma 6.2.3. Every weak categorical equivalence is also a weak homotopy
equivalence.

Proof. Let 𝑓 : 𝑍 → 𝑊 be a morphism in 𝐬𝐒𝐞𝐭. Every Kan complex is a quasi-
category, so if the map

𝜏0[𝑓 ,K] : 𝜏0[𝑊 ,K] → 𝜏0[𝑊 ,K]

is a bijection for all small quasicategories K, then

𝜋0[𝑓 , 𝐾] : 𝜋0[𝑊 , 𝐾] → 𝜋0[𝑍, 𝐾]

is a bijection for all Kan complexes 𝐾: indeed, corollary 1.4.16 says [𝑊 , 𝐾] and
[𝑍, 𝐾] are Kan complexes if 𝐾 is a Kan complex, and lemma 1.4.4 implies that
𝜋0 and 𝜏0 are naturally isomorphic for Kan complexes. ■

Lemma 6.2.4. Let 𝑓 : C → D be a functor between small quasicategories. The
following are equivalent:

(i) 𝑓 is (part of) an equivalence of quasicategories.

(ii) 𝑓 is a weak categorical equivalence.

(iii) For all small quasicategories K, the induced map

𝜏0[K, 𝑓 ] : 𝜏0[K,C] → 𝜏0[K,D]

is a bijection.

Proof. (i) ⇒ (ii). It is not hard to see that 𝑓 : C → D is (part of) an equivalence
of quasicategories if and only if the induced functor

𝜏1[𝑓 ,K] : 𝜏1[D,K] → 𝜏1[C,K]
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is (part of) an equivalence of categories for all small quasicategories K. The
functor 𝜋0 ∘ iso : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 sends equivalences to bijections, so we may deduce
that 𝑓 : C → D is a weak categorical equivalence.

(i) ⇒ (iii). The proof is similar to that of (i) ⇒ (ii).

(ii) ⇒ (i), (iii) ⇒ (i). These are straightforward exercises in chasing identity
morphisms. ■

Proposition 6.2.5. 𝐬𝐒𝐞𝐭 with the class of weak categorical equivalences consti-
tute a saturated relative category; in particular, the class of weak categorical
equivalences has the 2-out-of-6 property.

Proof. The collection of functors 𝜏0[−,K] : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭, as K varies over the
small quasicategories, jointly reflect isomorphisms as weak categorical equival-
ences, so the class of weak categorical equivalences must be saturated. For the
2-out-of-6 property, see corollary a.4.15. ■

Definition 6.2.6. An inner fibration of simplicial sets is a morphism 𝑓 : 𝑋 →
𝑌 with the right lifting property with respect to the inner horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛

for all 𝑛 ≥ 2 and 0 < 𝑖 < 𝑛.

Remark 6.2.7. It is clear that a simplicial set 𝑋 is a quasicategory if and only if
the unique morphism 𝑋 → 1 is an inner fibration. Unfortunately, these are not
the fibrations in the Joyal model structure.

Definition 6.2.8. An inner anodyne extension of simplicial sets is a member
of the smallest class u� ⊂ 𝐬𝐒𝐞𝐭 satisfying the following conditions:

• Every inner horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 is in u�.

• u� is closed under pushouts.

• u� is closed under (finite and) transfinite composition.

• u� is closed under retracts.

Proposition 6.2.9. Let ℐ′ be the set of inner horn inclusions.

(i) The inner anodyne extensions are precisely the ℐ′-cofibrations, i.e. the
morphisms in 𝐬𝐒𝐞𝐭 that have the left lifting property with respect to all
inner fibrations.
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(ii) Every inner anodyne extension is a retract of a relative ℐ′-cell complex.

(iii) Every inner anodyne extension is a monomorphism in 𝐬𝐒𝐞𝐭 and bijective
on vertices.

Proof. (i) and (ii). Proposition a.3.17 implies that every inner anodyne extension
has the left lifting property with respect to all inner fibrations; for the converse,
see corollary 0.5.13.

(iii). The functor (−)0 : 𝐬𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves colimits, so the class of morph-
isms that are bijective on vertices is closed under pushouts, transfinite composi-
tion, and retracts. Similarly, the class of monomorphisms in 𝐬𝐒𝐞𝐭 is closed under
the same operations. It is clear that the inner horn inclusions are monomorphisms
that are bijective on vertices, so we deduce the same is true for inner anodyne
extensions. ■

Remark 6.2.10. The proposition above implies that the class of monomorphisms
that are weak categorical equivalences strictly contains the class of inner anodyne
extensions: indeed, the inclusion {0} ↪ 𝐈𝟚 is both a monomorphism and a
categorical equivalence but not bijective on vertices.

Proposition 6.2.11. There exist an ℵ0-accessible functor 𝑀 : [𝟚, 𝐬𝐒𝐞𝐭] → 𝐬𝐒𝐞𝐭
and two natural transformations 𝑖 : dom ⇒ 𝑀 and 𝑝 : 𝑀 ⇒ codom such that,
for all objects 𝑓 in [𝟚, 𝐬𝐒𝐞𝐭]:

• 𝑓 = 𝑝𝑓 ∘ 𝑖𝑓 .

• 𝑖𝑓 is a relative ℐ′-cell complex, where ℐ′ is the set of inner horn inclusions.

• 𝑝𝑓 is an inner fibration of simplicial sets.

Proof. Using proposition 0.2.46, it is not hard to see that the inner horn inclu-
sions are ℵ0-compact as objects in [𝟚, 𝐬𝐒𝐞𝐭]. We then apply corollary 0.5.14. ■

Corollary 6.2.12. There exist an ℵ0-accessible functor 𝑅 : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 and a
natural transformation 𝑖 : id𝐬𝐒𝐞𝐭 ⇒ 𝑅 such that, for all objects 𝑋 in 𝐬𝐒𝐞𝐭:

• 𝑅𝑋 is a small quasicategory.

• 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an inner anodyne extension. ■
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6.2. The Joyal model structure

Theorem 6.2.13. Let 𝑖 : 𝑍 → 𝑊 be a monomorphism in 𝐬𝐒𝐞𝐭 and let 𝑝 : 𝑋 → 𝑌
be an inner fibration. Suppose we have a commutative diagram

[𝑊 , 𝑋]

𝐿(𝑖, 𝑝) [𝑍, 𝑋]

[𝑊 , 𝑌 ] [𝑍, 𝑌 ]

[𝑊 ,𝑝]

[𝑖,𝑋]
𝑞

[𝑍,𝑝]

[𝑖,𝑌 ]

where the square in the lower right is a pullback square.

(i) The unique morphism 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝) making the diagram commute
is an inner fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an inner anodyne extension, then 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝)
is a trivial Kan fibration.

(iii) If 𝑝 : 𝑍 → 𝑊 is a trivial Kan fibration, then so is 𝑞 : [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝).

Proof. (i) and (ii). See Theorem 2.18 in [TQA], or Propositions 2.5 and 2.6 in
[Dugger and Spivak, 2011a].

(iii). This is a special case of proposition 1.4.15. □

Corollary 6.2.14.
(i) If 𝑝 : 𝑋 → 𝑌 is an inner fibration, then for all simplicial sets 𝑊 , the

morphism [𝑊 , 𝑝] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] is also an inner fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is a monomorphism (resp. inner anodyne extension) and K

is a small quasicategory, then the morphism [𝑖,K] : [𝑊 ,K] → [𝑍,K] is
an inner fibration (resp. trivial Kan fibration).

(iii) If 𝑊 is any simplicial set and K is a small quasicategory, then [𝑊 ,K] is
also a small quasicategory.

Proof. The proof is similar to that of corollary 1.4.16. ■

Corollary 6.2.15. 𝐐𝐜𝐚𝐭 is an exponential ideal of 𝐬𝐒𝐞𝐭; in particular, 𝐐𝐜𝐚𝐭 is a
cartesian closed category. ■
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Proposition 6.2.16. Let 𝑓 : 𝑊 → 𝑍 be a morphism in 𝐬𝐒𝐞𝐭. The following are
equivalent:

(i) For all small quasicategories K, the induced functor

[𝑓 ,K] : [𝑍,K] → [𝑊 ,K]

is (part of) an equivalence of quasicategories.

(ii) For all small quasicategories K, the induced functor

Ho [𝑓 ,K] : Ho [𝑍,K] → Ho [𝑊 ,K]

is (part of) an equivalence of categories.

(iii) The morphism 𝑓 : 𝑊 → 𝑍 is a weak categorical equivalence.

Proof. (i) ⇒ (ii). This is a corollary of lemma 6.1.28.

(ii) ⇒ (iii). Any equivalence of categories must induce a bijection on isomorph-
ism classes of objects.

(iii) ⇒ (i). Suppose 𝑓 : 𝑊 → 𝑍 is a weak categorical equivalence, i.e. that the
induced map

𝜏0[𝑓 ,K] : 𝜏0[𝑍,K] → 𝜏0[𝑊 ,K]

is a bijection of sets for all small quasicategories K. Then, for all simplicial sets
𝑋 and all small quasicategories K, the induced map

𝜏0[𝑓 , [𝑋,K]] : 𝜏0[𝑍, [𝑋,K]] → 𝜏0[𝑊 , [𝑋,K]]

is a bijection, because [𝑋,K] is a quasicategory by corollary 6.2.15. Proposi-
tion a.2.11 then implies that the induced map

𝜏0[𝑋, [𝑓 ,K]] : 𝜏0[𝑋, [𝑍,K]] → 𝜏0[𝑋, [𝑊 ,K]]

is a bijection for all simplicial sets 𝑋 and all small quasicategories K. Thus, by
lemma 6.2.4, the induced functor [𝑓 ,K] : [𝑍,K] → [𝑊 ,K] is an equivalence
of quasicategories. ■

Proposition 6.2.17. The class of weak categorical equivalences is closed under
binary products.
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6.2. The Joyal model structure

Proof. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be weak categorical equivalences.
Since 𝑓 × 𝑔 = (id𝑌 × 𝑔) ∘ (𝑓 × id𝑍), it suffices (by symmetry) to show that
𝑓 × id𝑍 : 𝑋 × 𝑍 → 𝑌 × 𝑍 is a weak categorical equivalence, i.e. that the
induced map

𝜏0[𝑓 × id𝑍 ,K] : 𝜏0[𝑌 × 𝑍,K] → 𝜏0[𝑋 × 𝑍,K]

is a bijection for all small quasicategories K. By proposition a.2.11, it is the same
to show that

𝜏0[𝑓 , [𝑍,K]] : 𝜏0[𝑌 , [𝑍,K]] → 𝜏0[𝑋, [𝑍,K]]

is a bijection for all small quasicategories K; but corollary 6.2.15 says that the
exponential object [𝑍,K] is a small quasicategory and 𝑓 is a weak categorical
equivalence, so the maps are indeed bijections. ■

Proposition 6.2.18. Trivial Kan fibrations are weak categorical equivalences.

Proof. See Proposition 1.22 in [TQA]. □

Corollary 6.2.19. Inner anodyne extensions are weak categorical equivalences.

Proof. Let 𝑓 : 𝑍 → 𝑊 be an inner anodyne extension. By corollary 6.2.14,
the morphism [𝑓 ,K] : [𝑊 ,K] → [𝑍,K] is a trivial Kan fibration for all small
quasicategories K; hence, by propositions 6.2.16 and 6.2.18, 𝑓 : 𝑍 → 𝑊 is a
weak categorical equivalence. ■

Remark 6.2.20. It is a priori not clear whether the notion of weak categorical
equivalence is stable under universe enlargement, but in fact it is. First, notice
that the notion of weak categorical equivalence between quasicategories is stable
under universe enlargement, by lemma 6.2.4. Given any morphism 𝑓 : 𝑋 → 𝑌
in 𝐬𝐒𝐞𝐭, we may apply the functor 𝑅 of corollary 6.2.12 to get a commutative
diagram of the form below,

𝑋 𝑅𝑋

𝑌 𝑅𝑌

𝑓

𝑖𝑋

𝑅𝑓

𝑖𝑌

and proposition 6.2.5 implies that the class of weak categorical equivalences has
the 2-out-of-3 property, so 𝑓 : 𝑋 → 𝑌 is a weak categorical equivalence if and
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only if 𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 is an equivalence of quasicategories. Since 𝑅 and 𝑖 are
stable under universe enlargement, it follows that the property of 𝑓 being a weak
categorical equivalence is also stable.

Definition 6.2.21. An isofibration of quasicategories is a functor 𝑓 : C → D

with the following properties:

• 𝑓 (as a morphism of simplicial sets) is an inner fibration.

• 𝑓 has the right lifting property with respect to the inclusion {0} ↪ 𝐈𝟚.

Proposition 6.2.22. Let 𝑓 : C → D be a functor between small quasicategories.

(i) If 𝑓 (as a morphism of simplicial sets) has the right lifting property with
respect to all monomorphisms in 𝐬𝐒𝐞𝐭, then 𝑓 is an isofibration.

(ii) If D is an ordinary category, then 𝑓 is an inner fibration.

(iii) Assuming 𝑓 (as a morphism of simplicial sets) is an inner fibration, 𝑓 :
C → D is an isofibration if and only if Ho 𝑓 : HoC → HoD is an
isofibration.

Proof. (i). This is an immediate consequence of the fact that isofibrations are
morphisms that have the right lifting property with respect to certain mono-
morphisms in 𝐬𝐒𝐞𝐭.

(ii). See Proposition 2.2 in [TQA].

(iii). See Proposition 4.5 in [TQA]. □

Theorem 6.2.23 (Joyal). Let 𝑓 : C → D be a functor between small quasicate-
gories. The following are equivalent:

(i) 𝑓 is an isofibration of quasicategories.

(ii) 𝑓 (as a morphism of simplicial sets) has the right lifting property with
respect to all monomorphisms in 𝐬𝐒𝐞𝐭 that are weak categorical equival-
ences.

Proof. See Theorem 6.11 in [TQA], or combine Proposition 2.2.5.8 and Corol-
lary 2.4.6.5 in [HTT]. □
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Theorem 6.2.24 (Joyal). The following data constitute a cofibrantly generated
model structure on 𝐬𝐒𝐞𝐭:

• The weak equivalences are the weak categorical equivalences.

• The cofibrations are the monomorphisms.

• The fibrations are the morphisms that have the right lifting property with
respect to monomorphisms that are weak categorical equivalences.

This model structure is called the Joyal model structure for quasicategories,
and the fibrant objects are the quasicategories.

Proof. See Theorem 6.12 in [TQA] or Theorem 2.13 in [Dugger and Spivak,
2011a], or combine Proposition 2.2.5.8 with Theorems 2.2.5.1 and 2.4.6.1 in
[HTT]. □

Remark 6.2.25. Joyal’s determination principle (proposition 4.4.8) implies the
Joyal model structure is stable under universe enlargement. Indeed, the claim is
obvious for the class of cofibrations, the class of fibrant objects, and lemma 6.2.4
implies that the class of weak equivalences between fibrant objects is stable under
universe enlargement; but this is enough data to uniquely determine a model
structure.

Proposition 6.2.26. The Joyal model structure for quasicategories is cartesian.

Proof. The Joyal model structure for quasicategories is a Cisinski model struc-
ture, so we may apply proposition 5.5.12 to proposition 6.2.17 to deduce the
claim. ■

Proposition 6.2.27. Let 𝐂𝐚𝐭 be the category of small categories, let 𝐐𝐜𝐚𝐭 be the
full subcategory of 𝐬𝐒𝐞𝐭 spanned by the small quasicategories, and let Ho 𝐐𝐜𝐚𝐭
be the localisation of 𝐐𝐜𝐚𝐭 at the weak categorical equivalences.

(i) The adjunction
𝜏1 ⊣ N : 𝐂𝐚𝐭 → 𝐬𝐒𝐞𝐭

is a Quillen adjunction with respect to the canonical model structure on
𝐂𝐚𝐭 and the Joyal model structure on 𝐬𝐒𝐞𝐭.
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(ii) The functors 𝜏1 and N preserve weak equivalences, and the induced ad-
junction

Ho 𝜏1 ⊣ Ho N : Ho 𝐂𝐚𝐭 → Ho 𝐐𝐜𝐚𝐭
exhibits Ho 𝐂𝐚𝐭 as a reflective exponential ideal of Ho 𝐐𝐜𝐚𝐭.

Proof. (i). See Proposition 6.14 in [TQA].

(ii). Apply theorem 5.5.19, Ken Brown’s lemma (4.3.6), propositions 5.5.14 and
a.2.13, and the 2-functoriality of Ho (corollary a.4.20). ■

Corollary 6.2.28. If 𝑓 : 𝑋 → 𝑌 is an inner anodyne extension of simplicial
sets, then 𝜏1𝑓 : 𝜏1𝑋 → 𝜏1𝑌 is an isomorphism of categories.

Proof. Proposition 6.2.9 says that 𝑓 : 𝑋 → 𝑌 is bijective on vertices, so 𝜏1𝑓 :
𝜏1𝑋 → 𝜏1𝑌 is bijective on objects; but corollary 6.2.19 and proposition 6.2.27
imply that 𝜏1𝑓 : 𝜏1𝑋 → 𝜏1𝑌 is fully faithful, so we may deduce that it is an
isomorphism of categories. ■

Proposition 6.2.29. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐒𝐞𝐭. If 𝑋 and 𝑌 are
Kan complexes, the following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a weak homotopy equivalence.

(ii) 𝑓 : 𝑋 → 𝑌 is (part of) an intrinsic homotopy equivalence.

(iii) 𝑓 : 𝑋 → 𝑌 is (part of) a categorical equivalence.

(iv) 𝑓 : 𝑋 → 𝑌 is a weak categorical equivalence.

Proof. (i) ⇔ (ii). See proposition 1.5.4.

(ii) ⇔ (iii). Lemma 1.4.4 and corollary 1.4.16 imply that 𝜏1[𝑋, 𝑋] and 𝜏1[𝑌 , 𝑌 ]
are groupoids; thus, the two notions of equivalence coincide.

(iii) ⇔ (iv). See lemma 6.2.4. ■

Proposition 6.2.30. Let 𝐬𝐒𝐞𝐭Jo be the category 𝐬𝐒𝐞𝐭 equipped with the Joyal
model structure, let 𝐬𝐒𝐞𝐭KQ be the category 𝐬𝐒𝐞𝐭 equipped with the Kan–Quillen
model structure, let 𝐐𝐜𝐚𝐭 and 𝐊𝐚𝐧 be the respective full subcategories of fibrant
objects, and let Ho 𝐐𝐜𝐚𝐭 and Ho 𝐊𝐚𝐧 be the respective localisations.

(i) The Kan–Quillen model structure on 𝐬𝐒𝐞𝐭 is a left Bousfield localisation
of the Joyal model structure on 𝐬𝐒𝐞𝐭.[2]

[2] See definition 5.6.10.
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(ii) The trivial adjunction

id ⊣ id : 𝐬𝐒𝐞𝐭KQ → 𝐬𝐒𝐞𝐭Jo

is a Quillen adjunction between the Kan–Quillen model structure (on the
left) and the Joyal model structure (on the right), and the right derived
functor is fully faithful.

(iii) There is an adjunction

Ho Ex∞ ⊣ Ho 𝑈 : Ho 𝐊𝐚𝐧 → Ho 𝐐𝐜𝐚𝐭

where 𝑈 : 𝐊𝐚𝐧 ↪ 𝐐𝐜𝐚𝐭 is the inclusion, and Ho 𝑈 : Ho 𝐊𝐚𝐧 → Ho 𝐐𝐜𝐚𝐭
is fully faithful.

Proof. (i). By definition, the Kan–Quillen model structure and the Joyal model
structure have the same cofibrations; and lemma 6.2.3 says every weak categor-
ical equivalence is a weak homotopy equivalence, so by proposition 5.6.12, the
Kan–Quillen model structure is a left Bousfield localisation of the Joyal model
structure.

(ii). Apply proposition 5.6.13.

(iii). Recalling the explicit construction afforded by proposition 3.3.14 and the-
orem 4.3.13, consider the derived adjunction:

𝐋 ⊣ 𝐑 : Ho 𝐬𝐒𝐞𝐭KQ → Ho 𝐬𝐒𝐞𝐭Jo

Given a simplicial set 𝑌 , we may compute 𝐑𝑌 as a fibrant replacement for 𝑌
in the Kan–Quillen model structure, regarded as an object in the Joyal model
structure. In particular, for Kan complexes 𝑌 , 𝐑𝑌 is naturally isomorphic to
𝑌 (as objects in Ho 𝐬𝐒𝐞𝐭Jo); thus, 𝐑 : Ho 𝐊𝐚𝐧 → Ho 𝐐𝐜𝐚𝐭 is isomorphic to
Ho 𝑈 : Ho 𝐊𝐚𝐧 → Ho 𝐐𝐜𝐚𝐭. In particular, Ho 𝑈 : Ho 𝐊𝐚𝐧 → Ho 𝐐𝐜𝐚𝐭 is fully
faithful.

On the other hand, for any simplicial set 𝑋, we may compute 𝐋𝑋 as 𝑋 it-
self, regarded as an object in the Kan–Quillen model structure. But (by the-
orem 1.7.14) Ex∞ : 𝐬𝐒𝐞𝐭 → 𝐬𝐒𝐞𝐭 is a fibrant replacement functor for the Kan–
Quillen model structure, so 𝐋𝑋 is naturally isomorphic to Ho Ex∞(𝑋). Thus,
𝐋 : Ho 𝐬𝐒𝐞𝐭Jo → Ho 𝐬𝐒𝐞𝐭Jo is isomorphic to Ho Ex∞ : Ho 𝐬𝐒𝐞𝐭Jo → Ho 𝐬𝐒𝐞𝐭KQ.
We thus have the required adjunction. ■
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VII

Derivators

7.1 Basics
Prerequisites. §§3.1, 3.6, a.1, a.5.

The notion of derivator has a somewhat complicated history; the name and
the original idea are due to Grothendieck [1983, 1991], but Heller [1988] stud-
ied essentially the same thing independently. The distinguishing characteristic
of the theory of derivators is its agnosticism: a derivator is a way of studying
homotopy-coherent diagrams and their limits/colimits without using any partic-
ular model for homotopical algebra.

In this section, we use the explicit universe convention, all 2-categories and
2-functors will be strict unless otherwise stated, and for simplicity, we say ‘co-
product’, ‘product’, ‘pullback’, etc. instead of ‘2-coproduct’, ‘2-product’, ‘2-pull-
back’ etc., i.e. we tacitly assume that these have the relevant 2-dimensional uni-
versal property in addition to the usual 1-dimensional universal property.

Definition 7.1.1. A derivator domain is 2-category 𝔎 satisfying these axioms:

D0. 𝔎 has an initial object 0, a terminal object 1, and tensors with the category
𝟚 = {0 → 1}.

D1. 𝔎 has finite coproducts and pullbacks.

D2. 𝔎 has comma objects of the form (𝑢 ↓ 𝑏) and (𝑏 ↓ 𝑢) for all morphisms
𝑢 : 𝐴 → 𝐵 and 𝑏 : 1 → 𝐵.

A subdomain of a derivator domain is a 2-full 2-subcategory that is closed under
constructions specified in the above axioms.
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Definition 7.1.2. Let 𝐔 be a universe. A 𝐔-small prederivator on 𝔎 is a
2-functor 𝒟 : 𝔎op → ℭ𝔞𝔱, where 𝔎 is a derivator domain and ℭ𝔞𝔱 is the
2-category of 𝐔-small categories. A prederivator is a 2-functor that is a 𝐔-small
prederivator for some universe 𝐔.

We write 𝒟 𝐴 for the value of 𝒟 at an object 𝐴 in 𝔎, and we write either 𝒟 𝑢

or 𝑢∗ for the functor 𝒟 𝐵 → 𝒟 𝐴 induced by a morphism 𝑢 : 𝐴 → 𝐵 in 𝔎. If
𝑓 : 𝑥 → 𝑦 is a morphism in 𝒟 𝐵, then we may sometimes write 𝑓 ↾𝑢 : 𝑥↾𝑢 → 𝑦↾𝑢
instead of 𝑢∗(𝑓 ) : 𝑢∗(𝑥) → 𝑢∗(𝑦). The underlying category of a prederivator 𝒟
is the category 𝒟 1, where 1 is any terminal object of 𝔎.

Remark 7.1.3. While it is true that 𝔎 is a derivator domain if and only if 𝔎co is
a derivator domain, the duality principle for general prederivators is somewhat
subtle: because (−)op is a 2-functor ℭ𝔞𝔱co → ℭ𝔞𝔱, the opposite of a prederiv-
ator on 𝔎 is a prederivator on 𝔎co, which is in general not isomorphic or even
equivalent to 𝔎.

One should be aware that some authors (e.g. Cisinski [2003]) define prede-
rivators to be 2-functors 𝔎coop → ℭ𝔞𝔱; readers should take care to dualise results
appropriately when translating between the two conventions.

Definition 7.1.4. A semiderivator on 𝔎 is prederivator 𝒟 : 𝔎op → ℭ𝔞𝔱 satis-
fying the following axioms:

Der1. 𝒟 sends coproducts of finite families of objects in 𝔎 to products in ℭ𝔞𝔱.

Der2. Let 𝐴 be an object in 𝔎 and let 𝑓 : 𝑥 → 𝑦 be a morphism in 𝒟 𝐴. Then,
𝑓 is an isomorphism in 𝒟 𝐴 if and only if, for all morphisms 𝑎 : 1 → 𝐴
in 𝔎, the morphism 𝑓 ↾ 𝑎 : 𝑥 ↾ 𝑎 → 𝑦 ↾ 𝑎 is an isomorphism in 𝒟 1.

Example 7.1.5. If 𝐵 is an object in 𝔎 and 𝔎 is a locally 𝐔-small 2-category,
then the 2-functor 𝔎(−, 𝐵) : 𝔎op → ℭ𝔞𝔱 is a prederivator. We say 𝔎(−, 𝐵) is
the prederivator represented by 𝐵.

Definition 7.1.6. Let u� be a 𝐔-small relative category. The prederivator of u�,
denoted by 𝒟(u�), is the 𝐔-small prederivator on ℜ𝔢𝔩ℭ𝔞𝔱 (or any subdomain
thereof) defined by 𝒟 (u�)u� = Ho [u�, u�]h.

Proposition 7.1.7. Let 𝒟 be a prederivator on 𝔎. If 𝐴 is an object in 𝔎 and
ℂ is a category for which the tensor ℂ ⊙ 𝐴 exists, then there is a canonical
comparison functor 𝒟 ℂ⊙𝐴 → [ℂ, 𝒟 𝐴].
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Proof. By definition, the object ℂ ⊙ 𝐴 in 𝔎 induces isomorphisms

𝔎(ℂ ⊙ 𝐴, 𝐵) ≅ [ℂ, 𝔎(𝐴, 𝐵)]

that are 2-natural in 𝐵. Since 𝒟 is a prederivator on 𝔎, it induces a functor
𝔎(𝐴, 𝐵) → [𝒟 𝐵, 𝒟 𝐴] that is 2-natural in 𝐴 and in 𝐵, so we obtain a 2-natural
functor 𝔎(ℂ ⊙ 𝐴, 𝐵) → [ℂ, [𝒟 𝐵, 𝒟 𝐴]] by composition; but we have 2-natural
isomorphisms

[ℂ, [𝒟 𝐵, 𝒟 𝐴]] ≅ [ℂ × 𝒟 𝐵, 𝒟 𝐴] ≅ [𝒟 𝐵, [ℂ, 𝒟 𝐴]]

so, taking 𝐵 = ℂ ⊙ 𝐴, we obtain the required functor 𝒟 ℂ⊙𝐴 → [ℂ, 𝒟 𝐴]. ■

Definition 7.1.8. A strong semiderivator on 𝔎 is a semiderivator that satisfies
the additional axiom below:

Der5. For any object 𝐴 in 𝔎, the canonical functor 𝒟 𝟚⊙𝐴 → [𝟚, 𝒟 𝐴] is full
and essentially surjective on objects (but not necessarily faithful).

Remark 7.1.9. If 𝒟 is the prederivator represented by an object in 𝔎, then 𝒟
automatically satisfies axioms Der1 and Der5; and if 𝔎 is a 2-full 2-subcategory
of ℭ𝔞𝔱 with the same terminal object, then 𝒟 will also satisfy axiom Der2.

Lemma 7.1.10. If u� is a uni-fractionable category, then the canonical com-
parison functor Ho [min 𝟚, u�]h → [𝟚, Ho u�] is full and essentially surjective on
objects.

Proof. Let u� and u� be subcategories of weq u� such that u� admits a three-arrow
calculus with respect to (u� , u�), and let ̄𝑓 : 𝑋 → 𝑌 be any morphism in Ho u�.
By the fundamental theorem of three-arrow calculi (3.6.9), there exist 𝑢 : 𝑌 → ̂𝑌
in u� , 𝑣 : �̃� → 𝑋 in u� , and 𝑓 : �̃� → ̂𝑌 such that ̄𝑓 = 𝑢−1 ∘ 𝑓 ∘ 𝑣−1 in Ho u�, i.e.
such that the following diagram in Ho u� commutes:

𝑋 �̃�

𝑌 ̂𝑌

̄𝑓

𝑣−1

𝑓

𝑢

It immediately follows that Ho [min 𝟚, u�]h → [𝟚, u�] is essentially surjective on
objects.
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It remains to be shown that Ho [min 𝟚, u�]h → [𝟚, u�] is a full functor. Let
𝑥 : 𝑋1 → 𝑋2 and 𝑦 : 𝑌1 → 𝑌2 be morphisms in u�, let ̄𝑓1 : 𝑋1 → 𝑌1 and

̄𝑓2 : 𝑋2 → 𝑌2 be morphisms in Ho u�, and suppose we have ̄𝑓2 ∘ 𝑥 = 𝑦 ∘ ̄𝑓1;
note this constitutes a morphism in [𝟚, u�] between objects in the image of the
functor Ho [min 𝟚, u�]h → [𝟚, u�]. As before, we may choose 𝑢1 : 𝑌1 → ̂𝑌1 and
𝑢2 : 𝑌2 → ̂𝑌2 in u� , 𝑣1 : �̃�1 → 𝑋1 and 𝑣2 : �̃�2 → 𝑋2 in u� , and 𝑓1 : �̃�1 → ̂𝑌1 and
𝑓2 : �̃�2 → ̂𝑌2 in u� such that the equations below hold in Ho u�:

̄𝑓1 = 𝑢−1
1 ∘ 𝑓1 ∘ 𝑣−1

1
̄𝑓2 = 𝑢−1

2 ∘ 𝑓2 ∘ 𝑣−1
2

Using axioms A2 and A3, there exist 𝑢′
2 : 𝑌2 → 𝑍 in u� , 𝑣′

1 : 𝑊 → 𝑋1 in u� , and
𝑧 : ̂𝑌1 → 𝑍 and 𝑤 : 𝑊 → �̃�2 making the following diagrams in u� commute,

𝑋1 �̃�1
̂𝑌1 𝑌1

𝑋1 �̃�1 𝑍 𝑌2

𝑣1 𝑓1

𝑧

𝑢1

𝑦

𝑣1 𝑧∘𝑓1 𝑢′
2

𝑋1 𝑊 ̂𝑌2 𝑌2

𝑋2 �̃�2
̂𝑌2 𝑌2

𝑥

𝑣′
1

𝑤

𝑓2∘𝑤 𝑢2

𝑣2 𝑓2 𝑢2

and since ̄𝑓2 ∘𝑥 = 𝑦∘ ̄𝑓1, the fundamental theorem says there exist a commutative
diagram in u� of the form below,

𝑋1 𝑊 ̂𝑌2 𝑌2

𝑋1 • • 𝑌2

𝑋1 • • 𝑌2

𝑋1 �̃�1 𝑍 𝑌2

𝑣′
1

𝑣3

𝑓2∘𝑤

𝑣4

𝑢2

𝑣5

𝑤3

𝑓5

𝑤4

𝑢6

𝑣6

𝑢3

𝑓6

𝑢4

𝑢6

𝑣1 𝑧∘𝑓1 𝑢′
2

where 𝑢3, 𝑢4, 𝑢5, 𝑢6 are in u� , 𝑣3, 𝑣4, 𝑣5, 𝑣6 are in u� , and 𝑤3, 𝑤4 are weak equival-
ences in u�.
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It is easy to verify that the following diagram in u� commutes,

𝑋1 𝑊 𝑊 • • �̃�1
̂𝑌1 𝑌1

𝑋2 �̃�2
̂𝑌2 • • 𝑍 𝑍 𝑌2

𝑥

𝑣′
1

𝑤 𝑓2∘𝑤

𝑣3

𝑓5

𝑤3

𝑓6

𝑢3

𝑧∘𝑓1

𝑓1

𝑧

𝑢1

𝑦

𝑣2 𝑓2 𝑣4 𝑤4 𝑢4 𝑢′
2

and this is the required lift of ( ̄𝑓1, ̄𝑓2) to Ho [min 𝟚, u�]h, because the diagram in
u� shown below commutes:

𝑋1 𝑋1 𝑋1 𝑋1 𝑋1 �̃�1
̂𝑌1 𝑌1

𝑋1 𝑊 𝑊 • • �̃�1
̂𝑌1 𝑌1

𝑋2 �̃�2
̂𝑌2 • • 𝑍 𝑍 𝑌2

𝑋2 �̃�2
̂𝑌2 𝑌2 𝑌2 𝑌2 𝑌2 𝑌2

𝑣′
1 𝑣′

1 𝑣5 𝑣6

𝑣1 𝑓1 𝑢1

𝑥

𝑣′
1

𝑤 𝑓2∘𝑤

𝑣3

𝑓5

𝑤3

𝑓6

𝑢3

𝑧∘𝑓1

𝑓1

𝑧

𝑢1

𝑦

𝑣2 𝑓2 𝑣4

𝑢5

𝑤4

𝑢6

𝑢4

𝑢′
2 𝑢′

2

𝑢′
2

𝑣2 𝑓2 𝑢2

We may therefore conclude that Ho [min 𝟚, u�]h → [𝟚, u�] is indeed full. ■

Proposition 7.1.11. Let 𝒟 be the prederivator of a 𝐔-small relative category
ℳ.

(i) 𝒟 satisfies axiom Der1.

(ii) Moreover, if ℳ is a (necessarily saturated) homotopical category and
each homotopical functor category [u�, ℳ]h admits a three-arrow calcu-
lus, then 𝒟 is a strong semiderivator.

Proof. (i). Proposition a.4.19 implies 𝒟 sends finite coproducts in ℜ𝔢𝔩ℭ𝔞𝔱 to
products in ℭ𝔞𝔱+, so axiom Der1 is satisfied.

(ii). Suppose 𝑓 : 𝑋 → 𝑌 is a morphism in Ho [u�, ℳ]h such that all its com-
ponents are isomorphisms in Ho ℳ. The fundamental theorem of three-arrow
calculi (3.6.9) says 𝑓 : 𝑋 → 𝑌 may be represented by a zigzag in [u�, ℳ]h of
the form below,

𝑋 �̃� ̂𝑌 𝑌𝜓 𝜑
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where 𝜓 and 𝜑 are natural weak equivalences. Thus, if 𝐴 is an object in u�, then
the following zigzag represents an isomorphism in Ho ℳ:

𝑋𝐴 �̃�𝐴 ̂𝑌 𝐴 𝑌 𝐴
𝜓𝐴 𝐴 𝜑𝐴

However, proposition 3.6.10 says ℳ is a saturated homotopical category, so 𝐴
must be a weak equivalence in ℳ as well; hence, 𝑓 : 𝑋 → 𝑌 is an isomorphism
in Ho [u�, ℳ]h. This shows that 𝒟 satisfies axiom Der2.

Finally, observe that [min 𝟚 × u�, ℳ]h ≅ [min 𝟚, [u�, ℳ]h]h, and the hypo-
thesis says [u�, ℳ]h admits a three-arrow calculus, so we apply lemma 7.1.10 to
deduce that axiom Der5 is satisfied. ■

Definition 7.1.12. Let 𝒟 be a prederivator on 𝔎, let 𝑢 : 𝐴 → 𝐵 be a morphism
in 𝔎, and let 𝑋 be an object in 𝒟 𝐴.

• A left 𝒟 -extension of 𝑋 along 𝑢 is an initial object in the comma category
(𝑋 ↓ 𝑢∗).

• A right 𝒟 -extension of 𝑋 along 𝑢 is a terminal object in the comma cat-
egory (𝑢∗ ↓ 𝑋).

• We say 𝒟 has left extensions along 𝑢 if the functor 𝑢∗ : 𝒟 𝐵 → 𝒟 𝐴 has a
left adjoint, which we denote by 𝑢! : 𝒟 𝐴 → 𝒟 𝐵.

• We say 𝒟 has right extensions along 𝑢 if the functor 𝑢∗ : 𝒟 𝐵 → 𝒟 𝐴 has
a right adjoint, which we denote by 𝑢∗ : 𝒟 𝐴 → 𝒟 𝐵.

We may refer to left and right 𝒟 -extensions generically as homotopy Kan ex-
tensions in 𝒟 .

Remark 7.1.13. It is straightforward to check that 𝒟 has left (resp. right) exten-
sions along 𝑢 if and only if, for every object 𝑋 in 𝒟 𝐴, there exists a left (resp.
right) 𝒟 -extension of 𝑋 along 𝑢.

Example 7.1.14. If 𝔎 is a 2-full 2-subcategory of ℭ𝔞𝔱 and 𝒟 is the prederivator
represented by an object in 𝔎, then 𝒟 -extensions are exactly the same thing as
Kan extensions in the usual sense.

As we saw in theorem a.5.15, pointwise left (resp. right) Kan extensions
can be computed as colimits (resp. limits) of certain diagrams whose shapes
are comma categories. We shall shortly see that more is true.
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Definition 7.1.15. Let 𝒟 be a prederivator on 𝔎 and suppose we have a diagram
in 𝔎 of the following form:

𝐷 𝐵

𝐴 𝐶

𝑝

𝑞

𝑣

𝑢

• We say the square is a left 𝒟 -exact square if 𝒟 has left extensions along
𝑢 : 𝐴 → 𝐶 and 𝑞 : 𝐷 → 𝐵 and the induced diagram shown below satisfies
the left Beck–Chevalley condition:

𝒟 𝐶 𝒟 𝐵

𝒟 𝐴 𝒟 𝐷

𝑢∗

𝑣∗

𝑞∗

𝑝∗

∗

• We say the square is a right 𝒟 -exact square if 𝒟 has right extensions
along 𝑣 : 𝐵 → 𝐶 and 𝑝 : 𝐷 → 𝐴 and the induced diagram shown below
satisfies the right Beck–Chevalley condition:

𝒟 𝐶 𝒟 𝐴

𝒟 𝐵 𝒟 𝐷

𝑣∗

𝑢∗

𝑝∗

𝑞∗

∗

• A 𝒟 -exact square in 𝔎 is a diagram in 𝔎 that is both left 𝒟 -exact and
right 𝒟 -exact.

Proposition 7.1.16. Let 𝒟 be a prederivator on 𝔎. Given the following diagram
in 𝔎,

𝐷 𝐵

𝐴 𝐶

𝑝

𝑞

𝑣

𝑢

if 𝒟 has left extensions along 𝑢 : 𝐴 → 𝐶 and 𝑞 : 𝐷 → 𝐵, and 𝒟 has right
extensions along 𝑣 : 𝐵 → 𝐶 and 𝑝 : 𝐷 → 𝐴, then the following are equivalent:

(i) The diagram is a 𝒟 -exact square.

665



VII. Derivators

(ii) The diagram is a left 𝒟 -exact square.

(iii) The diagram is a right 𝒟 -exact square.

Proof. Statement (i) is just the conjunction of statements (ii) and (iii), and when
the required left and right adjoints exist, proposition a.1.12 implies that state-
ments (ii) and (iii) are equivalent. ■

Lemma 7.1.17 (Pasting exact squares). Let 𝒟 be a prederivator, and consider
pasting diagrams of the following forms in 𝔎:

• • •

• • •

• •

• •

• •

In either diagram, if both squares are left (resp. right) 𝒟 -exact squares, then the
rectangle obtained by pasting the two squares is also a left (resp. right) 𝒟 -exact
square.

Proof. Apply lemma a.1.11. ■

Lemma 7.1.18. Let 𝐒𝐞𝐭 be the category of 𝐔-sets. If 𝒟 is the prederivator of
𝐒𝐞𝐭 restricted to the subdomain ℭ𝔞𝔱, then every comma square in ℭ𝔞𝔱 is a right
𝒟 -exact square.

Proof. Suppose we have the following comma square in ℭ𝔞𝔱:

(𝑢 ↓ 𝑣) 𝔹

𝔸 ℂ

𝑝

𝑞

𝑣

𝑢

Let 𝑌 : 𝔹 → 𝐒𝐞𝐭 be a functor and let (𝑍, ) be a right Kan extension of 𝑌 along
𝑣, i.e. a terminal object in the comma category (𝑣∗ ↓ 𝑌 ). In view of lemma a.1.10,
to deduce the claim, it is enough to show that (𝑢∗(𝑍), 𝑞∗( ) ∙ ∗

𝑍) is a terminal
object in the comma category (𝑝∗ ↓ 𝑞∗(𝑌 )), i.e. a right Kan extension of 𝑌 𝑞 along
𝑝; but this was done in lemma a.5.8. ■
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Proposition 7.1.19. Let ℳ be a locally 𝐔-small category, and let 𝒟 be the
prederivator of ℳ restricted to ℭ𝔞𝔱.

• If ℳ has colimits for all 𝐔-small diagrams, then every comma square in
ℭ𝔞𝔱 is a left 𝒟 -exact square.

• If ℳ has limits for all 𝐔-small diagrams, then every comma square in ℭ𝔞𝔱
is a right 𝒟 -exact square.

Proof. The two claims are formally dual; we will prove the first version.
Consider a comma square in ℭ𝔞𝔱:

𝔻 𝔹

𝔸 ℂ

𝑝

𝑞

𝑣

𝑢

If ℳ has colimits for all 𝐔-small diagrams, then theorem a.5.15 implies that,
for any functor 𝑋 : 𝔸 → ℳ, the left Kan extension of 𝑋 along 𝑢 exists and is
pointwise, and same is true for the left Kan extension of 𝑝∗(𝑋) along 𝑞. Thus, for
any object 𝑀 in ℳ, if h𝑀 : ℳop → 𝐒𝐞𝐭+ is the representable functor ℳ(−, 𝑀),
we may use lemma a.1.10 to deduce that the following (commutative!) diagrams
satisfy the right Beck–Chevalley condition:

[ℂop, ℳop] [ℂop, 𝐒𝐞𝐭+]

[𝔸op, ℳop] [𝔸op, 𝐒𝐞𝐭+]

(𝑢op)∗

[ℂop,h𝑀]

(𝑢op)∗

[𝔸op,h𝑀]

[𝔹op, ℳop] [𝔹op, 𝐒𝐞𝐭+]

[𝔻op, ℳop] [𝔻op, 𝐒𝐞𝐭+]

(𝑞 op)∗

[𝔸op,h𝑀]

(𝑞 op)∗

[𝔹op,h𝑀]

On the other hand, lemma 7.1.18 says the diagram below satisfies the right Beck–
Chevalley condition,

[ℂop, 𝐒𝐞𝐭+] [𝔹op, 𝐒𝐞𝐭+]

[𝔸op, 𝐒𝐞𝐭+] [𝔻op, 𝐒𝐞𝐭+]

(𝑢op)∗

(𝑣op)∗

(𝑞 op)∗

(𝑝op)∗

( op)∗

and the family {h𝑀 : ℳop → 𝐒𝐞𝐭+ | 𝑀 ∈ ob ℳ} is jointly conservative, so we
deduce that the right Beck–Chevalley condition for the following diagram is sat-
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isfied,

[ℂop, ℳop] [𝔹op, ℳop]

[𝔸op, ℳop] [𝔻op, ℳop]

(𝑢op)∗

(𝑣op)∗

(𝑞 op)∗

(𝑝op)∗

( op)∗

and therefore this diagram satisfies the left Beck–Chevalley condition:

[ℂ, ℳ] [𝔹, ℳ]

[𝔸, ℳ] [𝔻, ℳ]

𝑢∗

𝑣∗

𝑞∗

𝑝∗

∗

We then conclude that every comma square in ℭ𝔞𝔱 is a left 𝒟 -exact square. ■

Definition 7.1.20. A 𝔎-cocomplete semiderivator is a semiderivator 𝒟 on 𝔎
satisfying these additional axioms:

Der3L. 𝒟 has left extensions along every morphism 𝑢 : 𝐴 → 𝐵 in 𝔎.

Der4L. Every comma square in 𝔎 of the form below is a left 𝒟 -exact square:

(𝑢 ↓ 𝑐) 1

𝐴 𝐶

𝑐

𝑢

Dually, a 𝔎-complete 𝐔-semiderivator is one satisfying these axioms:

Der3R. 𝒟 has right extensions along every morphism 𝑢 : 𝐴 → 𝐵 in 𝔎.

Der4R. Every comma square in 𝔎 of the form below is a right 𝒟 -exact square:

(𝑐 ↓ 𝑣) 𝐵

1 𝐶

𝑣

𝑐
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Theorem 7.1.21. Let 𝐔+ be a universe with 𝐔 ⊆ 𝐔+, let ℳ be a 𝐔+-small
category, and let 𝒟 be the prederivator of ℳ restricted to ℭ𝔞𝔱.

(i) 𝒟 is a strong semiderivator.

(ii) 𝒟 is ℭ𝔞𝔱-cocomplete (resp. ℭ𝔞𝔱-complete) if and only if ℳ is 𝐔-complete
(resp. 𝐔-complete).

Proof. (i). This can be shown using the same arguments as remark 7.1.9.

(ii). This is the content of proposition 7.1.19. ■

Finally, we come to the definition of the subject of this chapter:

Definition 7.1.22. A derivator on 𝔎 is a semiderivator that is 𝔎-cocomplete
and 𝔎-complete, and a strong derivator is one that satisfies axiom Der5.

Remark 7.1.23. The definition of ‘subdomain’ ensures that the restriction of any
derivator (resp. semiderivator, complete semiderivator, cocomplete semideriv-
ator) on 𝔎 to any subdomain of 𝔎 is again a derivator (resp. semiderivator,
complete semiderivator, cocomplete semiderivator).

Proposition 7.1.24. Let 𝒟 be a prederivator on 𝔎, and let 𝑢 ⊣ 𝑣 : 𝐵 → 𝐴 be
an adjunction in 𝔎, with unit : id𝐴 ⇒ 𝑣 ∘ 𝑢 and counit : 𝑢 ∘ 𝑣 ⇒ id𝐵.

(i) We have an adjunction 𝑣∗ ⊣ 𝑢∗ : 𝒟 𝐵 → 𝒟 𝐴, with unit ∗ : id𝒟 𝐴 ⇒ 𝑢∗ ∘ 𝑣∗

and counit ∗ : 𝑣∗ ∘ 𝑢∗ ⇒ id𝒟 𝐵; in particular, 𝒟 has left extensions along
𝑢 : 𝐴 → 𝐵 and right extensions along 𝑣 : 𝐵 → 𝐴.

(ii) Consider the following commutative diagrams in 𝔎:

𝐴 𝐵

1 1

𝑝

𝑢

𝑞

id

𝐵 1

𝐴 1

𝑣

𝑞

id

𝑝

The diagram on the left is a left 𝒟 -exact square, and the diagram on the
right is a right 𝒟 -exact square.

(iii) Moreover, if 𝒟 has left extensions along 𝑝 : 𝐴 → 1 and 𝑞 : 𝐴 → 1,
then the diagram on the right is a left 𝒟 -exact square; and if 𝒟 has right
extensions along 𝑝 : 𝐴 → 1 and 𝑞 : 𝐴 → 1, then the diagram on the left is
a right 𝒟 -exact square.
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Proof. (i). Since 𝒟 is a 2-functor, it preserves the triangle identities; thus 𝑣∗ ⊣
𝑢∗ is indeed an adjunction. (The left and right adjoints are exchanged because 𝒟
is contravariant.)

(ii). The two halves of the claim are formally dual; we will prove the first version.
By claim (i), we may take 𝑢! = 𝑣∗; but the left Beck–Chevalley transformation

𝑢!𝑝∗ ⇒ 𝑢!𝑝∗id∗id! ⇒ 𝑢!𝑢∗𝑞∗id! ⇒ 𝑞∗id!

is then equal to ∗𝑞∗ : 𝑣∗𝑢∗𝑞∗ ⇒ 𝑞∗, and ∗𝑞∗ = (𝑞 )∗ = id, because 1 is a
terminal object in 𝔎. Thus the left Beck–Chevalley condition is satisfied.

(iii). This is a special case of proposition 7.1.16. ■

Theorem 7.1.25. Let 𝒟 be a semiderivator on 𝔎 that satisfies axioms Der3L
and Der3R, and let 1 be a terminal object in 𝔎. The following are equivalent:

(i) 𝒟 is a derivator.

(ii) 𝒟 satisfies axiom Der4L.

(iii) Every comma square in 𝔎 is left 𝒟 -exact.

(iv) 𝒟 satisfies axiom Der4R.

(v) Every comma square in 𝔎 is right 𝒟 -exact.

Proof. Obviously, statement (i) implies statements (ii)–(v), and the conjunction
of statements (iii) and (v) implies statement (i). We are assuming that 𝒟 has left
and right extensions along all morphisms in 𝔎, so the equivalence of statements
(iii) and (v) is just proposition 7.1.16. It remains to be shown that (ii) ⇒ (iii) and
(iv) ⇒ (v), but the two implications are formally dual, so it is enough to prove
just one; we prove the former.

Consider a general comma square in 𝔎:

(𝑢 ↓ 𝑣) 𝐵

𝐴 𝐶

𝑝

𝑞

𝑣

𝑢
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Let 𝑏 : 1 → 𝐵 be a morphism in 𝔎, and let 𝑐 = 𝑣 ∘ 𝑏, and consider the following
pasting diagrams,

(𝑞 ↓ 𝑏) 1

(𝑢 ↓ 𝑣) 𝐵

𝐴 𝐶

𝑠

𝑡

𝑏

𝑝

𝑞

𝑣

𝑢

𝜏
(𝑢 ↓ 𝑐) 1

(𝑢 ↓ 𝑣) 𝐵

𝐴 𝐶

𝑗

𝑟

𝑏

𝑝

𝑞

𝑣

𝑢

where the upper square of the diagram on the left is a comma square, and the
upper square of the diagram on the right is a 2-pullback square; note that the
pasting lemma for comma squares implies that the outer rectangle of the diagram
on the right is also a comma square.

Let 𝜋 = 𝑝 ∘ 𝑗 and let = ∘ id𝑗 . By the universal property of comma objects,
there is a unique morphism 𝑓 : (𝑞 ↓ 𝑏) → (𝑢 ↓ 𝑐) such that 𝜋 ∘ 𝑓 = 𝑝 ∘ 𝑠, 𝑟 ∘ 𝑓 = 𝑡,
and ∘ id𝑓 = (id𝑣 ∘ 𝜏) ∙ ( ∘ id𝑠); and similarly there is a unique morphism
𝑔 : (𝑢 ↓ 𝑐) → (𝑞 ↓ 𝑏) such that 𝑠 ∘ 𝑔 = 𝑗, 𝑡 ∘ 𝑔 = 𝑟, and 𝜏 ∘ id𝑔 = id𝑞∘𝑗 = id𝑏∘𝑟.
Then,

𝜋 ∘ (𝑓 ∘ 𝑔) = 𝑝 ∘ 𝑠 ∘ 𝑔 = 𝑝 ∘ 𝑗 = 𝜋 𝑟 ∘ (𝑓 ∘ 𝑔) = 𝑟

so 𝑓 ∘ 𝑔 = id(𝑢↓𝑐); and since 𝑝 ∘ 𝑠 = 𝑝 ∘ 𝑠 ∘ 𝑔 ∘ 𝑓 , we may think of id𝑝∘𝑠 as a 2-cell
𝛽 : 𝑝 ∘ 𝑠 ⇒ 𝑝 ∘ 𝑠 ∘ 𝑔 ∘ 𝑓 , whereas 𝑏 ∘ 𝑡 = 𝑞 ∘ 𝑠 ∘ 𝑔 ∘ 𝑓 , so 𝜏 : 𝑞 ∘ 𝑠 ⇒ 𝑏 ∘ 𝑡 is also a
2-cell 𝛾 : 𝑞 ∘ 𝑠 ⇒ 𝑞 ∘ 𝑠 ∘ 𝑔 ∘ 𝑓 , but then

( ∘ id𝑠∘𝑔∘𝑓 ) ∙ (id𝑢 ∘ 𝛽) = ∘ id𝑗 ∘ id𝑓 = ∘ id𝑓 = (id𝑣 ∘ 𝛾) ∙ ( ∘ id𝑠)

so by the 2-universal property of (𝑢 ↓ 𝑣), there is a unique 2-cell 𝛼 : 𝑠 ⇒ 𝑠 ∘ 𝑔 ∘ 𝑓
such that id𝑝 ∘ 𝛼 = 𝛽 and id𝑞 ∘ 𝛼 = 𝛾; and furthermore,TODO: Justify this

more carefully...

(𝜏 ∘ id𝑔∘𝑓 ) ∙ (id𝑞 ∘ 𝛼) = (id𝑏 ∘ id𝑡∘𝑔∘𝑓 ) ∙ 𝜏

therefore there is a unique 2-cell : id(𝑞↓𝑏) ⇒ 𝑔 ∘ 𝑓 such that id𝑠 ∘ = 𝛼 and
id𝑡 ∘ = id𝑡∘𝑔∘𝑓 .

We will now show that we have an adjunction 𝑓 ⊣ 𝑔 : (𝑢 ↓ 𝑐) → (𝑞 ↓ 𝑏) in
𝔎; since 𝑓 ∘ 𝑔 = id(𝑢↓𝑐), it is enough to check that id𝑓 ∘ = id𝑓 and ∘ id𝑔 = id𝑔.
By construction, id𝜋 ∘ (id𝑓 ∘ ) = id𝑝 ∘ id𝑠 ∘ = id𝑝∘𝑠, and id𝑟 ∘ (id𝑓 ∘ ) = id𝑡,
so indeed id𝑓 ∘ = id𝑓 ; and id𝑠 ∘ ( ∘ id𝑔) = id𝑠 and id𝑡 ∘ ( ∘ id𝑔) = id𝑡, so
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∘ id𝑔 = id𝑔 as well. Thus, by proposition 7.1.24, the commutative diagram in
𝔎 shown below on the left is a left 𝒟 -exact square,

(𝑢 ↓ 𝑐) 1

(𝑞 ↓ 𝑏) 1

𝑔

𝑟

id

(𝑞 ↓ 𝑏) 1

(𝑢 ↓ 𝑣) 𝐵

𝑠

𝑡

𝑏

𝑞

𝜏

and the diagram on the right is a left 𝒟 -exact square by hypothesis, so by the
pasting lemma (7.1.17), the following commutative diagram is also a left 𝒟 -exact
square:

(𝑢 ↓ 𝑐) 1

(𝑢 ↓ 𝑣) 𝐵

𝑗 𝑏

𝑞

The hypothesis also implies that this diagram satisfies the left Beck–Chevalley
condition,

𝒟 𝐶 𝒟 1

𝒟 𝐴 𝒟 (𝑢↓𝑐)

𝑢∗

𝑐∗

𝑟∗

𝜋∗

∗

but the pasting lemma (a.1.11) says that the left Beck–Chevalley transformation
𝑟!𝜋∗ ⇒ 𝑐∗𝑢! is obtained by pasting together the left Beck–Chevalley transform-
ations of the squares in the diagram below,

𝒟 𝐶 𝒟 𝐵 𝒟 1

𝒟 𝐴 𝒟 (𝑢↓𝑣) 𝒟 (𝑢↓𝑐)

𝑢∗

𝑣∗

𝑞∗

𝑏∗

𝑟∗

𝑝∗ 𝑗∗

∗

and so, allowing 𝑏 : 1 → 𝐵 to vary, we deduce that every component of the left
Beck–Chevalley transformation 𝑣∗𝑢! ⇒ 𝑞!𝑝∗ is an isomorphism in 𝒟 1. We may
then apply axiom Der2 to conclude that the comma square we started with is a
left 𝒟 -exact square. ■
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7.2 Homotopy limits and colimits
Prerequisites. §§3.3, 4.1, 4.10, 7.1.

¶ 7.2.1. In this section, we use the two-universe convention: we assume that
there are two universes 𝐔 and 𝐔+, with 𝐔 ∈ 𝐔+. We refer to 𝐔-sets, 𝐔-small
categories, etc. as ‘small’, and we refer to 𝐔+-sets, 𝐔+-small categories, etc. as
‘moderate’.

Definition 7.2.2. Let 𝒟 be a prederivator on 𝔎, let 𝐴 be an object in 𝔎, let 1 be
a terminal object in 𝔎, let Δ𝐴 : 𝒟 1 → 𝒟 𝐴 be the functor induced by the unique
morphism 𝐴 → 1 in 𝔎, and let 𝑋 be an object in 𝒟 𝐴.

• A 𝒟 -colimit for 𝑋 is an initial object in the comma category (𝑋 ↓ Δ𝐴).

• A 𝒟 -limit for 𝑋 is a terminal object in the comma category (Δ𝐴 ↓ 𝑋).

• We say 𝒟 has colimits for diagrams of shape 𝐴 if Δ𝐴 : 𝒟 1 → 𝒟 𝐴 has a
left adjoint, which we denote by holim−−→𝐴

: 𝒟 𝐴 → 𝒟 1.

• We say 𝒟 has limits for diagrams of shape 𝐴 if Δ𝐴 : 𝒟 1 → 𝒟 𝐴 has a
right adjoint, which we denote by holim←−−𝐴

: 𝒟 𝐴 → 𝒟 1.

We may refer to 𝒟 -colimits (resp. 𝒟 -limits) generically as homotopy colimits
(resp. homotopy limits) in 𝒟 .

Remark 7.2.3. Of course, homotopy colimits (resp. homotopy limits) in 𝒟 are a
special case of homotopy left (resp. right) Kan extensions in 𝒟 ; in particular, 𝒟
has colimits (resp. limits) for diagrams of shape 𝐴 if and only if, for every object
𝑋 in 𝒟 𝐴, there exists a 𝒟 -colimit (resp. 𝒟 -limit) for 𝑋.

Proposition 7.2.4. Let ℳ be a moderate model category and let 𝒟 be the pre-
derivator of ℳ restricted along min : ℭ𝔞𝔱 → ℜ𝔢𝔩ℭ𝔞𝔱.

(i) 𝒟 satisfies axiom Der1.

(ii) 𝒟 satisfies axiom Der5 at the terminal category 𝟙, i.e. the canonical com-
parison functor 𝒟 𝟚 → [𝟚, 𝒟 𝟙] is full and essentially surjective on objects.

(iii) Moreover, if ℳ satisfies axiom CM5*, then 𝒟 is a strong semiderivator.
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Proof. (i). Proposition a.4.19 implies 𝒟 sends finite coproducts in ℜ𝔢𝔩ℭ𝔞𝔱 to
products in ℭ𝔞𝔱+, and the embedding min : ℭ𝔞𝔱 → ℜ𝔢𝔩ℭ𝔞𝔱 preserves finite
coproducts, so axiom Der1 is satisfied.

(ii). By theorem 4.1.31, ℳ admits a three-arrow calculus, so the claim follows
from lemma 7.1.10.

(iii). Moreover, if ℳ satisfies axiom CM5*, then ℳ admits a functorial three-
arrow calculus, so by proposition 3.6.8, each [𝔸, ℳ]h admits a componentwise
three-arrow calculus. Theorem 4.4.1 implies ℳ is a saturated homotopical cat-
egory, so we deduce that 𝒟 is a strong semiderivator using proposition 7.1.11.

■

Theorem 7.2.5. If ℳ is a locally small DHK model category, then the restric-
tion of 𝒟(ℳ) to ℭ𝔞𝔱 is a strong derivator.

Proof. Let 𝒟 be the restriction of 𝒟(ℳ) to ℭ𝔞𝔱. We have already shown in
proposition 7.2.4 that 𝒟 is a strong semiderivator, so it remains to be proven that
𝒟 is cocomplete and complete. Cocompleteness and completeness are formally
dual, so it suffices to demonstrate just one half of the claim; we will show that
𝒟 is cocomplete.

By theorem 4.10.16, for every functor 𝑢 : 𝔸 → 𝔹 between small categories,
the functor Lan𝑢 : [𝔸, ℳ] → [𝔹, ℳ] is left deformable, so theorem 3.3.24
implies the functor Ho 𝑢∗ : Ho [𝔹, ℳ] → Ho [𝔸, ℳ] has a left adjoint, namely
the total left derived functor 𝐋(Lan𝑢) : Ho [𝔸, ℳ] → Ho [𝔹, ℳ]. Thus 𝒟
satisfies axiom Der3L.

Finally, to conclude, we note that proposition 4.10.18 is precisely the state-
ment that axiom Der4L is satisfied. This completes the proof that 𝒟 is cocom-
plete. ■

Theorem 7.2.6 (Cisinski). Let ℳ be a locally small model category and let
𝒟 (ℳ) be its associated prederivator. If ℳ has colimits and limits for all small
diagrams, then the restriction of 𝒟(ℳ) to the 2-category of small categories is
a derivator.

Proof. See Theorem 6.11 in [Cisinski, 2003]. □
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Definition 7.2.7. Let 𝒟 be a prederivator on 𝔎.

• A 𝒟 -cofinal morphism is a morphism 𝑣 : 𝐵 → 𝐴 in 𝔎 such that the
diagram below is a left 𝒟 -exact square,

𝐵 1

𝐴 1

𝑣 id

i.e. such that the left Beck–Chevalley transformation

holim−−→𝐵
∘ 𝑣∗ ⇒ holim−−→𝐴

is a natural isomorphism.

• A 𝒟 -coinitial morphism is a morphism 𝑢 : 𝐴 → 𝐵 in 𝔎 such that the
diagram below is a right 𝒟 -exact square,

𝐴 𝐵

1 1

𝑢

id

i.e. such that the right Beck–Chevalley transformation

holim←−−𝐵
⇒ holim←−−𝐴

∘ 𝑢∗

is a natural isomorphism.

Example 7.2.8. For any derivator 𝒟 on 𝔎, every right adjoint (resp. left ad-
joint) in 𝔎 is a 𝒟 -cofinal (resp. 𝒟 -coinitial) morphism: this is the content of
proposition 7.1.24.

Example 7.2.9. A category 𝔸 has a terminal object if and only if the unique
functor 𝔸 → 𝟙 has a right adjoint 𝑡 : 𝟙 → 𝔸; thus, for any derivator on ℭ𝔞𝔱,
if 𝔸 is a small category with a terminal object, then the left Beck–Chevalley
transformation 𝑡∗ ⇒ holim−−→𝔸

is a natural isomorphism.

Definition 7.2.10. Let 𝒟 be a prederivator on 𝔎. A 𝒟 -equivalence is a morph-
ism 𝑢 : 𝐴 → 𝐵 in 𝔎 satisfying the following condition:

675



VII. Derivators

• For all 𝑋 and 𝑌 in 𝒟 1, the map 𝒟 𝐵(Δ𝐵𝑋, Δ𝐵𝑌 ) → 𝒟 𝐴(Δ𝐴𝑋, Δ𝐴𝑌 )
induced by 𝑢∗ : 𝒟 𝐵 → 𝒟 𝐴 is a bijection.

Proposition 7.2.11. Let 𝒟 be a prederivator on 𝔎 and let 𝑢 : 𝐴 → 𝐵 be a
morphism in 𝔎. If 𝒟 is a 𝔎-cocomplete semiderivator, then the following are
equivalent:

(i) The morphism 𝑢 : 𝐴 → 𝐵 is a 𝒟 -equivalence.

(ii) For 𝐵 the unit of holim−−→𝐵
⊣ Δ𝐵 and 𝐴 the counit of holim−−→𝐴

⊣ Δ𝐴, the
natural transformation

(
𝐴 ∘ holim−−→𝐵

∘ Δ𝐵)∙(holim−−→𝐴
∘ 𝑢∗ ∘ 𝐵 ∘ Δ𝐵) : holim−−→𝐴

∘Δ𝐴 ⇒ holim−−→𝐵
∘Δ𝐵

is a natural isomorphism.

(iii) For 𝑢 the counit of 𝑢! ⊣ 𝑢∗, the natural transformation

holim−−→𝐵
∘ 𝑢 ∘ Δ𝐵 : holim−−→𝐴

∘ Δ𝐴 ⇒ holim−−→𝐵
∘ Δ𝐵

is a natural isomorphism.

Dually, if 𝒟 is a 𝔎-complete semiderivator, then the following are equivalent:

(i′) The morphism 𝑢 : 𝐴 → 𝐵 is a 𝒟 -equivalence.

(ii′) For 𝐴 the unit of Δ𝐴 ⊣ holim←−−𝐴
and 𝐵 the counit of Δ𝐵 ⊣ holim←−−𝐵

, the
natural transformation

(holim←−−𝐴
∘ 𝑢∗ ∘ 𝐵 ∘ Δ𝐵)∙(

𝐴 ∘ holim←−−𝐵
∘ Δ𝐵) : holim←−−𝐵

∘Δ𝐵 ⇒ holim←−−𝐴
∘Δ𝐴

is a natural isomorphism.

(iii′) For 𝑢 the unit of 𝑢∗ ⊣ 𝑢∗, the natural transformation

holim←−−𝐵
∘ 𝑢 ∘ Δ𝐵 : holim←−−𝐵

∘ Δ𝐵 ⇒ holim←−−𝐴
∘ Δ𝐴

is a natural isomorphism.
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Proof. The two sets of claims are formally dual; we will prove the first version.
Observe that every morphism 𝑢 : 𝐴 → 𝐵 in 𝔎 induces a commutative dia-

gram of the following form:

𝒟 1
(holim−−→𝐵

Δ𝐵𝑋, 𝑌 ) 𝒟 𝐵(Δ𝐵𝑋, Δ𝐵𝑌 )

𝒟 1
(holim−−→𝐴

Δ𝐴𝑋, 𝑌 ) 𝒟 𝐴(Δ𝐴𝑋, Δ𝐴𝑌 )

≅

≅

Thus, a morphism 𝑢 : 𝐴 → 𝐵 in 𝔎 satisfies condition (ii) if and only if it is a
𝒟 -equivalence. By factoring the counit 𝐴 : holim−−→𝐴

Δ𝐴 ⇒ id𝒟 1 in terms of the
counit 𝑢 : 𝑢!𝑢∗ ⇒ id𝒟 𝐵 and using the left triangle identity, we deduce that

(
𝐴 ∘ holim−−→𝐵

∘ Δ𝐵) ∙ (holim−−→𝐴
∘ 𝑢∗ ∘ 𝐵 ∘ Δ𝐵) = holim−−→𝐵

∘ 𝑢 ∘ Δ𝐵

and so condition (ii) is satisfied if and only if condition (iii) is satisfied. ■

Corollary 7.2.12.
• If 𝒟 is a 𝔎-cocomplete semiderivator, then every 𝒟 -cofinal morphism in

𝔎 is a 𝒟 -equivalence.

• If 𝒟 is a 𝔎-complete semiderivator, then every 𝒟 -coinitial morphism in
𝔎 is a 𝒟 -equivalence. ■

Remark 7.2.13. In particular:

• If 𝒟 is a 𝔎-cocomplete semiderivator, then every right adjoint morphism
in 𝔎 is a 𝒟 -equivalence.

• If 𝒟 is a 𝔎-complete semiderivator, then every left adjoint morphism in
𝔎 is a 𝒟 -equivalence.

Proposition 7.2.14. Let 𝔎 be a derivator domain and let u� be the underlying
1-category of 𝔎. For any prederivator 𝒟 on 𝔎, the category u� with the class of
𝒟 -equivalences in 𝔎 constitute a saturated homotopical category.

Proof. We will assume that, for every object 𝐴 in 𝔎, the category 𝒟 𝐴 is loc-
ally small, but there is no loss of generality in doing so because we may always
enlarge the universe.
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Observe that, for all objects 𝑋 and 𝑌 in 𝒟 1, the functor u�op → 𝐒𝐞𝐭 defined by
𝐶 ↦ 𝒟 𝐶(Δ𝐶𝑋, Δ𝐶𝑌 ) sends every 𝒟 -equivalence in 𝔎 to a bijection. Thus, if
𝑢 : 𝐴 → 𝐵 is a morphism in 𝔎 that becomes invertible in the localisation of u� at
𝒟 -equivalences, then for all objects 𝑋 and 𝑌 in 𝒟 1, the map 𝒟 𝐵(Δ𝐵𝑋, Δ𝐵𝑌 ) →
𝒟 𝐴(Δ𝐴𝑋, Δ𝐴𝑌 ) induced by 𝑢 must be a bijection, so 𝑢 must be a 𝒟 -equivalence.

■

Proposition 7.2.15. Let 𝒟 be a semiderivator on 𝔎.

• Given a commutative triangle in 𝔎 as below,

𝐴 𝐵

𝐶
𝑝

𝑢

𝑞

if 𝒟 is 𝔎-cocomplete and, for every morphism 𝑐 : 1 → 𝐶 in 𝔎, the
morphism 𝑢𝑐 : (𝑝 ↓ 𝑐) → (𝑞 ↓ 𝑐) induced by 𝑢 : 𝐴 → 𝐵 is a 𝒟 -equivalence,
then 𝑢 : 𝐴 → 𝐵 is itself a 𝒟 -equivalence.

• Given a commutative triangle in 𝔎 as below,

𝐴 𝐵

𝐶
𝑝

𝑢

𝑞

if 𝒟 is 𝔎-complete and, for every morphism 𝑐 : 1 → 𝐶 in 𝔎, the morphism
𝑐𝑢 : (𝑐 ↓ 𝑝) → (𝑐 ↓ 𝑞) induced by 𝑢 : 𝐴 → 𝐵 is a 𝒟 -equivalence, then
𝑢 : 𝐴 → 𝐵 is itself a 𝒟 -equivalence.

Proof. We will use the characterisation of 𝒟 -equivalences afforded by propos-
ition 7.2.11. We wish to show that the natural transformation defined by the fol-
lowing pasting diagram is a natural isomorphism:

(1)
𝒟 1 𝒟 𝐵 𝒟 1 𝒟 1

𝒟 1 𝒟 𝐵 𝒟 𝐴 𝒟 1
id

Δ

id

holim−→

Δ

id

Δ
id

Δ 𝑢∗ holim−→
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By factoring 𝐴 → 1 and 𝐵 → 1 through 𝐶 → 1 and applying the left triangle
identity, we see that it is enough to show that the natural transformation defined
below is a natural isomorphism:

(2)
𝒟 1 𝒟 𝐵 𝒟 𝐶 𝒟 𝐶

𝒟 1 𝒟 𝐵 𝒟 𝐴 𝒟 𝐶
id

Δ

id

𝑞!

𝑞∗

id

𝑝∗ id

Δ 𝑢∗ 𝑝!

Axiom Der4L says that the following comma square in 𝔎 is left 𝒟 -exact,

(𝑝 ↓ 𝑐) 1

𝐴 𝐶

𝑟 𝑐

𝑝

i.e. the left Beck–Chevalley transformation it induces is a natural isomorphism:

(3)
𝒟 𝐴 𝒟 𝐶 𝒟 1

𝒟 𝐴 𝒟 (𝑝↓𝑐) 𝒟 1
id

𝑝!

𝑝∗

𝑐∗

Δ
id

𝑟∗ holim−→
Similarly, the comma square in 𝔎 shown below

(𝑞 ↓ 𝑐) 1

𝐵 𝐶

𝑠 𝑐

𝑞

induces a left Beck–Chevalley transformation that is a natural isomorphism:

(4)
𝒟 𝐵 𝒟 𝐶 𝒟 1

𝒟 𝐵 𝒟 (𝑞↓𝑐) 𝒟 1
id

𝑞!

𝑞∗

𝑐∗

Δ
id

𝑠∗ holim−→
Our hypothesis is that unique morphism 𝑢𝑐 : (𝑝 ↓ 𝑐) → (𝑞 ↓ 𝑐) making the fol-
lowing diagram commute is a 𝒟 -equivalence,

(𝑝 ↓ 𝑐) (𝑞 ↓ 𝑐)

𝐴 𝐵

𝑟

𝑢𝑐

𝑠

𝑢
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i.e. the natural transformation defined below is a natural isomorphism:

(5)
𝒟 1 𝒟 (𝑞↓𝑐) 𝒟 1 𝒟 1

𝒟 1 𝒟 (𝑞↓𝑐) 𝒟 (𝑝↓𝑐) 𝒟 1
id

Δ

id

holim−→

Δ

id

Δ
id

Δ (𝑢𝑐)∗ holim−→

However, the natural transformations defined by the following pasting diagrams
are equal,

𝒟 𝐶 𝒟 𝐶 𝒟 1

𝒟 𝐵 𝒟 𝐴 𝒟 (𝑝↓𝑐)

𝑞∗

id

𝑝∗

𝑐∗

Δ

𝑢∗ 𝑟∗

𝒟 𝐶 𝒟 1 𝒟 1

𝒟 𝐵 𝒟 (𝑞↓𝑐) 𝒟 (𝑝↓𝑐)

𝑞∗

𝑐∗

Δ

id

Δ

𝑠∗
(𝑢𝑐)∗

so, the natural transformation obtained by pasting together (2) and (3) is equal to
the natural transformation obtained by pasting together (4) and (5); but the latter
is a natural isomorphism, so we deduce that the former is a natural isomorphism
as well. Thus,

𝒟 1 𝒟 𝐵 𝒟 𝐶 𝒟 𝐶 𝒟 1

𝒟 1 𝒟 𝐵 𝒟 𝐴 𝒟 𝐶 𝒟 1
id

Δ

id

𝑞!

𝑞∗

id

𝑝∗ id

𝑐∗

id

Δ 𝑢∗ 𝑝! 𝑐∗

defines a natural isomorphism. Since 𝑐 : 1 → 𝐶 was arbitrary, we may use axiom
Der2 to deduce that (1) itself defines a natural isomorphism, as claimed. ■

Lemma 7.2.16. Let 𝒟 be a semiderivator on 𝔎. Consider a diagram of the
following form in 𝔎:

𝐸 1

1 𝐶

𝑏

𝑎

If 𝒟 is 𝔎-cocomplete (resp. 𝔎-cocomplete), then the following are equivalent:

(i) The diagram above is a left 𝒟 -exact square (resp. right 𝒟 -exact square).

(ii) The morphism 𝑤 : 𝐸 → (𝑎 ↓ 𝑏) induced by the universal property of (𝑎 ↓ 𝑏)
is a 𝒟 -equivalence.
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Proof. The two claims are formally dual; we will prove the first version.
By definition, the diagram above is a left 𝒟 -exact square if and only if the

left Beck–Chevalley transformation

holim−−→𝐸
Δ𝐸 ⇒ holim−−→𝐸

Δ𝐸𝑎∗𝑎! ⇒ holim−−→𝐸
Δ𝐸𝑏∗𝑎! ⇒ 𝑏∗𝑎!

is a natural isomorphism. However, Δ𝐸 = 𝑤∗Δ(𝑎↓𝑏), and axiom Der4L says the
left Beck–Chevalley transformation

holim−−→(𝑎↓𝑏)
Δ(𝑎↓𝑏) ⇒ holim−−→(𝑎↓𝑏)

Δ(𝑎↓𝑏)𝑎∗𝑎! ⇒ holim−−→(𝑎↓𝑏)
Δ(𝑎↓𝑏)𝑏∗𝑎! ⇒ 𝑏∗𝑎!

is a natural isomorphism, so using the counit of the adjunction 𝑤! ⊣ 𝑤∗, proposi-
tion 7.2.11, and the 2-out-of-3 property of natural isomorphisms, we may deduce
that conditions (i) and (ii) are equivalent. ■

Theorem 7.2.17. Let 𝒟 be a semiderivator on 𝔎. Consider the following dia-
gram in 𝔎:

(◻)
𝐷 𝐵

𝐴 𝐶

𝑝

𝑞

𝑣

𝑢

If 𝒟 is 𝔎-cocomplete (resp. 𝔎-cocomplete), then the following are equivalent:

(i) Diagram (◻) is a left 𝒟 -exact square (resp. right 𝒟 -exact square).

(ii) For all morphisms 𝑎 : 1 → 𝐴 and 𝑏 : 1 → 𝐵, for all diagrams of the form
below in 𝔎,

(∗)

𝐸 (𝑞 ↓ 𝑏) 1

(𝑎 ↓ 𝑝) 𝐷 𝐵

1 𝐴 𝐶

𝑏

𝑝

𝑞

𝑣

𝑎 𝑢

p.b.

𝛼

𝛽

where the top-left square is a pullback square and the squares inhabited
by 𝛼 and 𝛽 are comma squares, the outer square is a left 𝒟 -exact square
(resp. right 𝒟 -exact square).
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(iii) For all diagrams of the form (∗) in 𝔎, the morphism 𝐸 → (𝑢 ∘ 𝑎 ↓ 𝑣 ∘ 𝑏)
induced by the universal property of (𝑢 ∘ 𝑎 ↓ 𝑣 ∘ 𝑏) is a 𝒟 -equivalence.

Proof. (i) ⇒ (ii). The pasting lemma for comma diagrams implies the left rect-
angle of (∗) is a comma diagram, and we may apply lemma 7.1.17 and the-
orem 7.1.25 to deduce that the outer square of (∗) is a left 𝒟 -exact square.

(ii) ⇔ (iii). This is a special case of the previous lemma.

(ii) ⇒ (i). Using axioms Der2 and Der4L as well as the 2-out-of-3 property for
natural isomorphisms, we may deduce that diagram (◻) is left 𝒟 -exact if every
diagram of the form (∗) is left 𝒟 -exact. ■

Corollary 7.2.18. Let 𝒟 be a semiderivator on 𝔎. If 𝒟 is 𝔎-cocomplete, then
the following are equivalent for a morphism 𝑣 : 𝐵 → 𝐴 in 𝔎:

(i) The morphism 𝑣 : 𝐵 → 𝐴 is a 𝒟 -cofinal morphism.

(ii) For every morphism 𝑎 : 1 → 𝐴 in 𝔎, the unique morphism (𝑎 ↓ 𝑣) → 1 is
a 𝒟 -equivalence.

Dually, if 𝒟 is 𝔎-complete, then the following are equivalent for a morphism
𝑢 : 𝐴 → 𝐵 in 𝔎:

(i) The morphism 𝑢 : 𝐴 → 𝐵 is a 𝒟 -coinitial morphism.

(ii) For every morphism 𝑏 : 1 → 𝐵 in 𝔎, the unique morphism (𝑢 ↓ 𝑏) → 1 is
a 𝒟 -equivalence. ■

7.3 Basic localisers
Prerequisites. §§3.1, 7.1.

Definition 7.3.1. Let 𝔎 be a derivator domain and let u� be its underlying 1-category.
A basic right localiser (resp. basic left localiser) for 𝔎 is a subcategory u� of
u� satisfying these axioms:

LF1. Every identity morphism in u� is also in u� , u� has the 2-out-of-3 property
in u�, and u� is closed under retracts in u�.
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LF2. For any object 𝐴 in 𝔎, if the unique morphism 𝐴 → 1 has a right adjoint
(resp. left adjoint), then 𝐴 → 1 is in u� .

LF3. Given a commutative triangle in 𝔎,

𝐴 𝐵

𝐶
𝑝

𝑢

𝑞

if, for every morphism 𝑐 : 1 → 𝐶 in 𝔎, the morphism 𝑢𝑐 : (𝑝 ↓ 𝑐) →
(𝑞 ↓ 𝑐) (resp. 𝑐𝑢 : (𝑐 ↓ 𝑝) → (𝑐 ↓ 𝑞)) induced by 𝑢 : 𝐴 → 𝐵 is in u� , then
𝑢 : 𝐴 → 𝐵 itself is in u� .

A basic localiser for 𝔎 is a subcategory of u� that is both a basic left localiser
and a basic right localiser.

Definition 7.3.2. Let 𝔎 be a derivator domain and let u� be either a basic left
localiser or a basic right localiser for 𝔎. A u�-equivalence is a morphism that is
in u� . A u�-aspherical object is an object 𝐴 in 𝔎 such that the unique morphism
𝐴 → 1 is a u�-equivalence.

¶ 7.3.3. The above terminology is non-standard: it is more conventional to
refer to basic right localisers as ‘basic localisers’ and ignore basic left localisers;
cf. [Cisinski, 2004]. However, this is unproblematic in the case where 𝔎 =
ℭ𝔞𝔱: one can show that all three notions coincide then. The chirality of the
above terminology is chosen to agree with the chirality of the induced asphericity
structures (cf. [Maltsiniotis, 2005]).

Proposition 7.3.4. Let 𝔎 be a derivator domain.

• If 𝒟 is a 𝔎-cocomplete semiderivator, then the class of 𝒟 -equivalences is
a basic right localiser for 𝔎.

• If 𝒟 is a 𝔎-complete semiderivator, then the class of 𝒟 -equivalences is a
basic left localiser for 𝔎.

Proof. The two claims are formally dual; we will prove the first version.
Proposition 7.2.14 implies that the class of 𝒟 -equivalences satisfies axiom

LF1, and proposition 7.2.15 says that axiom LF3 is satisfied. Axiom LF2 remains
to be verified, so suppose 𝐴 is an object in 𝔎 such that the unique morphism 𝑝 :
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𝐴 → 1 has a right adjoint, say 𝑡 : 1 → 𝐴. By remark 7.2.13, 𝑡 is a 𝒟 -equivalence;
but 𝑝 ∘ 𝑡 = id1 since 1 is a terminal object in 𝔎, so we may deduce that 𝑝 : 𝐴 → 1
is also a 𝒟 -equivalence by using axiom LF1. ■

Corollary 7.3.5. If 𝒟 is a derivator on 𝔎, then the class of 𝒟 -equivalences is
a basic localiser for 𝔎. ■

Example 7.3.6. Let 𝒟 be the prederivator of 𝐒𝐞𝐭 (restricted to ℭ𝔞𝔱). By the-
orem 7.1.21, 𝒟 is a derivator, and it is straightforward to verify that the 𝒟 -equi-
valences are precisely the functors 𝑢 : 𝔸 → 𝔹 that induce bijections 𝜋0𝑢 : 𝜋0𝔸 →
𝜋0𝔹, where 𝜋0 : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 is the connected components functor.[1]

Remark 7.3.7. It is not hard to see that the intersection of any family of basic
localisers (resp. basic left localisers, basic right localisers) for a derivator do-
main 𝔎 is automatically a basic localiser (resp. basic left localiser, basic right
localiser) for 𝔎; thus, there is a unique minimal basic localiser (resp. basic left
localiser, basic right localiser) for 𝔎.

Definition 7.3.8. Let 𝔎 be a derivator domain and let u� be either a basic left
localiser or a basic right localiser for 𝔎.

• A right u�-aspherical morphism is a morphism 𝑢 : 𝐴 → 𝐵 in 𝔎 such
that, for all morphisms 𝑏 : 1 → 𝐵 in 𝔎, the unique morphism (𝑢 ↓ 𝑏) → 1
is a u�-equivalence.

• A left u�-aspherical morphism is a morphism 𝑣 : 𝐵 → 𝐴 in 𝔎 such that,
for all morphisms 𝑎 : 1 → 𝐴 in 𝔎, the unique morphism (𝑎 ↓ 𝑣) → 1 is a
u�-equivalence.

Remark 7.3.9. In view of corollary 7.2.18, one might also call right (resp. left)
u�-aspherical morphisms u�-coinitial (resp. u�-cofinal).

Lemma 7.3.10. Let 𝔎 be a derivator domain.

• If a morphism 𝑢 : 𝐴 → 𝐵 in 𝔎 has a right adjoint, then for any morphism
𝑏 : 1 → 𝐵, the unique morphism (𝑢 ↓ 𝑏) → 1 has a right adjoint.

• If a morphism 𝑣 : 𝐵 → 𝐴 in 𝔎 has a left adjoint, then for any morphism
𝑎 : 1 → 𝐴, the unique morphism (𝑎 ↓ 𝑣) → 1 has a left adjoint.

[1] Recall proposition a.2.15.
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Proof. The two claims are formally dual; we will prove the first version.
Suppose the following diagram is a comma square in 𝔎:

(𝑢 ↓ 𝑏) 1

𝐴 𝐵

𝑝

𝑞

𝑏

𝑢

Let 𝑣 : 𝐵 → 𝐴 be a right adjoint of 𝑢 : 𝐴 → 𝐵, say with counit : 𝑢 ∘ 𝑣 ⇒ id𝐵.
Consider the morphism 𝑡 : 1 → (𝑢 ↓ 𝑏) induced by the diagram in 𝔎 shown
below:

1 1

𝐴 𝐵

id

𝑣∘𝑏

𝑏

𝑢

∘𝑏

Via the 2-dimensional universal property of (𝑢 ↓ 𝑏), : 𝑢 ∘ 𝑝 ⇒ 𝑏 ∘ 𝑞 induces
a 2-cell : id(𝑢↓𝑏) ⇒ 𝑡 ∘ 𝑞, and using the 2-dimensional Yoneda lemma, it is
straightforward to check that is the unit of an adjunction 𝑞 ⊣ 𝑡 : 1 → (𝑢 ↓ 𝑏).
Thus, the unique morphism (𝑢 ↓ 𝑏) → 1 indeed has a right adjoint. ■

Corollary 7.3.11. Let 𝔎 be a derivator domain.

• If u� is a basic right localiser for 𝔎, then every morphism in 𝔎 that has a
right adjoint is a right u�-aspherical morphism.

• If u� is a basic left localiser for 𝔎, then every morphism in 𝔎 that has a
left adjoint is a left u�-aspherical morphism. ■

Proposition 7.3.12. Let 𝔎 be a derivator domain.

• If u� is a basic right localiser for 𝔎, then every right u�-aspherical morph-
ism is a u�-equivalence; in particular every morphism in 𝔎 that has a right
adjoint is a u�-equivalence.

• If u� is a basic left localiser for 𝔎, then every left u�-aspherical morphism
is a u�-equivalence; in particular every morphism in 𝔎 that has a left
adjoint is a u�-equivalence.

Proof. The two claims are formally dual; we will prove the first version.
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Suppose 𝑢 : 𝐴 → 𝐵 is a right u�-aspherical morphism. Consider the follow-
ing commutative triangle in 𝔎:

𝐴 𝐵

𝐵
𝑢

𝑢

id

Let 𝑏 : 1 → 𝐵 be a morphism in 𝔎. Since the unique morphism (𝑢 ↓ 𝑏) → 1
is a u�-equivalence, axioms LF1 and LF2 and lemma 7.3.10 imply the induced
morphism 𝑢𝑏 : (𝑢 ↓ 𝑏) → (id𝐵 ↓ 𝑏) is also a u�-equivalence. We may then apply
axiom LF3 to deduce that 𝑢 : 𝐴 → 𝐵 itself is a u�-equivalence. ■

Lemma 7.3.13. Let 𝐴 be an object in a derivator domain 𝔎. If u� is a basic left
or right localiser for 𝔎, then the morphism 𝑝 : 𝟚 ⊙ 𝐴 → 𝟙 ⊙ 𝐴 ≅ 𝐴 induced by
the unique functor 𝟚 → 𝟙 is a u�-equivalence.

Proof. The unique functor 𝟚 → 𝟙 has both a left adjoint and a right adjoint, so
the induced morphism 𝑝 : 𝟚 ⊙ 𝐴 → 𝐴 has both a left adjoint and a right adjoint.
Proposition 7.3.12 then implies that it is a u�-equivalence. ■

Proposition 7.3.14. Let 𝑢0, 𝑢1 : 𝐴 → 𝐵 be a parallel pair of morphisms in a
derivator domain 𝔎 and let u� be either a basic left localiser or a basic right
localiser for 𝔎. If there exists a 2-cell 𝛼 : 𝑢0 ⇒ 𝑢1, then the following are
equivalent:

(i) The morphism 𝑢0 : 𝐴 → 𝐵 is a u�-equivalence.

(ii) The morphism 𝑢1 : 𝐴 → 𝐵 is a u�-equivalence.

Proof. Let 𝑖0, 𝑖1 : 𝐴 → 𝟚 ⊙ 𝐴 be the morphisms induced by the left and right
adjoints of the unique functor 𝟚 → 𝟙; note that functoriality yields 𝑝 ∘ 𝑖0 = id𝐴 =
𝑝 ∘ 𝑖1. The previous lemma says that 𝑝 is a u�-equivalence, so we may then use
axiom LF1 to deduce that 𝑖0 and 𝑖1 are both u�-equivalences.

By definition, there is a bijection

u�(𝟚 ⊙ 𝐴, 𝐵) ≅ Fun(𝟚, 𝔎(𝐴, 𝐵))

that is natural in 𝐵; thus, the 2-cell 𝛼 : 𝑢0 ⇒ 𝑢1 corresponds to a morphism
ℎ : 𝟚 ⊙ 𝐴 → 𝐵 such that ℎ ∘ 𝑖0 = 𝑢0 and ℎ ∘ 𝑖1 = 𝑢1. Axiom LF1 then implies
that 𝑢0 is a u�-equivalence if and only if 𝑢1 is a u�-equivalence. ■
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Corollary 7.3.15. If u� is a basic left or right localiser for a derivator domain
𝔎, then every left or right adjoint in 𝔎 is a u�-equivalence.

Proof. One half of the claim was proved in proposition 7.3.12; it now suffices to
show that, if u� is a basic right localiser for 𝔎, then every right adjoint in 𝔎 is a
u�-equivalence. We already know that every left adjoint in 𝔎 is a u�-equivalence,
so axiom LF1 and the above proposition together imply that right adjoints are
also u�-equivalences. ■

7.4 The minimal basic localiser
Prerequisites. §§1.1, 1.2, 1.3, 1.5, 1.9, 1.11, 7.1, 7.2, 7.3.

In this section, we follow [Cisinski, 2004, §2.2].

Proposition 7.4.1. Let u� be a basic left or right localiser for ℭ𝔞𝔱. For any
functor 𝑢 : 𝔸 → 𝔹, the following are equivalent:

(i) The functor 𝑢 : 𝔸 → 𝔹 is a u�-equivalence.

(ii) The functor 𝑢op : 𝔸op → 𝔹op is a u�-equivalence.

Proof. See Proposition 1.2.6 in [Cisinski, 2004]. □

Corollary 7.4.2. Let u� be a subcategory of 𝐂𝐚𝐭. The following are equivalent:

(i) u� is a basic localiser for ℭ𝔞𝔱.

(ii) u� is a basic right localiser for ℭ𝔞𝔱.

(iii) u� is a basic left localiser for ℭ𝔞𝔱. ■

¶ 7.4.3. Throughout this section, let u� be any basic localiser for ℭ𝔞𝔱. We
write u�∞ for the class of weak homotopy equivalences of categories.

Theorem 7.4.4. u�∞ is a basic localiser for ℭ𝔞𝔱.

Proof. By lemma 1.11.3 (resp. remark 1.11.10, theorem 1.11.20), u�∞ satisfies ax-
iom LF1 (resp.LF2, LF3). ■

Lemma 7.4.5. If 𝔸 is a small category with a terminal object, then the category
𝚫(𝔸) is u�-aspherical.
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Proof. Straightforward. (This is Lemme 2.2.2 in [Cisinski, 2004].) □

Lemma 7.4.6 (Grothendieck). For all small categories 𝔸, the right projection
𝜋R : 𝚫(𝔸) → 𝔸 is right u�-aspherical; in particular, it is a u�-equivalence.

Proof. Let 𝑎 be an object in 𝔸. Lemma 4.10.12 says that the canonical com-
parison functor 𝚫(𝔸∕𝑎) → (𝜋R ↓ 𝑎) is an isomorphism, and lemma 7.4.5 im-
plies 𝚫(𝔸∕𝑎) is u�-aspherical, so the induced functor (𝜋R ↓ 𝑎) → 𝔸∕𝑎 is a
u�-equivalence. Thus, 𝜋R : 𝚫(𝔸) → 𝔸 is right u�-aspherical. ■

Corollary 7.4.7. A functor 𝑢 : 𝔸 → 𝔹 is a u�-equivalence if and only if the
functor 𝚫(𝑢) : 𝚫(𝔸) → 𝚫(𝔹) is a u�-equivalence.

Proof. Use the naturality of 𝜋R and axiom LF1. ■

¶ 7.4.8. Now, let u�𝚫 be the subcategory of 𝐬𝐒𝐞𝐭 consisting of those morph-
isms 𝑓 : 𝑋 → 𝑌 such that 𝚫(𝑓) : 𝚫(𝑋) → 𝚫(𝑌 ) are u�-equivalences.

Proposition 7.4.9. For all simplicial sets 𝑋 and all natural numbers 𝑛, the pro-
jection 𝜋 : 𝑋 × Δ𝑛 → 𝑋 is a u�𝚫-equivalence.

Proof. Since Δ𝑚 × Δ𝑛 ≅ N([𝑚] × [𝑛]), lemma 7.4.5 implies 𝚫(Δ𝑚 × Δ𝑛) is u�-as-
pherical. Now, let 𝑥 be an 𝑚-simplex of 𝑋, and consider the comma category
(𝚫(𝜋) ↓ 𝑥). It is not hard to see that (𝚫(𝜋) ↓ 𝑥) is isomorphic to 𝚫(Δ𝑚 × Δ𝑛), and
so the induced functor (𝚫(𝜋) ↓ 𝑥) → 𝚫(𝑋)∕𝑥 is a u�-equivalence. Thus, 𝚫(𝜋) :
𝚫(𝑋 × Δ𝑛) → 𝚫(𝑋) is right u�-aspherical, and in particular 𝜋 : 𝑋 × Δ𝑛 → 𝑋 is
a u�𝚫-equivalence. ■

Corollary 7.4.10. Every trivial Kan fibration is a u�𝚫-equivalence.

Proof. Apply proposition 1.5.21. ■

Proposition 7.4.11. Every trivial cofibration in 𝐬𝐒𝐞𝐭 is a u�𝚫-equivalence.

Proof. See Proposition 2.2.9 in [Cisinski, 2004]. □

Theorem 7.4.12 (Cisinski). Any u�∞-equivalence is also a u�-equivalence.

Proof. Propositions 1.4.7 and 1.5.12 together imply that every weak homotopy
equivalence in 𝐬𝐒𝐞𝐭 can be factored as a trivial cofibration followed by a trivial
Kan fibration, so applying corollaries 7.4.7 and 7.4.10 and proposition 7.4.11, we
deduce that every u�∞-equivalence is a u�-equivalence. ■
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We thus obtain a proof of Grothendieck’s conjecture ([1983, §81]):

Corollary 7.4.13. The minimal basic localiser for ℭ𝔞𝔱 is u�∞. ■
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VIII

Homotopy toposes

8.1 Internal Kan complexes
Prerequisites. §§1.1, 1.4, 1.7, 2.3, a.7.

To do homotopy theory inside a topos, we need a model for homotopy types.
One of the simplest options is to internalise the theory of Kan complexes. This
was first done in the case of sheaves on a topological space by Brown [1973],
then extended to the general case of an effective regular category by van Osdol
[1977].

Definition 8.1.1. An internal Kan fibration (resp. internal trivial Kan fibra-
tion) in a regular category u� is a morphism 𝑝 : 𝑋 → 𝑌 in 𝐬u� with the following
property:

• If 𝑖 : 𝑍 → 𝑊 is a horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛 (resp. a boundary inclusion

𝜕Δ𝑛 ↪ Δ𝑛) and the square in the diagram below is a weak pullback square
in u�:

{𝑊 , 𝑋} {𝑊 , 𝑌 }

{𝑍, 𝑋} {𝑍, 𝑌 }

{𝑖,𝑋}

{𝑊 ,𝑝}

{𝑖,𝑌 }

{𝑍,𝑝}

Remark 8.1.2. If u� = 𝐒𝐞𝐭, then an internal Kan fibration (resp. internal trivial
Kan fibration) is just a Kan fibration (resp. trivial Kan fibration) in the usual
sense, by lemma a.3.2. If u� = [ℂop, 𝐒𝐞𝐭] for a small category ℂ, then an internal
Kan fibration (resp. internal trivial Kan fibration) in u� is the same thing as a
componentwise Kan fibration (resp. trivial Kan fibration), because limits and
colimits in [ℂop, 𝐒𝐞𝐭] are computed componentwise.
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Definition 8.1.3. An internal Kan complex in a regular category u� is an object
𝑋 in 𝐬u� such that the unique morphism 𝑋 → 1 in 𝐬u� is an internal Kan fibration.
We write 𝐊𝐚𝐧(u�) for the full subcategory of 𝐬u� spanned by the internal Kan
complexes in u� .

Proposition 8.1.4. Let u� be a regular category.

(i) The class of internal Kan fibrations (resp. internal trivial Kan fibrations)
in u� contains all isomorphisms in 𝐬u� .

(ii) The class of internal Kan fibrations (resp. internal trivial Kan fibrations)
in u� is closed under composition.

(iii) The class of internal Kan fibrations (resp. internal trivial Kan fibrations)
in u� is closed under pullbacks.

(iv) The class of internal Kan fibrations (resp. internal trivial Kan fibrations)
in u� is closed under retracts.

(v) The class of internal Kan fibrations (resp. internal trivial Kan fibrations)
in u� is closed under finite products.

Proof. (i). Obvious.

(ii) and (iii). Apply the weak pullback lemma (a.7.17).

(iv) and (v). By proposition a.7.15, the class of regular epimorphisms in u� is
closed under retracts (resp. finite products), so the class of weak pullback squares
in u� is also closed under retracts (resp. finite products). ■

Proposition 8.1.5. Let u� be a regular category, let 𝑖 : 𝑍 → 𝑊 be a morphism
between finite simplicial sets, and let 𝑝 : 𝑋 → 𝑌 be a morphism in 𝐬u� . Consider
the following commutative diagram in u�:

{𝑊 , 𝑋} {𝑊 , 𝑌 }

{𝑍, 𝑋} {𝑍, 𝑌 }

{𝑖,𝑋}

{𝑊 ,𝑝}

{𝑖,𝑌 }

{𝑍,𝑝}

(i) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension and 𝑝 : 𝑋 → 𝑌 is an internal Kan
fibration, then the diagram is a weak pullback square in u� .
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(ii) If 𝑖 : 𝑍 → 𝑊 is a monomorphism and 𝑝 : 𝑋 → 𝑌 is an internal trivial
Kan fibration, then the diagram is a weak pullback square in u� .

Proof. The proofs of the two claims are similar; we will prove claim (i).
By proposition 1.4.12, the class of anodyne extensions between finite sim-

plicial sets is the smallest class of morphisms containing the horn inclusions
Λ𝑛

𝑘 ↪ Δ𝑛 that is closed under composition, pushouts, and retracts; but the class
of regular epimorphisms u� is closed under composition, pullbacks, and retracts
(by proposition a.7.15), and {−, 𝑋} sends colimits in 𝐬𝐒𝐞𝐭 to limits in u� , so we
are done. ■

Proposition 8.1.6. Let u� be a regular category, let 𝑖 : 𝑍 → 𝑊 be a mono-
morphism between finite simplicial sets, and let 𝑝 : 𝑋 → 𝑌 be an internal Kan
fibration in u� . Consider the following commutative diagram in 𝐬u� ,

𝑊 ⋔ 𝑋

(𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 ) 𝑊 ⋔ 𝑌

𝑍 ⋔ 𝑋 𝑍 ⋔ 𝑌

𝑖⋔id𝑋

id𝑊 ⋔𝑝

𝑖◰𝑝

𝑖⋔id𝑌

id𝑍⋔𝑝

where the square is a pullback.

(i) The morphism 𝑖 ◰ 𝑝 : 𝑊 ⋔ 𝑋 → (𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 ) is an internal
Kan fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension, then 𝑖 ◰ 𝑝 is an internal trivial
Kan fibration.

(iii) If 𝑝 : 𝑋 → 𝑌 is an internal trivial Kan fibration, then 𝑖 ◰ 𝑝 is an internal
trivial Kan fibration.

Proof. The proofs of the three claims are similar; we will prove claim (i).
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Let 𝑗 : 𝐾 → 𝐿 be a morphism of finite simplicial sets, and consider the
following commutative diagram in u� ,

{𝐿, 𝑊 ⋔ 𝑋} {𝐿, 𝑊 ⋔ 𝑌 }

{𝐾, 𝑊 ⋔ 𝑋} {𝐾, 𝑊 ⋔ 𝑌 }

{𝐿, 𝑍 ⋔ 𝑋} {𝐿, 𝑍 ⋔ 𝑌 }

{𝐾, 𝑍 ⋔ 𝑋} {𝐾, 𝑍 ⋔ 𝑌 }

where the horizontal arrows are induced by 𝑝 : 𝑋 → 𝑌 , the vertical arrows are
induced by 𝑖 : 𝑍 → 𝑊 , and the diagonal arrows are induced by 𝑗 : 𝐾 → 𝐿. We
wish to show that the following diagram is a weak pullback square in u� when
𝑗 : 𝐾 → 𝐿 is any horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛:

{𝐿, 𝑊 ⋔ 𝑋} {𝐿, (𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 )}

{𝐾, 𝑊 ⋔ 𝑋} {𝐾, (𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 )}

{𝑗,𝑊 ⋔𝑋}

{𝐿,𝑖◰𝑝}

{𝑗,(𝑍⋔𝑋)×𝑍⋔𝑌 (𝑊 ⋔𝑌 )}

{𝐾,𝑖◰𝑝}

It is not hard to see that this amounts to showing that the comparison morphism

{𝐿, 𝑊 ⋔ 𝑋} → {𝐾, 𝑊 ⋔ 𝑋} ×{𝐾,𝑍⋔𝑌 } {𝐿, 𝑍 ⋔ 𝑋} ×{𝐾,𝑍⋔𝑌 } {𝐿, 𝑊 ⋔ 𝑌 }

is a regular epimorphism in u� . Via the natural isomorphism {𝐾, 𝑍 ⋔ 𝑋} ≅
{𝐾 × 𝑍, 𝑋}, this is in turn equivalent to showing that the following diagram is
a weak pullback square in u� ,

{𝐿 × 𝑊 , 𝑋} {(𝐾 × 𝑊 ) ∪𝐾×𝑍 (𝐿 × 𝑍), 𝑋}

{𝐿 × 𝑊 , 𝑌 } {(𝐾 × 𝑊 ) ∪𝐾×𝑍 (𝐿 × 𝑍), 𝑌 }

{𝐿×𝑊 ,𝑝}

{𝑗◲𝑖,𝑋}

{(𝐾×𝑊 )∪𝐾×𝑍(𝐿×𝑍),𝑝}

{𝑗◲𝑖,𝑌 }

where 𝑗 ◲ 𝑖 : (𝐾 × 𝑊 ) ∪𝐾×𝑍 (𝐿 × 𝑍) → 𝐿 × 𝑊 is the evident monomorphism
of finite simplicial sets. But propositions 1.4.15 and 2.4.4 say 𝑗 ◲𝑖 is an anodyne
extension, so we may apply proposition 8.1.5 to deduce the claim. ■
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Corollary 8.1.7 (Internal path spaces). Let u� be a regular category and let 𝑋
be an internal Kan complex in u� .

(i) Δ1 ⋔ 𝑋 is an internal Kan complex in u� .

(ii) The morphism Δ1 ⋔ 𝑋 → 𝜕Δ1 ⋔ 𝑋 induced by the boundary inclusion
𝜕Δ1 ↪ Δ1 is an internal Kan fibration in u� .

(iii) The morphisms Δ1 ⋔ 𝑋 → Δ0 ⋔ 𝑋 induced by the two vertex inclusions
Δ0 → Δ1 are internal trivial Kan fibrations in u� . ■

Lemma 8.1.8. Let u� be a regular category and let 𝑓 : 𝑋 → 𝑌 be a morphism
of internal Kan complexes in u� . Given a commutative square of finite simplicial
sets, say

𝐾′ 𝐾

𝐿′ 𝐿

if 𝐾′ → 𝐾 and 𝐾 ∪𝐾′
𝐿′ → 𝐿 are monomorphisms, then the induced morphism

(𝐾 ⋔ 𝑋) ×𝐾⋔𝑌 (𝐿 ⋔ 𝑌 ) → (𝐾′ ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 )

is an internal Kan fibration.

Proof. Let 𝑀 be the pushout 𝐾 ∪𝐾′
𝐿′. Since 𝑋 (resp. 𝑌 ) is an internal Kan

complex and 𝐾′ → 𝐾 (resp. 𝑀 → 𝐿) is a monomorphism, the induced morph-
ism 𝐾 ⋔ 𝑋 → 𝐾′ ⋔ 𝑋 (resp. 𝐿 ⋔ 𝑌 → 𝑀 ⋔ 𝑌 ) is an internal Kan fibration,
by proposition 8.1.6. Since (−) ⋔ 𝑌 sends pushout squares to pullback squares,
we have a canonical isomorphism 𝑀 ⋔ 𝑌 ≅ (𝐾 ⋔ 𝑌 ) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ); and in the
following commutative diagrams,

(𝐾 ⋔ 𝑋) ×𝐾⋔𝑌 (𝐿 ⋔ 𝑌 ) 𝐿 ⋔ 𝑌

(𝐾 ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ) (𝐾 ⋔ 𝑌 ) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ) 𝐿′ ⋔ 𝑌

𝐾 ⋔ 𝑋 𝐾 ⋔ 𝑌 𝐾′ ⋔ 𝑌
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(𝐾 ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ) 𝐾 ⋔ 𝑋

(𝐾′ ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ) 𝐾′ ⋔ 𝑋

𝐿′ ⋔ 𝑌 𝐾′ ⋔ 𝑌
every square is a pullback square, so by proposition 8.1.4, the two morphisms

(𝐾 ⋔ 𝑋) ×𝐾⋔𝑌 (𝐿 ⋔ 𝑌 ) → (𝐾 ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 )

(𝐾 ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 ) → (𝐾′ ⋔ 𝑋) ×𝐾′⋔𝑌 (𝐿′ ⋔ 𝑌 )

are internal Kan fibrations, and their composite is the internal Kan fibration we
seek. ■

Let 𝐷𝑛+1 be the relative cylinder 𝐶(Δ𝑛, 𝜕Δ𝑛), as in definition 1.3.32, and let
𝑗0, 𝑗1 : Δ𝑛 → 𝐷𝑛+1 be the two canonical embeddings.

Definition 8.1.9. A Dugger–Isaksen weak equivalence in a regular category u�
is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐊𝐚𝐧(u�) such that the morphism

{Δ𝑛, 𝑋} ×{Δ𝑛,𝑌 } {𝐷𝑛+1, 𝑌 } ⟶ {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 }

induced by the commutative diagram

• {𝐷𝑛+1, 𝑌 }

• {Δ𝑛, 𝑌 }

{Δ𝑛, 𝑋} {Δ𝑛, 𝑌 }

{𝜕Δ𝑛, 𝑋} {𝜕Δ𝑛, 𝑌 }

{𝑗1,𝑌 }

{𝑗0,𝑌 }

{Δ𝑛,𝑓}

{𝜕Δ𝑛,𝑓}

is a regular epimorphism in u� .

Remark 8.1.10. If u� = 𝐒𝐞𝐭, then a Dugger–Isaksen weak equivalence is pre-
cisely a weak homotopy equivalence of Kan complexes in the usual sense, by
theorem 1.4.35. If u� = [ℂop, 𝐒𝐞𝐭] for a small category ℂ, then an Dugger–
Isaksen weak equivalence of internal Kan complexes in u� is the same thing as a
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componentwise weak homotopy equivalence between componentwise Kan com-
plexes, because limits and colimits in [ℂop, 𝐒𝐞𝐭] are computed componentwise.

Proposition 8.1.11. Let u� be a regular category.

(i) The class of Dugger–Isaksen weak equivalences in u� contains all iso-
morphisms in 𝐊𝐚𝐧(u�).

(ii) The class of Dugger–Isaksen weak equivalences in u� is closed under re-
tracts.

(iii) The class of Dugger–Isaksen weak equivalences in u� is closed under finite
products.

Proof. The class of Dugger–Isaksen weak equivalences (considered as a class
of objects in the category [𝟚, 𝐊𝐚𝐧(u�)]) is defined by an internal right lifting
property, so we may use the same methods used in the proof of proposition 8.1.4.

■

Proposition 8.1.12. Let 𝐹 : u� → u� be a regular functor.

(i) The induced functor 𝐬𝐹 : 𝐬u� → 𝐬u� preserves internal Kan fibrations and
internal trivial Kan fibrations.

(ii) The induced functor 𝐊𝐚𝐧(𝐹 ) : 𝐊𝐚𝐧(u�) → 𝐊𝐚𝐧(u� ) preserves Brown fac-
torisations and Dugger–Isaksen weak equivalences.

(iii) If 𝐹 : u� → u� is conservative, then 𝐬𝐹 : 𝐬u� → 𝐬u� reflects internal Kan
fibrations and internal trivial Kan fibrations, and 𝐊𝐚𝐧(𝐹 ) : 𝐊𝐚𝐧(u�) →
𝐊𝐚𝐧(u� ) reflects Dugger–Isaksen weak equivalences.

Proof. These are immediate consequences of the fact that these definitions can
be phrased in terms of properties of constructions using only finite limits and
regular epimorphisms. ■

Theorem 8.1.13. Let u� be a regular category.

(i) 𝐊𝐚𝐧(u�), equipped with the class of Dugger–Isaksen weak equivalences, is
a saturated homotopical category.

(ii) An internal Kan fibration of internal Kan complexes in u� is an internal
trivial Kan fibration if and only if it is also a Dugger–Isaksen weak equi-
valence.
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(iii) 𝐊𝐚𝐧(u�) is a category of fibrant objects where the weak equivalences are
the Dugger–Isaksen weak equivalences and the fibrations are the internal
Kan fibrations.

Proof. (i) and (ii). The claims are known in the case where u� = 𝐒𝐞𝐭, by re-
mark 8.1.2 and theorems 1.4.27 and 1.4.31. Clearly, the same is true for u� = 𝐒𝐞𝐭𝐵

for any set 𝐵. On the other hand, if u� is any small regular category, we may ap-
ply the classical completeness theorem (a.7.22) and proposition 8.1.12 to reduce
to the case of 𝐒𝐞𝐭𝐵, so we are done in this case. In general, we may assume u�
is small by appealing to the universe axiom[1] and the fact that the properties of
being an internal Kan fibration, internal trivial Kan fibration, or Dugger–Isaksen
weak equivalence are defined without reference to a choice of universe.

(iii). We have just verified axiom A, proposition 8.1.4 implies axioms B and C are
satified, corollary 8.1.7 is axiom D, and axiom E is satisfied by definition. ■

Lemma 8.1.14. Let 𝑖 : 𝑍 → 𝑊 be a monomorphism of finite simplicial sets and
let 𝑓 : 𝑋 → 𝑌 be a morphism of internal Kan complexes in a regular category
u� . Consider the following commutative diagram in 𝐬u� ,

𝑊 ⋔ 𝑋

𝐿(𝑖, 𝑓 ) 𝑍 ⋔ 𝑋

𝑊 ⋔ 𝑌 𝑍 ⋔ 𝑌

id𝑊 ⋔𝑓

𝑖⋔id𝑋

𝑞

id𝑍⋔𝑓

𝑖⋔id𝑌

where the square in the lower right is a pullback square.

(i) If 𝑓 : 𝑋 → 𝑌 is a Dugger–Isaksen weak equivalence, then so is 𝑞 :
[𝑊 , 𝑋] → 𝐿(𝑖, 𝑓 ).

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension of finite simplicial sets, then 𝑞 :
[𝑊 , 𝑋] → 𝐿(𝑖, 𝑓 ) is a Dugger–Isaksen weak equivalence.

Proof. The claim is known in the case where u� = 𝐒𝐞𝐭, by theorem 1.4.35 and
lemma 1.4.33; and in general, we appeal to proposition 8.1.12 and the classical
completeness theorem (a.7.22). ■

[1] See §0.1.
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We have so far avoided discussing homotopy groups for internal Kan com-
plexes. This is because they need not exist in a general regular category: clearly,
if we are able to take quotients of internal equivalence relations, then we can
construct 𝜋0; and conversely, because internal equivalence relations define in-
ternal Kan complexes, being able to construct 𝜋0 implies we can take quotients
of internal equivalence relations. This suggests that the right setting for these
constructions is an effective regular category.

Proposition 8.1.15. If 𝑋 is an internal Kan complex in a regular category u� ,
then the regular image of the morphism ⟨𝑑1, 𝑑0⟩ : 𝑋1 → 𝑋0 × 𝑋0 defines an
equivalence relation on 𝑋0.

Proof. For u� = 𝐒𝐞𝐭, this is a special case of proposition 1.4.17; and in general,
we appeal to proposition 8.1.12 and the classical completeness theorem (a.7.22).

■

Proposition 8.1.16. Let u� be a regular category and let (−)0 : 𝐬u� → u� be the
functor that sends a simplicial object 𝑋 in u� to the object 𝑋0 in u� .

(i) The functor (−)0 : 𝐬u� → u� has both a left adjoint disc : u� → 𝐬u� and a
right adjoint codisc : u� → 𝐬u� .

(ii) The functor disc : u� → 𝐬u� is fully faithful.

(iii) For each morphism 𝑓 : 𝑋 → 𝑌 in u� , the morphism disc 𝑓 : disc 𝑋 →
disc 𝑌 is an internal Kan fibration in u� . In particular, each disc 𝑋 is an
internal Kan complex in u� .

Proof. (i). Let disc : u� → 𝐬u� be the functor that sends an object 𝑋 to the
constant simplicial object defined by 𝑋 and let codisc : u� → 𝐬u� be the functor
that sends an object 𝑋 to the simplicial object defined by the formula [𝑛] ↦ 𝑋𝑛+1.
It is straightforward to check that disc is a left adjoint for (−)0 and codisc is a
right adjoint for (−)0.

(ii). The functor disc : u� → 𝐬u� is fully faithful because 𝚫 is connected.

(iii). Since the face and degeneracy operators of disc 𝑌 are isomorphisms, the
morphisms {Δ𝑛, disc 𝑌 } → {Λ𝑛

𝑘, disc 𝑌 } induced by the horn inclusions Λ𝑛
𝑘 ↪

Δ𝑛 must also be isomorphisms. Thus, the induced morphism

{Δ𝑛, disc 𝑋} → {Λ𝑛
𝑘, 𝑋} ×{Λ𝑛

𝑘,𝑌 } {Δ𝑛, 𝑌 }
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is an isomorphism (and a regular epimorphism a fortiori). ■

Proposition 8.1.17. Let u� be an effective regular category and let disc : u� →
𝐊𝐚𝐧(u�) be a left adjoint for the functor (−)0 : 𝐊𝐚𝐧(u�) → u� .

(i) The functor disc : u� → 𝐊𝐚𝐧(u�) has a left adjoint, 𝜋0 : 𝐊𝐚𝐧(u�) → u� .

(ii) If 𝑓 : 𝑋 → 𝑌 is a Dugger–Isaksen weak equivalence in u� , then the morph-
ism 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is an isomorphism.

Proof. (i). We define the functor 𝜋0 : 𝐊𝐚𝐧(u�) → u� by the following coequaliser
diagram:

𝑋1 𝑋0 𝜋0𝑋
𝑑1

𝑑0

Note that such coequalisers exist, by proposition 8.1.15 and lemma a.7.25. It
is straightforward to verify that 𝜋0 : 𝐊𝐚𝐧(u�) → u� is indeed a left adjoint for
disc : u� → 𝐊𝐚𝐧(u�).

(ii). In the case u� = 𝐒𝐞𝐭, we may apply corollary 1.3.16 and theorem 1.4.35;
and in general, we appeal to proposition 8.1.12 and the classical completeness
theorem (a.7.22). ■

Definition 8.1.18. Let 𝑛 be a positive integer and let 𝑋 be an internal Kan com-
plex in an effective regular category u� .

• The internal based 𝑛-loop fibration on 𝑋 is the internal Kan fibration
Ω𝑛(𝑋) → 𝑋 defined by the following pullback diagram in 𝐊𝐚𝐧(u�),

Ω𝑛(𝑋) Δ𝑛 ⋔ 𝑋

𝑋 𝜕Δ𝑛 ⋔ 𝑋

where Δ𝑛 ⋔ 𝑋 → 𝜕Δ𝑛 ⋔ 𝑋 is the internal Kan fibration induced by the
boundary inclusion 𝜕Δ𝑛 ↪ Δ𝑛 and 𝑋 → 𝜕Δ𝑛 ⋔ 𝑋 is the morphism induced
by 𝜕Δ𝑛 → Δ0.

• Let 𝑥 be a morphism disc 𝑇 → 𝑋 in 𝐊𝐚𝐧(u�). The internal based 𝑛-loop
space of (𝑋, 𝑥) is the internal Kan complex Ω𝑛(𝑋, 𝑥) in u�∕𝑇 defined by
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8.1. Internal Kan complexes

the following pullback diagram in 𝐊𝐚𝐧(u�):

Ω𝑛(𝑋, 𝑥) Ω𝑛(𝑋)

disc 𝑇 𝑋𝑥

The internal 𝑛-th homotopy group of (𝑋, 𝑥) is the object 𝜋𝑛(𝑋, 𝑥) =
𝜋0Ω𝑛(𝑋, 𝑥) in u�∕𝑇 .

Remark 8.1.19. It is clear that the above constructions are functorial. Moreover,
𝜋𝑛(𝑋, 𝑥) admits a natural internal group structure (in u�∕𝑇 ); but we do not need
this fact.

Lemma 8.1.20. Let u� be an effective regular category and let 𝑓 : 𝑋 → 𝑌 be
a morphism in 𝐊𝐚𝐧(u�). If 𝑓 : 𝑋 → 𝑌 is a Dugger–Isaksen weak equivalence,
then the induced morphism Ω𝑛(𝑓 ) : Ω𝑛(𝑋) → Ω𝑛(𝑌 ) is also a Dugger–Isaksen
weak equivalence.

Proof. Since 𝐊𝐚𝐧(u�) is a category of fibrant objects (theorem 8.1.13), by Ken
Brown’s lemma (3.7.9), it suffices to prove that claim in the special case where
𝑓 : 𝑋 → 𝑌 is an internal trivial Kan fibration of internal Kan complexes. In that
case, we have the following commutative diagram in 𝐊𝐚𝐧(u�),

Δ𝑛 ⋔ 𝑋 𝜕Δ𝑛 ⋔ 𝑋 𝑋

Δ𝑛 ⋔ 𝑌 𝜕Δ𝑛 ⋔ 𝑌 𝑌

idΔ𝑛⋔𝑓 id𝜕Δ𝑛⋔𝑓 𝑓

and by proposition 8.1.6, all the vertical arrows are internal trivial Kan fibrations
in u� . Thus, by lemma 3.7.29, the induced morphism Ω𝑛(𝑓 ) : Ω𝑛(𝑋) → Ω𝑛(𝑌 )
is a Dugger–Isaksen weak equivalence. ■

Theorem 8.1.21. Let u� be an effective regular category and let 𝑓 : 𝑋 → 𝑌 be
a morphism in 𝐊𝐚𝐧(u�). The following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a Dugger–Isaksen weak equivalence.

(ii) 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is an isomorphism in u� and, for all positive integers
𝑛, all objects 𝑇 in u� , and all morphisms 𝑥 : disc 𝑇 → 𝑋 in 𝐊𝐚𝐧(u�),
𝜋𝑛𝑓 : 𝜋𝑛(𝑋, 𝑥) → 𝜋𝑛(𝑌 , 𝑓 ∘ 𝑥) is an isomorphism in u�∕𝑇 .
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(iii) 𝜋0𝑓 : 𝜋0𝑋 → 𝜋0𝑌 is an isomorphism in u� and, for all positive integers
𝑛, 𝜋𝑛𝑓 : 𝜋𝑛(𝑋, �̄�) → 𝜋𝑛(𝑌 , 𝑓 ∘ �̄�) is an isomorphism in u�∕𝑋0

, where �̄� :
disc 𝑋0 → 𝑋 is the component of the adjunction counit.

Proof. Apply the classical completeness theorem (a.7.22) to theorem 1.4.35.
■

Remark 8.1.22. It should be emphasised that the weak equivalences in 𝐊𝐚𝐧(u�)
really are weak equivalences: Bezem and Coquand [2013] have constructed an
internal Kan fibration over Δ1 ⊙ 1 in the presheaf topos u� = [𝟛, 𝐒𝐞𝐭] such that
the two canonical fibres are not homotopy equivalent. (Of course, the two fibres
are weakly homotopy equivalent, because internal weak homotopy equivalences
are closed under pullbacks along internal Kan fibrations, by proposition 3.7.13
and theorem 8.1.13.) Furthermore, since 1 is projective in u� , (non-)existence in
the naïve sense coincides with (non-)existence in sheaf semantics.

We now move on to the problem of internal fibrant replacement. Recall the
simplicial sets N(𝑃 𝑛) defined in paragraph 1.7.1.

Definition 8.1.23. Let u� be a (locally small) category with finite limits. An
extension of a simplicial object 𝑋 in u� is a simplicial object Ex(𝑋) equipped
with bijections

u�(𝑇 , Ex(𝑋)𝑛) ≅ Ex(u�(𝑇 , 𝑋))𝑛 = 𝐬𝐒𝐞𝐭(N(𝑃 𝑛), u�(𝑇 , 𝑋))

that are natural in both 𝑛 and 𝑇 . The canonical embedding 𝑖𝑋 : 𝑋 → Ex(𝑋) is
the unique morphism in 𝐬u� making the diagram below commute:

u�(𝑇 , 𝑋) u�(𝑇 , 𝑋)

u�(𝑇 , Ex(𝑋)) Ex(u�(𝑇 , 𝑋))

u�(𝑇 ,𝑖𝑋) 𝑖

≅

where 𝑖 : u�(𝑇 , 𝑋) → Ex(u�(𝑇 , 𝑋)) is the canonical embedding in 𝐬𝐒𝐞𝐭.

Remark 8.1.24. The above definition makes sense because finite weighted limits
exist in u� and each N(𝑃 𝑛) is a finite simplicial set. Note that Ex(𝑋) is unique up
to unique isomorphism, so we obtain a functor Ex : 𝐬u� → 𝐬u�; and the natural
transformation 𝑖 : id ⇒ Ex in 𝐬𝐒𝐞𝐭 induces a natural transformation of the same
form in 𝐬u� . Also note that Ex : 𝐬u� → 𝐬u� preserves all degreewise limits that
exist in u� .

702



8.1. Internal Kan complexes

Proposition 8.1.25. Let u� and u� be categories with finite limits. If 𝐹 : u� → u�
is a functor that preserves finite limits, then the induced functor 𝐬𝐹 : 𝐬u� → 𝐬u�
preserves extensions and canonical embeddings.

Proof. Obvious. ⧫

Lemma 8.1.26. Let 𝑋 be a simplicial object in a regular category u� . Consider
the following pullback diagram in u� ,

{Λ𝑛
𝑘, Ex(𝑋)} ×{Λ𝑛

𝑘,Ex2(𝑋)} {Δ𝑛, Ex2(𝑋)} {Δ𝑛, Ex2(𝑋)}

{Λ𝑛
𝑘, Ex(𝑋)} {Λ𝑛

𝑘, Ex2(𝑋)}
{Λ𝑛

𝑘,𝑖Ex(𝑋)}

where the morphism {Δ𝑛, Ex2(𝑋)} → {Λ𝑛
𝑘, Ex2(𝑋)} is induced by the horn in-

clusion Λ𝑛
𝑘 ↪ Δ𝑛. Then {Λ𝑛

𝑘, Ex(𝑋)}×{Λ𝑛
𝑘,Ex2(𝑋)} {Δ𝑛, Ex2(𝑋)} → {Λ𝑛

𝑘, Ex(𝑋)}
is a regular epimorphism in u� .

Proof. In the case where u� = 𝐒𝐞𝐭, the claim is a reformulation of lemma 1.7.6;
and in general, we appeal to proposition 8.1.25 and the classical completeness
theorem (a.7.22). ■

Lemma 8.1.27. Let u� be a regular category. The functor Ex : 𝐬u� → 𝐬u� pre-
serves internal Kan fibrations and internal trivial Kan fibrations. In particular,
it preserves internal Kan complexes.

Proof. The claim is known in the case where u� = 𝐒𝐞𝐭, by lemma 1.7.7 and
corollary 1.7.10; and in general, we appeal to propositions 8.1.12 and 8.1.25 and
the classical completeness theorem (a.7.22). ■

Lemma 8.1.28. For any internal Kan complex 𝑋 in a regular category u� , the
canonical embedding 𝑖𝑋 : 𝑋 → Ex(𝑋) is a Dugger–Isaksen weak equivalence
in u� .

Proof. The claim is known in the case where u� = 𝐒𝐞𝐭, by lemma 1.7.9; and in
general, we appeal to propositions 8.1.12 and 8.1.25 and the classical complete-
ness theorem (a.7.22). ■
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¶ 8.1.29. Let u� be a (locally small) category with limits for finite diagrams
and colimits for 𝜔-sequences. For each simplicial object 𝑋 in u� , we define
Ex∞(𝑋) to be the colimit of the diagram below:

𝑋 Ex(𝑋) Ex2(𝑋) Ex3(𝑋) ⋯
𝑖𝑋 𝑖Ex(𝑋) 𝑖Ex2(𝑋)

The above defines a functor Ex∞ : 𝐬u� → 𝐬u� and a natural transformation 𝑖∞ :
id𝐬u� ⇒ Ex∞.

Proposition 8.1.30. Let u� and u� be categories with limits for finite diagrams
and colimits for 𝜔-sequences. If 𝐹 : u� → u� is a functor that preserves finite
limits, then:

(i) For each simplicial object 𝑋 in u� , there is a natural comparison morphism
of the form Ex(𝐬𝐹 (𝑋)) → 𝐬𝐹 (Ex(𝑋)), and it is compatible with the natural
transformation 𝑖∞ : id ⇒ Ex∞.

(ii) Moreover, if 𝐹 : u� → u� preserves colimits for 𝜔-sequences, then the
above morphism is an isomorphism.

Proof. Obvious. ⧫

Lemma 8.1.31. Let u� be a regular category with colimits for 𝜔-sequences. If
lim−−→ : [𝜔, u�] → u� preserves finite limits, then the following classes of morphisms
are closed under colimits for 𝜔-sequences in 𝐬u�:

• The class of internal Kan fibrations in u� .

• The class of internal trivial Kan fibrations in u� .

• The class of Dugger–Isaksen weak equivalences in u� .

Proof. Colimits commute with colimits, so lim−−→ : [𝜔, u�] → u� always preserves
regular epimorphisms. Thus, the hypothesis implies lim−−→ : [𝜔, u�] → u� is a
regular functor. On the other hand, the functor [𝜔, u�] → [ob 𝜔, u�] induced by
restriction along the inclusion ob 𝜔 ↪ 𝜔 is a conservative regular functor, so
proposition 8.1.12 implies the internal Kan fibrations (resp. internal trivial Kan
fibrations, Dugger–Isaksen weak equivalences) in [𝜔, u�] are just the compon-
entwise ones. We use the same proposition again to deduce that the indicated
classes of morphisms in 𝐬u� are closed under colimits for 𝜔-sequences. ■
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Theorem 8.1.32. Let u� be a regular category with colimits for 𝜔-sequences. If
lim−−→ : [𝜔, u�] → u� preserves finite limits, then:

(i) For any simplicial object 𝑋 in u� , the simplicial object Ex∞(𝑋) is an in-
ternal Kan complex.

(ii) For any internal Kan complex 𝑋 in u� , the morphism 𝑖∞
𝑋 : 𝑋 → Ex∞(𝑋)

is a Dugger–Isaksen weak equivalence.

(iii) The functor Ex∞ : 𝐬u� → 𝐬u� preserves internal Kan fibrations, internal
trivial Kan fibrations, and finite limits.

Proof. (i). If lim−−→ : [𝜔, u�] → u� preserves finite limits, then for any finite simpli-
cial set 𝑍, the functor {𝑍, −} : 𝐬u� → u� preserves colimits for 𝜔-sequences. In
particular, we have a commutative diagram of the form below,

lim−−→𝑚:𝜔 {Δ𝑛, Ex𝑚+2(𝑋)} {Δ𝑛, Ex∞(𝑋)}

lim−−→𝑚:𝜔 {Λ𝑛
𝑘, Ex𝑚+2(𝑋)} {Λ𝑛

𝑘, Ex∞(𝑋)}

≅

≅

where the horizontal arrows are the canonical comparisons and the vertical ar-
rows are induced by the horn inclusion Λ𝑛

𝑘 ↪ Δ𝑛. Lemma 8.1.26 gives us the
following pullback square in u� ,

{Λ𝑛
𝑘, Ex𝑚+1(𝑋)} ×{Λ𝑛

𝑘,Ex𝑚+2(𝑋)} {Δ𝑛, Ex𝑚+2(𝑋)} {Δ𝑛, Ex𝑚+2(𝑋)}

{Λ𝑛
𝑘, Ex𝑚+1(𝑋)} {Λ𝑛

𝑘, Ex𝑚+2(𝑋)}
{Λ𝑛

𝑘,𝑖Ex𝑚+1(𝑋)}

where {Λ𝑛
𝑘, Ex𝑚+1(𝑋)} ×{Λ𝑛

𝑘,Ex𝑚+2(𝑋)} {Δ𝑛, Ex𝑚+2(𝑋)} → {Λ𝑛
𝑘, Ex𝑚+1(𝑋)} is a

regular epimorphism in u� . It is easy to see that

lim−−→
𝑚:𝜔

{Λ𝑛
𝑘, 𝑖Ex𝑚+1(𝑋)} : lim−−→

𝑚:𝜔
{Λ𝑛

𝑘, Ex𝑚+1(𝑋)} → lim−−→
𝑚:𝜔

{Λ𝑛
𝑘, Ex𝑚+2(𝑋)}

is an isomorphism in u� , so {Δ𝑛, Ex∞(𝑋)} → {Λ𝑛
𝑘, Ex∞(𝑋)} is indeed a regular

epimorphism in u� , as required.

705



VIII. Homotopy toposes

(ii). Theorem 8.1.13 and lemma 8.1.28 imply that the composite morphism

𝑋 Ex(𝑋) ⋯ Ex𝑚(𝑋) Ex𝑚+1(𝑋)
𝑖𝑋 𝑖Ex𝑚(𝑋)

is a Dugger–Isaksen weak equivalence, and since 𝑖∞
𝑋 : 𝑋 → Ex∞(𝑋) is a colimit

for the 𝜔-sequence of these composites, we may apply lemma 8.1.31 to deduce
that it is also an internal weak homotopy equivalence.

(iii). Recalling remark 8.1.24 and lemma 8.1.27, an argument similar to the above
proves the claim. ■

Definition 8.1.33. Let u� be a 𝜎-pretopos. An internal weak homotopy equi-
valence of simplicial objects in u� is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬u� such that
Ex∞(𝑓 ) : Ex∞(𝑋) → Ex∞(𝑌 ) is a Dugger–Isaksen weak equivalence.

Remark 8.1.34. Recalling the 2-out-of-3 property of Dugger–Isaksen weak equi-
valences, theorem 8.1.32 implies that the internal weak homotopy equivalences
of internal Kan complexes are precisely the Dugger–Isaksen weak equivalences.
Remark 8.1.35. Lemma 3.1.8 and theorem 8.1.13 imply that 𝐬u� , equipped with
the class of internal weak homotopy equivalences, is a saturated homotopical
category.
Remark 8.1.36. Theorems 8.1.13 and 8.1.32 imply that an internal Kan fibra-
tion 𝑝 : 𝑋 → 𝑌 is an internal weak homotopy equivalence if and only if
Ex∞(𝑝) : Ex∞(𝑋) → Ex∞(𝑌 ) is an internal trivial Kan fibration (of internal
Kan complexes). In particular, if 𝑝 : 𝑋 → 𝑌 is an internal trivial Kan fibration,
then so is Ex∞(𝑝) : Ex∞(𝑋) → Ex∞(𝑌 ), and therefore 𝑝 : 𝑋 → 𝑌 is an internal
weak homotopy equivalence.
Remark 8.1.37. If u� = 𝐒𝐞𝐭, then an internal weak homotopy equivalence of
simplicial objects in u� is precisely a weak homotopy equivalence of simplicial
sets in the usual sense, by proposition 1.5.7. Similarly, if u� = [ℂop, 𝐒𝐞𝐭] for
a small category ℂ, then an internal weak homotopy equivalence of simplicial
objects in u� is the same thing as a componentwise weak homotopy equivalence
of simplicial presheaves on ℂ.
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Proposition 8.1.38. Let u� and u� be 𝜎-pretoposes and let 𝐹 : u� → u� be a
regular functor that preserves colimits for countable diagrams.

(i) The induced functor 𝐬𝐹 : 𝐬u� → 𝐬u� preserves internal weak homotopy
equivalences.

(ii) If 𝐹 : u� → u� is conservative, then 𝐬𝐹 : 𝐬u� → 𝐬u� reflects internal weak
homotopy equivalences.

Proof. Combine propositions 8.1.12 and 8.1.30. ■

Theorem 8.1.39. Let u� be a 𝜎-pretopos. For any simplicial object 𝑋 in u� , the
morphism 𝑖∞

𝑋 : 𝑋 → Ex∞(𝑋) is an internal weak homotopy equivalence.

Proof. First, we prove the claim in the case of a Grothendieck topos ℰ. Let u�
be the opposite of the category of finite simplicial sets. It is not hard to see
that the functor [u�, ℰ] → 𝐬ℰ obtained by restricting along Δ• : 𝚫op → u� itself
restricts to an equivalence between the full subcategory of finite-limit-preserving
functors u� → ℰ and the category 𝐬ℰ itself. Thus by Diaconescu’s theorem,[2]

for each simplicial object 𝑋 in ℰ, there is a functor 𝑥∗ : [u� op, 𝐒𝐞𝐭] → ℰ such
that 𝑥∗ is a finite-limit-preserving left adjoint and 𝑋 ≅ 𝑥∗𝑀 , where 𝑀 is the
simplicial object in [u� op, 𝐒𝐞𝐭] obtained by composing Δ• : 𝚫op → u� and the
Yoneda embedding u� → [u� op, 𝐒𝐞𝐭].

Recalling proposition 8.1.38, we see that the canonical embedding 𝑖∞
𝑋 : 𝑋 →

Ex∞(𝑋) is an internal weak homotopy equivalence of simplicial objects in ℰ as
soon as the universal canonical embedding 𝑖∞

𝑀 : 𝑀 → Ex∞(𝑀) is an internal
weak homotopy equivalence in [u� op, 𝐒𝐞𝐭]. But by remark 8.1.37, this is a spe-
cial case of theorem 1.7.14. Thus the claim is proved in the case where ℰ is a
Grothendieck topos.

Now, let u� be small 𝜎-pretopos. Then there exist a Grothendieck topos ℰ and
a fully faithful functor u� → ℰ that preserves limits for all diagrams and colimits
for countable diagrams: see proposition a.7.31. Applying proposition 8.1.38, we
then deduce the claim for u� from the result for ℰ proved above. In general, we
may assume u� is small by appealing to the universe axiom.[3] ■

[2] See Lemma 3.2.5 and Theorem 3.2.7 in [Johnstone, 2002, Part B], or Corollary 3 in [ML–M,
Ch. VII, §9].

[3] See §0.1.
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Corollary 8.1.40. Let u� be a 𝜎-pretopos. There exist a functor 𝑅 : 𝐬u� → 𝐬u�
and a natural transformation 𝑖 : id𝐬u� ⇒ 𝑅 such that, for all simplicial objects 𝑋
in u� , 𝑅𝑋 is an internal Kan complex and 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an internal weak ho-
motopy equivalence. Moreover, any such functor 𝑅 preserves and reflects weak
homotopy equivalences.

Proof. By theorems 8.1.32 and 8.1.39, we may take (𝑅, 𝑖) to be (Ex∞, 𝑖∞). The
2-out-of-3 property of internal weak homotopy equivalences (remark 8.1.35) im-
plies the remainder of the claim. ■

8.2 Hypercovers
Prerequisites. §§0.5, 1.1, 1.2, 1.3, 8.1.

¶ 8.2.1. Let u� be a small category, let 𝐽 be a Grothendieck topology on u�,
let 𝐏𝐬𝐡(u�) = [u� op, 𝐒𝐞𝐭] be the category of presheaves (of sets) on u�, let 𝐒𝐡(u�, 𝐽 )
be the full subcategory of 𝐽 -sheaves (of sets) on u�, and let

𝑗∗ ⊣ 𝑗∗ : 𝐒𝐡(u�, 𝐽 ) → 𝐏𝐬𝐡(u�)

be the induced adjunction, where 𝑗∗ : 𝐒𝐡(u�, 𝐽 ) → 𝐏𝐬𝐡(u�) is the inclusion. Note
that the left adjoint 𝑗∗ : 𝐏𝐬𝐡(u�) → 𝐒𝐡(u�, 𝐽 ) preserves finite limits. In addition,
we define the following subset ℐ ⊂ mor 𝐬𝐏𝐬𝐡(u�):

ℐ = {𝜕Δ𝑛 ⊙ h𝐶 ↪ Δ𝑛 ⊙ h𝐶 | 𝑛 ≥ 0, 𝐶 ∈ ob u�}

Definition 8.2.2. A cellular simplicial presheaf on u� is an object 𝑋 in 𝐬𝐏𝐬𝐡(u�)
for which the unique morphism 0 → 𝑋 is a relative ℐ-cell complex.

Remark 8.2.3. It is not hard to see that every relative ℐ-cell complex is a project-
ive cofibration in 𝐬𝐏𝐬𝐡(u�) (in the sense of definition 4.3.15). In particular, every
cellular simplicial presheaf on u� is cofibrant in the projective model structure on
𝐬𝐏𝐬𝐡(u�).
Remark 8.2.4. If 𝑉 is a representable presheaf on u�, then disc 𝑉 is a cellular
simplicial presheaf on u�.

Lemma 8.2.5. Let 𝚫→ be the subcategory of 𝚫 consisting of the injective maps
and let 𝑋 : 𝚫op → 𝐏𝐬𝐡(u�) be the left Kan extension of a functor 𝐼 : 𝚫→

op →
𝐏𝐬𝐡(u�) along the inclusion 𝚫→ ↪ 𝚫. If 𝐼 is degreewise a coproduct of repre-
sentable presheaves on u�, then 𝑋 is a cellular simplicial presheaf on u� and is
also degreewise a coproduct of representable presheaves.
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Proof. By considering the simplicial identities and the formula for left Kan ex-
tension given in theorem a.5.15, we find that there are isomorphisms

𝑋𝑛 ≅ ∐
𝑚≤𝑛

𝐷𝑛
𝑚 ⊙ 𝐼𝑚

where 𝐷𝑛
𝑚 is the set of surjections [𝑛] → [𝑚] in 𝚫. This proves that 𝑋 is degree-

wise a coproduct of representable presheaves if 𝐼 is. Furthermore, this decom-
position yields a sequence of simplicial subpresheaves of 𝑋, say

0 = 𝑋(−1) ⊆ 𝑋(0) ⊆ 𝑋(1) ⊆ 𝑋(2) ⊆ ⋯

such that, for each natural number 𝑛, we have a pushout diagram in 𝐬𝐏𝐬𝐡(u�) of
the form below:

𝜕Δ𝑛 ⊙ 𝐼𝑛 Δ𝑛 ⊙ 𝐼𝑛

𝑋(𝑛−1) 𝑋(𝑛)

Thus 𝑋 is indeed an ℐ-cell complex. ■

Definition 8.2.6. A 𝐽 -local epimorphism is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐏𝐬𝐡(u�)
such that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is an epimorphism in 𝐒𝐡(u�, 𝐽 ).

Proposition 8.2.7.
(i) The class of 𝐽 -local epimorphisms contains all presheaf epimorphisms.

(ii) The class of 𝐽 -local epimorphisms is closed under composition.

(iii) The class of 𝐽 -local epimorphisms is closed under pullbacks.

(iv) The class of 𝐽 -local epimorphisms is closed under retracts.

(v) The class of 𝐽 -local epimorphisms is closed under finite products.

Proof. (i). Since 𝑗∗ : 𝐏𝐬𝐡(u�) → 𝐒𝐡(u�, 𝐽 ) preserves epimorphisms, every pre-
sheaf epimorphism is a 𝐽 -local epimorphism.

(ii). The class of epimorphisms in 𝐒𝐡(u�, 𝐽 ) is closed under composition, so the
class of 𝐽 -local epimorphisms is also closed under composition.

(iii), (iv), and (v). These are consequences of the fact that 𝑗∗ : 𝐏𝐬𝐡(u�) →
𝐒𝐡(u�, 𝐽 ) preserves finite limits and the fact that epimorphisms in 𝐒𝐡(u�, 𝐽 ) are
closed under the same operations. ■
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Definition 8.2.8.
• A 𝐽 -local isomorphism 𝐬𝐏𝐬𝐡(u�) is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�)

such that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is an isomorphism in 𝐬𝐒𝐡(u�, 𝐽 ).

• A 𝐽 -local weak homotopy equivalence in 𝐬𝐏𝐬𝐡(u�) is a morphism 𝑓 :
𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�) such that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is an internal weak
homotopy equivalence of simplicial objects in 𝐒𝐡(u�, 𝐽 ).

Lemma 8.2.9. Componentwise weak homotopy equivalences are 𝐽 -local weak
homotopy equivalences.

Proof. The functor 𝑗∗ : 𝐏𝐬𝐡(u�) → 𝐒𝐡(u�, 𝐽 ) preserves finite limits and all colim-
its, so we may apply proposition 8.1.38 to remark 8.1.37. ■

Definition 8.2.10.
• A 𝐽 -local Kan fibration is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�) such

that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is an internal Kan fibration of simplicial objects in
𝐒𝐡(u�, 𝐽 ).

• A 𝐽 -local trivial Kan fibration is a morphism 𝑓 : 𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�)
such that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is an internal trivial Kan fibration of simplicial
objects in 𝐒𝐡(u�, 𝐽 ).

Definition 8.2.11. A 𝐽 -locally fibrant simplicial presheaf on u� is an object 𝑋
in 𝐬𝐏𝐬𝐡(u�) such that the unique morphism 𝑋 → 1 is a 𝐽 -local Kan fibration.

Proposition 8.2.12.
(i) The class of 𝐽 -local Kan fibrations (resp. 𝐽 -local trivial Kan fibrations)

contains all 𝐽 -local isomorphisms.

(ii) The class of 𝐽 -local Kan fibrations (resp. 𝐽 -local trivial Kan fibrations) is
closed under composition.

(iii) The class of 𝐽 -local Kan fibrations (resp. 𝐽 -local trivial Kan fibrations) is
closed under pullbacks.

(iv) The class of 𝐽 -local Kan fibrations (resp. 𝐽 -local trivial Kan fibrations) is
closed under retracts.

(v) The class of 𝐽 -local Kan fibrations (resp. 𝐽 -local trivial Kan fibrations) is
closed under finite products.
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Proof. These are immediate consequences of proposition 8.1.4. ■

Lemma 8.2.13.
(i) Every componentwise Kan fibration in 𝐬𝐏𝐬𝐡(u�) is a 𝐽 -local Kan fibration.

(ii) Every componentwise trivial Kan fibration in 𝐬𝐏𝐬𝐡(u�) is a 𝐽 -local trivial
Kan fibration.

Proof. (i). Let 𝑓 : 𝑋 → 𝑌 be an componentwise Kan fibration in 𝐬𝐏𝐬𝐡(u�), let
𝑛 be a natural number, and let 0 ≤ 𝑘 ≤ 𝑛. We wish to show that the following
diagram is a weak pullback square in 𝐬𝐒𝐡(u�, 𝐽 ),

{Δ𝑛, 𝑗∗𝑋} {Δ𝑛, 𝑗∗𝑌 }

{Λ𝑛
𝑘, 𝑗∗𝑋} {Λ𝑛

𝑘, 𝑗∗𝑌 }

{Δ𝑛,𝑗∗𝑓}

{Λ𝑛
𝑘,𝑓}

where the vertical arrows are induced by the horn inclusion Λ𝑛
𝑘 ↪ Δ𝑛, and since

𝑗∗ : 𝐏𝐬𝐡(u�) → 𝐬𝐒𝐡(u�, 𝐽 ) preserves finite limits and epimorphisms, it suffices to
verify that the diagram below is a weak pullback square in 𝐬𝐏𝐬𝐡(u�):

{Δ𝑛, 𝑋} {Δ𝑛, 𝑌 }

{Λ𝑛
𝑘, 𝑋} {Λ𝑛

𝑘, 𝑌 }

{Δ𝑛,𝑓}

{Λ𝑛
𝑘,𝑓}

But limits and colimits in 𝐏𝐬𝐡(u�) can be computed componentwise, so the claim
can be reduced to lemma a.3.2.

(ii). An analogous proof works. ■

Theorem 8.2.14 (Dugger–Isaksen). Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐏𝐬𝐡(u�).
If 𝑋 and 𝑌 are 𝐽 -locally fibrant, then the following are equivalent:

(i) The morphism 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local weak homotopy equivalence.

(ii) For any presheaf 𝑉 on u� and any natural number 𝑛, given a commutative
diagram in 𝐬𝐏𝐬𝐡(u�) of the form below,

𝜕Δ𝑛 ⊙ 𝑉 𝑋

Δ𝑛 ⊙ 𝑉 𝑌

𝜕𝑥

𝑓

𝑦
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there exist a 𝐽 -local epimorphism 𝑝 : 𝑈 → 𝑉 in 𝐏𝐬𝐡(u�) and morphisms
𝑥 : Δ𝑛 ⊙𝑈 → 𝑋 and ℎ : 𝐷𝑛+1 ⊙𝑈 → 𝑌 in 𝐬𝐏𝐬𝐡(u�) such that the following
diagrams commute,

Δ𝑛 ⊙ 𝑈 𝑋

𝐷𝑛+1 ⊙ 𝑈 𝑌

𝑗1⊙id𝑈

𝑥

𝑓

ℎ

𝜕Δ𝑛 ⊙ 𝑈 𝜕Δ𝑛 ⊙ 𝑉

Δ𝑛 ⊙ 𝑈 𝑋

id𝜕Δ𝑛⊙𝑝

𝜕𝑥

𝑥

Δ𝑛 ⊙ 𝑈 Δ𝑛 ⊙ 𝑉

𝐷𝑛+1 ⊙ 𝑈 𝑌

𝑗0⊙id𝑈

idΔ𝑛⊙𝑝

𝑦

ℎ

where 𝐷𝑛+1 is the relative cylinder 𝐶(Δ𝑛, 𝜕Δ𝑛) and 𝑗0, 𝑗1 : Δ𝑛 → 𝐷𝑛+1 are
the two canonical embeddings.

Proof. (i) ⇒ (ii). By adjointness, the given commutative diagram defines a
morphism

𝑉 → {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 }

and since 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is a Dugger–Isaksen weak equivalence of internal
Kan complexes in 𝐒𝐡(u�, 𝐽 ) (by remark 8.1.34), the canonical morphism

{Δ𝑛, 𝑋} ×{Δ𝑛,𝑌 } {𝐷𝑛+1, 𝑌 } ⟶ {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 }

is a 𝐽 -local epimorphism; but by proposition 8.2.7, the class of 𝐽 -local epi-
morphisms is closed under pullbacks, so the required 𝐽 -local epimorphism 𝑝 :
𝑈 → 𝑉 and morphisms 𝑥 : Δ𝑛 ⊙ 𝑈 → 𝑋 and ℎ : 𝐷𝑛+1 ⊙ 𝑈 → 𝑌 indeed exist.

(ii) ⇒ (i). By considering the universal instance where 𝑉 = {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 }
{Δ𝑛, 𝑌 }, we see that 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 must be a Dugger–Isaksen weak equi-
valence of internal Kan complexes in 𝐒𝐡(u�, 𝐽 ), and so 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local
weak homotopy equivalence. ■

Definition 8.2.15. A 𝐽 -hypercover of a presheaf 𝑉 on u� is a simplicial presheaf
𝑈 on u� equipped with a 𝐽 -local trivial Kan fibration 𝑈 → disc 𝑉 , such that each
𝑈𝑛 is a coproduct (in 𝐏𝐬𝐡(u�)) of representable presheaves on u�.

Remark 8.2.16. Propositions 8.1.16 and 8.2.12 imply that the underlying simpli-
cial presheaf of a 𝐽 -hypercover is 𝐽 -locally fibrant.
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¶ 8.2.17. Given a presheaf 𝑋 on u�, we define |𝑋| = ∑𝐶∈ob u�|𝑋(𝐶)|; and
for a simplicial presheaf 𝑋 on u�, we define |𝑋| = ∑𝑛≥0|𝑋𝑛|.

Lemma 8.2.18. Let 𝑓 : 𝑋 → 𝑌 be a 𝐽 -local epimorphism of presheaves on
u�. For each morphism 𝑦 : 𝑉 → 𝑌 , there exist a projective object 𝑈 in 𝐏𝐬𝐡(u�),
a 𝐽 -local epimorphism 𝑝 : 𝑈 → 𝑉 , and a morphism 𝑥 : 𝑈 → 𝑋 making the
following diagram commute:

𝑈 𝑋

𝑉 𝑌

𝑝

𝑥

𝑓

𝑦

Moreover, we may choose 𝑈 so that it is a coproduct of ≤ |𝑉 | representable
presheaves.

Proof. Let 𝑆 be the set of all pairs (𝐶, 𝑣) where 𝐶 is an object in u� and 𝑣 is
an element of 𝑉 (𝐶) such that 𝑦𝐶(𝑐) is in the presheaf image of 𝑓 : 𝑋 → 𝑌 .
Clearly, |𝑆| ≤ |𝑉 |. Let 𝑈 = ∐(𝐶,𝑣)∈𝑆 h𝐶 and let 𝑝 : 𝑈 → 𝑉 be the evident
projection. By construction, the presheaf image of 𝑝 : 𝑈 → 𝑉 is the preimage
under 𝑦 : 𝑉 → 𝑌 of the presheaf image of 𝑓 : 𝑋 → 𝑌 , so we may apply
proposition 8.2.7 to deduce that 𝑝 : 𝑈 → 𝑉 is a 𝐽 -local epimorphism. The
construction also ensures the existence of a presheaf morphism 𝑥 : 𝑈 → 𝑋
making the given diagram commute. ■

Lemma 8.2.19. If 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local trivial Kan fibration, then the com-
ponent 𝑓0 : 𝑋0 → 𝑌0 is a 𝐽 -local epimorphism of presheaves on u�.

Proof. Consider the induced morphism 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 in 𝐬𝐒𝐡(u�, 𝐽 ). By
definition, 𝑗∗𝑓 is an internal trivial Kan fibration, so the diagram

{Δ0, 𝑗∗𝑋} {Δ0, 𝑗∗𝑌 }

{𝜕Δ0, 𝑗∗𝑋} {𝜕Δ0, 𝑗∗𝑌 }

{𝑖,𝑗∗𝑋}

{Δ0,𝑗∗𝑓}

{𝑖,𝑗∗𝑌 }

{𝜕Δ0,𝑗∗𝑓}

induced by the boundary inclusion 𝑖 : 𝜕Δ0 ↪ Δ0 is a weak pullback square in
𝐒𝐡(u�, 𝐽 ); but 𝜕Δ0 is the initial object in 𝐬𝐒𝐞𝐭, so {𝜕Δ0, 𝑗∗𝑋} → {𝜕Δ0, 𝑗∗𝑌 } is an
isomorphism. Hence, {Δ0, 𝑗∗𝑋} → {Δ0, 𝑗∗𝑌 } is an epimorphism in 𝐒𝐡(u�, 𝐽 ),
and therefore 𝑓0 : 𝑋0 → 𝑌0 is a 𝐽 -local epimorphism. ■
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Lemma 8.2.20. Let 𝑓 : 𝑋 → 𝑌 be a 𝐽 -local trivial Kan fibration and let
𝑦 : 𝑉 → 𝑌 be any morphism in 𝐬𝐏𝐬𝐡(u�). There exist a cellular simplicial
presheaf 𝑈 on u�, a 𝐽 -local trivial Kan fibration 𝑝 : 𝑈 → 𝑉 , and a morphism
𝑥 : 𝑈 → 𝑋 making the following diagram commute:

𝑈 𝑋

𝑉 𝑌

𝑝

𝑥

𝑓

𝑦

Moreover, we may choose 𝑈 so that each 𝑈𝑛 is a coproduct of representable
presheaves and |𝑈| ≤ , where is an infinite cardinal such that |𝑉 | ≤ and
|h𝐶| ≤ for all 𝐶 in u�.

Proof. We construct 𝑈 , 𝑝, and 𝑥 by induction. To begin, observe that lem-
mas 8.2.18 and 8.2.19 imply we have a diagram of form below,

𝑈 ′
0 𝑋0

𝑉0 𝑌0

𝑝′
0

𝑥′
0

𝑓0

𝑦0

where 𝑈 ′
0 is a coproduct of ≤ representable presheaves, hence |𝑈 ′

0| ≤ , and
𝑝′ : 𝑈 ′

0 → 𝑉0 is a 𝐽 -local epimorphism. Let 𝑈0 = 𝑈 ′
0 , 𝑝0 = 𝑝′

0, and 𝑥0 = 𝑥′
0.

Now, suppose we have defined 𝑈 , 𝑝, and 𝑥 up to degree 𝑛 − 1. It is not hard
to verify that {𝜕Δ𝑛, 𝑋} depends on 𝑋 only up to degree 𝑛 − 1, so {𝜕Δ𝑛, 𝑈} is
well-defined. Since 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local trivial Kan fibration, the canonical
morphism {Δ𝑛, 𝑋} → {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 } is a 𝐽 -local epimorphism, so
we may use lemma 8.2.18 to choose a presheaf 𝑈 ′

𝑛 and morphisms 𝑥′
𝑛 : 𝑈 ′

𝑛 → 𝑋𝑛
and 𝑝′

𝑛 : 𝑈 ′
𝑛 → {𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 } making the diagram below commute,

𝑈 ′
𝑛 {Δ𝑛, 𝑋}

{𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑉 } {Δ𝑛, 𝑉 } {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 }

𝑝′
𝑛

𝑥′
𝑛

where 𝑝′
𝑛 : 𝑈 ′

𝑛 → {𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑉 } {Δ𝑛, 𝑉 } is a 𝐽 -local epimorphism. Clearly,
there is a monomorphism {𝜕Δ𝑛, 𝑈} → (𝑈𝑛−1)𝑛+1, so |{𝜕Δ𝑛, 𝑈}| ≤ |𝑈𝑛−1|𝑛+1 ≤

; and |𝑉𝑛| ≤ by hypothesis, so 𝑈 ′
𝑛 can be chosen to be a coproduct of ≤

representable presheaves; note we then have |𝑈 ′
𝑛| ≤ .
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Let 𝑈𝑛 = ∐𝑚≤𝑛 𝐷𝑛
𝑚 ⊙ 𝑈 ′

𝑚, where 𝐷𝑛
𝑚 is the set of surjections [𝑛] → [𝑚] in 𝚫.

Since each 𝐷𝑛
𝑚 is finite and |𝑈 ′

𝑚| ≤ for each 𝑚, we also have |𝑈𝑛| ≤ . There
are evident degeneracy operators 𝑈𝑛−1 → 𝑈𝑛 induced by composition in 𝚫, and
we define the face operators 𝑈𝑛 → 𝑈𝑛−1 using the simplicial identities on the
degenerate part and the composite of 𝑝′

𝑛 : 𝑈 ′
𝑛 → {𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑉 } {Δ𝑛, 𝑉 } and

the evident projections on the non-degenerate part. We also define 𝑝𝑛 : 𝑈𝑛 → 𝑉𝑛
in a similar fashion. Using the various 𝑥′

𝑚 : 𝑈 ′
𝑚 → {Δ𝑚, 𝑋}, we can define a

morphism 𝑥𝑛 : 𝑈𝑛 → 𝑋𝑛 such that the following diagram commutes:

𝑈𝑛 𝑋𝑛

𝑉𝑛 𝑌𝑛

𝑝𝑛

𝑥𝑛

𝑓𝑛

𝑦𝑛

In the above, note that we can choose 𝑝𝑛 : 𝑈𝑛 → 𝑉𝑛 and 𝑥𝑛 : 𝑈𝑛 → 𝑋𝑛 compatible
with all the face and degeneracy operators so far.

We thus obtain simplicial presheaf morphisms 𝑝 : 𝑈 → 𝑉 and 𝑥 : 𝑈 → 𝑋
making the announced diagram commute, and by construction, the simplicial
presheaf 𝑈 satisfies the required conditions. (Note that 𝑈 is cellular by the proof
of lemma 8.2.5.) Moreover, the induced morphism 𝑈𝑛 → {𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑉 }
{Δ𝑛, 𝑉 } is a 𝐽 -local epimorphism because 𝑝′

𝑛 : 𝑈 ′
𝑛 → {𝜕Δ𝑛, 𝑈} ×{𝜕Δ𝑛,𝑉 } {Δ𝑛, 𝑉 }

is, so 𝑝 : 𝑈 → 𝑉 is indeed a 𝐽 -local trivial Kan fibration. ■

Definition 8.2.21. Let 𝑉 be a presheaf on u�. A refinement of a 𝐽 -hypercover
𝑓 : 𝑋 → disc 𝑉 is a 𝐽 -hypercover 𝑝 : 𝑈 → disc 𝑉 and a morphism 𝑥 : 𝑈 → 𝑋
in 𝐬𝐏𝐬𝐡(u�) such that 𝑝 = 𝑓 ∘ 𝑥. We say that 𝑝 : 𝑈 → disc 𝑉 refines 𝑓 : 𝑋 →
disc 𝑉 if there exists such a morphism 𝑥 : 𝑈 → 𝑋.

Remark 8.2.22. Unlike the topos-theoretic situation with ‘𝐽 -dense subobjects’
instead of ‘𝐽 -hypercovers’, the morphism 𝑥 : 𝑈 → 𝑋 need not be unique (if it
exists). However, we can prove something weaker: see proposition 8.5.7.

Proposition 8.2.23. Let 𝑉 be a presheaf on u�. If 𝑓 : 𝑋 → disc 𝑉 is a 𝐽 -hyper-
cover of 𝑉 , then there exist a cellular simplicial presheaf 𝑈 and a 𝐽 -hypercover
𝑝 : 𝑈 → disc 𝑉 that refines 𝑓 : 𝑋 → disc 𝑉 , such that |𝑈| ≤ , where is an
infinite cardinal such that |𝑉 | ≤ and |h𝐶| ≤ for all 𝐶 in u�.

Proof. This is a special case of lemma 8.2.20. ■
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Proposition 8.2.24. Let 𝑓 : 𝑋 → 𝑌 be a 𝐽 -local trivial Kan fibration and
let 𝑖 : 𝑍 → 𝑊 be a monomorphism between finite simplicial sets. For any
simplicial presheaf 𝑉 on u�, given a commutative square in 𝐬𝐏𝐬𝐡(u�) of the form
below,

𝑍 ⊙ 𝑉 𝑋

𝑊 ⊙ 𝑉 𝑌

𝑖⊙id𝑉

𝑧

𝑓

𝑤

there exist a cellular simplicial presheaf 𝑈 , a 𝐽 -local trivial Kan fibration 𝑝 :
𝑈 → 𝑉 and a morphism ℎ : 𝑊 ⊙ 𝑈 → 𝑋 making the diagram below commute:

𝑍 ⊙ 𝑈 𝑍 ⊙ 𝑉 𝑋

𝑊 ⊙ 𝑈 𝑊 ⊙ 𝑉 𝑌

𝑖⊙id𝑈

id𝑍⊙𝑝 𝑧

𝑓
ℎ

id𝑊 ⊙𝑝 𝑤

Moreover, we may choose 𝑈 so that each 𝑈𝑛 is a coproduct of representable
presheaves and |𝑈| ≤ , where is an infinite cardinal such that |𝑉 | ≤ and
|h𝐶| ≤ for all 𝐶 in u�.

Proof. By adjunction, the we obtain a commutative diagram in 𝐬𝐏𝐬𝐡(u�) of the
following form:

𝑉

(𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 ) 𝑊 ⋔ 𝑌

𝑍 ⋔ 𝑋 𝑍 ⋔ 𝑌

𝑙

𝑖⋔id𝑌

id𝑍⋔𝑓

Thus, it suffices to find a 𝐽 -local trivial Kan fibration 𝑝 : 𝑈 → 𝑉 and a morphism
̃𝑙 : 𝑈 → 𝑊 ⋔ 𝑋 making the diagram below commute;

𝑈 𝑊 ⋔ 𝑋

𝑉 (𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 )

𝑝

̃𝑙

𝑙

but proposition 8.1.6 implies that 𝑊 ⋔ 𝑋 → (𝑍 ⋔ 𝑋) ×𝑍⋔𝑌 (𝑊 ⋔ 𝑌 ) is a 𝐽 -local
trivial Kan fibration, so we may apply lemma 8.2.20. ■

716



8.2. Hypercovers

Proposition 8.2.25. Let 𝑋 and 𝑌 be 𝐽 -locally fibrant simplicial presheaves on
u�, let 𝐿 be a finite simplicial set, and let 𝐾 be a simplicial subset of 𝐿. Given a
𝐽 -local weak homotopy equivalence 𝑓 : 𝑋 → 𝑌 , for any simplicial presheaf 𝑉
and any commutative diagram in 𝐬𝐏𝐬𝐡(u�) of the form below,

𝐾 ⊙ 𝑉 𝑋

𝐿 ⊙ 𝑉 𝑌

𝜕𝑥

𝑓

𝑦

there exist a cellular simplicial presheaf 𝑈 , a 𝐽 -local trivial Kan fibration 𝑝 :
𝑈 → 𝑉 , and morphisms 𝑥 : 𝐿 ⊙ 𝑈 → 𝑋 and ℎ : 𝐶(𝐿, 𝐾) ⊙ 𝑈 → 𝑌 in 𝐬𝐏𝐬𝐡(u�)
such that the following diagrams commute,

𝐿 ⊙ 𝑈 𝑋

𝐶(𝐿, 𝐾) ⊙ 𝑈 𝑌

𝑗1⊙id𝑈

𝑥

𝑓

ℎ

𝐾 ⊙ 𝑈 𝐾 ⊙ 𝑉

𝐿 ⊙ 𝑈 𝑋

id𝐾⊙𝑝

𝜕𝑥

𝑥

𝐿 ⊙ 𝑈 𝐿 ⊙ 𝑉

𝐶(𝐿, 𝐾) ⊙ 𝑈 𝑌

𝑗0⊙id𝑈

idΔ𝑛⊙𝑝

𝑦

ℎ

where 𝐶(𝐿, 𝐾) is the relative cylinder and 𝑗0, 𝑗1 : 𝐿 → 𝐶(𝐿, 𝐾) are the two ca-
nonical embeddings. Moreover, we may choose 𝑈 so that each 𝑈𝑛 is a coproduct
of representable presheaves and |𝑈| ≤ , where is an infinite cardinal such
that |𝑉 | ≤ and |h𝐶| ≤ for all 𝐶 in u�.

Proof. Consider the commutative diagram in 𝐬𝐏𝐬𝐡(u�) shown below,

𝐶(𝐿, 𝐾) ⋔ 𝑋 (𝐿 ⋔ 𝑋) ×𝐿⋔𝑌 (𝐶(𝐿, 𝐾) ⋔ 𝑌 )

𝐿 ⋔ 𝑋 (𝐾 ⋔ 𝑋) ×𝐾⋔𝑌 (𝐿 ⋔ 𝑌 )

𝑗0⋔id𝑋

where the top horizontal arrow is induced by 𝑗1 : Δ𝑛 → 𝐷𝑛+1, the bottom ho-
rizontal arrow is induced by the inclusion 𝐾 ↪ 𝐿, and the vertical arrows are
induced by the following commutative diagram in 𝐬𝐒𝐞𝐭:

𝐾 𝐿

𝐿 𝐶(𝐿, 𝐾)

𝑗1

𝑗0
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Note that the canonical comparison 𝐿 ∪𝐾 𝐿 → 𝐶(𝐿, 𝐾) is a monomorphism,
so by lemma 8.1.8, the right vertical arrow is a 𝐽 -local Kan fibration; moreover,
proposition 8.1.6 implies that all the objects in the diagram are 𝐽 -locally fibrant
simplicial presheaves. Since 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local weak homotopy equival-
ence, we may use lemma 8.1.14 to deduce that both horizontal arrows are 𝐽 -local
weak homotopy equivalences; and 𝑗0 : 𝐿 → 𝐶(𝐿, 𝐾) is an anodyne extension,
so 𝑗0 ⋔ id𝑋 : 𝐶(𝐿, 𝐾) ⋔ 𝑋 → 𝐿 ⋔ 𝑋 is a 𝐽 -local trivial Kan fibration. Thus, the
2-out-of-3 property of 𝐽 -local weak homotopy equivalences (remark 8.1.35) and
theorem 8.1.13 imply that the morphism

(𝐿 ⋔ 𝑋) ×𝐿⋔𝑌 (𝐶(𝐿, 𝐾) ⋔ 𝑌 ) → (𝐾 ⋔ 𝑋) ×𝐾⋔𝑌 (𝐿 ⋔ 𝑌 )

is a 𝐽 -local trivial Kan fibration. Thus, by adjointness and lemma 8.2.20, we can
obtain the required 𝑝 : 𝑈 → 𝑉 , 𝑥 : 𝐿⊙𝑈 → 𝑋, and ℎ : 𝐶(𝐿, 𝐾)⊙𝑈 → 𝑌 . ■

Observe that we can regard a morphism of simplicial presheaves of the form
𝑋 → disc 𝑌 as a simplicial object in the slice category 𝐏𝐬𝐡(u�)∕𝑌 .

Definition 8.2.26. A bounded 𝐽 -hypercover of a presheaf 𝑉 on u� is a 𝐽 -hy-
percover 𝑝 : 𝑈 → disc 𝑉 for which there exists a natural number 𝑛 such that, for
all 𝑘 > 𝑛, the morphism

{Δ𝑘, 𝑝} → {𝜕Δ𝑘, 𝑝}
induced by the boundary inclusion 𝜕Δ𝑘 ↪ Δ𝑘 is an isomorphism in the slice
category 𝐏𝐬𝐡(u�)∕𝑉 . The height of a bounded hypercover 𝑝 : 𝑈 → disc 𝑉 is the
least such 𝑛.

Lemma 8.2.27. Let 𝑋 be a presheaf on u� and let �̌� (𝑋) be the simplicial pre-
sheaf on u� defined by the formula below:

�̌� (𝑋)𝑛 = [𝑛] ⋔ 𝑋

If 𝑉 is the presheaf image of the unique morphism 𝑋 → 1, then there is a unique
morphism �̌� (𝑋) → disc 𝑉 in 𝐬𝐏𝐬𝐡(u�) and it is a componentwise trivial Kan
fibration.

Proof. Since limits in 𝐏𝐬𝐡(u�) can be computed componentwise, it suffices to
prove the claim in the case where u� is the terminal category 𝟙; so we may as
well replace 𝐏𝐬𝐡(u�) with 𝐒𝐞𝐭 and 𝐬𝐏𝐬𝐡(u�) with 𝐬𝐒𝐞𝐭.

There are two cases. If 𝑋 is empty, then the claim is trivial. Otherwise,
𝑋 is non-empty, so 𝑉 is a singleton and �̌� (𝑋) is a contractible Kan complex
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(because it is the nerve of a contractible groupoid). Either way, there is a unique
morphism �̌� (𝑋) → 𝑉 and it is a trivial Kan fibration (by proposition 1.5.10), as
required. ■

Definition 8.2.28. The Čech nerve of a morphism 𝑓 : 𝑋 → 𝑌 in 𝐏𝐬𝐡(u�) is the
morphism 𝑝 : �̌� (𝑓 ) → disc 𝑌 in 𝐬𝐏𝐬𝐡(u�) corresponding to the simplicial object
in the slice category 𝐏𝐬𝐡(u�)∕𝑌 defined as in lemma 8.2.27.

Lemma 8.2.29. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐏𝐬𝐡(u�), let 𝑉 be the pre-
sheaf image of 𝑓 : 𝑋 → 𝑌 , and let 𝑉 be the 𝐽 -image of 𝑓 : 𝑋 → 𝑌 , i.e. the
subpresheaf of 𝑌 where 𝑦 ∈ 𝑉 (𝐶) if and only if the sieve

{𝑐 ∈ u�(𝐶′, 𝐶) | ∃𝑥 ∈ 𝑋(𝐶′). 𝑐∗(𝑦) = 𝑓(𝑥)}

is 𝐽 -covering. Then 𝑉 ⊆ 𝑉 , and the inclusion 𝑉 ↪ 𝑉 is a 𝐽 -local isomorphism.

Proof. It is clear that 𝑉 ⊆ 𝑉 . We know that 𝑗∗𝑉 → 𝑗∗𝑉 must be a mono-
morphism in 𝐒𝐡(u�, 𝐽 ), so it suffices to prove that it is also an epimorphism; for
this, we can use proposition a.3.26 and the fact that there is an orthogonal (epi,
mono)-factorisation system on 𝐒𝐡(u�, 𝐽 ). ■

Proposition 8.2.30. Let 𝑝 : �̌� (𝑓 ) → disc 𝑌 be the Čech nerve of a morphism
𝑓 : 𝑋 → 𝑌 in 𝐏𝐬𝐡(u�) and let ̄𝑦 : 𝑉 → 𝑌 be the 𝐽 -image of 𝑓 : 𝑋 → 𝑌 .

(i) We have 𝑝 = (disc ̄𝑦) ∘ 𝑞 for a unique morphism ̄𝑞 : 𝑋 → disc 𝑉 , and
̄𝑞 : �̌� (𝑓 ) → disc 𝑉 is a 𝐽 -local trivial Kan fibration.

(ii) Assuming u� has pullbacks, if 𝑌 is a representable presheaf and 𝑋 is a
coproduct of representable presheaves, then ̄𝑞 : �̌� (𝑓 ) → disc 𝑉 is a
𝐽 -hypercover of height 0.

Proof. (i). Let 𝑦 : 𝑉 → 𝑌 be the presheaf image of 𝑓 : 𝑋 → 𝑌 . By
lemma 8.2.29, the inclusion 𝑉 ↪ 𝑉 is a 𝐽 -local isomorphism, hence a 𝐽 -local
trivial Kan fibration a fortiori (by proposition 8.2.12). So, recalling lemma 8.2.13,
it suffices to show that 𝑝 : �̌� (𝑓 ) → disc 𝑌 factors as 𝑝 = (disc 𝑦) ∘ 𝑞 for a com-
ponentwise trivial Kan fibration 𝑞 : �̌� (𝑓 ) → disc 𝑉 . But the property of being
a componentwise trivial Kan fibration is stable under slicing, so we may assume
that 𝑌 is terminal; the claim then reduces to lemma 8.2.27.

(ii). Since pullbacks distribute over coproducts in 𝐏𝐬𝐡(u�), each 𝑈𝑛 is the co-
product of an iterated fibred product of representable presheaves; but the Yoneda
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embedding u� → 𝐏𝐬𝐡(u�) is fully faithful and preserves pullbacks, so (iterated)
fibred products of representable presheaves are themselves representable. Thus

̄𝑞 : �̌� (𝑓 ) → disc 𝑉 is a 𝐽 -hypercover, and by construction it is of height 0. ■

8.3 Stacks and hypersheaves
Prerequisites. §§1.1, 1.5, 2.4, 4.1, 5.6, 8.1, 8.2, a.3.

¶ 8.3.1. We continue use the notation set up in paragraph 8.2.1. In addition,
we will often refer the Bousfield–Kan (i.e. projective) and Heller (i.e. inject-
ive) model structures on 𝐬𝐏𝐬𝐡(u�) (tacitly identified with [u� op, 𝐬𝐒𝐞𝐭]): see theor-
ems 1.9.13 and 1.9.14.

Definition 8.3.2. A simplicial presheaf 𝐹 on u� satisfies the descent condition
for a morphism 𝑝 : 𝑈 → 𝑉 in 𝐬𝐏𝐬𝐡(u�) if the induced morphism of derived
hom-spaces[4]

𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑝, 𝐹 ) : 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑉 , 𝐹 ) → 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑈, 𝐹 )

is an isomorphism in Ho 𝐬𝐒𝐞𝐭.

Remark 8.3.3. Assuming 𝐹 is an injective-fibrant simplicial presheaf on u�, 𝐹
satisfies the descent condition for 𝑝 : 𝑈 → 𝑉 if and only if the induced morphism
of hom-spaces

𝐬𝐏𝐬𝐡u�(𝑝, 𝐹 ) : 𝐬𝐏𝐬𝐡u�(𝑉 , 𝐹 ) → 𝐬𝐏𝐬𝐡u�(𝑈, 𝐹 )

is (half of) a homotopy equivalence of Kan complexes: this follows from the-
orem 2.4.9, because all simplicial presheaves are injective-cofibrant.

Similarly, assuming 𝐹 is a projective-fibrant simplicial presheaf on u�, if 𝑈
and 𝑉 are projective-cofibrant simplicial presheaves (e.g. cellular simplicial pre-
sheaves, by remark 8.2.3), then 𝐹 satisfies the descent condition with respect to
𝑝 : 𝑈 → 𝑉 if and only if if the induced morphism of hom-spaces is (half of) a
homotopy equivalence of Kan complexes.

Definition 8.3.4. A 𝐽 -stack of ∞-groupoids on u� is a simplicial presheaf on
u� that satisfies the descent condition for all morphisms of the form disc 𝑝 :
disc 𝑈 → disc h𝐶 where 𝑝 : 𝑈 → h𝐶 is a monomorphism in 𝐏𝐬𝐡(u�) that is a
𝐽 -local epimorphism and 𝐶 is an object in u�.

[4] — with respect to either the Bousfield–Kan or Heller model structure on 𝐬𝐏𝐬𝐡(u�); since the weak
equivalences in both model structures coincide, so do the derived hom-spaces.
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¶ 8.3.5. What we have defined above is perhaps more properly called a ‘split
𝐽 -stack of ∞-groupoids’, as we are requiring it to be a functor u� op → 𝐬𝐒𝐞𝐭 in the
ordinary (i.e. strict) sense. Nonetheless, for brevity, we will simply refer to them
as ‘𝐽 -stacks’.
Remark 8.3.6. Given a componentwise weak homotopy equivalence 𝑋 → 𝑌 in
𝐬𝐏𝐬𝐡(u�), it is clear that 𝑋 is a 𝐽 -stack if and only if 𝑌 is a 𝐽 -stack. Thus, by pro-
position 4.1.28, the full subcategory of 𝐬𝐏𝐬𝐡(u�) spanned by the 𝐽 -stacks inherits
the injective and projective model structures on 𝐬𝐏𝐬𝐡(u�) (and hence admits the
structure of a derivable category in two ways).
Remark 8.3.7. A simplicial presheaf of the form disc 𝐹 is a 𝐽 -stack if and only if
𝐹 is a 𝐽 -sheaf (of sets): indeed, disc 𝐹 is an injective-fibrant simplicial presheaf,
so by applying remark 8.3.3, we find that disc 𝐹 is a 𝐽 -stack if and only if the
induced morphism of hom-sets

𝐏𝐬𝐡u�(𝑝, 𝐹 ) : 𝐏𝐬𝐡u�(h𝐶 , 𝐹 ) → 𝐏𝐬𝐡u�(𝑈, 𝐹 )

is a bijection for all monomorphisms 𝑝 : 𝑈 → h𝐶 that are 𝐽 -local epimorphisms
and all objects 𝐶 in u�, which is precisely the 𝐽 -sheaf condition.

Definition 8.3.8. A weak 𝐽 -stack equivalence in 𝐬𝐏𝐬𝐡(u�) is a morphism 𝑓 :
𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�) such that the induced morphism

𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑓 , 𝐹 ) : 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑌 , 𝐹 ) → 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑋, 𝐹 )

is an isomorphism in Ho 𝐬𝐒𝐞𝐭 for all 𝐽 -stacks 𝐹 .

Remark 8.3.9. Clearly, every componentwise weak homotopy equivalence is
also a weak 𝐽 -stack equivalence. Conversely, (the proof of) lemma 5.6.6 shows
that every weak 𝐽 -stack equivalence between 𝐽 -stacks is a componentwise weak
homotopy equivalence.

Theorem 8.3.10. Let u� be the class of morphisms of the form disc 𝑝 : disc 𝑈 →
disc h𝐶 where 𝑝 : 𝑈 → h𝐶 is a monomorphism in 𝐏𝐬𝐡(u�) that is a 𝐽 -local
epimorphism and 𝐶 is an object in u�.

(i) The left Bousfield localisation of the Heller model structure on 𝐬𝐏𝐬𝐡(u�)
with respect to u� exists. The localised model structure is called the in-
jective model structure for 𝐽 -stacks of ∞-groupoids, and the fibrant
objects are the injective-fibrant 𝐽 -stacks.
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(ii) The left Bousfield localisation of the Bousfield–Kan model structure on
𝐬𝐏𝐬𝐡(u�) with respect to u� exists. The localised model structure is called
the projective model structure for 𝐽 -stacks of ∞-groupoids, and the
fibrant objects are the projective-fibrant 𝐽 -stacks.

In either case:

• The localised model structure is left proper, combinatorial, and simplicial.

• The weak equivalences are the weak 𝐽 -stack equivalences.

Proof. It is easy to see that there is a set of representatives of isomorphism
classes of elements in u� , and the Heller (resp. Bousfield–Kan) model structure
on 𝐬𝐏𝐬𝐡(u�) is left proper (by propositions 5.1.9 and 5.1.10) and combinatorial, so
we may apply proposition 5.6.14 and theorem 5.6.15. ■

Proposition 8.3.11. The adjunction unit : id𝐬𝐏𝐬𝐡(u�) → 𝐬𝑗∗𝐬𝑗∗ is a natural weak
𝐽 -stack equivalence.

Proof. See (the proof of) Proposition a.2 in [Dugger, Hollander, and Isaksen,
2004]. (The cited proof does not require u� to have pullbacks.) □

Corollary 8.3.12. Every 𝐽 -local isomorphism of simplicial presheaves on u� is
a weak 𝐽 -stack equivalence. ■

Theorem 8.3.13. Let 𝐹 be a simplicial presheaf on u�. If u� has pullbacks, then
the following are equivalent:

(i) 𝐹 is a 𝐽 -stack.

(ii) 𝐹 satisfies the descent condition for all 𝐽 -hypercovers of height 0.

(iii) 𝐹 satisfies the descent condition for all bounded 𝐽 -hypercovers.

(iv) 𝐹 satisfies the descent condition for all components of the adjunction unit
: id𝐬𝐏𝐬𝐡(u�) → 𝐬𝑗∗𝐬𝑗∗.

Proof. See Theorem a.6 in [Dugger, Hollander, and Isaksen, 2004]. □ TODO: Does this
really need u� to have
pullbacks?Definition 8.3.14. A strong 𝐽 -stack of ∞-groupoids on u� is a simplicial 𝐽 -sheaf

on u� that is also a 𝐽 -stack of ∞-groupoids.
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Theorem 8.3.15. The following data constitute a cofibrantly generated model
structure on 𝐬𝐒𝐡(u�, 𝐽 ):

• The weak equivalences are the weak 𝐽 -stack equivalences.

• The cofibrations are the monomorphisms.

• The fibrations are the morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) that are fibrations in the
injective model structure (on 𝐬𝐏𝐬𝐡(u�)) for 𝐽 -stacks of ∞-groupoids.

This model structure is called the injective model structure for strong 𝐽 -stacks
of ∞-groupoids, and the adjunction

𝐬𝑗∗ ⊣ 𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen equivalence between this model structure and the injective model
structure for 𝐽 -stacks of ∞-groupoids.

Proof. We have the following facts:

• The functor 𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�) is fully faithful.

• Both 𝐬𝑗∗ : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐒𝐡(u�, 𝐽 ) and 𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�) preserve
monomorphisms, and the class of monomorphisms in 𝐬𝐒𝐡(u�, 𝐽 ) is closed
under pushouts, transfinite composition, and retracts.

• The adjunction unit : id𝐬𝐏𝐬𝐡(u�) ⇒ 𝐬𝑗∗𝐬𝑗∗ is a natural weak 𝐽 -stack equi-
valence, by proposition 8.3.11.

We may thus apply corollary 5.2.6 to theorem 8.3.10. In particular, note that
every monomorphism is a cofibration in the model structure so constructed: in-
deed, if 𝑓 : 𝑋 → 𝑌 is a monomorphism in 𝐬𝐒𝐡(u�, 𝐽 ), then 𝑗∗𝑓 : 𝑗∗𝑋 → 𝑗∗𝑌 is
an injective cofibration in 𝐬𝐏𝐬𝐡(u�), so 𝑗∗𝑗∗𝑓 : 𝑗∗𝑗∗𝑋 → 𝑗∗𝑗∗𝑌 is a cofibration in
𝐬𝐒𝐡(u�, 𝐽 ); but the adjunction counit : 𝐬𝑗∗𝐬𝑗∗ ⇒ id𝐬𝐒𝐡(u�,𝐽 ) is a natural isomorph-
ism (by proposition a.1.3), so 𝑓 : 𝑋 → 𝑌 itself must be a cofibration. ■

Theorem 8.3.16. The following data constitute a cofibrantly generated model
structure on 𝐬𝐒𝐡(u�, 𝐽 ):

• The weak equivalences are the weak 𝐽 -stack equivalences.

• The trivial fibrations are the morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) that are component-
wise trivial Kan fibrations.
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• The cofibrations are the morphisms that have the left lifting property with
respect to the trivial fibrations.

This model structure is called the projective model structure for strong 𝐽 -stacks
of ∞-groupoids, and the adjunction

𝐬𝑗∗ ⊣ 𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen equivalence between this model structure and the projective model
structure for 𝐽 -stacks of ∞-groupoids.

Proof. Let ℐ be the following subset of mor 𝐬𝐒𝐡(u�, 𝐽 ):

ℐ = {𝑗∗(𝜕Δ𝑛 ⊙ h𝐶 ↪ Δ𝑛 ⊙ h𝐶) | 𝑛 ≥ 0, 𝐶 ∈ ob u�}

By proposition a.3.26, the ℐ-injective morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) are precisely the
morphisms that are componentwise trivial Kan fibrations; and by theorem 8.3.15,
each element of ℐ is a trivial cofibration (in 𝐬𝐒𝐡(u�, 𝐽 )) for the injective model
structure for strong 𝐽 -stacks of ∞-groupoids. We may then obtain the required
model structure by applying proposition 5.2.17. The construction ensures that
𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�) preserves cofibrations, so by proposition 4.3.8, the
displayed adjunction is indeed a Quillen equivalence. ■

Definition 8.3.17. A 𝐽 -hypersheaf on u� is a simplicial presheaf on u� that sat-
isfies the descent condition for all 𝐽 -hypercovers of presheaves of the form h𝐶
where 𝐶 is an object in u�.

Remark 8.3.18. Given a componentwise weak homotopy equivalence 𝑋 → 𝑌 in
𝐬𝐏𝐬𝐡(u�), it is clear that 𝑋 is a 𝐽 -hypersheaf if and only if 𝑌 is a 𝐽 -hypersheaf.
Thus, by proposition 4.1.28, the full subcategory of 𝐬𝐏𝐬𝐡(u�) spanned by the
𝐽 -hypersheaves inherits the injective and projective model structures on 𝐬𝐏𝐬𝐡(u�)
(and hence admits the structure of a derivable category in two ways).

Definition 8.3.19. A weak 𝐽 -hypersheaf equivalence in 𝐬𝐏𝐬𝐡(u�) is a morphism
𝑓 : 𝑋 → 𝑌 in 𝐬𝐏𝐬𝐡(u�) such that the induced morphism

𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑓 , 𝐹 ) : 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑌 , 𝐹 ) → 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑋, 𝐹 )

is an isomorphism in Ho 𝐬𝐒𝐞𝐭 for all 𝐽 -hypersheaves 𝐹 .
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Remark 8.3.20. Clearly, every componentwise weak homotopy equivalence is
also a weak 𝐽 -hypersheaf equivalence. Conversely, (the proof of) lemma 5.6.6
shows that every weak 𝐽 -hypersheaf equivalence between 𝐽 -hypersheaves is a
componentwise weak homotopy equivalence.

Proposition 8.3.21. Every 𝐽 -hypersheaf is also a 𝐽 -stack.

Proof. Let 𝐹 be a 𝐽 -hypersheaf, let 𝐶 be an object in u�, and let 𝑞 : 𝑉 → h𝐶 be a
monomorphism in 𝐏𝐬𝐡(u�) that is a 𝐽 -local epimorphism. We wish to show that
𝐹 satisfies the descent condition for disc 𝑞 : disc 𝑉 → disc h𝐶 . To begin, observe
that 𝑞 : 𝑉 → h𝐶 is a 𝐽 -local isomorphism: indeed, since 𝑗∗ : 𝐏𝐬𝐡(u�) → 𝐒𝐡(u�, 𝐽 )
preserves finite limits, 𝑗∗𝑞 : 𝑗∗𝑉 → 𝑗∗h𝐶 is both a (regular) monomorphism and
an epimorphism, hence must be an isomorphism. In particular, disc 𝑞 : disc 𝑉 →
disc h𝐶 is a 𝐽 -local trivial Kan fibration.

Now, using lemma 8.2.20 (for the minimal topology, not 𝐽 ), we may obtain a
componentwise trivial Kan fibration 𝑈 → disc 𝑉 whose composite with disc 𝑞 :
disc 𝑉 → disc h𝐶 yields (by proposition 8.2.12 and lemma 8.2.13) a 𝐽 -hypercover
𝑝 : 𝑈 → disc h𝐶 . Thus, we have a commutative diagram in Ho 𝐬𝐒𝐞𝐭 of the form
below,

𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc h𝐶 , 𝐹 ) 𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc 𝑉 , 𝐹 )

𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc h𝐶 , 𝐹 ) 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑈, 𝐹 )

𝑞∗

𝑝∗

where 𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc 𝑉 , 𝐹 ) → 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑈, 𝐹 ) is an isomorphism. Thus,
𝐹 satisfies the descent condition for 𝑝 : 𝑈 → disc h𝐶 if and only if 𝐹 satisfies
the descent condition for disc 𝑞 : disc 𝑉 → disc h𝐶 . ■

Corollary 8.3.22. Every weak 𝐽 -stack equivalence is also a weak 𝐽 -hypersheaf
equivalence. ■

Remark 8.3.23. The converse of proposition 8.3.21 is not true in general: there
exist a Grothendieck site (u�, 𝐽 ) and a 𝐽 -stack 𝐹 such that 𝐹 is not a 𝐽 -hypersheaf.
For details, see Example a.10 in [Dugger, Hollander, and Isaksen, 2004].
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Lemma 8.3.24. Let be an infinite cardinal such that |h𝐶| ≤ for all 𝐶 in u�.
For any simplicial presheaf 𝐹 on u�, the following are equivalent:

(i) 𝐹 is a 𝐽 -hypersheaf.

(ii) 𝐹 satisfies the descent condition for all 𝐽 -hypercovers 𝑈 → disc h𝐶 where
𝑈 is a cellular simplicial presheaf on u� and 𝐶 is an object in u�.

(iii) 𝐹 satisfies the descent condition for all 𝐽 -hypercovers 𝑈 → disc h𝐶 where
𝑈 is a cellular simplicial presheaf on u�, |𝑈𝑛| ≤ for all 𝑛, and 𝐶 is an
object in u�.

Proof. (i) ⇒ (ii), (ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let 𝑓 : 𝑋 → disc h𝐶 be a 𝐽 -hypercover. By proposition 8.2.23, there
is a 𝐽 -hypercover 𝑝 : 𝑈 → disc h𝐶 such that 𝐹 satisfies the descent condition for
𝑝 and 𝑝 refines 𝑓 . We then have the following commutative diagram,

𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc h𝐶 , 𝐹 ) 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑋, 𝐹 )

𝐑Hom𝐬𝐏𝐬𝐡(u�)(disc h𝐶 , 𝐹 ) 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑈, 𝐹 )

𝑓 ∗

𝑝∗

where 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑋, 𝐹 ) → 𝐑Hom𝐬𝐏𝐬𝐡(u�)(𝑈, 𝐹 ) is an isomorphism in Ho 𝐬𝐒𝐞𝐭.
Thus, 𝐹 satisfies the descent condition for 𝑓 : 𝑋 → disc h𝐶 if (and only if) 𝐹
satisfies the descent condition for 𝑝 : 𝑈 → disc h𝐶 . ■

Theorem 8.3.25. Let u� be the class of 𝐽 -hypercovers of presheaves of the form
disc h𝐶 where 𝐶 is an object in u�.

(i) The left Bousfield localisation of the Heller model structure on 𝐬𝐏𝐬𝐡(u�)
with respect to u� exists. The localised model structure is called the in-
jective model structure for 𝐽 -hypersheaves, and the fibrant objects in
the localised model structure are the injective-fibrant 𝐽 -hypersheaves.

(ii) The left Bousfield localisation of the Bousfield–Kan model structure on
𝐬𝐏𝐬𝐡(u�) with respect to u� exists. The localised model structure is called
the projective model structure for 𝐽 -hypersheaves, and the fibrant ob-
jects in the localised model structure are the projective-fibrant 𝐽 -hypersheaves.

In either case:
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• The localised model structure is left proper, combinatorial, and simplicial.

• The weak equivalences are the weak 𝐽 -hypersheaf equivalences.

Proof. Let be an infinite cardinal such that |h𝐶| ≤ for all 𝐶 in u� and let u�′

be the class of all 𝐽 -hypercovers of the form 𝑈 → disc h𝐶 where 𝑈 is a cellular
simplicial presheaf on u�, |𝑈𝑛| ≤ for all 𝑛, and 𝐶 is an object in u�. It is clear
that there is a set of representatives of isomorphism classes of elements of u�′,
and lemma 8.3.24 implies that u�′-local objects are the same thing as u�-local
objects. Thus, it suffices to construct the left Bousfield localisation with respect
to u�′. But the Heller (resp. Bousfield–Kan) model structure on 𝐬𝐏𝐬𝐡(u�) is left
proper (by propositions 5.1.9 and 5.1.10) and combinatorial, so we may apply
proposition 5.6.14 and theorem 5.6.15. ■

Lemma 8.3.26. Let 𝑋 and 𝑌 be projective-fibrant 𝐽 -hypersheaves and let 𝑓 :
𝑋 → 𝑌 be a morphism in 𝐬𝐏𝐬𝐡(u�) that has the right lifting property with re-
spect to all projective cofibrations that are weak 𝐽 -hypersheaf equivalences. If
𝑓 : 𝑋 → 𝑌 is a 𝐽 -local weak homotopy equivalence, then 𝑓 : 𝑋 → 𝑌 is a
componentwise trivial Kan fibration in 𝐬𝐏𝐬𝐡(u�).

Proof. It suffices to show that 𝑓 : 𝑋 → 𝑌 has the right lifting property with
respect to 𝜕Δ𝑛 ⊙ 𝑉 → Δ𝑛 ⊙ 𝑉 , where 𝑉 = disc h𝐶 , for all natural numbers 𝑛 and
all objects 𝐶 in u�. Consider a lifting problem of the form below:

𝜕Δ𝑛 ⊙ 𝑉 𝑋

Δ𝑛 ⊙ 𝑉 𝑌

𝑧

𝑓

𝑤

Remark 8.3.20 implies that 𝑓 : 𝑋 → 𝑌 is a fibration in the Bousfield–Kan model
structure on 𝐬𝐏𝐬𝐡(u�), so it is a 𝐽 -local Kan fibration, by lemma 8.2.13. Similarly,
𝑋 and 𝑌 are 𝐽 -locally fibrant simplicial presheaves, so we may use theorem 8.1.13
to deduce that 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local trivial Kan fibration. Proposition 8.2.24
then yields a cellular simplicial presheaf 𝑈 and 𝐽 -hypercover 𝑝 : 𝑈 → 𝑉 and a
morphism ℎ : Δ𝑛 ⊙ 𝑈 → 𝑋 making the following diagram commute:

𝜕Δ𝑛 ⊙ 𝑈 𝜕Δ𝑛 ⊙ 𝑉 𝑋

Δ𝑛 ⊙ 𝑈 Δ𝑛 ⊙ 𝑉 𝑌

id𝜕Δ𝑛⊙𝑝 𝑧

𝑓
ℎ

idΔ𝑛⊙𝑝 𝑤
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Now, consider the commutative diagram of hom-spaces induced by the two lift-
ing problems:

𝐬𝐏𝐬𝐡u�(𝑉 , Δ𝑛 ⋔ 𝑋) 𝐬𝐏𝐬𝐡u�(𝑉 , (𝜕Δ𝑛 ⋔ 𝑋) ×𝜕Δ𝑛⋔𝑌 (Δ𝑛 ⋔ 𝑌 ))

𝐬𝐏𝐬𝐡u�(𝑈, Δ𝑛 ⋔ 𝑋) 𝐬𝐏𝐬𝐡u�(𝑈, (𝜕Δ𝑛 ⋔ 𝑋) ×𝜕Δ𝑛⋔𝑌 (Δ𝑛 ⋔ 𝑌 ))

𝑝∗ 𝑝∗

The horizontal arrows are Kan fibrations, because the Bousfield–Kan model
structure on 𝐬𝐏𝐬𝐡(u�) is simplicial and both 𝑈 and 𝑉 are projective-cofibrant
(by remarks 8.2.3 and 8.2.4). Since the left Bousfield localisation with respect
to 𝐽 -hypercovers is a simplicial model structure (by theorem 8.3.25), Δ𝑛 ⋔ 𝑋 and
(𝜕Δ𝑛 ⋔ 𝑋) ×𝜕Δ𝑛⋔𝑌 (Δ𝑛 ⋔ 𝑌 ) are 𝐽 -hypersheaves, and hence the vertical arrows in
the above diagram are weak homotopy equivalences. Thus, we may deduce that
the image of the upper horizontal arrow meets the connected component of the
vertex defined by our original lifting problem, and the path lifting property of
Kan fibrations implies that there is a solution for that lifting problem. ■

Theorem 8.3.27. Let 𝑓 : 𝑋 → 𝑌 be a morphism in 𝐬𝐏𝐬𝐡(u�). The following are
equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a 𝐽 -local weak homotopy equivalence.

(ii) 𝑓 : 𝑋 → 𝑌 is a weak 𝐽 -hypersheaf equivalence.

Proof. The following proof is due to Dugger, Hollander, and Isaksen [2004].
Remarks 8.1.35, 8.3.18, and 8.3.20 plus lemma 8.2.9 imply that we may as-

sume that 𝑋 and 𝑌 are projective-fibrant 𝐽 -hypersheaves (by applying a func-
torial fibrant replacement in 𝐬𝐒𝐞𝐭). Moreover, theorem 8.3.25 implies that there
is a factorisation of the form 𝑓 = 𝑞 ∘ 𝑖 where 𝑖 : 𝑋 → 𝐸 is a weak 𝐽 -hypersheaf
equivalence between 𝐽 -hypersheaves and 𝑞 : 𝐸 → 𝑌 is a morphism that has
the right lifting property with respect to all projective cofibrations that are weak
𝐽 -hypersheaf equivalences. By remark 8.3.20, 𝑖 : 𝑋 → 𝐸 is a componentwise
weak homotopy equivalence, so 𝑞 : 𝐸 → 𝑌 is a 𝐽 -local weak homotopy equi-
valence (resp. weak 𝐽 -hypersheaf equivalence) if and only if 𝑓 : 𝑋 → 𝑌 is a
𝐽 -local weak homotopy equivalence (resp. weak 𝐽 -hypersheaf equivalence). It
is therefore enough to prove that the two conditions are equivalent for 𝑞 : 𝐸 → 𝑌 .
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(i) ⇒ (ii). If 𝑞 : 𝐸 → 𝑌 is a 𝐽 -local weak homotopy equivalence, then we can
use lemma 8.3.26 to deduce that 𝑞 : 𝐸 → 𝑌 is a componentwise trivial Kan
fibration, hence a weak 𝐽 -hypersheaf equivalence a fortiori.

(ii) ⇒ (i). If 𝑞 : 𝐸 → 𝑌 is a weak 𝐽 -hypersheaf equivalence, then we can use
remark 8.3.20 to deduce that 𝑞 : 𝐸 → 𝑌 is a componentwise weak homotopy
equivalence, hence a 𝐽 -local weak homotopy equivalence by lemma 8.2.9. ■

Corollary 8.3.28. Let 𝐹 be a simplicial presheaf on u�. The following are equi-
valent:

(i) 𝐹 is a 𝐽 -hypersheaf.

(ii) 𝐹 satisfies the descent condition for weak 𝐽 -hypersheaf equivalences.

(iii) 𝐹 satisfies the descent condition for 𝐽 -local weak homotopy equivalences.

(iv) 𝐹 satisfies the descent condition for 𝐽 -local trivial Kan fibrations.

Proof. (i) ⇒ (ii). Every hypersheaf satisfies the descent condition for weak
𝐽 -hypersheaf equivalences (by definition).

(ii) ⇒ (iii). Every 𝐽 -local weak homotopy equivalence is a weak 𝐽 -hypersheaf
equivalence (by theorem 8.3.27).

(iii) ⇒ (iv). Every 𝐽 -local trivial Kan fibration is a 𝐽 -local weak homotopy
equivalence (by remark 8.1.36).

(iv) ⇒ (i). Every 𝐽 -hypercover is a 𝐽 -local trivial Kan fibration (by definition).
■

8.4 Hypersheaf model structures
Prerequisites. §§0.5, 1.4, 1.5, 4.1, 4.3, 5.2, 8.1, a.7.

In this section, we study model structures for hypersheaves on a Grothen-
dieck site. The first such model structure was constructed by Joyal [1984] and
generalises the injective model structure of Heller [1988] on the category of sim-
plicial presheaves.[5] We will mostly follow Joyal’s original proof, but it should

[5] See also theorem 1.9.14.
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be noted that there is another proof due to Jardine [1987], who also constructs a
Quillen-equivalent model structure on the category of simplicial presheaves.

We will not use the theory of hypersheaves in this section; instead we work
with the homotopy theory of internal Kan complexes. The two approaches are
equivalent by a theorem of Dugger, Hollander, and Isaksen [2004]: see the-
orem 8.3.27. In particular, the Jardine (resp. Blander) local model structure on
simplicial presheaves can be constructed as the left Bousfield localisation of the
Heller (resp. Bousfield–Kan) model structure with respect to the class of 𝐽 -hy-
percovers of representable presheaves.

Definition 8.4.1. Let ℰ be a Grothendieck topos and let 𝐬ℰ be the category of
simplicial objects in ℰ.

• A weak homotopy equivalence in 𝐬ℰ is an internal weak homotopy equi-
valence of simplicial objects in ℰ.

• An injective cofibration in 𝐬ℰ is a monomorphism in 𝐬ℰ.

• An injective trivial cofibration in 𝐬ℰ is an injective cofibration in 𝐬ℰ that
is also a weak homotopy equivalence.

• An injective fibration in 𝐬ℰ is a morphism in 𝐬ℰ with the right lifting
property with respect to the injective trivial cofibrations.

• An injective trivial fibration in 𝐬ℰ is a morphism in 𝐬ℰ with the right
lifting property with respect to the injective cofibrations.

Remark 8.4.2. It is well known that 𝐬ℰ is a Grothendieck topos if ℰ is, so 𝐬ℰ with
the Heller–Joyal model structure (once it is shown to exist) is a Cisinski model
category.[6] In a particular, injective trivial fibrations in 𝐬ℰ are (by definition) the
same thing as Cisinski trivial fibrations in 𝐬ℰ.

Proposition 8.4.3. Let ℰ and ℱ be Grothendieck toposes and let 𝑢 : ℰ → ℱ
be a geometric morphism. Then the inverse image functor 𝑢∗ : ℱ → ℰ induces
a functor 𝐬𝑢∗ : 𝐬ℱ → 𝐬ℰ that preserves injective cofibrations, injective trivial
cofibrations, and weak homotopy equivalences.

[6] See definition 5.4.1.
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Proof. By definition, 𝑢∗ : ℱ → ℰ is a functor that preserves finite limits and has
a right adjoint. Thus, 𝐬𝑢∗ : 𝐬ℱ → 𝐬ℰ preserves injective cofibrations (i.e. mono-
morphisms), and to complete the proof, it suffices to show that 𝐬𝑢∗ : 𝐬ℱ → 𝐬ℰ
preserves weak homotopy equivalences. But by proposition 8.1.30, 𝐬𝑢∗ com-
mutes with Ex∞, so we may use the argument in the proof of lemma 8.1.31 to
deduce that 𝐬𝑢∗ indeed preserves weak homotopy equivalences. ■

Lemma 8.4.4. Let ℰ be a Grothendieck topos. The class of weak homotopy
equivalences in 𝐬ℰ is closed under colimits for small filtered diagrams (in [𝟚, 𝐬ℰ]).

Proof. Let u� be a small filtered category. Since ℰ is a Grothendieck topos,
lim−−→u�

: [u� , ℰ] → ℰ preserves finite limits. Thus, by proposition 8.4.3, lim−−→u�
preserves weak homotopy equivalences, and it is not hard to see that a weak ho-
motopy equivalence of simplicial objects in [u� , ℰ] is precisely a morphism that
is componentwise a weak homotopy equivalence of simplicial objects in ℰ. ■

Lemma 8.4.5. Let ℰ be a Grothendieck topos.

(i) The class of injective cofibrations (resp. injective trivial cofibrations) in 𝐬ℰ
contains all isomorphisms in 𝐬ℰ.

(ii) The class of injective cofibrations (resp. injective trivial cofibrations) in 𝐬ℰ
is closed under (finite and) transfinite composition.

(iii) The class of injective cofibrations (resp. injective trivial cofibrations) in 𝐬ℰ
is closed under retracts.

(iv) The class of injective cofibrations (resp. injective trivial cofibrations) in 𝐬ℰ
is closed under pushouts.

(v) The class of injective cofibrations (resp. injective trivial cofibrations) in 𝐬ℰ
is closed under coproducts.

Proof. The claims for the class of injective cofibrations are well known; we will
prove the claims for the class of injective trivial cofibrations.

(i). Obvious.

(ii) and (iii). It suffices to show that the class of weak homotopy equivalences
is closed under the relevant operations; but this was done in remark 8.1.35 and
lemma 8.4.4.
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(iv). Use the classical completeness theorem for separable theories.TODO: Fill in
the details...

(v). By lemma 0.5.6, a class of morphisms that is closed under transfinite com-
position and pushouts is also closed under coproducts. ■

Lemma 8.4.6. Let ℰ be a Grothendieck topos. Every injective trivial fibration
in 𝐬ℰ is an internal trivial Kan fibration of simplicial objects in ℰ.

Proof. Let 𝑝 : 𝑋 → 𝑌 be an injective trivial fibration in 𝐬ℰ and let 𝑛 be a natural
number. We wish to show that the following diagram is a weak pullback square
in ℰ,

{Δ𝑛, 𝑋} {Δ𝑛, 𝑌 }

{𝜕Δ𝑛, 𝑋} {𝜕Δ𝑛, 𝑌 }

{Δ𝑛,𝑝}

{𝜕Δ𝑛,𝑝}

where the vertical arrows are induced by the boundary inclusion 𝜕Δ𝑛 ↪ Δ𝑛, so it
suffices to verify that the morphism

{Δ𝑛, 𝑋} → {𝜕Δ𝑛, 𝑋} ×{𝜕Δ𝑛,𝑌 } {Δ𝑛, 𝑌 }

is a split epimorphism in ℰ. Let 𝐿 denote the codomain of this morphism. By
adjointness, we find that {Δ𝑛, 𝑋} → 𝐿 splits if and only if there is a morphism
Δ𝑛 ⊙ 𝐿 → 𝑋 in 𝐬ℰ making the diagram below commute,

𝜕Δ𝑛 ⊙ 𝐿 𝑋

Δ𝑛 ⊙ 𝐿 𝑌

𝑝

where 𝜕Δ𝑛 ⊙ 𝐿 → Δ𝑛 ⊙ 𝐿 is induced by the boundary inclusion 𝜕Δ𝑛 ↪ Δ𝑛,
𝜕Δ𝑛 ⊙ 𝐿 → 𝑋 is the left adjoint transpose of the projection 𝐿 → 𝜕Δ𝑛 ⋔ 𝑋, and
Δ𝑛 ⊙ 𝐿 → 𝑌 is the left adjoint transpose of the projection 𝐿 → Δ𝑛 ⋔ 𝑌 . But
𝜕Δ𝑛 ⊙ 𝐿 → Δ𝑛 ⊙ 𝐿 is an injective cofibration and 𝑝 : 𝑋 → 𝑌 is an injective
trivial cofibration, hence the required morphism Δ𝑛 ⊙ 𝐿 → 𝑋 indeed exists. ■

Lemma 8.4.7. Let u� be a Grothendieck topos. There exist a set ℐ of mono-
morphisms in u� such that the relative ℐ-cell complexes are precisely the mono-
morphisms in u� .
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Proof. We may assume without loss of generality that u� = 𝐒𝐡(u�, 𝐽 ), where u� is
a small category and 𝐽 is a subcanonical Grothendieck topology on u�. Consider
the class of all monomorphisms 𝑈 → 𝑉 in u� where 𝑉 is a quotient (in u�) of
some representable sheaf: since u� is well-powered and well-copowered, we may
choose a set ℐ of representatives of isomorphism classes of such monomorph-
isms. The argument in the proof of proposition 0.5.20 then shows that every
monomorphism in u� is a relative ℐ-cell complex. ■

Lemma 8.4.8. Let ℰ be a Grothendieck topos. The full subcategory of [𝟚, 𝐬ℰ]
spanned by the weak homotopy equivalences in 𝐬ℰ is an accessible subcategory
of [𝟚, 𝐬ℰ].

Proof. It is not hard to see that Ex : 𝐬ℰ → 𝐬ℰ is an accessible functor, so the
same is true for Ex∞ : 𝐬ℰ → 𝐬ℰ. Thus, by applying proposition 0.3.30, it suffices
to show that the full subcategory of [𝟚, 𝐬ℰ] spanned by the Dugger–Isaksen weak
equivalences is an accessible subcategory of [𝟚, 𝐬ℰ]. Clearly, this subcategory
is the category of models (in ℰ) of a small (geometric) sketch, so it is closed in
[𝟚, 𝐬ℰ] under colimits for small filtered diagrams, and we may apply Theorem
2.60 in [LPAC] to deduce that it is indeed an accessible category. □

Theorem 8.4.9 (Heller, Joyal). Let ℰ be a Grothendieck topos. The following
data constitute a cofibrantly generated model structure on 𝐬ℰ:

• The weak equivalences are the internal weak homotopy equivalences of
simplicial objects in ℰ.

• The cofibrations are the injective cofibrations, i.e. the monomorphisms.

• The fibrations are the injective fibrations, i.e. the morphisms that have the
right lifting property with respect to monomorphisms that are weak homo-
topy equivalences.

This model structure is called the Heller–Joyal model structure.

Proof. We have shown the following:

• The class of weak homotopy equivalences in 𝐬ℰ has the 2-out-of-3 property
and is closed under retracts, by remark 8.1.35.

• The class of injective cofibrations is the class of relative ℐ-cell complexes
for a subset ℐ ⊂ mor 𝐬ℰ, by lemma 8.4.7, and every injective trivial fibra-
tion is a weak homotopy equivalence, by remark 8.1.36 and lemma 8.4.6.
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• The class of injective trivial cofibrations is closed under pushouts and
transfinite composition, by lemma 8.4.5.

• The full subcategory of [𝟚, 𝐬ℰ] spanned by the weak homotopy equival-
ences in 𝐬ℰ is accessible, by lemma 8.4.8.

Thus, we may apply Smith’s recognition principle (theorem 5.2.10) to deduce
that we have the required cofibrantly generated model structure. ■

Corollary 8.4.10. Let ℰ and ℱ be Grothendieck toposes. Given a geometric
morphism 𝑢 : ℰ → ℱ, the induced adjunction

𝐬𝑢∗ ⊣ 𝐬𝑢∗ : 𝐬ℰ → 𝐬ℱ

is a Quillen adjunction (with respect to the Heller–Joyal model structures on 𝐬ℰ
and 𝐬ℱ).

Proof. Apply proposition 4.3.2 to proposition 8.4.3. ■

Remark 8.4.11. The fact that we have a model structure implies that the injective
trivial fibrations in 𝐬ℰ are precisely the injective fibrations in 𝐬ℰ that are also
weak homotopy equivalences.

Next, we transfer the Heller–Joyal model structure to the category of simpli-
cial presheaves, obtaining the Jardine local model structure.

Definition 8.4.12. In the notation of paragraph 8.2.1, recalling definition 8.2.8:

• An 𝐽 -local injective trivial cofibration in 𝐬𝐏𝐬𝐡(u�) is an injective cofibra-
tion in 𝐬𝐏𝐬𝐡(u�) that is also a 𝐽 -local weak homotopy equivalence.

• An 𝐽 -local injective fibration in 𝐬𝐏𝐬𝐡(u�) is a morphism in 𝐬𝐏𝐬𝐡(u�) that
has the right lifting property with respect to the 𝐽 -local injective trivial
fibrations.

Remark 8.4.13. By remark 8.1.37, the componentwise weak homotopy equival-
ences in 𝐬𝐏𝐬𝐡(u�) are the internal weak homotopy equivalences of simplicial ob-
jects in 𝐏𝐬𝐡(u�); thus, they are the weak equivalences in the Heller–Joyal model
structure on 𝐬𝐏𝐬𝐡(u�), and the Heller–Joyal model structure on 𝐬𝐏𝐬𝐡(u�) can be
identified with the injective model structure on [u� op, 𝐬𝐒𝐞𝐭].

Lemma 8.4.14. Let u� be a small category and let 𝐽 be a Grothendieck topology
on u�.
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(i) The class of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) contains all
𝐽 -local isomorphisms in 𝐬𝐏𝐬𝐡(u�).

(ii) The class of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) is closed under
(finite and) transfinite composition.

(iii) The class of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) is closed under
retracts.

(iv) The class of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) is closed under
pushouts.

(v) The class of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) is closed under
coproducts.

Proof. As noted in paragraph 8.2.1, the associated sheaf functor preserves finite
limits, so it preserves monomorphisms in particular. On the other hand, it is
a left adjoint, so it also preserves all colimits. We may therefore deduce the
announced properties of 𝐽 -local injective trivial cofibrations in 𝐬𝐏𝐬𝐡(u�) from
the corresponding properties of injective trivial cofibrations in 𝐬𝐒𝐡(u�, 𝐽 ), which
were established in lemma 8.4.5. ■

Lemma 8.4.15. Let u� be a small category and let 𝐽 be a Grothendieck topo-
logy on u�. The full subcategory of [𝟚, 𝐬𝐏𝐬𝐡(u�)] spanned by the 𝐽 -local weak
homotopy equivalences in 𝐬𝐏𝐬𝐡(u�) is an accessible subcategory of [𝟚, 𝐬𝐏𝐬𝐡(u�)].

Proof. The associated sheaf functor is automatically an accessible functor, so
we may apply proposition 0.3.30 to lemma 8.4.8 to deduce the claim. ■

Theorem 8.4.16 (Jardine). Let u� be a small category and let 𝐽 be a Grothen-
dieck topology on u�. The following data constitute a cofibrantly generated model
structure on 𝐬𝐏𝐬𝐡(u�):

• The weak equivalences are the 𝐽 -local weak homotopy equivalences.

• The cofibrations are the injective cofibrations, i.e. the monomorphisms.

• The fibrations are the 𝐽 -local injective fibrations, i.e. the morphisms that
ahve the right lifting property with respect to monomorphisms that are
𝐽 -local weak homotopy equivalences.

This model structure is called the 𝐽 -local Jardine model structure.
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Proof. We have the following facts:

• The class of 𝐽 -local weak homotopy equivalences has the 2-out-of-3 prop-
erty and is closed under retracts, by remark 8.1.35 and lemma a.4.14.

• The class of injective cofibrations is the class of relative ℐ-cell complexes
for a subset ℐ ⊂ mor 𝐬𝐏𝐬𝐡(u�), by proposition 0.5.20, and every injective
trivial fibration is a 𝐽 -local weak homotopy equivalence, by lemma 8.2.9.

• The class of 𝐽 -local injective trivial cofibrations is closed under pushouts
and transfinite composition, by lemma 8.4.14.

• The full subcategory of [𝟚, 𝐬𝐏𝐬𝐡(u�)] spanned by the 𝐽 -local weak homo-
topy equivalences is accessible, by lemma 8.4.8.

Thus, we may apply Smith’s recognition principle (theorem 5.2.10) to deduce
that we have the required cofibrantly generated model structure. ■

Remark 8.4.17. The 𝐽 -local Jardine model structure on 𝐬𝐏𝐬𝐡(u�) is the left Bous-
field localisation of the Heller model structure with respect to the class of 𝐽 -local
weak homotopy equivalences, and it makes 𝐬𝐏𝐬𝐡(u�) into a Cisinski model cat-
egory.

Proposition 8.4.18. In the notation of paragraph 8.2.1, the induced adjunction

𝐬𝑗∗ ⊣ 𝐬𝑗∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen equivalence between the Heller–Joyal model structure on 𝐬𝐒𝐡(u�, 𝐽 )
and the 𝐽 -local Jardine model structure on 𝐬𝐏𝐬𝐡(u�).

Proof. By construction, the associated sheaf functor 𝐬𝑗∗ : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐒𝐡(u�, 𝐽 )
is a left Quillen functor, so we indeed have a Quillen adjunction (by proposi-
tion 4.3.2). To complete the proof, we simply appeal to propositions 4.3.8 and
a.1.3). ■

Proposition 8.4.19. Let (u�, 𝐽 ) and (u�, 𝐾) be small Grothendieck sites. If 𝑢 :
u� → u� is a flat functor that sends 𝐾-covering sieves to 𝐽 -covering sieves, then:

(i) The induced adjunction

𝐬Lan𝑢 ⊣ 𝐬𝑢∗ : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen adjunction with respect to the local Jardine model structures.
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(ii) Moreover, it is a Quillen equivalence if the corresponding geometric morph-
ism

𝑢! ⊣ 𝑢∗ : 𝐒𝐡(u�, 𝐽 ) → 𝐒𝐡(u�, 𝐾)

is an adjoint equivalence of toposes.

Proof. (i). The hypotheses imply that 𝑢∗ : 𝐏𝐬𝐡(u�) → 𝐏𝐬𝐡(u�) sends 𝐽 -sheaves
to 𝐾-sheaves, so we have the following (strictly) commutative diagram of right
adjoints:

𝐬𝐒𝐡(u�, 𝐽 ) 𝐬𝐏𝐬𝐡(u�)

𝐬𝐒𝐡(u�, 𝐾) 𝐬𝐏𝐬𝐡(u�)

𝐬𝑢∗

𝐬𝑗∗

𝐬𝑢∗

𝐬𝑘∗

Thus, the diagram of left adjoints commutes up to a canonical natural isomorph-
ism. We then use proposition 8.4.3 to deduce that 𝐬 Lan𝑢 : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐏𝐬𝐡(u�)
is a left Quillen functor. This completes the proof (by proposition 4.3.2).

(ii). If 𝑢∗ : 𝐒𝐡(u�, 𝐽 ) → 𝐒𝐡(u�, 𝐾) is (half of) an equivalence of categories,
then 𝐬𝑢∗ : 𝐬𝐒𝐡(u�, 𝐽 ) → 𝐬𝐒𝐡(u�, 𝐾) must have the same property. Since the
Heller–Joyal model structure is invariant under equivalence of categories, pro-
position 8.4.18 implies that the derived adjunction

𝐋𝐬Lan𝑢 ⊣ 𝐑𝐬𝑢∗ : Ho 𝐬𝐏𝐬𝐡(u�) → Ho 𝐬𝐏𝐬𝐡(u�)

is an adjoint equivalence of categories; thus, we may apply proposition 3.3.28
and deduce that

𝐬Lan𝑢 ⊣ 𝐬𝑢∗ : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen equivalence. ■

Let u� be a small category and let 𝐽 be a Grothendieck topology on u�. Recall
that the Bousfield–Kan model structure on [u� op, 𝐬𝐒𝐞𝐭] has weak equivalences
and fibrations that are defined componentwise. We will now construct the left
Bousfield localisation of this model structure with respect to the 𝐽 -local weak
homotopy equivalences.

Definition 8.4.20.
• A 𝐽 -local projective trivial cofibration in 𝐬𝐏𝐬𝐡(u�) is a projective cofibra-

tion that is also a 𝐽 -local weak homotopy equivalence.
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• A 𝐽 -local projective fibration in 𝐬𝐏𝐬𝐡(u�) is a morphism in 𝐬𝐏𝐬𝐡(u�) that
has the right lifting property with respect to the 𝐽 -local projective trivial
cofibrations.

Remark 8.4.21. By corollary 4.3.21, every projective cofibration is an injective
cofibration; hence, every local injective fibration is a local projective fibration.
Similarly, by lemma 8.2.9, every projective trivial cofibration is a local projective
trivial cofibration, so every local projective fibration is a projective fibration.

Lemma 8.4.22. Let u� be a small category and let 𝐽 be a Grothendieck topology
on u�.

(i) The class of projective cofibrations (resp. 𝐽 -local projective trivial cofibra-
tions) in 𝐬𝐏𝐬𝐡(u�) contains all isomorphisms in 𝐬𝐏𝐬𝐡(u�).

(ii) The class of projective cofibrations (resp. 𝐽 -local projective trivial cofibra-
tions) in 𝐬𝐏𝐬𝐡(u�) is closed under (finite and) transfinite composition.

(iii) The class of projective cofibrations (resp. 𝐽 -local projective trivial cofibra-
tions) in 𝐬𝐏𝐬𝐡(u�) is closed under retracts.

(iv) The class of projective cofibrations (resp. 𝐽 -local projective trivial cofibra-
tions) in 𝐬𝐏𝐬𝐡(u�) is closed under pushouts.

(v) The class of projective cofibrations (resp. 𝐽 -local projective trivial cofibra-
tions) in 𝐬𝐏𝐬𝐡(u�) is closed under coproducts.

Proof. The claims for the class of projective cofibrations are consequences of
theorem 5.2.7 and proposition a.3.17. Moreover, remark 8.4.21 implies that a
𝐽 -local projective trivial cofibration is precisely a projective cofibration that is
also a 𝐽 -local injective trivial cofibration, so we may deduce the claims for the
class of 𝐽 -local projective trivial cofibrations from lemma 8.4.14 (plus the claims
for the class of projective cofibrations). ■

Theorem 8.4.23 (Blander). Let u� be a small category and let 𝐽 be a Grothen-
dieck topology on u�. The following data constitute a cofibrantly generated model
structure on 𝐬𝐏𝐬𝐡(u�):

• The weak equivalences are the 𝐽 -local weak homotopy equivalences.
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• The cofibrations are the projective cofibrations, i.e. the morphisms that
have the left lifting property with respect to componentwise trivial Kan
fibrations.

• The fibrations are the 𝐽 -local projective fibrations, i.e. the morphisms that
have the right lifting property with respect to the 𝐽 -local projective trivial
cofibrations.

This model structure is called the 𝐽 -local Blander model structure.

Proof. We have the following facts:

• The class of 𝐽 -local weak homotopy equivalences has the 2-out-of-3 prop-
erty and is closed under retracts, by remark 8.1.35 and lemma a.4.14.

• The class of projective cofibrations is the left class of a cofibrantly gener-
ated weak factorisation system, by theorem 5.2.7, and the every projective
trivial fibration is a 𝐽 -local weak homotopy equivalence, by lemma 8.2.9.

• The class of 𝐽 -local injective trivial cofibrations is closed under pushouts
and transfinite composition, by lemma 8.4.22.

• The full subcategory of [𝟚, 𝐬𝐏𝐬𝐡(u�)] spanned by the 𝐽 -local weak homo-
topy equivalences is accessible, by lemma 8.4.8.

Thus, we may apply Smith’s recognition principle (theorem 5.2.10) to deduce
that we have the required cofibrantly generated model structure. ■

Proposition 8.4.24. Let u� be a small category and let 𝐽 be a Grothendieck
topology on u�. The trivial adjunction

id ⊣ id : 𝐬𝐏𝐬𝐡(u�) → 𝐬𝐏𝐬𝐡(u�)

is a Quillen equivalence between the 𝐽 -local Jardine model structure and the
𝐽 -local Blander model structure.

Proof. Since the weak equivalences in the two model structures are the same, it
suffices to prove that we have the announced Quillen adjunction; but this is an
immediate consequence of proposition 4.3.2 and remark 8.4.21. ■

Theorem 8.4.25 (Blander). Let u� be a small category and let 𝐽 be a Grothen-
dieck topology on u�. The following data constitute a cofibrantly generated model
structure on 𝐬𝐒𝐡(u�, 𝐽 ):
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• The weak equivalences are the internal weak homotopy equivalences of
simplicial objects in 𝐒𝐡(u�, 𝐽 ).

• The trivial fibrations are the morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) that are component-
wise trivial Kan fibrations.

• The cofibrations are the morphisms that have the left lifting property with
respect to the trivial fibrations.

This model structure is called the Blander model structure.

Proof. Let ℐ be the following subset of mor 𝐬𝐒𝐡(u�, 𝐽 ):

ℐ = {𝑗∗(𝜕Δ𝑛 ⊙ h𝐶 ↪ Δ𝑛 ⊙ h𝐶) | 𝑛 ≥ 0, 𝐶 ∈ ob u�}

By proposition a.3.26, the ℐ-injective morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) are precisely the
morphisms that are componentwise trivial Kan fibrations. Since 𝑗∗ : 𝐏𝐬𝐡(u�) →
𝐒𝐡(u�, 𝐽 ) preserves finite limits, ℐ is a set of injective cofibrations in 𝐒𝐡(u�, 𝐽 ).
We may thus apply proposition 5.2.17 and theorem 8.4.9 to construct the required
model structure on 𝐬𝐒𝐡(u�, 𝐽 ). ■

Remark 8.4.26. In fact, the fibrations in the Blander model structure are pre-
cisely the morphisms in 𝐬𝐒𝐡(u�, 𝐽 ) that are 𝐽 -local projective fibrations in 𝐬𝐏𝐬𝐡(u�):
see Theorem 2.1 in [Blander, 2001].

8.5 Verdier’s hypercovering theorem
Prerequisites. §§1.1, 1.3, 1.4, 1.5, 2.5, 8.1, 8.2, 8.3.

Although the small object argument provides a functorial choice of what one
might call “associated hypersheaves”, it is difficult to compute the weak homo-
topy types of its components (which are well defined, by remark 8.3.20). Indeed,
this problem encompasses sheaf cohomology: for instance, if 𝑋 is the simplicial
presheaf constant at 𝐾(𝐴, 𝑛) and �̂� is its associated hypersheaf, then 𝜋0�̂�(𝐶)
is the sheaf cohomology group 𝐻𝑛(𝐶, 𝐴) (where we have identified 𝐴 with the
constant sheaf at 𝐴). Verdier’s hypercovering theorem gives us a formula for 𝜋0
and the homotopy groups of �̂�(𝐶) in terms of 𝑋 and hypercovers of 𝐶 . We will
follow the proof of Dugger, Hollander, and Isaksen [2004, §8].

¶ 8.5.1. In this section, we use the notation set up in paragraph 8.2.1.
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Lemma 8.5.2. Let 𝑋 and 𝑌 be 𝐽 -locally fibrant simplicial presheaves on u�, let
𝑓 : 𝑋 → 𝑌 be a 𝐽 -local weak homotopy equivalence, let 𝐿 be a finite simplicial
set, and let 𝐾 be a simplicial subset of 𝐿.

(i) For any simplicial presheaf 𝑉 on u� and any 𝜕𝛼 : 𝐾 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑋), if
𝛽 : 𝐿 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑌 ) is a morphism whose restriction along 𝐾 ↪ 𝐿
is 𝜕𝛽 = 𝑓∗ ∘ 𝜕𝛼, then there exist a cellular simplicial presheaf 𝑈 and a
𝐽 -local trivial Kan fibration 𝑝 : 𝑈 → 𝑉 such that 𝑝∗ ∘ 𝛽 is in the image of
the map

𝑓∗ : 𝜋(𝐿,𝐾)(𝐬𝐏𝐬𝐡u�(𝑈, 𝑋), 𝜕𝛼) → 𝜋(𝐿,𝐾)(𝐬𝐏𝐬𝐡u�(𝑈, 𝑌 ), 𝑝∗ ∘ 𝜕𝛽)

induced by 𝑓 : 𝑋 → 𝑌 .

(ii) Given morphisms 𝛼0, 𝛼1 : 𝐿 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑌 ) whose restrictions along
𝐾 ↪ 𝐿 are 𝜕𝛼 : 𝐾 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑌 ), if

𝑓∗ ∘ 𝛼0 = 𝑓∗ ∘ 𝛼1 in 𝜋(𝐿,𝐾)(𝐬𝐏𝐬𝐡u�(𝑉 , 𝑌 ), 𝜕𝛽)

where 𝜕𝛽 = 𝑓∗ ∘ 𝜕𝛼, then there exist a cellular simplicial presheaf 𝑈 and
a 𝐽 -local trivial Kan fibration 𝑝 : 𝑈 → 𝑉 such that:

𝑝∗ ∘ 𝛼0 = 𝑝∗ ∘ 𝛼1 in 𝜋(𝐿,𝐾)(𝐬𝐏𝐬𝐡u�(𝑈, 𝑋), 𝑝∗ ∘ 𝜕𝛼)

Proof. (i). By adjointness, 𝜕𝛼 : 𝐾 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑋) and 𝛽 : 𝐿 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑌 )
correspond to morphisms 𝜕𝑥 : 𝐾 ⊙ 𝑉 → 𝑋 and 𝑦 : 𝐿 ⊙ 𝑉 → 𝑌 in 𝐬𝐏𝐬𝐡(u�)
making the following diagram commute:

𝐾 ⊙ 𝑉 𝑋

𝐿 ⊙ 𝑉 𝑌

𝜕𝑥

𝑓

𝑦

The claim is then seen to be precisely proposition 8.2.25.

(ii). By adjointness, 𝛼0, 𝛼1 : 𝐿 → 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑋) correspond to morphisms 𝑥0, 𝑥1 :
𝐿 ⊙ 𝑉 → 𝑋 in 𝐬𝐏𝐬𝐡(u�) making the following diagram commute:

𝐾 ⊙ 𝑉 𝐿 ⊙ 𝑉

𝐿 ⊙ 𝑉 𝑋

𝑥1

𝑥0
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It suffices to prove the claim in the special case where there is a morphism 𝑙 :
𝐶(𝐿, 𝐾) ⊙ 𝑉 → 𝑌 such that 𝑙 ∘ (𝑗0 ⊙ id𝑉 ) = 𝑓 ∘ 𝑥0 and 𝑙 ∘ (𝑗1 ⊙ id𝑉 ) = 𝑓 ∘ 𝑥1,
where 𝑗0, 𝑗1 : 𝐿 → 𝐶(𝐿, 𝐾) are the two canonical embeddings.

Let 𝜕𝑥 : (𝐿 ∪𝐾 𝐿) ⊙ 𝑉 → 𝑋 be the morphism induced by 𝑥0, 𝑥1 : 𝐿 ⊙ 𝑉 →
𝑋. Then proposition 8.2.25 gives 𝑝 : 𝑈 → 𝑉 and 𝑥 : 𝐶(𝐿, 𝐾) ⊙ 𝑈 → 𝑋 such
that the following diagram commutes,

(𝐿 ∪𝐾 𝐿) ⊙ 𝑈 (𝐿 ∪𝐾 𝐿) ⊙ 𝑉

𝐶(𝐿, 𝐾) ⊙ 𝑈 𝑋

id𝐿∪𝐾𝐿⊙𝑝

𝜕𝑥

𝑥

where 𝐿 ∪𝐾 𝐿 → 𝐶(𝐿, 𝐾) is the morphism induced by 𝑗0, 𝑗1 : 𝐿 → 𝐶(𝐿, 𝐾).
Thus, we have 𝑝∗ ∘ 𝛼0 = 𝑝∗ ∘ 𝛼1 in 𝜋(𝐿,𝐾)(𝐬𝐏𝐬𝐡u�(𝑈, 𝑋), 𝑝∗ ∘ 𝜕𝛼), as required. ■

Corollary 8.5.3. Let 𝑋 and 𝑌 be 𝐽 -locally fibrant simplicial presheaves on u�
and let 𝑓 : 𝑋 → 𝑌 be a 𝐽 -local weak homotopy equivalence.

(i) For any simplicial presheaf 𝑉 on u� and any morphism 𝑦 : 𝑉 → 𝑌 , there
exist a cellular simplicial presheaf 𝑈 , a 𝐽 -local trivial Kan fibration 𝑝 :
𝑈 → 𝑉 , a morphism 𝑥 : 𝑈 → 𝑋, and a simplicial homotopy 𝑦∘𝑝 ⇒ 𝑓 ∘𝑥,
or in other words, a morphism ℎ : Δ1 ⊙ 𝑈 → �̂� such that the following
diagram commutes,

𝑈 Δ1 ⊙ 𝑈 𝑈

𝑉 𝑌 𝑋

𝑝

𝑗0

ℎ

𝑗1

𝑥

𝑦 𝑓

where 𝑗0, 𝑗1 : 𝑈 → Δ1 ⊙ 𝑈 are the morphisms induced by the coface
morphisms 𝛿1, 𝛿0 : Δ0 → Δ1, respectively.

(ii) If 𝑥0, 𝑥1 : 𝑉 → 𝑋 are morphisms in 𝐬𝐏𝐬𝐡(u�) and there is a simplicial
homotopy 𝑓 ∘ 𝑥0 ⇒ 𝑓 ∘ 𝑥1, then there exist a cellular simplicial presheaf
𝑈 , a 𝐽 -local trivial Kan fibration 𝑝 : 𝑈 → 𝑉 , and a simplicial homotopy
𝑥0 ∘ 𝑝 ⇒ 𝑥1 ∘ 𝑝.

Moreover, in each case, we may choose 𝑈 so that each 𝑈𝑛 is a coproduct of
representable presheaves and |𝑈| ≤ , where is an infinite cardinal such that
|𝑉 | ≤ and |h𝐶| ≤ for all 𝐶 in u�. ■
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Definition 8.5.4. Let 𝑉 be a presheaf on u�. The category of 𝐽 -hypercovers of
𝑉 is the full subcategory 𝐇𝐜𝐽 (𝑉 ) of the slice category 𝐬𝐏𝐬𝐡(u�)∕ disc 𝑉 spanned
by the hypercovers of 𝑉 .

¶ 8.5.5. Recalling definition 2.1.21, the slice category 𝐬𝐏𝐬𝐡(u�)∕ disc 𝑉 has
a canonical simplicial enrichment, which is inherited by 𝐇𝐜𝐽 (𝑉 ). We define
Ho 𝐇𝐜𝐽 (𝑉 ) to be the category 𝜋0[𝐇𝐜𝐽 (𝑉 )]: its objects are 𝐽 -hypercovers of 𝑉
and its morphisms are simplicial homotopy classes of morphisms in 𝐇𝐜𝐽 (𝑉 ).
More generally, given any object 𝑞 in 𝐇𝐜𝐽 (𝑉 ), we define Ho 𝐇𝐜𝐽 (𝑉 )∕𝑞 to be the
category 𝜋0[𝐇𝐜𝐽 (𝑉 )∕𝑞].
Remark 8.5.6. If u� has pullbacks, then 𝐇𝐜𝐽 (h𝐶) is contravariantly pseudofunc-
torial in 𝐶: indeed, by proposition 8.2.12, pullbacks of 𝐽 -local trivial Kan fibra-
tions are again 𝐽 -local trivial Kan fibrations; and for any pullback diagram in
𝐏𝐬𝐡(u�), say

𝑈 ′ 𝑈

𝑉 ′ 𝑉

if 𝑈 , 𝑉 , and 𝑉 ′ are representable presheaves on u�, then so is 𝑈 ′; thus, the
pullback of a 𝐽 -hypercover of h𝐶 along any morphism h𝑓 : h𝐶′ → h𝐶 is a
𝐽 -hypercover of 𝐶′. Furthermore, since pullback in 𝐬𝐏𝐬𝐡(u�) respects simpli-
cial homotopy, so Ho 𝐇𝐜𝐽 (h𝐶) is also contravariantly pseudofunctorial in 𝐶 .

Proposition 8.5.7. Let 𝑉 be a presheaf on u�, let be an infinite cardinal such
that |𝑉 | ≤ and |h𝐶| ≤ for all 𝐶 in u�, and let u� (resp. Ho u�) be the full
subcategory of 𝐇𝐜𝐽 (𝑉 ) (resp. Ho 𝐇𝐜𝐽 (𝑉 )) spanned by those hypercovers 𝑝 :
𝑈 → disc 𝑉 where 𝑈 is cellular and |𝑈| ≤ .

(i) 𝑉 admits a 𝐽 -hypercover that is in u�, and any two 𝐽 -hypercovers of 𝑉
admit a common refinement that is in u�.

(ii) The projection 𝜋 : 𝐇𝐜𝐽 (𝑉 ) → Ho 𝐇𝐜𝐽 (𝑉 ) is a coinitial functor.[7]

(iii) Ho 𝐇𝐜𝐽 (𝑉 )op is a filtered category,[8] and for any object 𝑞 in 𝐇𝐜𝐽 (𝑉 ),
Ho 𝐇𝐜𝐽 (𝑉 )∕𝑞

op is also filtered.

(iv) Ho u�op is an essentially small filtered category.

[7] See definition a.5.31.
[8] See definition 0.2.1.
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(v) u� (resp. Ho u�) is a coinitial subcategory of 𝐇𝐜𝐽 (𝑉 ) (resp. Ho 𝐇𝐜𝐽 (𝑉 )).

Proof. (i). These are immediate consequences of lemma 8.2.20.

(ii). We must show that the comma category (𝜋 ↓ 𝑝) is connected for every
𝐽 -hypercover 𝑝 : 𝑈 → disc 𝑉 . It is inhabited: after all, the projection 𝜋 :
𝐇𝐜𝐽 (𝑉 ) → Ho 𝐇𝐜𝐽 (𝑉 ) is bijective on objects. Thus, the fact that any two
𝐽 -hypercovers of 𝑉 admit a common refinement implies that (𝜋 ↓ 𝑝) is indeed
connected.

(iii). We will show that Ho 𝐇𝐜𝐽 (𝑉 )op is filtered; similar arguments work for
Ho 𝐇𝐜𝐽 (𝑉 )∕𝑞

op. In view of claim (i), by lemma 0.2.4, it suffices to show the
following: for any two 𝐽 -hypercovers of 𝑉 , say 𝑝 : 𝑈 → disc 𝑉 and 𝑝′ : 𝑈 ′ →
disc 𝑉 , given a parallel pair of morphisms 𝑓0, 𝑓1 : 𝑈 ′ → 𝑈 in 𝐬𝐏𝐬𝐡(u�) such that
𝑝 ∘ 𝑓0 = 𝑝 ∘ 𝑓1 = 𝑝′, there exist a morphism 𝑒 : 𝑈 ″ → 𝑈 such that 𝑝″ = 𝑝′ ∘ 𝑒 is
a 𝐽 -hypercover of 𝑉 that is in u� and 𝑓0 ∘ 𝑒 = 𝑓1 ∘ 𝑒 in Ho 𝐇𝐜𝐽 (𝑉 ).

Consider the following commutative diagram in 𝐬𝐏𝐬𝐡(u�),

𝜕Δ1 ⊙ 𝑈 ′ 𝑈

Δ1 ⊙ 𝑈 ′ disc 𝑉

𝑓

𝑝

𝑞′

where 𝑓 : 𝜕Δ1 ⊙ 𝑈 ′ → 𝑈 is induced by the parallel pair 𝑓0, 𝑓1 : 𝑈 ′ → 𝑈 and
the morphism 𝑞′ : Δ1 ⊙ 𝑈 → disc 𝑉 is induced by Δ1 → Δ0 and 𝑝′ : 𝑈 ′ → 𝑉 .
We can then apply proposition 8.2.24 to obtain morphisms 𝑒 : 𝑈 ″ → 𝑈 ′ and
ℎ : Δ1 ⊙ 𝑈 ″ → 𝑈 such that the diagram below commutes,

𝜕Δ1 ⊙ 𝑈 ″ 𝜕Δ1 ⊙ 𝑈 ′ 𝑈

Δ1 ⊙ 𝑈 ″ Δ1 ⊙ 𝑈 ′ disc 𝑉

id𝜕Δ1⊙𝑒 𝑓

𝑝ℎ

idΔ1⊙𝑒 𝑞′

and 𝑝″ = 𝑝′ ∘ 𝑒 : 𝑈 ″ → disc 𝑉 is a 𝐽 -hypercover. Thus, we have a simplicial
homotopy 𝑓0 ∘ 𝑒 ⇒ 𝑓1 ∘ 𝑒 in the slice category 𝐬𝐏𝐬𝐡(u�)∕ disc 𝑉 , as required.

(iv). It is not hard to see that u� is an essentially small category. We know that
every 𝐽 -hypercover of 𝑉 can be refined by one that is in u�, so the filteredness
of Ho u�op is a consequence of the filteredness of Ho 𝐇𝐜𝐽 (𝑉 )op.
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(v). As with claim (ii), the fact that any two 𝐽 -hypercovers of 𝑉 admit a com-
mon refinement that is in u� implies that u� (resp. Ho u�) is indeed a coinitial
subcategory of 𝐇𝐜𝐽 (𝑉 ) (resp. Ho 𝐇𝐜𝐽 (𝑉 )). ■

Lemma 8.5.8. Let 𝑋 be a 𝐽 -locally fibrant simplicial presheaf on u� and let
𝑌 be a projective-fibrant 𝐽 -hypersheaf on u�. Given a 𝐽 -local weak homotopy
equivalence 𝑓 : 𝑋 → 𝑌 , there is an induced bijection

lim−−→
Ho 𝐇𝐜𝐽 (𝑉 )op

𝜋0𝐬𝐏𝐬𝐡u�(𝑈, 𝑋) → 𝜋0𝐬𝐏𝐬𝐡u�(disc 𝑉 , 𝑌 )

for each representable presheaf 𝑉 , where 𝑈 : Ho 𝐇𝐜𝐽 (𝑉 ) → 𝜋0[𝐬𝐏𝐬𝐡(u�)] is the
functor that sends a hypercover of 𝑉 to its domain. Moreover, this bijection is
natural in 𝑓 : 𝑋 → 𝑌 ; and if u� has pullbacks, then it is also natural in 𝑉 (as 𝑉
varies in the full subcategory of representable presheaves).

Proof. By proposition 1.5.20 and remark 8.3.3, the diagram 𝜋0𝐬𝐏𝐬𝐡u�(𝑈, 𝑌 ) :
Ho 𝐇𝐜𝐽 (𝑉 ) → 𝐒𝐞𝐭 sends morphisms in Ho 𝐇𝐜𝐽 (𝑉 ) to bijections; hence, the
canonical comparison

lim−−→
Ho 𝐇𝐜𝐽 (𝑉 )op

𝜋0𝐬𝐏𝐬𝐡u�(𝑈, 𝑌 ) → 𝜋0𝐬𝐏𝐬𝐡u�(disc 𝑉 , 𝑌 )

is a bijection. Thus, composition with 𝑓 : 𝑋 → 𝑌 induces a map

lim−−→
Ho 𝐇𝐜𝐽 (𝑉 )op

𝜋0𝐬𝐏𝐬𝐡u�(𝑈, 𝑋) → 𝜋0𝐬𝐏𝐬𝐡u�(disc 𝑉 , 𝑌 )

and it is clearly natural in 𝑓 : 𝑋 → 𝑌 and also in 𝑉 if u� has pullbacks. It remains
to be shown that this map is a bijection, but (recalling the explicit construction
of colimits for filtered diagrams in 𝐒𝐞𝐭) this is a straightforward consequence of
(lemma 8.2.13 and) corollary 8.5.3. ■

Corollary 8.5.9. Let 𝑋 be a 𝐽 -locally fibrant (resp. projective-fibrant) simplicial
presheaf on u� and let 𝑌 be a projective-fibrant 𝐽 -hypersheaf on u�. Given a
𝐽 -local weak homotopy equivalence 𝑓 : 𝑋 → 𝑌 , there is an induced bijection

lim−−→
Ho 𝐇𝐜𝐽 (h𝐶)

op

𝜋0𝐬𝐏𝐬𝐡u�(𝑍 ⊙ 𝑈, 𝑋) → Ho 𝐬𝐒𝐞𝐭(𝑍, 𝑌 (𝐶))

for any object 𝐶 in u� and any finite (resp. arbitrary) simplicial set 𝑍, where
𝑈 : Ho 𝐇𝐜𝐽 (h𝐶) → 𝜋0[𝐬𝐏𝐬𝐡(u�)] is the functor that sends a hypercover of h𝐶 to
its domain. Moreover, this bijection is natural in 𝑓 : 𝑋 → 𝑌 and in 𝑍; and if u�
has pullbacks, then it is also natural in 𝐶 .
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Proof. By definition, there are natural isomorphisms

𝐬𝐏𝐬𝐡u�(𝑍 ⊙ 𝑉 , 𝑋) ≅ [𝑍, 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑋)] ≅ 𝐬𝐏𝐬𝐡u�(𝑉 , 𝑍 ⋔ 𝑋)

and proposition 8.1.6 (resp. corollary 1.4.16 plus proposition 1.5.17) implies 𝑍⋔𝑋
is a 𝐽 -locally fibrant (resp. projective-fibrant) simplicial presheaf; but

𝐬𝐏𝐬𝐡u�(h𝐶 , 𝑍 ⋔ 𝑌 ) ≅ [𝑍, 𝐬𝐏𝐬𝐡u�(h𝐶 , 𝑌 )] ≅ [𝑍, 𝑌 (𝐶)]

by the Yoneda lemma, and remark 1.5.28 implies

𝜋0[𝑍, 𝑌 (𝐶)] ≅ Ho 𝐬𝐒𝐞𝐭(𝑍, 𝑌 (𝐶))

so (using the fact that 𝑍⋔𝑌 is a projective-fibrant 𝐽 -hypersheaf) we can construct
the required natural bijection using lemma 8.5.8. ■

Remark 8.5.10. Given a discrete presheaf 𝑋 on u�, if 𝑌 is the associated 𝐽 -sheaf,
then the canonical morphism 𝑋 → 𝑌 is a 𝐽 -local isomorphism and hence a
𝐽 -local weak homotopy equivalence. Since disc 𝑋 and disc 𝑌 are projective-
fibrant as simplicial presheaves, we can compute the sets 𝑌 (𝐶) as follows:

𝑌 (𝐶) ≅ lim−−→
Ho 𝐇𝐜𝐽 (h𝐶)

op

𝐬𝐏𝐬𝐡u�(𝑈, disc 𝑋)

Note that 𝐬𝐏𝐬𝐡u�(𝑈, disc 𝑋) is discrete as a simplicial set, so applying 𝜋0 is the
same as taking the set of vertices.

Proposition 8.5.11. Let 𝑋 be a projective-fibrant simplicial presheaf on u� and
let 𝐶 be an object in u�. Consider the functor

𝐻𝑋 = lim−−→
Ho 𝐇𝐜𝐽 (h𝐶)

op

𝜋0𝐬𝐏𝐬𝐡u�((−) ⊙ 𝑈, 𝑋) : 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭

where 𝑈 : Ho 𝐇𝐜𝐽 (h𝐶) → 𝜋0[𝐬𝐏𝐬𝐡(u�)] is the functor that sends a hypercover of
h𝐶 to its domain.

(i) 𝐻𝑋 : 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭 factors through the localising functor 𝐬𝐒𝐞𝐭 → Ho 𝐬𝐒𝐞𝐭
(in a unique way).

(ii) 𝐻𝑋 : Ho 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭 is representable.

(iii) For any projective-fibrant 𝐽 -hypersheaf 𝑌 on u�, if there is a 𝐽 -local weak
homotopy equivalence 𝑋 → 𝑌 , then (the weak homotopy type of) 𝑌 (𝐶)
represents 𝐻𝑋 : Ho 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭.
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Proof. (i). It is (necessary and) sufficient to show that 𝐻𝑋 : 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭
sends weak homotopy equivalences to bijections. By proposition 8.5.7, we can
replace Ho 𝐇𝐜𝐽 (h𝐶) with a full subcategory whose objects are 𝐽 -hypercovers of
h𝐶 whose domains are cellular simplicial presheaves. But if 𝑈 is a cellular sim-
plicial presheaf, then (by corollary 2.4.5, proposition 2.4.17, and remark 8.2.4)
so is 𝑍 ⊙ 𝑈 ; and recalling corollary 2.4.6 and lemma 2.4.8, we may deduce
that 𝜋0𝐬𝐏𝐬𝐡u�((−) ⊙ 𝑈, 𝑋) : 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭 sends weak homotopy equivalences
to bijections. Thus, by cofinality, we deduce that 𝐻𝑋 : 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭 indeed
sends weak homotopy equivalences to bijections.

(ii) and (iii). By theorem 8.3.25 (and proposition 4.1.24), there exist a projective-
fibrant 𝐽 -hypersheaf 𝑌 and a 𝐽 -local weak homotopy equivalence 𝑋 → 𝑌 .
Thus, we may apply corollary 8.5.9 to deduce that 𝑌 (𝐶) indeed represents 𝐻𝑋 :
Ho 𝐬𝐒𝐞𝐭 op → 𝐒𝐞𝐭. ■

Lemma 8.5.12. Let 𝑋 be a 𝐽 -locally fibrant simplicial presheaf on u�, let 𝑌 be
a projective-fibrant 𝐽 -hypersheaf on u�, let 𝑓 : 𝑋 → 𝑌 be a 𝐽 -local weak homo-
topy equivalence, let 𝐶 be an object in u�, let 𝑞 : 𝑉 → disc h𝐶 be a 𝐽 -hypercover,
and let 𝑥 : 𝑉 → 𝑋 and 𝑦 : disc h𝐶 → 𝑌 be morphisms in 𝐬𝐏𝐬𝐡(u�) such that the
following diagram commutes:

𝑉 𝑋

disc h𝐶 𝑌

𝑞

𝑥

𝑓

𝑦

For each positive integer 𝑛, there is an induced bijection

lim−−→
Ho 𝐇𝐜𝐽 (h𝐶)∕𝑞

op

𝜋′
𝑛(𝐬𝐏𝐬𝐡u�(𝑈, 𝑋), 𝑥 ∘ 𝑔) → 𝜋𝑛(𝐬𝐏𝐬𝐡u�(disc h𝐶 , 𝑌 ), 𝑦)

where 𝜋′
𝑛 abbreviates 𝜋(Δ𝑛/𝜕Δ𝑛,∗), 𝑈 is the domain of the underlying 𝐽 -hypercover

of an object of Ho 𝐇𝐜𝐽 (h𝐶)∕𝑞, and 𝑔 : 𝑈 → 𝑉 is its underlying morphism.

Proof. First, note that 𝜋′
𝑛(𝐬𝐏𝐬𝐡u�(𝑈, 𝑋), 𝑥 ∘ 𝑔) does indeed sends simplicially ho-

motopic morphisms in 𝐇𝐜𝐽 (h𝐶)∕𝑞 to equal maps, so we have a diagram of the
announced shape. On the other hand, 𝑌 is a projective-fibrant 𝐽 -hypersheaf, so
(by remark 8.3.3 and theorem 1.4.29) the diagram

𝜋𝑛(𝐬𝐏𝐬𝐡u�(𝑈, 𝑌 ), 𝑦 ∘ 𝑞 ∘ 𝑔) : 𝐇𝐜𝐽 (h𝐶)∕𝑞
op → 𝐒𝐞𝐭
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is isomorphic to the constant diagram at 𝜋𝑛(𝐬𝐏𝐬𝐡u�(disc h𝐶 , 𝑌 ), 𝑦). Proposi-
tion 8.5.7 says Ho 𝐇𝐜𝐽 (h𝐶)∕𝑞

op is filtered, so (recalling the explicit description
of colimits for filtered diagrams in 𝐒𝐞𝐭) this is a straightforward consequence of
(lemma 8.2.13 and) lemma 8.5.2. ■
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A

Generalities

a.1 Adjoints and mates
We begin by recalling a standard definition:

Definition a.1.1. An adjunction of categories consists of the following data:

• A functor 𝐹 : u� → u�, called the left adjoint.

• A functor 𝐺 : u� → u�, called the right adjoint.

• A natural transformation : idu� ⇒ 𝐺𝐹 , called the unit.

• A natural transformation : 𝐹 𝐺 ⇒ idu�, called the counit.

These are moreover required to satisfy the triangle identities:

𝐹 ∙ 𝐹 = id𝐹 𝐺 ∙ 𝐺 = id𝐺

If such data exist, we write

𝐹 ⊣ 𝐺 : u� → u�

and say that 𝐹 is a left adjoint of 𝐺, and 𝐺 is a right adjoint of 𝐹 .

Proposition a.1.2. Let 𝐹 ⊣ 𝐺 : u� → u� be an adjunction, with unit : idu� ⇒
𝐺𝐹 and counit : 𝐹 𝐺 ⇒ idu�. The following are equivalent for an object 𝑋 in
u�:

(i) The morphism 𝑋 : 𝑋 → 𝐺𝐹 𝑋 is a monomorphism.
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(ii) For all objects 𝑇 in u�, the hom-set map u�(𝑇 , 𝑋) → u�(𝐹 𝑇 , 𝐹 𝑋) induced
by 𝐹 : u� → u� is injective.

Dually, the following are equivalent for an object 𝐴 in u�:

(i′) The morphism 𝐴 : 𝐹 𝐺𝐴 → 𝐴 is an epimorphism.

(ii′) For all objects 𝐵 in u�, the hom-set map u�(𝐴, 𝐵) → u�(𝐺𝐴, 𝐺𝐵) is inject-
ive.

Proof. Consider the hom-set map u�(𝑇 , 𝑋) → u�(𝑇 , 𝐺𝐹 𝑋) defined by 𝑥 ↦ 𝑋∘𝑥.
By naturality,

𝑋 ∘ 𝑥 = 𝐺𝐹 𝑥 ∘ 𝑋

but the left triangle identity implies

𝐹 𝑋 ∘ 𝐹 ( 𝑋 ∘ 𝑥) = 𝐹 𝑥

and so 𝑋 ∘ 𝑥0 = 𝑋 ∘ 𝑥1 if and only if 𝐹 𝑥0 = 𝐹 𝑥1. ■

Proposition a.1.3. Let 𝐹 ⊣ 𝐺 : u� → u� be an adjunction with unit and counit
. The following are equivalent:

(i) The left adjoint 𝐹 : u� → u� is fully faithful.

(ii) The adjunction unit : idu� ⇒ 𝐺𝐹 is a natural isomorphism.

(iii) The natural transformation 𝐹 𝐺 : 𝐹 𝐺 ⇒ 𝐹 𝐺𝐹 𝐺 is a natural isomorph-
ism, 𝐹 : u� → u� is conservative, and 𝐺 : u� → u� is essentially surjective
on objects.

Dually, the following are equivalent:

(i′) The right adjoint 𝐺 : u� → u� is fully faithful.

(ii′) The adjunction counit : 𝐹 𝐺 ⇒ idu� is a natural isomorphism.

(iii′) The natural transformation 𝐺 𝐹 : 𝐺𝐹 𝐺𝐹 ⇒ 𝐺𝐹 is a natural isomorph-
ism, 𝐺 : u� → u� is conservative, and 𝐹 : u� → u� is essentially surjective
on objects.
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Proof. (i) ⇔ (ii). Let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. By naturality, we
have 𝑌 ∘ 𝑓 = 𝐺𝐹 𝑓 ∘ 𝑋; but the triangle identities imply the hom-set map
u�(𝐹 𝑋, 𝐵) → u�(𝑋, 𝐺𝐵) given by 𝑔 ↦ 𝐺𝑔 ∘ 𝑋 is also a bijection, so we deduce
that the hom-set map u�(𝑋, 𝑌 ) → u�(𝑋, 𝐺𝐹 𝑌 ) given by 𝑓 ↦ 𝑌 ∘ 𝑓 is a bijection
if and only if the hom-set map u�(𝑋, 𝑌 ) → u�(𝐹 𝑋, 𝐹 𝑌 ) given by 𝑓 ↦ 𝐹 𝑓 is
a bijection because 𝐹 is fully faithful. We may then deduce that is a natural
isomorphism if and only if 𝐹 is fully faithful.

(i) ⇒ (iii). We have already shown that : idu� ⇒ 𝐺𝐹 is a natural isomorphism,
so in particular 𝐹 𝐺 : 𝐹 𝐺 ⇒ 𝐹 𝐺𝐹 𝐺 is a natural isomorphism. Fully faithful
functors are conservative, so 𝐹 is conservative. On the other hand, since is a
natural isomorphism, 𝐺 is essentially surjective on objects.

(iii) ⇒ (ii). If 𝐹 is conservative and 𝐹 𝐺 is a natural isomorphism, then 𝐺 is
also a natural isomorphism. Since every object in u� is isomorphic to one in the
image of 𝐺, it follows that is a natural isomorphism. ■

Proposition a.1.4. Let 𝐹 ⊣ 𝐺 : u� → u� be an adjunction.

• 𝐺 : u� → u� is fully faithful if and only if, for all categories ℰ, the induced
functor 𝐹 ∗ : [u�, ℰ] → [u�, ℰ] is fully faithful.

• 𝐹 : u� → u� is fully faithful if and only if, for all categories ℰ, the induced
functor 𝐺∗ : [u�, ℰ] → [u�, ℰ] is fully faithful.

Proof. The two claims are formally dual; we will prove the first version.
Suppose 𝐺 : u� → u� is fully faithful. By proposition a.1.3, the adjunction

counit : 𝐹 𝐺 ⇒ idu� must be a natural isomorphism. On the other hand, we
have an induced adjunction 𝐺∗ ⊣ 𝐹 ∗ : [u�, ℰ] → [u�, ℰ] with counit induced by
, so the same proposition implies 𝐹 ∗ must be fully faithful.

Conversely, suppose 𝐹 ∗ : [u�, ℰ] → [u�, ℰ] is a fully faithful functor for all
categories ℰ. Then the induced adjunction counit ∗ : 𝐺∗𝐹 ∗ ⇒ id[u�,ℰ] is a natural
isomorphism. In particular, this is true when ℰ = u�, so by considering the
component of ∗ at idu�, we see that : 𝐹 𝐺 ⇒ idu� itself is a natural isomorphism.
Thus 𝐺 : u� → u� must be fully faithful. ■

Proposition a.1.5. Let 𝐹 ⊣ 𝐺 : u� → u� and 𝐹 ′ ⊣ 𝐺′ : u�′ → u�′ be adjunctions,
let : idu� ⇒ 𝐺𝐹 and ′ : idu�′ ⇒ 𝐺′𝐹 ′ be the respective units, and let :
𝐹 𝐺 ⇒ idu� and ′ : 𝐹 ′𝐺′ ⇒ idu�′ be the respective counits. Let 𝐻 : u� → u�′ and
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𝐾 : u� → u�′ be functors, and let 𝜑 and 𝜓 be natural transformations as in the
diagrams below:

u� u�′

u� u�′

𝐹

𝐻

𝐹 ′

𝐾

𝜑

u� u�′

u� u�′

𝐺

𝐾

𝐺′

𝐻

𝜓

Then, the following are equivalent:

(i) ′𝐾𝐹 ∙ 𝐹 ′𝜓𝐹 ∙ 𝐹 ′𝐻 = 𝜑.

(ii) 𝜓𝐹 ∙ 𝐻 = 𝐺′𝜑 ∙ ′𝐻 .

(iii) 𝜓 = 𝐺′𝐾 ∙ 𝐺′𝜑𝐺 ∙ ′𝐻𝐺.

(iv) ′𝐾 ∙ 𝐹 ′𝜓 = 𝐾 ∙ 𝜑𝐺.

Proof.

𝐺′𝜑 ∙ ′𝐻 = 𝐺′ ′𝐾𝐹 ∙ 𝐺′𝐹 ′𝜓𝐹 ∙ 𝐺′𝐹 ′𝐻 ∙ ′𝐻(i) ⇒ (ii).
= 𝐺′ ′𝐾𝐹 ∙ ′𝐺′𝐾𝐹 ∙ 𝜓𝐹 ∙ 𝐻
= 𝜓𝐹 ∙ 𝐻

𝐺′𝐾 ∙ 𝐺′𝜑𝐺 ∙ ′𝐻𝐺 = 𝐺′𝐾 ∙ 𝜓𝐹 𝐺 ∙ 𝐻 𝐺(ii) ⇒ (iii).
= 𝜓 ∙ 𝐻𝐺 ∙ 𝐻 𝐺
= 𝜓

′𝐾 ∙ 𝐹 ′𝜓 = ′𝐾 ∙ 𝐹 ′𝐺′𝐾 ∙ 𝐹 ′𝐺′𝜑𝐺 ∙ 𝐹 ′ ′𝐻𝐺(iii) ⇒ (iv).
= 𝐾 ∙ 𝜑𝐺 ∙ ′𝐻𝐺 ∙ 𝐹 ′ ′𝐻𝐺
= 𝐾 ∙ 𝜑𝐺

′𝐾𝐹 ∙ 𝐹 ′𝜓𝐹 ∙ 𝐹 ′𝐻 = 𝐾 𝐹 ∙ 𝜑𝐺𝐹 ∙ 𝐹 ′𝐻(iv) ⇒ (i).
= 𝐾 𝐹 ∙ 𝐾𝐹 ∙ 𝜑
= 𝜑 ■

Definition a.1.6. A conjugate pair of natural transformations is a pair (𝜑, 𝜓)
satisfying the equivalent conditions of the above proposition. Given such, we
say 𝜑 is the left mate of 𝜓 , and 𝜓 is the right mate of 𝜑.
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Definition a.1.7. Let 𝐹 ⊣ 𝐺 : u� → u� and 𝐹 ′ ⊣ 𝐺′ : u�′ → u�′ be adjunctions,
let 𝐻 : u� → u�′ and 𝐾 : u� → u�′ be functors, and let 𝜑 and 𝜓 be a conjugate
pair of natural transformations as in the diagrams below:

u� u�′

u� u�′

𝐹

𝐻

𝐹 ′

𝐾

𝜑

u� u�′

u� u�′

𝐺

𝐾

𝐺′

𝐻

𝜓

We say the diagram on the right satisfies the left Beck–Chevalley condition
if the left mate 𝜑 is a natural isomorphism, and we say the diagram on the left
satisfies the right Beck–Chevalley condition if the right mate 𝜓 is a natural iso-
morphism. More generally, the local left Beck–Chevalley condition is satisfied
at an object 𝐶 in u� if the component 𝜑𝐶 : 𝐹 ′𝐻𝐶 → 𝐾𝐹 𝐶 is an isomorphism,
and the local right Beck–Chevalley condition is satisfied at an object 𝐷 in u� if
the component 𝜓𝐷 : 𝐻𝐺𝐷 → 𝐺′𝐾𝐷 is an isomorphism.

Remark a.1.8. Unfortunately, the Beck–Chevalley conditions are not vacuous.
For example, consider the following (strictly!) commutative diagram of forgetful
functors:

𝐂𝐑𝐢𝐧𝐠 𝐀𝐛

𝐒𝐞𝐭 𝐒𝐞𝐭
id

The left mate of the trivial natural transformation in the above diagram is the
group homomorphism ℤ𝑋 → ℤ[𝑋] that sends a generator in ℤ𝑋 to the corres-
ponding generator in ℤ[𝑋]; clearly, this is never an isomorphism. However, this
is unsurprising: we do not expect the free abelian group generated by 𝑋 to be
naturally isomorphic to the additive group of free commutative ring generated
by 𝑋.

Example a.1.9. Let u� be a category with pullbacks, and suppose the following
diagram is a pullback square in u�:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤
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Let Σ𝑓 : u�∕𝑋 → u�∕𝑌 etc. be the functor that sends an object 𝑝 : 𝐸 → 𝑋 in u�∕𝑋 to
the object 𝑓 ∘𝑝 : 𝐸 → 𝑌 in u�∕𝑌 , and consider the induced (strictly!) commutative
diagram of functors:

u�∕𝑍 u�∕𝑋

u�∕𝑊 u�∕𝑌

Σ𝑔

Σ𝑧

Σ𝑓

Σ𝑤

Since u� has pullbacks, Σ𝑔 and Σ𝑓 have right adjoints,[1] and the pullback past-
ing lemma then implies that the above square satisfies the right Beck–Chevalley
condition.

Lemma a.1.10. Given a diagram of functors and natural transformations of the
form below,

u� u�′

u� u�′

𝐺

𝐾

𝐺′

𝐻

𝜓

where 𝜓 : 𝐻𝐺 ⇒ 𝐺′𝐾 is a natural isomorphism, 𝐹 ⊣ 𝐺, and 𝐹 ′ ⊣ 𝐺′, for
each object 𝐶 in u�, the following are equivalent:

(i) The diagram satisfies the local left Beck–Chevalley condition at 𝐶 .

(ii) The functor (𝐶 ↓ 𝐺) → (𝐻𝐶 ↓ 𝐺′) sending an object (𝐷, 𝑓) in the comma
category (𝐶 ↓ 𝐺) to the object (𝐾𝐷, 𝜓𝐷 ∘ 𝐻𝑓) in (𝐻𝐶 ↓ 𝐺′) preserves
initial objects.

Proof. We know (𝐹 𝐶, 𝐶) is an initial object of (𝐶 ↓ 𝐺) and (𝐹 ′𝐻𝐶, ′
𝐻𝐶) is an

initial object of (𝐻𝐶 ↓ 𝐺′), so there is a unique morphism 𝜑𝐶 : 𝐹 ′𝐻𝐶 → 𝐾𝐹 𝐶
such that 𝐺′𝜑𝐶 ∘ ′

𝐻𝐶 = 𝜓𝐹 𝐶 ∘ 𝐻 𝐶 . However, we observe that

𝜑𝐶 = 𝜑𝐶 ∘ ′
𝐹 ′𝐻𝐶 ∘ 𝐹 ′ ′

𝐻𝐶

= ′
𝐾𝐹 𝐶 ∘ 𝐹 ′𝐺′𝜑𝐶 ∘ 𝐹 ′ ′

𝐻𝐶

= ′
𝐾𝐹 𝐶 ∘ 𝐹 ′𝜓𝐹 𝐶 ∘ 𝐹 ′𝐻 𝐶

so 𝜑𝐶 is precisely the component at 𝐶 of the left mate of 𝜓 . ■

[1] See lemma a.2.17.
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Lemma a.1.11 (Pasting conjugate pairs).
(i) Let 𝐹 ⊣ 𝐺 : u� → u�, 𝐹 ′ ⊣ 𝐺′ : u�′ → u�′, and 𝐹 ″ ⊣ 𝐺″ : u�″ → u�″

be adjunctions, let 𝐻 : u� → u�′, 𝐻 ′ : u�′ → u�″, 𝐾 : u� → u�′, and
𝐾′ : u�′ → u�″ be functors, and let 𝜑, 𝜑′, 𝜓, 𝜓 ′ be natural transformations
as in the following pasting diagrams:

u� u�′ u�″

u� u�′ u�″

𝐹

𝐻

𝐹 ′

𝐻′

𝐹 ″

𝐾 𝐾′

𝜑 𝜑′

u� u�′ u�″

u� u�′ u�″

𝐺

𝐾

𝐺′

𝐾′

𝐺″

𝐻 𝐻′

𝜓 𝜓′

Let �̄� = 𝐾′𝜑 ∙ 𝜑′𝐻 and �̄� = 𝜓 ′𝐾 ∙ 𝐻 ′𝜓 . If (𝜑, 𝜓) and (𝜑′, 𝜓 ′) are
conjugate pairs, then (�̄�, �̄�) is also a conjugate pair.

(ii) Let 𝐹1 ⊣ 𝐺1 : u� → u�, 𝐹2 ⊣ 𝐺2 : ℰ → u�, 𝐹 ′
1 ⊣ 𝐺′

1 : u�′ → u�′ , and
𝐹 ′

2 ⊣ 𝐺′
2 : ℰ′ → u�′ be adjunctions, let 𝐻 : u� → u�′, 𝐾 : u� → u�′, and

𝐿 : ℰ → ℰ′ be functors, and let 𝜑1, 𝜑2, 𝜓1, 𝜓2 be natural transformations
as in the following pasting diagrams:

u� u�′

u� u�′

ℰ ℰ′

𝐹1

𝐻

𝐹 ′
1

𝐹2

𝐾

𝐹 ′
2

𝐿

𝜑1

𝜑2

ℰ ℰ′

u� u�′

u� u�′

𝐺2

𝐿

𝐺′
2

𝐺1

𝐾

𝐺′
1

𝐻

𝜓2

𝜓1

Let 𝜑 = 𝜑2𝐹1 ∙ 𝐹 ′
2 𝜑1 and 𝜓 = 𝐺′

1𝜓2 ∙ 𝜓1𝐺2. If (𝜑1, 𝜓1) and (𝜑2, 𝜓2) are
conjugate pairs, then (𝜑, 𝜓) is also a conjugate pair.

Proof. These are straightforward exercises in using the triangle identities. ⧫

Proposition a.1.12. Let 𝑢! ⊣ 𝑢∗ : u� → u�, 𝑞! ⊣ 𝑞∗ : ℬ → u�, 𝑣∗ ⊣ 𝑣∗ : ℬ → u�,
and 𝑝∗ ⊣ 𝑝∗ : u� → u� be adjunctions, and let : 𝑢∗𝑝∗ ⇒ 𝑣∗𝑞∗ be a natural
transformation.

u� ℬ

u� u�

𝑢∗

𝑣∗

𝑞∗

𝑝∗

u� u�

ℬ u�

𝑣∗

𝑢∗

𝑝∗

𝑞∗

The following are equivalent:
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(i) The diagram on the left satisfies the left Beck–Chevalley condition.

(ii) The diagram on the right satisfies the right Beck–Chevalley condition.

Proof. Let 𝜑 : 𝑞!𝑝∗ ⇒ 𝑣∗𝑢! be the left mate of , and let 𝜓 : 𝑢∗𝑣∗ ⇒ 𝑝∗𝑞∗ be the
right mate of . Then, by proposition a.1.5,

𝑢! ∙ 𝑝∗ 𝑢 = 𝑞∗𝜑 ∙ 𝑞𝑝∗ 𝑞𝑣∗ ∙ 𝑞! = 𝑣∗ 𝑢 ∙ 𝜑𝑢∗

𝜓𝑣∗ ∙ 𝑢∗ 𝑣 = 𝑝∗ ∙ 𝑝𝑢∗ 𝑝𝑞∗ ∙ 𝑝∗𝜓 = 𝑞∗ 𝑣 ∙ 𝑣∗

where the denote the various adjunction units and the denote the various
adjunction counits, thus:

𝜓𝑣∗𝑢! ∙ (𝑢∗ 𝑣𝑢! ∙ 𝑢) = 𝑝∗ 𝑢! ∙ 𝑝𝑢∗𝑢! ∙ 𝑢

𝑝∗ 𝑢! ∙ 𝑝∗𝑝∗ 𝑢 ∙ 𝑝 = 𝑝∗𝑞∗𝜑 ∙ (𝑝∗
𝑞𝑝∗ ∙ 𝑝)

( 𝑞 ∙ 𝑞!
𝑝𝑞∗) ∙ 𝑞!𝑝∗𝜓 = 𝑞 ∙ 𝑞!𝑞∗ 𝑣 ∙ 𝑞! 𝑣∗

𝑣 ∙ 𝑞𝑣∗𝑣∗ ∙ 𝑞! 𝑣∗ = ( 𝑣 ∙ 𝑣∗ 𝑢𝑣∗) ∙ 𝜑𝑢∗𝑣∗

Thus, (𝜑, 𝜓) is a conjugate pair of natural transformations between the adjunc-
tions 𝑣∗𝑢! ⊣ 𝑢∗𝑣∗ and 𝑞!𝑝∗ ⊣ 𝑝∗𝑞∗. It follows (by lemma a.1.11) that 𝜑 is a natural
isomorphism if and only if 𝜓 is a natural isomorphism. ■

a.2 Cartesian closed categories
Definition a.2.1. Let u� be a category with binary products, and let 𝑌 and 𝑍 be
objects in u�. An exponential object for 𝑌 and 𝑍 is an object [𝑌 , 𝑍]u� in u� and
a morphism ev𝑌 ,𝑍 : [𝑌 , 𝑍]u� × 𝑌 → 𝑍 with the following universal property:

• For all morphisms 𝑓 : 𝑋 × 𝑌 → 𝑍 in u�, there exists a unique morphism
̄𝑓 : 𝑋 → [𝑌 , 𝑍]u� such that ev𝑌 ,𝑍 ∘ ( ̄𝑓 × id𝑌 ) = 𝑓 .

An exponentiable object in u� is an object 𝑌 such that, for all objects 𝑍 in u�,
the exponential object [𝑌 , 𝑍]u� exists. We may write [𝑌 , 𝑍] or 𝑍𝑌 instead of
[𝑌 , 𝑍]u� if there is no risk of confusion.

Lemma a.2.2. Let 𝑌 be an object in a category u� with binary products. The
following are equivalent:

(i) 𝑌 is an exponentiable object in u�.
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(ii) The functor − × 𝑌 : u� → u� has a right adjoint [𝑌 , −]u� : u� → u�, and the
counit of this adjunction is ev𝑌 ,−.

Proof. Immediate from the definitions. ⧫

Definition a.2.3. A cartesian closed category is a category with finite products,
in which every object is exponentiable. A locally cartesian closed category is
a category u� such that, for every object 𝐼 , the slice category u�∕𝐼 is a cartesian
closed category.

Example a.2.4. 𝐒𝐞𝐭 is cartesian closed category; in fact, it is even a locally
cartesian closed category.

Proposition a.2.5. Let u� be a cartesian closed category.

(i) The assignment (𝑌 , 𝑍) ↦ [𝑌 , 𝑍]u� extends to a functor u� op × u� → u�.

(ii) For each object 𝑍, the functor [−, 𝑍]u� : u� op → u� is a contravariant right
adjoint for itself.

Proof. (i). This is an instance of the parametrised adjunction theorem.[2]

(ii). We have the following natural bijections:

u�(𝑋, [𝑌 , 𝑍]) ≅ u�(𝑋 × 𝑌 , 𝑍)
≅ u�(𝑌 × 𝑋, 𝑍)
≅ u�(𝑌 , [𝑋, 𝑍]) ■

Lemma a.2.6. Let u� and u� be cartesian closed categories. If 𝐹 : u� → u� is a
functor that preserves binary products, then:

(i) For any two objects 𝑋 and 𝑌 in u�, there is a unique morphism 𝜑𝑌 ,𝑍 :
𝐹 [𝑋, 𝑌 ]u� → [𝐹 𝑋, 𝐹 𝑌 ]u� such that the following diagram commutes:

𝐹 [𝑋, 𝑌 ]u� × 𝐹 𝑋 𝐹 ([𝑋, 𝑌 ]u� × 𝑋)

[𝐹 𝑋, 𝐹 𝑌 ]u� × 𝐹 𝑋 𝐹 𝑌

𝜑𝑋,𝑌 ×id

≅

𝐹 ev𝑋,𝑌

ev𝐹 𝑋,𝐹 𝑌

[2] See Theorem 3 in [CWM, Ch. IV, §7].
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(ii) The morphism 𝜑𝑌 ,𝑍 is natural in both 𝑌 and 𝑍.

Proof. The existence and uniqueness of 𝜑𝑋,𝑌 follows from the universal prop-
erty of [𝐹 𝑋, 𝐹 𝑌 ]u� as an exponential object, and a standard argument proves
naturality. ⧫

Definition a.2.7. A cartesian closed functor is a functor 𝐹 : u� → u� between
cartesian closed categories such that the canonical comparison morphisms 𝜑𝑋,𝑌 :
𝐹 [𝑋, 𝑌 ]u� → [𝐹 𝑋, 𝐹 𝑌 ]u� described above are isomorphisms.

Proposition a.2.8. Let u� and u� be cartesian closed categories, and let 𝑌 be
an object in u� and let 𝑍 be an object in u�. Suppose we have an adjunction
𝐹 ⊣ 𝐺 : u� → u� with unit : idu� ⇒ 𝐺𝐹 and counit : idu� ⇒ 𝐹 𝐺; then:

(i) If 𝜓𝐹 𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]u� → [𝐺𝐹 𝑌 , 𝐺𝑍]u� is the canonical comparison
morphism, then 𝑌 ,𝑍 = [ 𝑌 , 𝐺𝑍]u� ∘ 𝜓𝐹 𝑌 ,𝑍 is the unique morphism in u�
making the following diagram commute:

𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐺𝐹 𝑌

[𝑌 , 𝐺𝑍]u� × 𝑌 𝐺([𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 )

𝐺𝑍 𝐺𝑍

𝑌 ,𝑍×id

id× 𝑌

≅

ev𝑌 ,𝐺𝑍 𝐺ev𝐹 𝑌 ,𝑍

(ii) If the canonical comparison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an iso-
morphism for all objects 𝑋 in u�, and 𝜑𝑌 ,𝐺𝑍 : 𝐹 [𝑌 , 𝐺𝑍]u� → [𝐹 𝑌 , 𝐹 𝐺𝑍]u�
is the canonical comparison morphism, then 𝜒𝑌 ,𝑍 = [𝐹 𝑌 , 𝑍]u� ∘ 𝜑𝑌 ,𝐺𝑍 is
the unique morphism in u� making the following diagram commute:

𝐹 [𝑌 , 𝐺𝑍]u� × 𝐹 𝑌 𝐹 ([𝑌 , 𝐺𝑍]u� × 𝑌 )

[𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 𝐹 𝐺𝑍

𝑍 𝑍

𝜒𝑌 ,𝑍×id

≅

ev𝑌 ,𝐺𝑍

ev𝐹 𝑌 ,𝑍 𝑍

Moreover, under this hypothesis, 𝐺𝜒𝑌 ,𝑍 ∘ [𝑌 ,𝐺𝑍]u�
is a two-sided inverse for

𝑌 ,𝑍 .
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(iii) If 𝑌 ,𝑍 is an isomorphism for all objects 𝑍 in u�, then for all objects 𝑋
in u�, the canonical comparison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an
isomorphism.

Proof. (i). The claim is proven by the commutativity of the following diagram:

𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐺𝐹 𝑌 𝐺([𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 )

[𝐺𝐹 𝑌 , 𝐺𝑍]u� × 𝑌 [𝐺𝐹 𝑌 , 𝐺𝑍]u� × 𝐺𝐹 𝑌

[𝑌 , 𝐺𝑍]u� 𝐺𝑍

𝜓𝐹 𝑌 ,𝑍×id

id× 𝑌

𝜓𝐹 𝑌 ,𝑍×id

≅

𝐺ev𝐹 𝑌 ,𝑍

[ 𝑌 ,𝑍]u�

id× 𝑌
ev𝐺𝐹 𝑌 ,𝐺𝑍

ev𝑌 ,𝐺𝑍

(ii). To show that 𝜒𝑌 ,𝑍 makes the diagram commute, one uses the fact that
ev𝐹 𝑌 ,𝑍 : [𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 → 𝑍 is natural in 𝑍. Since 𝐹 preserves products
with 𝑌 , we have the following natural bijections:

u�(𝑋, 𝐺[𝐹 𝑌 , 𝑍]u�) ≅ u�(𝐹 𝑋, [𝐹 𝑌 , 𝑍]u�) ≅ u�(𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ u�(𝐹 (𝑋 × 𝑌 ), 𝑍) ≅ u�(𝑋 × 𝑌 , 𝐺𝑍) ≅ u�(𝑋, [𝑌 , 𝐺𝑍]u�)

One obtains explicit isomorphisms by chasing id𝑋 in both directions. Taking
𝑋 = [𝑌 , 𝐺𝑍]u� , we find that the isomorphism [𝑌 , 𝐺𝑍]u� → 𝐺[𝐹 𝑌 , 𝑍]u� is pre-
cisely 𝐺𝜒𝑌 ,𝑍 ∘ [𝑌 ,𝐺𝑍]u�

, and taking 𝑋 = 𝐺[𝐹 𝑌 , 𝑍]u�, we find that the inverse is
the right exponential transpose of

𝐺(ev𝐹 𝑌 ,𝑍 ∘ ( [𝐹 𝑌 ,𝑍]u�
× id𝑌 )) ∘ 𝐺[𝐹 𝑌 ,𝑍]u�×𝑌

where we have suppressed the comparison isomorphism 𝐹 (𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 ) ≅
𝐹 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 ; but naturality of the comparison morphisms for binary
products gives us the commutative diagram below,

𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 𝐺𝐹 (𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 )

𝐺(𝐹 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 ) 𝐺([𝐹 𝑌 , 𝑍]u� × 𝐹 𝑌 )

𝐺[𝐹 𝑌 , 𝑍]u� × 𝑌 𝐺𝐹 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐺𝐹 𝑌 𝐺[𝐹 𝑌 , 𝑍]u� × 𝐺𝐹 𝑌

≅

≅

𝐺( ×id)

≅

×

id×

𝐺 ×id
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so, suppressing the comparison isomorphisms, we obtain the following equation:

𝐺( [𝐹 𝑌 ,𝑍]u�
× id𝐹 𝑌 ) ∘ 𝐺[𝐹 𝑌 ,𝑍]u�×𝑌 = id𝐺[𝐹 𝑌 ,𝑍]u�

× 𝑌

Thus, the isomorphism 𝐺[𝐹 𝑌 , 𝑍]u� → [𝐺𝑌 , 𝑍]u� is indeed 𝑌 ,𝑍 , as claimed.

(iii). Now, suppose 𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]u� → [𝐺𝑌 , 𝑍]u� is an isomorphism for all
𝑍. Then, we have the natural bijections

u�(𝐹 𝑋 × 𝐹 𝑌 , 𝑍) ≅ u�(𝐹 𝑋, [𝐹 𝑌 , 𝑍]u�) ≅ u�(𝑋, 𝐺[𝐹 𝑌 , 𝑍]u�)
≅ u�(𝑋, [𝑌 , 𝐺𝑍]u�) ≅ u�(𝑋 × 𝑌 , 𝐺𝑍) ≅ u�(𝐹 (𝑋 × 𝑌 ), 𝑍)

and by chasing id𝑍 for 𝑍 = 𝐹 𝑋 × 𝐹 𝑌 , we conclude that the canonical compar-
ison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an isomorphism. ■

Definition a.2.9. A Frobenius adjunction of cartesian closed categories is an
adjunction 𝐹 ⊣ 𝐺 : u� → u� where u� and u� are cartesian closed categories, such
that the natural morphisms 𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]u� → [𝑌 , 𝐺𝑍]u� described above are
isomorphisms, or equivalently, such that the left adjoint 𝐹 : u� → u� preserves
binary products.

Remark a.2.10. If u� and u� are cartesian closed categories and 𝐺 : u� → u� is any
functor that preserves finite products, then 𝐺 induces a u�-enrichment of u� from
the cartesian closed structure of u�, and the exponential comparison morphisms
𝜓𝑌 ,𝑍 : 𝐺[𝑌 , 𝑍]u� → [𝐺𝑌 , 𝐺𝑍]u� makes 𝐺 : u� → u� into a u�-enriched functor.

Now, suppose 𝐺 has a left adjoint 𝐹 : u� → u�. The adjunction 𝐹 ⊣ 𝐺 is a
Frobenius adjunction precisely when it is compatible with the u�-enrichments of
u� and u�. (Of course, this means 𝐹 is also a u�-enriched functor.)

However, not all enriched adjunctions between cartesian closed categories
are of the above form.

Proposition a.2.11. Let 𝑋, 𝑌 , and 𝑍 be any three objects in a cartesian closed
category u�.

(i) There is a unique morphism 𝑋,𝑌 ,𝑍 : [𝑋 × 𝑌 , 𝑍] → [𝑋, [𝑌 , 𝑍]] making

760



a.2. Cartesian closed categories

the following diagram commute:

([𝑋 × 𝑌 , 𝑍] × 𝑋) × 𝑌 [𝑋 × 𝑌 , 𝑍] × (𝑋 × 𝑌 )

([𝑋, [𝑌 , 𝑍]] × 𝑋) × 𝑌

[𝑌 , 𝑍] × 𝑌 𝑍

( 𝑋,𝑌 ,𝑍×id𝑋)×id𝑌

≅

ev𝑋×𝑌 ,𝑍

ev𝑋,[𝑌 ,𝑍]×id𝑋

ev𝑌 ,𝑍

(ii) The morphisms 𝑋,𝑌 ,𝑍 : [𝑋 × 𝑌 , 𝑍] → [𝑋, [𝑌 , 𝑍]] constitute a natural
isomorphism.

Proof. The existence and uniqueness of 𝑋,𝑌 ,𝑍 follows from the universal prop-
erty of [𝑋, [𝑌 , 𝑍]] and [𝑌 , 𝑍] as exponential objects, and a standard argument
shows that 𝑋,𝑌 ,𝑍 is natural in 𝑋, 𝑌 , and 𝑍. By the associativity of cartesian
products, we have the following natural bijections:

u�(𝑇 , [𝑋 × 𝑌 , 𝑍]) ≅ u�(𝑇 × (𝑋 × 𝑌 ), 𝑍)
≅ u�((𝑇 × 𝑋) × 𝑌 , 𝑍) ≅ u�(𝑇 × 𝑋, [𝑌 , 𝑍]) ≅ u�(𝑇 , [𝑋, [𝑌 , 𝑍]])

Chasing id𝑇 for 𝑇 = [𝑋 × 𝑌 , 𝑍], we find that 𝑋,𝑌 ,𝑍 is an isomorphism. ■

Definition a.2.12. Let u� be a cartesian closed category. An exponential ideal of
u� is a full subcategory u� ⊆ u� such that, for all objects 𝑌 in u�, if 𝑍 is in u�, then
the exponential object [𝑌 , 𝑍]u� is (isomorphic to) an object in u�. A reflective
exponential ideal of u� is an exponential ideal u� such that the inclusion u� ↪ u�
has a left adjoint.

Proposition a.2.13. Let u� be a cartesian closed category, let 𝐺 : u� → u� be the
inclusion of a full subcategory, and suppose 𝐺 has a left adjoint 𝐹 : u� → u�.
The following are equivalent:

(i) 𝐹 preserves finite products.

(ii) 𝐹 preserves binary products.

(iii) u� is a reflective exponential ideal of u�.

(iv) u� is a cartesian closed category, 𝐺 : u� → u� is a cartesian closed functor,
and the canonical morphisms 𝐺[𝐹 𝑌 , 𝑍]u� → [𝑌 , 𝐺𝑍]u� are isomorphisms.
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Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (iii). Under our hypotheses, the product of two objects 𝑋 and 𝑌 in u� can
be computed as 𝐹 (𝐺𝑋 × 𝐺𝑌 ). Let : idu� → 𝐺𝐹 be the unit of the adjunction.
We have the following natural bijections:

u�(𝑋, [𝑌 , 𝐺𝑍]u�) ≅ u�(𝑋 × 𝑌 , 𝐺𝑍)
≅ u�(𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ u�(𝐹 𝐺𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ u�(𝐺𝐹 𝑋 × 𝑌 , 𝐺𝑍)
≅ u�(𝐺𝐹 𝑋, [𝑌 , 𝐺𝑍]u�)

By chasing these maps explicitly, we find that every morphism 𝑋 → [𝑌 , 𝐺𝑍]u�
factors through 𝑋 : 𝑋 → 𝐺𝐹 𝑋 in a unique way. In particular, we have

id[𝑌 ,𝐺𝑍]u�
= 𝑟𝑌 ,𝑍 ∘ [𝑌 ,𝐺𝑍]u�

for a unique 𝑟𝑌 ,𝑍 : 𝐺𝐹 [𝑌 , 𝐺𝑍]u� → [𝑌 , 𝐺𝑍]u� . The triangle identity then implies
𝐹 𝑟𝑌 ,𝑍 = 𝐹 [𝑌 ,𝐺𝑍]u�

, thus,

[𝑌 ,𝐺𝑍]u�
∘ 𝑟𝑌 ,𝑍 = 𝐺𝐹 𝑟𝑌 ,𝑍 ∘ 𝐺𝐹 [𝑌 ,𝐺𝑍]u�

= 𝐺 𝐹 [𝑌 ,𝐺𝑍]u�
∘ 𝐺𝐹 [𝑌 ,𝐺𝑍]u�

= id𝐺𝐹 [𝑌 ,𝐺𝑍]u�

and therefore 𝑟𝑌 ,𝑍 is an isomorphism.

(iii) ⇒ (iv). It is a standard fact that a reflective subcategory is closed under all
limits that exist in u�, so u� must have finite products and 𝐺 : u� → u� preserves
them. If u� is an exponential ideal, then [𝑌 ,𝐺𝑍]u�

: [𝑌 , 𝐺𝑍]u� → 𝐺𝐹 [𝑌 , 𝐺𝑍]u�
must be an isomorphism, so we obtain natural bijections

u�(𝑋 × 𝑌 , 𝑍) ≅ u�(𝐺𝑋 × 𝐺𝑌 , 𝐺𝑍)
≅ u�(𝐺𝑋, [𝐺𝑌 , 𝐺𝑍]u�)
≅ u�(𝐺𝑋, 𝐺𝐹 [𝐺𝑌 , 𝐺𝑍]u�)
≅ u�(𝐹 𝐺𝑋, 𝐹 [𝐺𝑌 , 𝐺𝑍]u�)
≅ u�(𝑋, 𝐹 [𝐺𝑌 , 𝐺𝑍]u�)

and therefore we may take [𝑌 , 𝑍]u� = 𝐹 [𝐺𝑌 , 𝐺𝑍]u� . Obviously, this makes
𝐺 : u� → u� into a cartesian closed functor. We also have

u�(𝑋, 𝐺[𝐹 𝑌 , 𝑍]u�) = u�(𝑋, 𝐺𝐹 [𝐺𝐹 𝑌 , 𝐺𝑍]u�)
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≅ u�(𝑋, [𝐺𝐹 𝑌 , 𝐺𝑍]u�)
≅ u�(𝐺𝐹 𝑌 , [𝑋, 𝐺𝑍]u�)
≅ u�(𝐺𝐹 𝑌 , 𝐺𝐹 [𝑋, 𝐺𝑍]u�)
≅ u�(𝑌 , 𝐺𝐹 [𝑋, 𝐺𝑍]u�)
≅ u�(𝑌 , [𝑋, 𝐺𝑍]u�)
≅ u�(𝑋, [𝑌 , 𝐺𝑍]u�)

and so the canonical morphism 𝐺[𝐹 𝑌 , 𝑍]u� → [𝑌 , 𝐺𝑍]u� is an isomorphism.

(iv) ⇒ (i). Since u� has a terminal object and 𝐺 : u� → u� preserves it, 𝐹 1 must
be a terminal object in u�. Now apply proposition a.2.8. ■

Corollary a.2.14. If ℰ is a reflective exponential ideal of u�, and u� is a reflective
exponential ideal of u�, then ℰ is also a reflective exponential ideal of u�. ■

Proposition a.2.15. Let 𝐂𝐚𝐭 be the category of small categories, and let 𝐆𝐫𝐩𝐝
be the full subcategory of groupoids.

(i) There exist adjunctions

𝜋0 ⊣ disc ⊣ ob ⊣ codisc : 𝐒𝐞𝐭 → 𝐂𝐚𝐭

where ob ℂ is the set of objects in a category ℂ, disc 𝑋 is the category with
ob disc 𝑋 = 𝑋 and all arrows trivial, and codisc 𝑋 is the category with
ob disc 𝑋 = 𝑋 and a unique arrow between any two objects.

(ii) The functor disc : 𝐒𝐞𝐭 → 𝐂𝐚𝐭 is fully faithful and exhibits 𝐒𝐞𝐭 as a reflect-
ive exponential ideal of 𝐂𝐚𝐭.

(iii) The functor 𝜋0 : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 preserves finite products.

(iv) There exist adjunctions

𝐈 ⊣ und ⊣ iso : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝

where und : 𝐆𝐫𝐩𝐝 → 𝐂𝐚𝐭 is the inclusion and iso ℂ is the maximal sub-
groupoid of a category ℂ.

(v) 𝐆𝐫𝐩𝐝 is a reflective exponential ideal of 𝐂𝐚𝐭.

(vi) The functor 𝐈 : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝 preserves finite products.
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(vii) The adjunctions in (i) factor through 𝐆𝐫𝐩𝐝, yielding adjunctions

𝜋0 ⊣ disc ⊣ ob ⊣ codisc : 𝐒𝐞𝐭 → 𝐆𝐫𝐩𝐝

where 𝜋0 : 𝐆𝐫𝐩𝐝 → 𝐒𝐞𝐭 again preserves finite products.

(viii) The functor 𝐂𝐚𝐭 → 𝐒𝐞𝐭 that sends a category ℂ to the set of isomorphism
classes in ℂ preserves finite products.

Proof. (i). The functor disc : 𝐒𝐞𝐭 → 𝐂𝐚𝐭 obviously satisfies the solution set
condition, so the general adjoint functor theorem gives us a left adjoint 𝜋0 :
𝐂𝐚𝐭 → 𝐒𝐞𝐭; the existence of the other adjunctions is obvious.

(ii). It is clear that disc : 𝐒𝐞𝐭 → 𝐂𝐚𝐭 is fully faithful, and direct computation
shows that [ℂ, disc 𝑋] is a discrete category for any ℂ, so 𝐒𝐞𝐭 is indeed a reflect-
ive exponential ideal of 𝐂𝐚𝐭.

(iii). Thus, by proposition a.2.13, 𝜋0 : 𝐂𝐚𝐭 → 𝐒𝐞𝐭 must preserve finite products.

(iv). It is not hard to check that the inclusion 𝐆𝐫𝐩𝐝 → 𝐂𝐚𝐭 satisfies the solution
set condition, so the general adjoint functor theorem gives us a left adjoint 𝐈 :
𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝; the fact that iso : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝 is right adjoint to the inclusion is
obvious.

(v). Direct computation shows that [ℂ, 𝔾] is a groupoid whenever 𝔾 is, so 𝐆𝐫𝐩𝐝
is indeed a reflective exponential ideal of 𝐂𝐚𝐭.

(vi). Thus, 𝐈 : 𝐂𝐚𝐭 → 𝐆𝐫𝐩𝐝 must preserve finite products.

(vii). Clearly, disc 𝑋 and codisc 𝑋 are already groupoids, so the adjunctions do
indeed factor through 𝐆𝐫𝐩𝐝.

(viii). The set of isomorphism classes of objects in ℂ is precisely 𝜋0 iso ℂ. ■

Definition a.2.16. Let u� be any category. The dependent sum of an object
𝑝 : 𝑋 → 𝐼 in u�∕𝐼 along a morphism 𝑗 : 𝐼 → 𝐽 in u� is the object 𝑗 ∘ 𝑝 : 𝑋 → 𝐽
in u�∕𝐽 , and we write Σ𝑗 : u�∕𝐼 → u�∕𝐽 for the functor sending an object to its
dependent sum along 𝑗.

Lemma a.2.17. Let 𝑗 : 𝐼 → 𝐽 be a morphism in a category u�. The following
are equivalent:
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(i) u� has pullbacks along 𝑗.

(ii) There exists an adjunction

Σ𝑗 ⊣ 𝑗∗ : u�∕𝐽 → u�∕𝐼

where Σ𝑗 is the dependent sum functor, and the right adjoint 𝑗∗ : u�∕𝐽 → u�∕𝐼
is the pullback functor.

Proof. This is just a matter of unwinding the definitions. ⧫

Definition a.2.18. Let u� be a category with pullbacks. A dependent product
of an object 𝑝 : 𝑋 → 𝐼 in u�∕𝐼 along a morphism 𝑗 : 𝐼 → 𝐽 in u� is an object
Π𝑗𝑝 in u�∕𝐽 and a morphism ev𝑗,𝑝 : 𝑗∗Π𝑗𝑝 → 𝑝 in u�∕𝐼 with the following universal
property:

• For all morphisms 𝑓 : 𝑗∗𝑞 → 𝑝 in u�∕𝐼 , there exists a unique morphism
̄𝑓 : 𝑞 → Π𝑗𝑝 in u�∕𝐽 such that ev𝑗,𝑝 ∘ 𝑗∗ ̄𝑓 = 𝑓 .

A ΣΠ-category is a category u� with finite limits such that, for every morphism
𝑗 : 𝐼 → 𝐽 in u�, dependent products along 𝑗 exist.

Lemma a.2.19. Let 𝑗 : 𝐼 → 𝐽 be a morphism in a category u� with pullbacks.
The following are equivalent:

(i) For all objects 𝑝 : 𝑋 → 𝐼 in u�, a dependent product of 𝑝 along 𝑗 exists.

(ii) The pullback functor 𝑗∗ : u�∕𝐽 → u�∕𝐼 has a right adjoint Π𝑗 : u�∕𝐼 → u�∕𝐽
that sends an object to its dependent product along 𝑗, and the counit of
this adjunction is ev𝑗,−.

Proof. This is just a matter of unwinding the definitions. ⧫

Corollary a.2.20. If 𝑗 : 𝐼 → 𝐽 is a morphism in a ΣΠ-category u�, then the
pullback functor 𝑗∗ : u�∕𝐽 → u�∕𝐼 preserves all limits and colimits. ■

Proposition a.2.21. Let u� be a category with a terminal object. The following
are equivalent:

(i) u� is a ΣΠ-category.

(ii) u� is a locally cartesian closed category.
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Proof. See Proposition 9.20 in [Awodey, 2010]. □

Theorem a.2.22. Let 𝔻 be a small category, and let u� = [𝔻op, 𝐒𝐞𝐭]. Then:

(i) u� has limits and colimits for all small diagrams, and these can be construc-
ted componentwise in 𝐒𝐞𝐭: a cone (resp. cocone) in u� over (resp. under)
a diagram in u� is a limiting cone (resp. colimiting cocone) if and only if it
is so in every component.

(ii) Every internal equivalence relation in u� is the kernel pair of its coequal-
iser.

(iii) For all morphisms 𝑗 : 𝐼 → 𝐽 in u�, the pullback functor 𝑗∗ : u�∕𝐽 → u�∕𝐼
preserves all limits and colimits.

(iv) The Yoneda embedding h• : 𝔻 → u� is a dense functor, i.e. for every pre-
sheaf 𝑋 : 𝔻op → 𝐒𝐞𝐭, the tautological cocone[3] from the canonical dia-
gram (h• ↓ 𝑋) → u� to 𝑋 is a colimiting cocone.

(v) u� is a locally finitely presentable category.

(vi) u� is a ΣΠ-category.

Proof. (i). This is a standard fact about presheaf categories.

(ii) and (iii). The claims are true for 𝐒𝐞𝐭, and hence for u� by claim (i).

(iv). See proposition a.5.25.

(v). See theorem 0.2.40.

(vi). Apply theorem 0.2.50 to construct a right adjoint for 𝑗∗ : u�∕𝐽 → u�∕𝐼 . ■

Remark a.2.23. The Yoneda lemma gives us an explicit description of the ex-
ponential objects in [𝔻op, 𝐒𝐞𝐭]: given two presheaves 𝑌 , 𝑍 : 𝔻op → 𝐒𝐞𝐭, if 𝑍𝑌

is their exponential object, then we must have

𝑍𝑌 (𝑑) ≅ [𝔻op, 𝐒𝐞𝐭](h𝑑 , 𝑍𝑌 ) ≅ [𝔻op, 𝐒𝐞𝐭](h𝑑 × 𝑌 , 𝑍)

and so we may define 𝑌 𝑍 by 𝑌 𝑍(𝑑) = [𝔻op, 𝐒𝐞𝐭](h𝑑 × 𝑌 , 𝑍).

[3] See definition a.5.7.
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Definition a.2.24. Let 𝑌 and 𝑍 be topological spaces, and let [𝑌 , 𝑍] be the set
of all continuous maps 𝑌 → 𝑍. The compact–open topology on [𝑌 , 𝑍] is the
coarsest topology such that the subsets

𝑉 (𝐾, 𝑈) = {𝑓 ∈ [𝑌 , 𝑍] | 𝐾 ⊆ 𝑓 −1𝑈}

are open in [𝑌 , 𝑍] for all compact subsets 𝐾 ⊆ 𝑋 and all open subsets 𝑈 ⊆ 𝑌 .

Remark a.2.25. If 𝑌 is a discrete space, then the compact–open topology on
[𝑌 , 𝑍] coincides with the product topology on 𝑍𝑌 .

Definition a.2.26. A compactly generated Hausdorff space is a Hausdorff to-
pological space 𝑋 such that a subset 𝑈 ⊆ 𝑋 is open if and only if, for every
continuous map 𝑓 : 𝐾 → 𝑋 where 𝐾 is a compact Hausdorff space, 𝑓 −1𝑈 is an
open subset of 𝐾 . We write 𝐂𝐆𝐇𝐚𝐮𝐬 for the category of compactly generated
Hausdorff spaces and continuous maps.

Proposition a.2.27.
(i) If 𝑌 is a locally compact Hausdorff space, then for all topological spaces

𝑍, the set of all continuous maps 𝑌 → 𝑍, equipped with the compact–
open topology, is an exponential object [𝑌 , 𝑍] in 𝐓𝐨𝐩.

(ii) 𝐓𝐨𝐩 is not a cartesian closed category.

(iii) 𝐂𝐆𝐇𝐚𝐮𝐬 is a cartesian closed category.

Proof. Claim (i) follows from Theorems 46.10 and 46.11 in [Munkres, 2000],
and claim (ii) is Proposition 7.1.2 in [Borceux, 1994a], and claim (iii) is proved
in [GZ, Ch. III, §2]. □

a.3 Factorisation systems
Definition a.3.1. Let u� be a category.

• Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in u�. Given a commutative
square in u� of the form below,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

a lift is a morphism ℎ : 𝑊 → 𝑋 such that 𝑓 ∘ ℎ = 𝑤 and ℎ ∘ 𝑔 = 𝑧.
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• We say 𝑔 has the left lifting property with respect to 𝑓 and 𝑓 has the
right lifting property with respect to 𝑔, and we write 𝑔 ⧄ 𝑓 , if every
commutative square in u� of the form above has a lift.

• We say 𝑓 is left orthogonal to 𝑔 and 𝑔 is right orthogonal to 𝑓 , and we
write 𝑔 ⟂ 𝑓 if lifts exist and are unique.

• Given ℐ ⊆ mor u�, we define the following subensembles of mor u�:

⧄ℐ = {𝑓 ∈ mor u� | ∀𝑔 ∈ ℐ. 𝑓 ⧄ 𝑔}
ℐ⧄ = {𝑔 ∈ mor u� | ∀𝑓 ∈ ℐ. 𝑓 ⧄ 𝑔}
⊥ℐ = {𝑓 ∈ mor u� | ∀𝑔 ∈ ℐ. 𝑓 ⟂ 𝑔}
ℐ⊥ = {𝑔 ∈ mor u� | ∀𝑓 ∈ ℐ. 𝑓 ⟂ 𝑔}

Lemma a.3.2. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in a locally
small category u�. Consider the commutative diagram in 𝐒𝐞𝐭 shown below,

u�(𝑊 , 𝑋)

• u�(𝑊 , 𝑌 )

u�(𝑍, 𝑋) u�(𝑍, 𝑌 )

𝑔∗

𝑓∗

𝑔∗

𝑓∗

where the inner square is a pullback diagram.

(i) The dashed arrow is a surjection if and only if 𝑔 ⧄ 𝑓 .

(ii) The dashed arrow is a bijection if and only if 𝑔 ⟂ 𝑓 .

Proof. This is just a restatement of the definition. ■

Proposition a.3.3. Let u� be a category.

(i) If ℛ ⊆ mor u�, then ⊥ℛ ⊆ ⧄ℛ.

(ii) If ℛ′ ⊆ ℛ ⊆ mor u�, then ⧄ℛ′ ⊇ ⧄ℛ.

(iii) If ℛ′ ⊆ ℛ ⊆ mor u�, then ⊥ℛ′ ⊇ ⊥ℛ.
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Dually:

(i′) If ℒ ⊆ mor u�, then ℒ⊥ ⊆ ℒ⧄.

(ii′) If ℒ′ ⊆ ℒ ⊆ mor u�, then ℒ′ ⧄ ⊇ ℒ⧄.

(iii′) If ℒ′ ⊆ ℒ ⊆ mor u�, then ℒ′⊥ ⊇ ℒ⊥.

Moreover, we have the following antitone Galois connections:

ℒ ⊆ ⧄ℛ if and only if ℛ ⊆ ℒ⧄

ℒ ⊆ ⊥ℛ if and only if ℛ ⊆ ℒ⊥

Proof. Obvious. ⧫

Corollary a.3.4. We have the following identities:

⧄((⧄ℛ)⧄) = ⧄ℛ ⊥((⊥ℛ)⊥) = ⊥ℛ

(⧄(ℒ⧄))⧄ = ℒ⧄ (⊥(ℒ⊥))⊥ = ℒ⊥

Proof. This is a standard fact about (antitone) Galois connections. ■

Definition a.3.5. A orthogonality-reflecting functor is a functor 𝑈 : u� → u�
with the following property:

• Given a commutative square in u� of the form below,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

for each morphism ℎ : 𝑈𝑊 → 𝑈𝑋 in u� making the diagram below
commute,

𝑈𝑍 𝑈𝑋

𝑈𝑊 𝑈𝑌

𝑈𝑔

𝑈𝑧

𝑈𝑓ℎ

𝑈𝑤

there is a unique morphism ℎ̃ : 𝑊 → 𝑋 in u� such that 𝑈ℎ̃ = ℎ, 𝑓 ∘ℎ = 𝑤,
and ℎ ∘ 𝑔 = 𝑧.

769



A. Generalities

Lemma a.3.6. Let 𝑈 : u� → u� be a functor between locally small categories.
The following are equivalent:

(i) 𝑈 : u� → u� is a orthogonality-reflecting functor.

(ii) For any morphisms 𝑍 → 𝑊 and 𝑋 → 𝑌 in u�, the induced commutative
diagram

u�(𝑊 , 𝑋) u�(𝑍, 𝑋) ×u�(𝑍,𝑌 ) u�(𝑊 , 𝑌 )

u�(𝑈𝑊 , 𝑈𝑋) u�(𝑈𝑍, 𝑈𝑋) ×u�(𝑈𝑍,𝑈𝑌 ) u�(𝑈𝑊 , 𝑈𝑌 )

𝑈 𝑈

is a pullback square in 𝐒𝐞𝐭.

Proof. This is just a restatement of the definition. ■

Lemma a.3.7. Let u� be a category.

• For any object 𝐴 in u�, the projection 𝐴∕u� → u� is an orthogonality-reflecting
functor.

• For any object 𝐵 in u�, the projection u�∕𝐵 → u� is an orthogonality-reflecting
functor.

Proof. The two claims are formally dual; we will prove the first version.
Since the forgetful functor 𝐴∕u� → u� is faithful, the uniqueness clause in the

definition is automatically satisfied; it thus suffices to verify existence. Suppose
we have the following commutative diagrams in u�:

𝐴

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓ℎ

𝑤
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Then the following diagram also commutes:

𝐴

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓ℎ

𝑤

This completes the proof. ■

Proposition a.3.8. Let 𝑈 : u� → u� be an orthogonality-reflecting functor and
let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in u�.

1. If 𝑈𝑔 ⧄ 𝑈𝑓 in u�, then 𝑔 ⧄ 𝑓 in u�.

2. If 𝑈𝑔 ⟂ 𝑈𝑓 in u�, then 𝑔 ⟂ 𝑓 in u�.

Proof. Obvious. ⧫

Definition a.3.9. Let u� be a category.

• A strong monomorphism in u� is a monomorphism that is right ortho-
gonal to all epimorphisms in u�.

• A strong epimorphism in u� is a monomorphism that is left orthogonal to
all monomorphisms in u�.

Lemma a.3.10. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a category u�. The following
are equivalent:

(i) 𝑓 is an isomorphism.

(ii) 𝑓 is right orthogonal to any morphism in u�.

(iii) 𝑓 has the right lifting property with respect to any morphism in u�.

(iv) 𝑓 has the right lifting property with respect to itself.

Dually, the following are equivalent:

(i′) 𝑓 is an isomorphism.

(ii′) 𝑓 is left orthogonal to any morphism in u�.
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(iii′) 𝑓 has the left lifting property with respect to any morphism in u�.

(iv′) 𝑓 has the left lifting property with respect to itself.

Proof. (i) ⇒ (ii). Suppose 𝑟 : 𝑌 → 𝑋 is a morphism such that 𝑟 ∘ 𝑓 = id𝑋 .
Then, for any commutative square as below,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

we have (𝑟 ∘ 𝑤) ∘ 𝑔 = 𝑟 ∘ 𝑓 ∘ 𝑧 = 𝑧; but if 𝑓 ∘ 𝑟 = id𝑌 as well, then 𝑓 ∘ (𝑟 ∘ 𝑤) = 𝑤;
thus 𝑟 ∘ 𝑤 : 𝑊 → 𝑋 is the required lift. It is clearly unique, as 𝑓 is monic.

(ii) ⇒ (iii), (iii) ⇒ (iv). Obvious.

(iv) ⇒ (i). Consider the following commutative square:

𝑋 𝑋

𝑌 𝑌

𝑓

id

𝑓

id

Since 𝑓 has the right lifting property with respect to itself, there exists a morph-
ism ℎ : 𝑌 → 𝑋 such that ℎ ∘ 𝑓 = id𝑋 and 𝑓 ∘ ℎ = id𝑌 . ■

Corollary a.3.11.
• A morphism is both a monomorphism and a strong epimorphism if and

only if it is an isomorphism.

• A morphism is both a epimorphism and a strong monomorphism if and
only if it is an isomorphism. ■

Definition a.3.12. A weak factorisation system for a category u� is a pair (ℒ, ℛ)
of subensembles of mor u� satisfying these conditions:

• For each morphism 𝑓 in u� there exists a pair (𝑔, ℎ) with 𝑔 ∈ ℒ and ℎ ∈ ℛ
such that 𝑓 = ℎ ∘ 𝑔. Such a pair is a (ℒ, ℛ)-factorisation of 𝑓 .

• A morphism is in ℒ if and only if it has the left lifting property with respect
to every morphism in ℛ, i.e. ℒ = ⧄ℛ.
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• A morphism is in ℛ if and only if it has the right lifting property with
respect to every morphism in ℒ, i.e. ℛ = ℒ⧄.

An orthogonal factorisation system is defined like a weak factorisation system,
except for replacing ‘… has the left/right lifting property with respect to …’ with
‘… is left/right orthogonal to …’.

Remark a.3.13. Obviously, (ℒ, ℛ) is a weak (resp. orthogonal) factorisation sys-
tem for u� if and only if (ℛop, ℒop) is a weak (resp. orthogonal) factorisation sys-
tem for u� op.

Proposition a.3.14. Let (ℒ, ℛ) be a weak factorisation system on u�. If either

• every morphism in ℛ is a monomorphism in u�, or

• every morphism in ℒ is an epimorphism in u�,

then (ℒ, ℛ) is an orthogonal factorisation system.

Proof. The two hypotheses are formally dual, so it is enough to check the first
case. Observe that, given a commutative diagram

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓ℎ

𝑤

where 𝑓 : 𝑋 → 𝑌 is a monomorphism, for any ℎ′ : 𝑊 → 𝑋 such that 𝑓 ∘ℎ′ = 𝑤,
we must have ℎ = ℎ′. Thus, for any monomorphism 𝑓 : 𝑋 → 𝑌 , 𝑔 ⧄ 𝑓 if and
only if 𝑔 ⟂ 𝑓 . Hence, ℒ = ⧄ℛ = ⊥ℛ. On the other hand, ℒ⊥ ⊆ ℒ⧄ = ℛ, so
ℛ = ℒ⊥ as well. ■

Definition a.3.15. A proper factorisation system on a category u� is an or-
thogonal factorisation system (ℰ, ℳ) on u� such that every morphism in ℰ is an
epimorphism and every morphism in ℳ is a monomorphism.

Example a.3.16. In 𝐒𝐞𝐭, if ℰ is the class of surjective maps and ℳ is the class
of injective maps, then (ℰ, ℳ) is a proper factorisation system.
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Proposition a.3.17 (Closure properties). Let ℛ ⊆ mor u� and suppose either
ℒ = ⧄ℛ or ℒ = ⊥ℛ.

(i) Given a pushout diagram in u� as below,

𝑍′ 𝑍

𝑊 ′ 𝑊

𝑔′

𝑖𝑍

𝑔

𝑖𝑊

if the morphism 𝑔′ is in ℒ, then 𝑔 is also in ℒ.

(ii) Let 𝐼 be a set. If 𝑔𝑖 : 𝑍𝑖 → 𝑊𝑖 is a morphism in ℒ for all 𝑖 in 𝐼 and the
coproduct ∐𝑖 𝑔𝑖 : ∐𝑖 𝑍𝑖 → ∐𝑖 𝑊𝑖 exists in u�, then ∐𝑖 𝑔𝑖 is also in ℒ.

(iii) Given a commutative diagram of the form

𝑍′ 𝑍 𝑍′

𝑊 ′ 𝑊 𝑊 ′

𝑔′
𝑖𝑍

id

𝑔
𝑟𝑍

𝑔′

id

𝑖𝑊 𝑟𝑊

if 𝑔 is in ℒ, then so is 𝑔′; in other words, ℒ is closed under retracts.

(iv) ℒ is closed under composition.

(v) Let 𝛾 be an ordinal and let 𝑍 : 𝛾 → u� be a colimit-preserving functor. We
write 𝑍𝛼 for 𝑍(𝛼), where 𝛼 < 𝛾 , and 𝑔𝛼,𝛽 : 𝑍𝛼 → 𝑍𝛽 for the morphism
𝑍(𝛼 → 𝛽), where 𝛼 < 𝛽 < 𝛾 . If is a colimiting cocone from 𝑍 to 𝑊
and each 𝑔𝛼,𝛽 is in ℒ, then each component 𝛼 : 𝑍𝛼 → 𝑊 is also in ℒ.

Proof. (i). Suppose 𝑓 is in ℛ, and consider the following commutative diagram:

𝑍′ 𝑍 𝑋

𝑊 ′ 𝑊 𝑌

𝑔′

𝑖𝑍

𝑔

𝑧

𝑓

𝑖𝑊 𝑤

There exists ℎ′ : 𝑊 ′ → 𝑋 such that ℎ′ ∘ 𝑔′ = 𝑧 ∘ 𝑖𝑍 and 𝑓 ∘ ℎ′ = 𝑤 ∘ 𝑖𝑊 . In
particular, there exists a unique morphism ℎ : 𝑊 → 𝑋 such that ℎ ∘ 𝑔 = 𝑧 and
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ℎ∘𝑖𝑊 = ℎ′, by the universal property of pullbacks. Thus 𝑓∘ℎ∘𝑖𝑊 = 𝑓∘ℎ′ = 𝑤∘𝑖𝑊
and 𝑓 ∘ ℎ ∘ 𝑔 = 𝑓 ∘ 𝑧 = 𝑤 ∘ 𝑔, but 𝑖𝑊 and 𝑔 are jointly epic, so 𝑓 ∘ ℎ = 𝑤. This
shows ℎ is the required lift, and ℎ is unique if ℎ′ is.

(ii). We may construct the required lift componentwise.

(iii). Suppose 𝑓 is in ℛ, and consider the following commutative diagram:

𝑍′ 𝑍 𝑍′ 𝑋

𝑊 ′ 𝑊 𝑊 ′ 𝑌

𝑔′

𝑖𝑍

𝑔

𝑟𝑍

𝑔′

𝑧

𝑓

𝑖𝑊 𝑟𝑊 𝑤

There exists ℎ : 𝑊 → 𝑋 such that ℎ ∘ 𝑔 = 𝑧 ∘ 𝑟𝑍 and 𝑓 ∘ ℎ = 𝑤 ∘ 𝑟𝑊 , and so for
ℎ′ = ℎ ∘ 𝑖𝑊 :

𝑓 ∘ ℎ′ = 𝑓 ∘ ℎ ∘ 𝑖𝑊 = 𝑤 ∘ 𝑟𝑊 ∘ 𝑖𝑊 = 𝑤
ℎ′ ∘ 𝑔′ = ℎ ∘ 𝑖𝑊 ∘ 𝑔′ = ℎ ∘ 𝑔 ∘ 𝑖𝑍 = 𝑧 ∘ 𝑟𝑍 ∘ 𝑖𝑍 = 𝑧

Thus ℎ′ : 𝑊 ′ → 𝑋 is the required lift, and ℎ′ is unique if ℎ is (because 𝑟𝑊 is
split epic).

(iv). Suppose 𝑔′ : 𝑍′ → 𝑍 and 𝑔 : 𝑍 → 𝑊 are in ℒ and 𝑓 : 𝑋 → 𝑌 is in ℛ.
Consider the following commutative diagram:

𝑍′ 𝑋

𝑍

𝑊 𝑌

𝑔′

𝑧′

𝑓

𝑔

𝑤

There must exist a morphism 𝑧 : 𝑍 → 𝑋 such that 𝑧 ∘ 𝑔′ = 𝑧′ and 𝑓 ∘ 𝑧′ = 𝑤 ∘ 𝑔,
and hence a morphism ℎ : 𝑊 → 𝑋 such that ℎ∘𝑔 = 𝑧 and 𝑓 ∘ℎ = 𝑤. Obviously,
ℎ ∘ (𝑔′ ∘ 𝑔) = 𝑧′, so ℎ is the required lift. Moreover, ℎ unique if ℒ = ⊥ℛ.

(v). We may assume without loss of generality that 𝛼 = 0, since any non-empty
terminal segment of 𝛾 is cofinal in 𝛾 . Suppose 𝑓 : 𝑋 → 𝑌 is in ℛ and consider
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the following commutative diagram:

𝑍0 𝑋

𝑊 𝑌
0

𝑧0

𝑓

𝑤

For each 𝛼 < 𝛾 , given 𝑧𝛼 making the following diagram commute,

𝑍𝛼 𝑋

𝑍𝛼+1 𝑊 𝑌

𝑔𝛼,𝛼+1

𝑧𝛼

𝑓

𝛼+1 𝑤

choose a lift 𝑧𝛼+1 : 𝑍𝛼+1 → 𝑋; for each limit ordinal 𝛽 < 𝛾 , let 𝑧𝛽 : 𝑍𝛽 → 𝑋
be the unique morphism such that 𝑧𝛽 ∘ 𝑔𝛼,𝛽 = 𝑧𝛼 for all 𝛼 < 𝛽. (Such 𝑧𝛽 exist
and are unique because 𝑍𝛽 = lim−−→𝛼<𝛽

𝑍𝛼.) Note that the universal property of 𝑊
then guarantees that 𝑤 ∘ 𝛽 = 𝑓 ∘ 𝑧𝛽 .

Having constructed morphisms 𝑧𝛼 : 𝑍𝛼 → 𝑋 for all 𝛼 < 𝛾 as above, we may
now obtain ℎ : 𝑊 → 𝑋 as the unique morphism such that ℎ ∘ 𝛼 = 𝑧𝛼 for all
𝛼 < 𝛾 , and again we automatically have 𝑓 ∘ ℎ = 𝑤. It is also clear that ℎ is
unique if ℒ = ⊥ℛ. ■

Proposition a.3.18 (Cancellation properties). Let ℛ ⊆ mor u�.

(i) Let ℒ be either ⧄ℛ or ⊥ℛ, let 𝑒 : 𝐴 → 𝑍 be an epimorphism in u�, and let
𝑔 : 𝑍 → 𝑊 be a morphism in u�. If 𝑔 ∘ 𝑒 is in ℒ, then so is 𝑔.

(ii) Let ℒ be ⊥ℛ, let 𝑓 : 𝐴 → 𝑍 be any morphism in u�, and let 𝑔 : 𝑍 → 𝑊
be a morphism in u�. Assuming every morphism that is in ℛ is a mono-
morphism in u�, if 𝑔 ∘ 𝑓 is in ℒ, then so is 𝑔.

(iii) Suppose (ℒ, ℛ) is an orthogonal factorisation system on ℛ, and let 𝑒 :
𝐴 → 𝑍 be in ℒ. Then, a morphism 𝑔 : 𝑍 → 𝑊 is in ℒ if and only 𝑔 ∘ 𝑒 is
in ℒ.

Dually, let ℒ ⊆ mor u�.

(i′) Let ℛ be either ℒ⧄ or ℒ⊥, let 𝑚 : 𝑌 → 𝐵 be an monomorphism in u�, and
let 𝑓 : 𝑋 → 𝑌 be a morphism in u�. If 𝑚 ∘ 𝑓 is in ℛ, then so is 𝑓 .

776



a.3. Factorisation systems

(ii′) Let ℛ be ℒ⊥, let 𝑔 : 𝑌 → 𝐵 be any morphism in u�, and let 𝑓 : 𝑋 → 𝑌 be a
morphism in u�. Assuming every morphism that is in ℒ is an epimorphism
in u�, if 𝑔 ∘ 𝑓 is in ℛ, then so is 𝑓 .

(iii′) Suppose (ℒ, ℛ) is an orthogonal factorisation system on ℛ, and let 𝑚 :
𝑌 → 𝐵 be in ℒ. Then, a morphism 𝑓 : 𝑋 → 𝑌 is in ℒ if and only 𝑔 ∘ 𝑒 is
in ℒ.

Proof. (i). The epimorphism 𝑒 : 𝐴 → 𝑍 induces a bijection between solutions
of lifting problems in u� of the form

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

and solutions of lifting problems of the form

𝐴 𝑋

𝑊 𝑌

𝑔∘𝑒

𝑧∘𝑒

𝑓

𝑤

so 𝑔 ⧄ 𝑓 (resp. 𝑔 ⟂ 𝑓 ) if and only if 𝑔 ∘ 𝑒 ⧄ 𝑓 (resp. 𝑔 ∘ 𝑒 ⟂ 𝑓 ).

(ii). The proof is similar to that of claim (i).

(iii). By proposition a.3.17, we know 𝑔 ∘ 𝑒 is in ℒ if both 𝑔 and 𝑒 are in ℒ; the
converse remains to be shown. Let 𝑟 ∘ 𝑙 be an (ℒ, ℛ)-factorisation of 𝑔. If 𝑔 ∘ 𝑒
is in ℒ, then there exists a unique 𝑠 making the diagram below commute,

𝐴 𝑀

𝑊 𝑊

𝑔∘𝑒

𝑙∘𝑒

𝑟𝑠

id

so 𝑟 ∘ 𝑠 = id𝑊 , but then we also have

𝑟 ∘ (𝑠 ∘ 𝑟) = 𝑟
(𝑠 ∘ 𝑟) ∘ (𝑙 ∘ 𝑒) = 𝑠 ∘ (𝑔 ∘ 𝑒) = 𝑙 ∘ 𝑒

and 𝑙 ∘ 𝑒 ⟂ 𝑟, so we must have 𝑠 ∘ 𝑟 = id𝑀 . Hence, 𝑔 is also in ℒ. ■
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Proposition a.3.19 (The retract argument). Let u� be a category and let (ℒ, ℛ) be
a pair of subclasses of mor u� such that ℒ ⊆ ⧄ℛ and ℛ ⊆ ℒ⧄. If every morphism
in u� admits an (ℒ, ℛ)-factorisation, then the following are equivalent:

(i) (ℒ, ℛ) is a weak factorisation system.

(ii) ℒ and ℛ are both closed under retracts in u�.

Proof. (i) ⇒ (ii). This is a special case of proposition a.3.17.

(ii) ⇒ (i). Suppose 𝑓 : 𝑋 → 𝑌 is in ℒ⧄. Let 𝑝 ∘ 𝑖 be an (ℒ, ℛ)-factorisation of
𝑓 . Then, there must exist a morphism 𝑟 such that 𝑟 ∘ 𝑖 = id𝑋 and 𝑓 ∘ 𝑟 = 𝑝, as in
the diagram below:

𝑋 𝑋

𝑍 𝑌

𝑖

id

𝑓𝑟

𝑝

Hence, we have the following commutative diagram:

𝑋 𝑍 𝑋

𝑌 𝑌 𝑌

id

𝑓
𝑖

𝑝
𝑟

𝑓

id id

Since ℛ is closed under retracts, we deduce that 𝑓 is in ℛ. Thus, ℒ⧄ ⊆ ℛ.
The dual argument proves that ⧄ℛ ⊆ ℒ, so (ℒ, ℛ) is indeed a weak factorisation
system. ■

Corollary a.3.20. Every orthogonal factorisation system is also a weak factor-
isation system.

Proof. Let (ℒ, ℛ) be an orthogonal factorisation system on a category u�. Pro-
position a.3.3 implies ℒ ⊆ ⧄ℛ and ℛ ⊆ ℒ⧄, and proposition a.3.17 says ℒ and
ℛ are both closed under retracts, so we may use the earlier proposition to deduce
that (ℒ, ℛ) is a weak factorisation system. ■

Lemma a.3.21. Let 𝐴 be an object in a category u� with a weak (resp. orthgonal)
factorisation system (ℒ, ℛ). Then the slice category u�∕𝐴 has a weak (resp. or-
thogonal) factorisation system where a morphism is in the left or right class if
and only if it is so in u�.
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Proof. Apply lemma a.3.7 and the retract argument (proposition a.3.19). ■

Definition a.3.22. A weak factorisation system (ℒ, ℛ) on a category u� is cofi-
brantly generated by a subensemble ℐ ⊆ mor u� if ℛ = ℐ⧄. Dually, (ℒ, ℛ) is
fibrantly generated by a subensemble ℱ ⊆ mor u� if ℒ = ⧄ℱ.

Remark a.3.23. Of course, (ℒ, ℛ) is always cofibrantly generated by ℒ. The
condition is most useful when (ℒ, ℛ) is cofibrantly generated by a (small) subset
of ℒ, but it is convenient to have the more general definition available.

Definition a.3.24. Let (ℒ, ℛ) be a weak factorisation system on a category u�.
An extension of (ℒ, ℛ) along a functor 𝑖 : u� → u�+ is a weak factorisation system
(ℒ+, ℛ+) on u�+ with the following properties:

• A morphism 𝑓 : 𝑋 → 𝑌 in u� is in ℛ if and only if 𝑖𝑓 : 𝑖𝑋 → 𝑖𝑌 is in ℛ+.

• A morphism 𝑔 : 𝑍 → 𝑊 in u� is in ℒ if and only if 𝑖𝑔 : 𝑖𝑍 → 𝑖𝑊 is in
ℒ+.

Proposition a.3.25. Let u� be a full subcategory of a category u�+, let (ℒ, ℛ) be a
weak factorisation system on u�, and let (ℒ+, ℛ+) be a weak factorisation system
on u�+.

(i) If ℒ ⊆ ℒ+, then ℛ ⊇ ℛ+ ∩ mor u�.

(ii) If (ℒ, ℛ) and (ℒ+, ℛ+) are both cofibrantly generated by the same en-
semble ℐ, then ℛ = ℛ+ ∩ mor u�.

Dually:

(i′) If ℛ ⊆ ℛ+, then ℒ ⊇ ℒ+ ∩ mor u�.

(ii′) If (ℒ, ℛ) and (ℒ+, ℛ+) are both fibrantly generated by the same ensemble
ℱ, then ℒ = ℒ+ ∩ mor u�.

Moreover:

(iii) If ℒ ⊆ ℒ+ and ℛ ⊆ ℛ+, then (ℒ+, ℛ+) is an extension of (ℒ, ℛ).
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Proof. Since u� is a full subcategory of u�+, if 𝑔 : 𝑍 → 𝑊 and 𝑓 : 𝑋 → 𝑌 are
morphisms in u�, then any lifting problem of the following form in u�+ is already
in u�,

𝑍 𝑋

𝑊 𝑌

𝑔 𝑓

and moreover any solution to the above lifting problem in u�+ is also a solution
in u�. Thus, 𝑔 ⧄ 𝑓 in u� if and only if 𝑔 ⧄ 𝑓 in u�+.

(i). Suppose 𝑓 is in ℛ+ ∩ mor u�. Then 𝑓 has the right lifting property in 𝐶+

with respect to every morphism in ℒ+, and in particular, 𝑓 has the right lifting
property in u� with respect to every morphism in ℒ; hence 𝑓 is in ℛ, and therefore
ℛ ⊇ ℛ+ ∩ mor u�.

(ii). A morphism is in ℛ (resp. ℛ+) if and only if it has the right lifting property
in u� (resp. u�+) with respect to every morphism in ℐ, so by our initial observation,
we must have ℛ = ℛ+ ∩ mor u�.

(iii). Immediately follows from claims (i) and (i′). ■

Proposition a.3.26. Let (ℒ, ℛ) be a weak (resp. orthogonal) factorisation sys-
tem for a category u�, and let (ℒ′, ℛ′) be a weak (resp. orthogonal) factorisation
system for a category u�′. Given an adjunction

𝐹 ⊣ 𝑈 : u�′ → u�

the following are equivalent:

(i) 𝐹 sends morphisms in ℒ to morphisms in ℒ′.

(ii) 𝑈 sends morphisms in ℛ′ to morphisms in ℛ.

Proof. The adjunction induces a bijection between solutions to the two lifting
problems shown below:

𝐹 𝑍 𝑋

𝐹 𝑊 𝑌

𝐹 𝑔 𝑓
?

𝑍 𝑈𝑋

𝑊 𝑈𝑌

𝑔 𝑈𝑓?

Thus, 𝐹 𝑔 ⧄ 𝑓 (resp. 𝐹 𝑔 ⟂ 𝑓 ) if and only if 𝑔 ⧄ 𝑈𝑓 (resp. 𝑔 ⟂ 𝑈𝑓 ). ■
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¶ a.3.27. Let 𝟚 be the category {0 → 1} and let 𝟛 be {0 → 1 → 2}. Thus,
given a category u�, the functor category [𝟚, u�] is the category of arrows and
commutative squares in u�. There are three embeddings 𝑑0, 𝑑1, 𝑑2 : 𝟚 → 𝟛:

𝑑0(0) = 1 𝑑1(0) = 0 𝑑2(0) = 0
𝑑0(1) = 2 𝑑1(1) = 2 𝑑2(1) = 1

These then induce (by precomposition) three functors 𝑑0, 𝑑1, 𝑑2 : [𝟛, u�] → [𝟚, u�].

Definition a.3.28. A functorial factorisation system on a category u� is a pair
of functors 𝐿, 𝑅 : [𝟚, u�] → [𝟚, u�] for which there exists a (necessarily unique)
functor 𝐹 : [𝟚, u�] → [𝟛, u�] satisfying the following equations:

𝑑2𝐹 = 𝐿 𝑑1𝐹 = id[𝟚,u�] 𝑑0𝐹 = 𝑅

A functorial weak (resp. orthogonal) factorisation system on u� is a weak (resp.
orthogonal) factorisation system (ℒ, ℛ) together with a functorial factorisation
system (𝐿, 𝑅) such that 𝐿𝑓 ∈ ℒ and 𝑅𝑓 ∈ ℛ for all morphisms 𝑓 in u�. We will
often abuse notation and refer to the functorial factorisation system (𝐿, 𝑅) as a
functorial weak (resp. orthogonal) factorisation system, omitting mention of the
weak (resp. orthogonal) factorisation system (ℒ, ℛ).

Lemma a.3.29. Let 𝐴 be an object in a category u� and let Σ𝐴 : u�∕𝐴 → u� be the
projection from the slice category.

(i) For each functorial factorisation system (𝐿, 𝑅) on u�, there exists a unique
functorial factorisation system (𝐿𝐴, 𝑅𝐴) on u�∕𝐴 such that

[𝟚, Σ𝐴] ∘ 𝐿𝐴 = 𝐿 ∘ [𝟚, Σ𝐴] [𝟚, Σ𝐴] ∘ 𝑅𝐴 = 𝑅 ∘ [𝟚, Σ𝐴]

where [𝟚, Σ𝐴] : [𝟚, u�∕𝐴] → [𝟚, u�] is the evident induced functor.

(ii) If (𝐿, 𝑅) is part of a functorial weak or orthogonal factorisation system
on u�, then (𝐿𝐴, 𝑅𝐴) is compatible with the induced weak or orthogonal
factorisation system on u�∕𝐴 as well.

Proof. Obvious. ⧫

Proposition a.3.30. Any orthogonal factorisation system can be extended to a
functorial one.

781



A. Generalities

Proof. For each morphism 𝑓 in a category u� with an orthogonal factorisation
system (ℒ, ℛ), choose a factorisation 𝑓 = 𝑅𝑓 ∘ 𝐿𝑓 with 𝐿𝑓 ∈ ℒ and 𝑅𝑓 ∈ ℛ.
Given a commutative square in u�, say

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

the lifting property ensures that the dashed arrow in the diagram below exists,

𝑍 𝑋

• •

𝑊 𝑌

𝐿𝑔

𝑧

𝐿𝑓

𝑅𝑔 𝑅𝑓

𝑤

and orthogonality ensures uniqueness and hence functoriality. ■

Corollary a.3.31. If (ℒ, ℛ) is an orthogonal factorisation system on a category
u�, then, for any category u� , there exists an orthogonal factorisation system on
the functor category [u� , u�] where a natural transformation is in the left (resp.
right) class if and only if all its components are in ℒ (resp. ℛ).

Proof. Obviously, every morphism in [u� , u�] admits such a factorisation, since
(ℒ, ℛ)-factorisations in u� are functorial. By considering a commutative diagram
in u� of the form below,

𝑍′ 𝑋′

𝑍 𝑋

𝑊 ′ 𝑌 ′

𝑊 𝑌

𝑔′

𝑓 ′

𝑔
𝑓

where 𝑓 and 𝑓 ′ are in ℛ while 𝑔 and 𝑔′ are in ℒ, using the fact that (ℰ, ℳ)
is an orthogonal factorisation system, one may show that lifting problems in
[u� , u�] admit unique solutions, and that these solutions are moreover constructed
componentwise. Thus, (ℒ, ℛ) induces an orthogonal factorisation system on
[u� , u�]. ■

782



a.3. Factorisation systems

The following characterisation of functorial orthogonal factorisation systems
is due to Grandis and Tholen [2006]:

Theorem a.3.32. Let (𝐿, 𝑅) be a functorial factorisation system on a category
u�. The following are equivalent:

(i) 𝐿 is the underlying endofunctor of an idempotent comonad on [𝟚, u�] with
counit given by 𝑘 = (iddom 𝑘, 𝑅𝑘), and 𝑅 is the underlying endofunctor
of an idempotent monad on [𝟚, u�] with unit given by ℎ = (ℎ, idcodom ℎ).

(ii) For all morphisms ℎ in u�, 𝑅𝐿ℎ and 𝐿𝑅ℎ are isomorphisms in u�.

(iii) For any two morphisms in u�, say ℎ and 𝑘, we have 𝐿𝑘 ⟂ 𝑅ℎ.

(iv) (ℒ, ℛ) is an orthogonal factorisation system on u� extending (𝐿, 𝑅), where:

ℒ = {𝑔 ∈ mor u� | 𝑅𝑔 is an isomorphism in u�}
ℛ = {𝑓 ∈ mor u� | 𝐿𝑓 is an isomorphism in u�}

(v) There exists an orthogonal factorisation system (ℒ, ℛ) extending (𝐿, 𝑅).

Proof. (i) ⇔ (ii). This is a standard fact about idempotent (co)monads.

(ii) ⇒ (iii). Now, consider the following lifting problem:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

Since (𝐿, 𝑅) is a functorial factorisation system, we get a commutative diagram
of the form below,

𝑍 𝑋

𝑊 ′ 𝑋′

𝑊 𝑌

𝐿𝑔

𝑧

𝐿𝑓

𝑅𝑔

𝑡

𝑅𝑓

𝑤

but 𝑅𝑔 and 𝐿𝑓 are isomorphisms, so (𝐿𝑓)−1 ∘ 𝑡 ∘ (𝑅𝑔)−1 is the required lift
𝑊 → 𝑋. On the other hand, if 𝑠 : 𝑊 → 𝑋 is any morphism such that 𝑓 ∘ 𝑠 = 𝑤
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and 𝑠 ∘ 𝑔 = 𝑧, then by taking (𝐿, 𝑅)-factorisations of the vertical arrows in the
following diagram,

𝑍 𝑊 𝑋 𝑋

𝑊 𝑊 𝑋 𝑌

𝑔

𝑔

id

𝑠

id

id

𝑓

id 𝑠 𝑓

we find it must be the case that 𝐿𝑓 ∘ 𝑠 ∘ 𝑅𝑔 = 𝑡, so we indeed have 𝑔 ⟂ 𝑓 .

(iii) ⇒ (iv). In particular, 𝑔 ⟂ 𝑅𝑔 and 𝐿𝑓 ⟂ 𝑓 , so there must exist morphisms 𝑖
and 𝑟 making the diagrams below commute:

𝑍 𝑊 ′

𝑊 𝑊

𝑔

𝐿𝑔

𝑅𝑔𝑖

id

𝑋 𝑋

𝑋′ 𝑌

𝐿𝑓

id

𝑓𝑟

𝑅𝑓

We then obtain the following equations,

(𝑖 ∘ 𝑅𝑔) ∘ 𝐿𝑔 = 𝐿𝑔 (𝐿𝑓 ∘ 𝑟) ∘ 𝐿𝑓 = 𝐿𝑓
𝑅𝑔 ∘ (𝑖 ∘ 𝑅𝑔) = 𝑅𝑔 𝑅𝑓 ∘ (𝐿𝑓 ∘ 𝑟) = 𝑅𝑓

and since 𝐿𝑔 ⟂ 𝑅𝑔 and 𝐿𝑓 ⟂ 𝑅𝑓 , we must have 𝑖∘𝑅𝑔 = id𝑊 ′ and 𝐿𝑓 ∘𝑟 = id𝑋′.
Thus, 𝑔 ∈ ℒ and 𝑓 ∈ ℛ, and the same argument now shows that ⊥ℛ ⊆ ℒ and
ℒ⊥ ⊆ ℛ.

It remains to be shown that ℒ ⊆ ⊥ℛ and ℛ ⊆ ℒ⊥. First, suppose 𝑔 ∈ ℒ and
𝑓 ∈ ℛ, and consider the following lifting problem:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

With 𝑟 and 𝑖 as in the previous paragraph, we obtain a commutative diagram of
the form below,

𝑍 𝑍 𝑋 𝑋

𝑊 ′ 𝑋′

𝑊 𝑊 𝑌 𝑌

𝑔

id

𝐿𝑔

𝑧

𝐿𝑓

id

𝑓

𝑅𝑔

𝑡
𝑟

𝑅𝑓𝑖

id 𝑤 id
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where the arrow 𝑡 is obtained by the functoriality of (𝐿, 𝑅)-factorisations. Thus,
𝑟 ∘ 𝑡 ∘ 𝑖 is the required lift 𝑊 → 𝑋, and it is unique, since 𝑅𝑔 and 𝐿𝑓 are
isomorphisms. (Recall the proof of (ii) ⇒ (iii).) We conclude that ℒ = ⊥ℛ and
ℛ = ℒ⊥.

(iv) ⇒ (v). Immediate.

(v) ⇒ (iii). If (ℒ, ℛ) is an orthogonal factorisation system on u� such that 𝐿𝑓 ∈ ℒ
and 𝑅𝑓 ∈ ℛ for all morphisms 𝑓 in u�, then we must have 𝐿𝑘 ⟂ 𝑅ℎ for all ℎ
and 𝑘 in mor u�, as required.

(iv) ⇒ (ii). Immediate. ■

Remark a.3.33. It is clear that a functorial factorisation system is associated
with at most one orthogonal factorisation system: indeed, if (ℒ′, ℛ′) is any or-
thogonal factorisation system extending a functorial factorisation system (𝐿, 𝑅),
and (ℒ, ℛ) is the induced orthogonal factorisation system as in the theorem, then
each morphism in ℒ (resp. ℛ) is a retract of some morphism in in ℒ′ (resp. ℛ′);
but by proposition a.3.17, this implies ℒ ⊆ ℒ′ and ℛ ⊆ ℛ′, and applying pro-
position a.3.3, we also get ℒ ⊇ ℒ′ and ℛ ⊇ ℛ′.

Corollary a.3.34. If (ℒ, ℛ) is an orthogonal factorisation system on a category
u�, then:

(i) ℒ, considered as a full subcategory of [𝟚, u�], is replete and coreflective.

(ii) ℒ is closed under all colimits in [𝟚, u�].

(iii) If a diagram in ℒ has a limit in [𝟚, u�], then it also has a limit in ℒ.

Dually:

(i′) ℛ, considered as a full subcategory of [𝟚, u�], is replete and reflective.

(ii′) ℛ is closed under all limits in [𝟚, u�].

(iii′) If a diagram in ℛ has a colimit in [𝟚, u�], then it also has a colimit in ℛ.

Proof. Using proposition a.3.30 and theorem a.3.32, the above claims amount to
standard facts about the Eilenberg–Moore category for idempotent (co)monads.

■
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There is a similar characterisation of functorial weak factorisation systems,
due to Rosický and Tholen [2002]:

Theorem a.3.35. Let (𝐿, 𝑅) be a functorial factorisation system on a category
u�. The following are equivalent:

(i) For any two morphisms in u�, say ℎ and 𝑘, 𝐿𝑘 ⧄ 𝑅ℎ.

(ii) (ℒ, ℛ) is an weak factorisation system on u� extending (𝐿, 𝑅), where:

ℒ = {𝑔 ∈ mor u� | ∃𝑖 ∈ mor u�. 𝑖 ∘ 𝑔 = 𝐿𝑔 ∧ 𝑅𝑔 ∘ 𝑖 = idcodom 𝑔}
ℛ = {𝑓 ∈ mor u� | ∃𝑟 ∈ mor u�. 𝑓 ∘ 𝑟 = 𝑅𝑓 ∧ 𝑟 ∘ 𝐿𝑓 = iddom 𝑓 }

(iii) There exists a weak factorisation system (ℒ, ℛ) extending (𝐿, 𝑅).

Proof. The proof is essentially the same as that of theorem a.3.32. ■

Remark a.3.36. As with orthogonal factorisation systems, there is at most one
weak factorisation system extending any functorial factorisation system.

Proposition a.3.37. Let (𝐿, 𝑅) be a functorial factorisation system on u� and
let : id[𝟚,u�] ⇒ 𝑅 and 𝜌 : 𝐿 ⇒ id[𝟚,u�] be the natural transformations whose
component at an object 𝑓 in [𝟚, u�] correspond to the following commutative
squares in u�:

• •

• •
𝑓

𝐿𝑓

𝑅𝑓

• •

• •
𝐿𝑓 𝑓

𝑅𝑓

Suppose (𝐿, 𝑅) extends to a functorial weak factorisation system. Then the fol-
lowing are equivalent for a morphism 𝑔 : 𝑍 → 𝑊 in u�:

(i) The morphism 𝑔 is in the left class of the induced weak factorisation system.

(ii) There exists a morphism 𝑖 in u� such that the diagram below commutes:

𝑍 𝑍 𝑍

𝑊 • 𝑊

𝑔 𝐿𝑔 𝑔

𝑖

id

𝑅𝑔

786



a.3. Factorisation systems

(iii) The object 𝑔 in [𝟚, u�] admits a coalgebra structure for the copointed en-
dofunctor (𝐿, 𝜌).

Dually, the following are equivalent for a morphism 𝑓 : 𝑋 → 𝑌 in u�:

(i′) The morphism 𝑓 is in the right class of the induced weak factorisation
system.

(ii′) There exists a morphism 𝑟 in u� such that the diagram below commutes:

𝑋 • 𝑋

𝑌 𝑌 𝑌

𝑓
𝐿𝑓

id

𝑅𝑓

𝑟

𝑓

(iii′) The object 𝑓 in [𝟚, u�] admits an algebra structure for the pointed endo-
functor (𝑅, ).

Proof. (i) ⇒ (ii). Consider the following commutative diagram in u�:

𝑍 •

𝑊 𝑊

𝑔

𝐿𝑔

𝑅𝑔

id

Thus, a morphism 𝑖 of the required form exists in u� as soon as 𝑔 ⧄ 𝑅𝑔.

(ii) ⇔ (iii). This is simply the definition of (𝐿, 𝜌)-coalgebra.

(ii) ⇒ (i). By definition, the morphism 𝐿𝑓 is in the left class of the induced weak
factorisation system; but the given diagram exhibits 𝑓 as a retract of 𝐿𝑓 , so we
may apply proposition a.3.17 to deduce that 𝑓 is also in the left class. ■

The results above motivate the following definition:

Definition a.3.38. A natural weak factorisation system[4] on a category u� is
a pair (𝗟, 𝗥) satisfying the following conditions:

• 𝗟 = (𝐿, , 𝛿) is a comonad on [𝟚, u�], where 𝑘 = (iddom 𝑘, 𝑅𝑘).

[4] — in the sense of Grandis and Tholen [2006], not Garner [2009].
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• 𝗥 = (𝑅, , ) is a monad on [𝟚, u�], where ℎ = (𝐿ℎ, idcodom ℎ).

• (𝐿, 𝑅) constitute a functorial factorisation system on u�.

Given natural weak factorisation systems (𝗟′, 𝗥) and (𝗟, 𝗥′) on u�, a morphism
: (𝗟′, 𝗥) → (𝗟, 𝗥′) is a pair ( 𝐿, 𝑅), where 𝐿 : 𝐿′ ⇒ 𝐿 and 𝑅 : 𝑅 ⇒ 𝑅′

are natural transformations such that the equations below hold,

∙ 𝐿 = ′ ( 𝐿 ∘ 𝐿) ∙ 𝛿′ = 𝛿 ∙ 𝐿

𝑅 ∙ = ′ ′ ∙ ( 𝑅 ∘ 𝑅) = 𝑅 ∙

and furthermore we require 𝑑0
𝐿 = 𝑑1

𝑅.

Remark a.3.39. In other words, a morphism of natural weak factorisation sys-
tems is a natural transformation of functors [𝟚, u�] → [𝟛, u�] such that the left half
is a morphism of comonads and the right half is a morphism of monads. In par-
ticular, we must have 𝑑1

𝐿 = id and 𝑑0
𝑅 = id; so for every object 𝑓 in [𝟚, u�],

we obtain a commutative diagram in u� of the form below:

• •

• •

• •

𝐿′𝑓 𝐿𝑓

𝑅𝑓

𝑓

𝑅′𝑓

Proposition a.3.40. Any functorial orthogonal factorisation system extends to
a natural weak factorisation system in a unique way; conversely, a natural weak
factorisation system induces an orthogonal factorisation system if and only if the
underlying comonad and monad are both idempotent.

Proof. This follows from the definition above and theorem a.3.32. ■

Proposition a.3.41. Let (𝗟, 𝗥) be an natural weak factorisation system on a
category u�.

(i) Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be objects in [𝟚, u�]. If 𝛼 : 𝑅𝑓 → 𝑓
is a 𝗥-algebra structure and 𝛽 : 𝑔 → 𝐿𝑔 is a 𝗟-coalgebra structure, then
𝑑0(𝛼) : 𝑌 → 𝑌 and 𝑑1(𝛽) : 𝑍 → 𝑍 are identity morphisms, and we have
the following identities:

𝑑1(𝛼) ∘ 𝐿𝑓 = id𝑋 𝑅𝑔 ∘ 𝑑0(𝛽) = id𝑊

𝑓 ∘ 𝑑1(𝛼) = 𝑅𝑓 𝑑0(𝛽) ∘ 𝑔 = 𝐿𝑔
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(ii) If 𝑓 admits a 𝗟-coalgebra structure and 𝑔 admits an 𝗥-algebra structure,
then 𝑓 ⧄ 𝑔.

(iii) There exists a (unique) weak factorisation system (ℒ, ℛ) on u� such that
𝐿𝑘 ∈ ℒ and 𝑅ℎ ∈ ℛ for all ℎ and 𝑘 in mor u�.

Proof. (i). The claim follows from the 𝗟-coalgebra counitality axiom and the
𝗥-algebra unitality axiom:

𝛼 ∘ 𝑓 = id𝑓 𝑔 ∘ 𝛽 = id𝑔

(ii). It then follows that the diagram below commutes,

𝑍 𝑍 𝑋 𝑋

𝑊 ′ 𝑋′

𝑊 𝑊 𝑌 𝑌

𝑔

id

𝐿𝑔

𝑧

𝐿𝑓

id

𝑓

𝑅𝑔

𝑡
𝛼0

𝑅𝑓
𝛽1

id 𝑤 id

where the arrow 𝑡 is obtained by the functoriality of (𝐿, 𝑅)-factorisations; clearly,
𝛼0 ∘ 𝑡 ∘ 𝛽1 is the required lift.

(iii). Finally, for any two morphisms in u�, say ℎ and 𝑘, we simply note that
𝛿𝑘 : 𝐿𝑘 → 𝐿𝐿𝑘 is an 𝗟-coalgebra structure and ℎ : 𝑅𝑅ℎ → 𝑅ℎ is an 𝗥-algebra
structure, so we may apply theorem a.3.35 to obtain the conclusion. ■

Proposition a.3.42. Let (𝗟′, 𝗥) and (𝗟, 𝗥′) be natural weak factorisation sys-
tems on a category u�. If there exists a morphism (𝗟′, 𝗥) → (𝗟, 𝗥′), then:

• Every morphism in the left class of the weak factorisation system induced
by (𝗟′, 𝗥) is also in the left class of the weak factorisation system induced
by (𝗟, 𝗥′).

• Every morphism in the right class of the weak factorisation system induced
by (𝗟, 𝗥′) is also in the right class of the weak factorisation system induced
by (𝗟′, 𝗥).
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Proof. The two claims are formally dual; we will prove the first version.
Let 𝐿 (resp. 𝐿′) be the underlying endofunctor of 𝗟 (resp. 𝗟′) and let (resp.

′) be the counit of 𝗟 (resp. 𝗟′). Suppose we have a morphism : (𝗟′, 𝗥) →
(𝗟, 𝗥′). By proposition a.3.37, it suffices to show that every morphism that ad-
mits a (𝐿′, ′)-coalgebra structure also admits a (𝐿, )-coalgebra structure. But
if 𝑖 is a (𝐿′, ′)-coalgebra structure on 𝑔, then 𝐿

𝑔 ∘𝑖 is a (𝐿, )-coalgebra structure
on 𝑔, because 𝑔 ∘ 𝐿

𝑔 = ′
𝑔. ■

Remark a.3.43. Let (𝗟, 𝗥) be a natural weak factorisation system. Then, for
each morphism 𝑓 : 𝑋 → 𝑌 , we have a commutative diagram of the following
form in u�,

𝑋 𝑋

• •

• •

𝑌 𝑌

𝐿𝑓 𝐿𝐿𝑓

𝐿𝑅𝑓
id

𝑑0(𝛿𝑓 )

𝑅𝐿𝑓

𝑅𝑅𝑓
𝑑1( 𝑓 )

𝑅𝑓

where the upper square corresponds to 𝛿𝑓 : 𝐿𝑓 → 𝐿𝐿𝑓 and the lower square
corresponds to 𝑓 : 𝑅𝑅𝑓 → 𝑅𝑓 ; note that the middle square commutes because
( ∘ id𝐿) ∙ 𝛿 = id𝐿 and ∙ ( ∘ id𝑅) = id𝑅. Thus, we obtain a canonical natural
transformation 𝜉 : 𝐿𝑅 ⇒ 𝑅𝐿.

The following definition is due to Garner [2009]:

Definition a.3.44. Let u� be a category. An algebraic factorisation system on
u� is a pair (𝗟, 𝗥) satisfying the following conditions:

• (𝗟, 𝗥) is a natural weak factorisation system; in particular, 𝗟 = (𝐿, , 𝛿) is
a comonad on [𝟚, u�] and 𝗥 = (𝑅, , ) is a monad on [𝟚, u�].

• The canonical natural transformation 𝜉 : 𝐿𝑅 ⇒ 𝑅𝐿 is a distributive law,
i.e.

(id𝑑0
∘ 𝛿) ∙ (id𝑑1

∘ ) = (id𝑑1
∘ ∘ id𝐿) ∙ (id𝑀 ∘ 𝜉) ∙ (id𝑑0

∘ 𝛿 ∘ id𝑅)

where 𝑀 = 𝑑0𝐿 = 𝑑1𝑅.

¶ a.3.45. Let u� be a category and let 𝑈 : ℒ → [𝟚, u�] be a functor. We define
a category 𝐑𝐋𝐏u�(𝑈) over [𝟚, u�] as follows:
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• The objects in 𝐑𝐋𝐏u�(𝑈) are morphisms in u� equipped with a coherent
choice of liftings, i.e. a pair (𝑓 , Φ) where 𝑓 is a morphism in u� equipped
with a chosen morphism Φ(𝑒, ℎ) : 𝑑0(𝑈𝑒) → 𝑑1(𝑓 ) in u� for each morphism
ℎ : 𝑈𝑒 → 𝑓 in [𝟚, u�] such that the following diagram in u� commutes,

• •

• •

𝑈𝑒

𝑑1(ℎ)

𝑓
Φ(𝑒,ℎ)

𝑑0(ℎ)

and furthermore, for each morphism 𝑘 : 𝑒′ → 𝑒 in ℐ, we require that the
following diagram commute:

• • •

• • •

𝑈𝑒′

𝑑1(𝑈𝑘) 𝑑1(ℎ)

𝑓Φ(𝑒′,ℎ∘𝑈𝑘)

𝑑0(𝑈𝑘)

Φ(𝑒,ℎ)

𝑑0(ℎ)

• The morphisms in 𝐑𝐋𝐏u�(𝑈) are commutative squares in u� that are com-
patible with the chosen liftings, i.e. a morphism 𝑙 : (𝑓 ′, Φ′) → (𝑓 , Φ) is a
morphism 𝑙 : 𝑓 ′ → 𝑓 in [𝟚, u�] such that, for all morphisms ℎ′ : 𝑈𝑒 → 𝑓 ′

in [𝟚, u�], the following diagram commutes:

• • •

• • •

𝑈𝑒

𝑑1(ℎ′) 𝑑1(𝑙)

𝑓
Φ(𝑒,ℎ′)

Φ(𝑒,𝑙∘ℎ′)

𝑑0(ℎ′) 𝑑0(𝑙)

• Composition and identities are inherited from [𝟚, u�].

• The structure functor 𝐑𝐋𝐏u�(𝑈) → [𝟚, u�] is the evident forgetful functor
sending (𝑓 , Φ) to 𝑓 .

Note that the construction of 𝐑𝐋𝐏u�(𝑈) is contravariantly functorial in 𝑈 .
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Proposition a.3.46. Let u� be a category, let (𝗟, 𝗥) be a natural weak factorisa-
tion system on u�, let ℒ be the category of 𝗟-coalgebras, and let ℛ be the category
of 𝗥-algebras in [𝟚, u�]. Then there is a natural functor 𝑇 : ℛ → 𝐑𝐋𝐏u�(𝑈𝗟)
making the diagram below commute,

ℛ 𝐑𝐋𝐏u�(𝑈𝗟)

[𝟚, u�]
𝑈 𝗥

𝑇

𝑈

where 𝑈𝗟 : ℒ → [𝟚, u�], 𝑈 𝗥 : ℛ → [𝟚, u�] and 𝑈 : 𝐑𝐋𝐏u�(𝑈𝗟) → [𝟚, u�] are the
respective forgetful functors.

Proof. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in u�, let (𝑟, id) : 𝑅𝑓 → 𝑓
be an 𝗥-algebra structure on 𝑓 , and let (id, 𝑖) : 𝑔 → 𝐿𝑓 be an 𝗟-coalgebra
structure on 𝑔. Given a commutative square in u� of the form below,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

we choose the lifting 𝑊 → 𝑋 defined by the following commutative diagram,

𝑍 𝑍 𝑋 𝑋

𝑊 ′ 𝑋′

𝑊 𝑊 𝑌 𝑌

𝑔

id

𝐿𝑔

𝑧

𝐿𝑓

id

𝑓

𝑅𝑔

𝑟

𝑅𝑓𝑖

id 𝑤 id

where the morphism 𝑊 ′ → 𝑋′ is the one given by the functorial factorisation. It
is not hard to see that this choice of liftings is compatible with the morphisms in
ℒ, so we have an object in 𝐑𝐋𝐏u�(𝑈𝗟). Similarly, one may verify that the liftings
are compatible with the morphisms in ℛ. Thus, we have the required functor
𝑇 : ℛ → 𝐑𝐋𝐏u�(𝑈𝗟) compatible with the forgetful functors, and it is clearly
natural in (𝗟, 𝗥). ■
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Definition a.3.47. Let u� be a category and let 𝑈 : ℐ → [𝟚, u�] be a functor.
An algebraically free natural weak factorisation system on u� cofibrantly gen-
erated by 𝑈 is a natural weak factorisation system (𝗟, 𝗥) on u� equipped with a
functor 𝐸 : ℐ → ℒ making the following diagram commute,

ℐ ℒ

[𝟚, u�]
𝑈

𝐸

𝑈𝗟

where ℒ is the category of 𝗟-coalgebras in [𝟚, u�] and 𝑈𝗟 : ℒ → [𝟚, u�] is the for-
getful functor, such that the composite functor shown below is an isomorphism,

ℛ 𝐑𝐋𝐏u�(𝑈𝗟) 𝐑𝐋𝐏u�(𝑈)𝑇 𝐸∗

where ℛ is the category of 𝗥-algebras and 𝑇 : ℛ → 𝐋𝐋𝐏(𝑈𝗟) is the canonical
functor given in proposition a.3.46.

Remark a.3.48. If u� admits an algebraically free natural weak factorisation sys-
tem (𝗟, 𝗥) cofibrantly generated by 𝑈 : ℐ → [𝟚, u�], then the forgetful functor
𝐑𝐋𝐏u�(𝑈) → [𝟚, u�] is monadic, and the induced monad is isomorphic to 𝗥.
Garner’s small object argument (theorem 0.5.24) gives sufficient conditions for
the existence of algebraically free natural weak factorisation systems; note that
natural weak factorisation systems so constructed also satisfy the distributive law
and are therefore algebraic factorisation systems.

Proposition a.3.49. Let u� be a category, let ℐ be a subensemble of mor u�, and
let 𝑈 : ℐ → [𝟚, u�] be the evident embedding. If (𝗟, 𝗥) is an algebraically free
natural weak factorisation system cofibrantly generated by 𝑈 , then the underly-
ing weak factorisation system of (𝗟, 𝗥) is cofibrantly generated by ℐ.

Proof. This follows from the definitions and proposition a.3.41. ■

Definition a.3.50. Let u� be a category and let 𝑈 : ℐ → [𝟚, u�] be a functor.
A free algebraic factorisation system on u� cofibrantly generated by 𝑈 is an
algebraic factorisation system (𝗟, 𝗥) equipped with a functor 𝐸 : ℐ → ℒ making
the following diagram commute,

ℐ ℒ

[𝟚, u�]
𝑈

𝐸

𝑈𝗟
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where ℒ is the category of 𝗟-algebras in [𝟚, u�] and 𝑈𝗟 : ℒ → [𝟚, u�] is the
forgetful functor, such that (𝗟, 𝗥) and 𝐸 have the following universal property:

• For all algebraic factorisation systems (𝗟′, 𝗥′) and all functors 𝐸′ : ℐ →
ℒ′ where ℒ′ is the category of 𝗟′-coalgebras and 𝐸′ is compatible with the
forgetful functors, there exists a unique morphism : (𝗟, 𝗥) → (𝗟′, 𝗥′)
such that 𝐸′ = 𝐿

∗ 𝐸, where 𝐿
∗ : ℒ → ℒ′ is the functor induced by the

comonad morphism 𝐿 : 𝗟 → 𝗟′.

Theorem a.3.51. Let u� be a category and let 𝑈 : ℐ → [𝟚, u�] be a functor. If
(𝗟, 𝗥) is an algebraic factorisation system on u� and also an algebraically free
natural weak factorisation system cofibrantly generated by 𝑈 , then (𝗟, 𝗥) is a
free algebraic factorisation system cofibrantly generated by 𝑈 .

Proof. See Theorem a.1 in [Garner, 2009]. □

Remark. The cited proof of the theorem above uses the distributive law for al-
gebraic factorisation systems.

a.4 Relative categories
Prerequisites. §0.1.

In this section we use the explicit universe convention.

Definition a.4.1. A relative category u� consists of a category und u� and a sub-
category weq u� such that ob und u� = ob weq u�. We say und u� is the under-
lying category of u�, and that the morphisms in weq u� are the weak equival-
ences in u�. A relative subcategory of a relative category u� is a relative cat-
egory u�′ such that und u�′ is a subcategory of und u�, and we further demand that
weq u�′ = weq u� ∩ und u�′.

Remark a.4.2. The subcategory weq u� is entirely determined by mor weq u�, so
a relative category may equivalently be defined as a category equipped with a
distinguished subset of morphisms closed under composition and containing all
the identity morphisms.

For brevity, we will write ob u� for ob und u�, mor u� for ob und u�, and we may
occasionally abuse notation and write weq u� instead of mor weq u�.
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Remark a.4.3. Every category u� can be endowed with the structure of a rel-
ative category in two ways: we can make it into a minimal relative category
min u� by taking weq min u� to be the set of identity morphisms in u�; or we could
make it into a maximal relative category max u� by taking weq max u� = mor u�.
We may also define the minimal saturated relative category min+ u� by taking
weq min+ u� to be the set of all isomorphisms in u�.

Definition a.4.4. Given a relative category u�, the opposite relative category
u� op is defined by und u� op = (und u�)op and weq u� op = (weq u�)op.

Definition a.4.5. Let u� and u� be relative categories. A relative functor u� → u�
is a functor und u� → und u� that sends weak equivalences in u� to weak equival-
ences in u�. The relative functor category [u�, u�]h is the full subcategory of
[und u�, und u�] spanned by the relative functors, and the weak equivalences in
[u�, u�]h are defined to be the natural transformations that are componentwise
weak equivalences in u�.

Definition a.4.6. Let u� be a category and let u� ⊆ mor u�. A localisation of u�
at u� is a category u�[u�−1] equipped with a functor 𝛾 : u� → u�[u�−1] with the
following universal property:

• Given a functor 𝐹 : u� → u� such that 𝐹 𝑓 is an isomorphism for all 𝑓 in
u� , there exists a unique functor 𝐹 : u�[u�−1] → u� such that 𝐹 𝛾 = 𝐹 .

The functor 𝛾 : u� → Ho u� is called the localising functor.

Remark a.4.7. The universal property in the above definition is strict; as such,
u�[u�−1] is unique up to unique isomorphism. Nonetheless, u�[u�−1] automatic-
ally has a 2-universal property: if 𝐹 , 𝐺 : u� → u� both factor through u�[u�−1],
then so do all natural transformations 𝐹 ⇒ 𝐺.

Proposition a.4.8. If u� is a 𝐔-small category, then there exists a 𝐔-small cat-
egory with the universal property of u�[u�−1].

Proof. Use the general adjoint functor theorem. □

Definition a.4.9. The homotopy category of a relative category u� is a localisa-
tion of und u� at weq u� and is denoted Ho u�.

Definition a.4.10.
• A semi-saturated relative category is a relative category in which every

isomorphism is a weak equivalence.
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• A saturated relative category is a relative category u� such that the weak
equivalences in u� are precisely the ones that become isomorphisms in
Ho u�.

Remark a.4.11. Obviously, there is no loss of generality in considering semi-
saturated relative categories and their homotopy categories instead of localisa-
tions u�[u�−1] for arbitrary subsets u� ⊆ mor u�.
Remark a.4.12. Clearly, every saturated relative category is semi-saturated, and
a minimal saturated relative category is indeed saturated in the sense above.

Definition a.4.13. Let u� be a category and let u� be a subset of mor u�. The
2-out-of-3 property for u� says:

• Given any two morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 in u�, if any two of 𝑓 ,
𝑔, or 𝑔 ∘ 𝑓 are in u� , then all of them are.

The 2-out-of-6 property for u� says:

• Given any three morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍, ℎ : 𝑌 → 𝑍 in u�, if
both ℎ ∘ 𝑔 and 𝑔 ∘ 𝑓 are in u� , then so too are 𝑓 , 𝑔, ℎ, and ℎ ∘ 𝑔 ∘ 𝑓 .

Lemma a.4.14. Let u� be a category and let u� ⊆ mor u�.

(i) If u� has the 2-out-of-6 property, then it also has the 2-out-of-3 property.

(ii) The set of all isomorphisms in u� has the 2-out-of-6 property.

(iii) If 𝐹 : u�′ → u� is a functor and u� has either the 2-out-of-3 property or the
2-out-of-6 property, then 𝐹 −1u� has the same property.

Proof. (i). Consider the three cases 𝑓 = id, 𝑔 = id, ℎ = id in turn.

(ii). If ℎ∘𝑔 and 𝑔 ∘𝑓 are isomorphisms, then 𝑔 must be split epic and split monic;
thus 𝑔 itself is an isomorphism, hence so too are 𝑓 and ℎ.

(iii). Obvious. ■

Corollary a.4.15. If u� is a saturated relative category, then weq u� has the 2-out-
of-6 property. ■
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Definition a.4.16. Let u� be a category and let u� be a subset of mor u�. The
2-out-of-4 property for u� says:

• Given any two morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑋 in u�, if 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓
are in u� , then both 𝑓 and 𝑔 are in u� .

The special 2-out-of-4 property for u� says:

• Given any two morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑋 in u�, if 𝑓 ∘ 𝑔 is in u�
and 𝑔 ∘ 𝑓 = id𝑋 , then both 𝑓 and 𝑔 are in u� .

Lemma a.4.17. Let u� be a relative category.

(i) If weq u� has the 2-out-of-4 property, then weq u� has the special 2-out-of-4
property.

(ii) If weq u� has the 2-out-of-6 property, then weq u� has the 2-out-of-4 prop-
erty.

(iii) If weq u� has the 2-out-of-3 property and is closed under retracts, then
weq u� has the special 2-out-of-4 property.

Proof. (i) and (ii). Obvious.

(iii). Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be morphisms in u� such that 𝑓 ∘ 𝑔 is a
weak equivalence and 𝑔 ∘ 𝑓 = id𝑋 . Consider the following diagram:

𝑌 𝑌 𝑌

𝑋 𝑌 𝑋

𝑔

id

𝑓∘𝑔

id

𝑔

𝑓 𝑔

Since 𝑔 ∘ 𝑓 = id𝑋 , the diagram commutes, so we see that 𝑔 : 𝑌 → 𝑋 is a retract
of 𝑓 ∘𝑔 : 𝑌 → 𝑌 . We deduce that 𝑔 is a weak equivalence in u� using the fact that
weq u� is closed under retracts, and then we deduce that 𝑓 is a weak equivalence
using the the 2-out-of-3 property of weq u�. ■

Proposition a.4.18. Let 𝐑𝐞𝐥𝐂𝐚𝐭 be the category of 𝐔-small relative categories
and relative functors, let 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 be the full subcategory of semi-saturated rel-
ative categories, and let 𝐂𝐚𝐭 be the category of 𝐔-small categories and functors.
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(i) 𝐑𝐞𝐥𝐂𝐚𝐭 is a cartesian closed category, where the product of u� and u� is
the cartesian product u� ×u� with weak equivalences taken componentwise,
and the exponential of ℰ by u� is the relative functor category [u�, ℰ]h.

(ii) 𝐑𝐞𝐥𝐂𝐚𝐭 is a locally finitely presentable 𝐔-category,[5] and the two functors
und, weq : 𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐂𝐚𝐭 are ℵ0-accessible[6] and jointly conservative.

(iii) 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 is a locally finitely presentable 𝐔-category, and the inclusion
𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 ↪ 𝐑𝐞𝐥𝐂𝐚𝐭 is ℵ0-accessible and has a left adjoint.

(iv) 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 is an exponential ideal in 𝐑𝐞𝐥𝐂𝐚𝐭.

(v) The full subcategory spanned by the minimal relative categories is an ex-
ponential ideal in 𝐑𝐞𝐥𝐂𝐚𝐭.

(vi) The full subcategory spanned by the minimal saturated relative categories
is an exponential ideal in 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭.

Proof. (i). This is straightforward from the definitions.

(ii). Obviously, a relative functor 𝐹 : u� → u� such that und 𝐹 : und u� → und u�
and weq 𝐹 : weq u� → weq u� are both isomorphisms is itself an isomorphism,
so und, weq : 𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐂𝐚𝐭 are indeed jointly conservative.

It is also not hard to check that limits for all 𝐔-small diagrams and colimits for
𝐔-small filtered diagrams in 𝐑𝐞𝐥𝐂𝐚𝐭 exist and can be computed componentwise
in 𝐂𝐚𝐭, so (by theorem 0.2.40) it is enough to show that 𝐑𝐞𝐥𝐂𝐚𝐭 is a ℵ0-accessible
𝐔-category. Clearly, a relative category u� such that und u� is finitely presentable
in 𝐂𝐚𝐭 and weq u� is a finitely-generated subcategory of und u� is itself finitely
presentable in 𝐑𝐞𝐥𝐂𝐚𝐭, so 𝐑𝐞𝐥𝐂𝐚𝐭 is indeed ℵ0-accessible.

(Alternatively, one may appeal to the sketchability theorem[7] and the fact
that a relative category is manifestly a model for a certain finite-limit sketch.)

(iii). It is clear that 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 is closed in 𝐑𝐞𝐥𝐂𝐚𝐭 under limits for all 𝐔-small dia-
grams and colimits for all 𝐔-small filtered diagrams, and we know that 𝐑𝐞𝐥𝐂𝐚𝐭
is a locally finitely presentable category, so (by proposition 0.2.31) it is enough
to construct a left adjoint for the inclusion 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 ↪ 𝐑𝐞𝐥𝐂𝐚𝐭. This may be
done using the general adjoint functor theorem.

[5] See definition 0.2.36.
[6] See definition 0.2.28.
[7] See Proposition 1.51 in [LPAC], or Proposition 5.6.4 in [Borceux, 1994b], or theorem 0.5.34.
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(iv) – (vi). All straightforward. ■

Proposition a.4.19. Let 𝐑𝐞𝐥𝐂𝐚𝐭 be the category of 𝐔-small relative categories
and relative functors, let 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 be the full subcategory of semi-saturated
relative categories and relative functors, and let 𝐂𝐚𝐭 be the category of 𝐔-small
categories and functors. We have the following strings of adjoint functors:

min ⊣ und ⊣ max ⊣ weq : 𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐂𝐚𝐭
Ho ⊣ min+ ⊣ und ⊣ max ⊣ weq : 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐂𝐚𝐭

The functors min, min+, and max are moreover fully faithful, and Ho preserves
finite products.

Proof. All but the last of the above claims are obvious; for the preservation of
finite products under Ho, we refer to proposition a.2.13. ■

Corollary a.4.20. Ho : 𝐒𝐬𝐑𝐞𝐥𝐂𝐚𝐭 → 𝐂𝐚𝐭 is 2-functorial.

Proof. Apply remark a.2.10. ■

Proposition a.4.21. Let u� be a relative category and let 𝛾 : u� → Ho u� be the
localising functor.

(i) For all categories u�, the induced functor 𝛾∗ : [Ho u�, u�] → [u�, u�] is fully
faithful and injective on objects.

(ii) Any left or right adjoint for 𝛾 : u� → Ho u� is a fully faithful functor.

Proof. (i). It is an immediate consequence of the universal property of Ho u�
that 𝛾∗ : [Ho u�, u�] → [u�, u�] is injective on objects. It is moreover fully faithful
because we have the following natural isomorphism,

[Ho u�, u�] ≅ und [u�, min+ u�]h

and und [u�, min+ u�]h is manifestly a full subcategory of [u�, u�].

(ii). Apply proposition a.1.4. ■

Definition a.4.22. A zigzag type is a triple (𝑛, 𝑈, 𝑉 ) where 𝑛 is a natural num-
ber and 𝑈 and 𝑉 are partial orderings of the set {0, … , 𝑛, ∞} that satisfy the
following axioms:
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• 𝑈 ∩ 𝑉 is the equality relation.

• The partial ordering generated by 𝑈 ∪ 𝑉 is the standard linear ordering of
{0, … , 𝑛, ∞}.

• If 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑙 are elements of {0, … , 𝑛, ∞} and (𝑖, 𝑙) is in 𝑈 (resp. 𝑉 ),
then (𝑗, 𝑘) is also in 𝑈 (resp. 𝑉 ).

Remark a.4.23. Let 𝑛 be a natural number and let 𝑈 and 𝑉 be partial orderings
of the set {0, … , 𝑛, ∞}. The following are equivalent:

(i) (𝑛, 𝑈, 𝑉 ) is a zigzag type.

(ii) 𝑈 and 𝑉 are partial orderings generated by some subset of the set of con-
secutive pairs, i.e. {(0, 1), … , (𝑛 − 1, 𝑛), (𝑛, ∞)}, and for 0 ≤ 𝑖 ≤ 𝑛, either
(𝑖, 𝑖 + 1) ∈ 𝑈 or (𝑖, 𝑖 + 1) ∈ 𝑉 but not both (provided we interpret 𝑛 + 1
as ∞).

Thus, we may think of (𝑛, 𝑈, 𝑉 ) as a planar graph of the form

0 ⋯ 𝑛 ∞

where the edge between 𝑖 and 𝑖+1 points rightwards (resp. leftwards) if (𝑖, 𝑖 + 1) ∈
𝑈 (resp. (𝑖, 𝑖 + 1) ∈ 𝑉 ). It will be especially convenient to regard zigzag types as
relative categories generated by such graphs, with the leftward-pointing arrows
generating the weak equivalences.

Definition a.4.24. A morphism of zigzag types (𝑛′, 𝑈 ′, 𝑉 ′) → (𝑛, 𝑈, 𝑉 ) is a
map 𝑓 : {0, … , 𝑛′, ∞} → {0, … , 𝑛, ∞} that satisfies the following axioms:

• 𝑓(0) = 0, 𝑓(∞) = ∞.

• (𝑖, 𝑗) ∈ 𝑈 ′ implies (𝑓 (𝑖), 𝑓 (𝑗)) ∈ 𝑈 .

• (𝑖, 𝑗) ∈ 𝑉 ′ implies (𝑓 (𝑖), 𝑓 (𝑗)) ∈ 𝑉 .

We write 𝐙 for the category of zigzag types.

Remark. The category 𝐙 defined above is the opposite of the category 𝐈𝐈 defined
in [Dwyer and Kan, 1980b, §4] and also the category 𝐓 defined in [DHKS, §34].
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Remark a.4.25. Following remark a.4.23, if we regard zigzag types as relative
categories, then a morphism of zigzag types is a relative functor that preserves
the endpoints and reflects weak equivalences (in addition to preserving them).
Thus 𝐙 can be embedded as a non-full subcategory of 𝐑𝐞𝐥𝐂𝐚𝐭.
Remark a.4.26. We have the following concrete description of 𝐙op:

• The objects are triples (𝑛, 𝑈0, 𝑉0) where 𝑛 is a natural number and (𝑈0, 𝑉0)
is a partition of the set {0, … , 𝑛}, i.e. 𝑈0∩𝑉0 = ∅ and 𝑈0∪𝑉0 = {0, … , 𝑛}.

• The morphisms (𝑛, 𝑈0, 𝑉0) → (𝑛′, 𝑈 ′
0 , 𝑉 ′

0 ) are the monotone maps 𝑓 :
{0, … , 𝑛} → {0, … , 𝑛′} such that 𝑓𝑈0 ⊆ 𝑈 ′

0 and 𝑓𝑉0 ⊆ 𝑉 ′
0 .

• Identities and composition are inherited from 𝐒𝐞𝐭.

In other words, 𝐙op is isomorphic to to the category of positive finite ordinals
equipped with a partition into two parts. A zigzag type (𝑛, 𝑈, 𝑉 ) corresponds
to the object (𝑛, 𝑈0, 𝑉0) where 𝑖 ∈ 𝑈0 (resp. 𝑖 ∈ 𝑉0) if (𝑖, 𝑖 + 1) ∈ 𝑈 (resp.
(𝑖, 𝑖 + 1) ∈ 𝑉 ), and a morphism 𝑓 : (𝑛′, 𝑈 ′, 𝑉 ′) → (𝑛, 𝑈, 𝑉 ) corresponds to
the morphism (𝑛, 𝑈0, 𝑉0) → (𝑛′, 𝑈 ′

0 , 𝑉 ′
0 ) that sends 𝑗 to the greatest 𝑖 such that

𝑓(𝑖) ≤ 𝑗.

Lemma a.4.27. Every morphism of zigzag types whose underlying map is in-
jective is a split monomorphism in 𝐙.

Proof. This is a straightforward exercise. ◊

Definition a.4.28. The kernel of a morphism 𝑓 : (𝑛′, 𝑈 ′, 𝑉 ′) → (𝑛, 𝑈, 𝑉 ) in 𝐙
is the following subset:

ker 𝑓 = {𝑖 | 𝑓 (𝑖) = 𝑓(𝑖 + 1)} ⊆ {1, … , 𝑛′}

Remark a.4.29. It is clear that a morphism of zigzag types whose underlying
map is surjective is uniquely determined by its kernel. Moreover, given a zig-
zag type (𝑛′, 𝑈 ′, 𝑉 ′), it every subset of {1, … , 𝑛′} occurs as the kernel of some
(surjective) morphism 𝑓 : (𝑛′, 𝑈 ′, 𝑉 ′) → (𝑛, 𝑈, 𝑉 ).

Proposition a.4.30.
(i) The monomorphisms in 𝐙 are the morphisms of zigzag types whose under-

lying maps are injective.
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(ii) The epimorphisms in 𝐙 is the morphisms of zigzag types whose underlying
maps are surjective.

(iii) Every morphism in 𝐙 factors as an epimorphism followed by a mono-
morphism, and this factorisation is unique (in the strict sense).

Proof. This is a straightforward exercise. ◊

Definition a.4.31. Let 𝑇 = (𝑛, 𝑈, 𝑉 ) be a zigzag type.

• An interior vertex of 𝑇 is an element 𝑖 of {1, … , 𝑛} such that either

– both (𝑖 − 1, 𝑖) ∈ 𝑈 and (𝑖, 𝑖 + 1) ∈ 𝑈 , or

– both (𝑖 − 1, 𝑖) ∈ 𝑉 and (𝑖, 𝑖 + 1) ∈ 𝑉 ,

provided we interpret 𝑛 + 1 as ∞.

• An flex of 𝑇 is an element of {1, … , 𝑛} that is not an interior vertex.

Remark a.4.32. As a matter of convention, 0 and ∞ are neither interior vertices
nor flexes.

Lemma a.4.33. Let 𝑓 : 𝑆 → 𝑇 be a morphism in 𝐙.

(i) Every flex of 𝑇 is in the image of 𝑓 : 𝑆 → 𝑇 , and if 𝑓(𝑖) is a flex of 𝑇 ,
then 𝑖 is a flex of 𝑆.

(ii) The morphism 𝑓 : 𝑆 → 𝑇 sends flexes of 𝑆 to flexes of 𝑇 if and only if
𝑓 : 𝑆 → 𝑇 is bijective on flexes.

(iii) Assuming 𝑓 : 𝑆 → 𝑇 is bijective on flexes, 𝑓 : 𝑆 → 𝑇 is an epimorphism
in 𝐙 if and only if 𝑓 : 𝑆 → 𝑇 is a split epimorphism in 𝐙.

Proof. This is a straightforward exercise. ◊

Proposition a.4.34.
(i) Pullbacks of monomorphisms along flex-preserving morphisms (in partic-

ular, monomorphisms) exist in 𝐙.

(ii) Pushouts of epimorphisms along arbitrary morphisms (in particular, epi-
morphisms) exist in 𝐙.
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Proof. (i). By proposition a.4.30 and the pullback pasting lemma, it suffices
to prove that pullbacks of monomorphisms along monomorphisms and flex-
preserving epimorphisms exist, and this is straightforward.

(ii). Use remark a.4.29. ■

Lemma a.4.35. Let 𝑇 be a zigzag type and let 𝜕𝐙→𝑇 be the full subcategory of
the slice category 𝐙∕𝑇 spanned by the monomorphisms with codomain 𝑇 exclud-
ing id : 𝑇 → 𝑇 . Then 𝜕𝐙→𝑇 has at most one connected component.

Proof. Proposition a.4.34 implies that 𝜕𝐙→𝑇 is closed under binary products in
𝐙∕𝑇 , so it has at most one connected component. ■

Lemma a.4.36. Let 𝑇 be a zigzag type and let 𝜕𝐙←𝑇 be the full subcategory of
the slice category 𝐙∕𝑇 spanned by the epimorphisms with domain 𝑇 excluding
id : 𝑇 → 𝑇 . Then 𝜕𝐙←𝑇 has binary coproducts.

Proof. This is is a straightforward corollary of proposition a.4.34. ■

Definition a.4.37. Let 𝑇 ′ = (𝑛′, 𝑈 ′, 𝑉 ′) and 𝑇 = (𝑛, 𝑈, 𝑉 ) be zigzag types.
The concatenation 𝑇 ∗ 𝑇 ′ is the zigzag type (𝑛 + 𝑛′ + 1, 𝑈 ″, 𝑉 ″) where:

• 𝑈 ″ is the smallest partial ordering of {0, … , 𝑛 + 𝑛′ + 1, ∞} where (𝑖, 𝑖 + 1) ∈
𝑈 ″ if (𝑖, 𝑖 + 1) ∈ 𝑈 ′ and (𝑛′ + 𝑖 + 1, 𝑛′ + 𝑖 + 2) ∈ 𝑈 ″ if (𝑖, 𝑖 + 1) ∈ 𝑈 .

• 𝑉 ″ is the smallest partial ordering of {0, … , 𝑛 + 𝑛′ + 1, ∞} where (𝑖, 𝑖 + 1) ∈
𝑉 ″ if (𝑖, 𝑖 + 1) ∈ 𝑉 ′ and (𝑛′ + 𝑖 + 1, 𝑛′ + 𝑖 + 2) ∈ 𝑉 ″ if (𝑖, 𝑖 + 1) ∈ 𝑉 .

Remark a.4.38. Concatenation defines a functor ∗ : 𝐙×𝐙 → 𝐙, and it is associ-
ative as a binary operation. However, it is not unital. To repair this, we introduce
the degenerate zigzag type (−1, ∅, ∅): there are no morphisms (𝑛, 𝑈, 𝑉 ) →
(−1, ∅, ∅) when 𝑛 ≥ 0, and there is a unique morphism (−1, ∅, ∅) → (𝑛, 𝑈, 𝑉 )
for all (possibly degenerate) zigzag types (𝑛, 𝑈, 𝑉 ). It is clear how to extend ∗
so that (−1, ∅, ∅) is the unit.

Definition a.4.39. Let u� be a relative category, let 𝑋 and 𝑌 be objects in u�, and
let 𝑇 be a zigzag type.

• A zigzag in u� from 𝑋 to 𝑌 of type 𝑇 is a relative functor 𝑇 → u� that sends
0 to 𝑋 and ∞ to 𝑌 .
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• A morphism of zigzags in u� from 𝑋 to 𝑌 of type 𝑇 is a commutative
diagram in u� of the form below,

𝑋 • ⋯ • 𝑌

𝑋 • ⋯ • 𝑌

where the rows are zigzags in u� from 𝑋 to 𝑌 of type 𝑇 and the unmarked
vertical arrows are weak equivalences; the domain is the top row and the
codomain is the bottom row.

We write u�𝑇 (𝑋, 𝑌 ) for the category of zigzags in u� from 𝑋 to 𝑌 of type 𝑇 .

Remark a.4.40. Let u� be a relative category, let u� = weq u�, and let 𝑇 be a
zigzag type. Then:

• If the leftmost arrow of 𝑇 points rightwards and the rightmost arrow of 𝑇
points rightwards, then we have a functor

u�𝑇 (−, −) : u� op × u� → 𝐂𝐚𝐭

sending each object (𝑋, 𝑌 ) to the category of zigzags in u� from 𝑋 to 𝑌 of
type 𝑇 .

• If the leftmost arrow of 𝑇 points leftwards and the rightmost arrow of 𝑇
points leftwards, then we have a functor

u�𝑇 (−, −) : u� × u� op → 𝐂𝐚𝐭

sending each object (𝑋, 𝑌 ) to the category of zigzags in u� from 𝑋 to 𝑌 of
type 𝑇 .

• If the leftmost arrow of 𝑇 points leftwards and the rightmost arrow of 𝑇
points rightwards, then we have a functor

u�𝑇 (−, −) : u� × u� → 𝐂𝐚𝐭

sending each object (𝑋, 𝑌 ) to the category of zigzags in u� from 𝑋 to 𝑌 of
type 𝑇 .
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• If the leftmost arrow of 𝑇 points rightwards and the rightmost arrow of 𝑇
points leftwards, then we have a functor

u�𝑇 (−, −) : u� op × u� op → 𝐂𝐚𝐭

sending each object (𝑋, 𝑌 ) to the category of zigzags in u� from 𝑋 to 𝑌 of
type 𝑇 .

Remark a.4.41. If 𝑓 : 𝑋 → 𝑌 is a weak equivalence in a relative category u�,
then we have commutative diagrams

𝑋 𝑋 𝑋

𝑋 𝑌 𝑋

𝑓

𝑓 𝑓

𝑌 𝑋 𝑌

𝑌 𝑌 𝑌

𝑓

𝑓

𝑓

and these correspond to morphisms of zigzags in u�.
Remark a.4.42. It is clear that u�𝑇 (𝑋, 𝑌 ) is a subcategory of the relative functor
category [𝑇 , u�]h. In fact, if u� is a 𝐔-small relative category, precomposition
makes the assignment 𝑇 ↦ u�𝑇 (𝑋, 𝑌 ) into a functor 𝐙op → 𝐂𝐚𝐭, which we
denote by u�∗(𝑋, 𝑌 ). A Grothendieck construction applied to this functor yields
the following 𝐔-small category u�(𝐙)(𝑋, 𝑌 ):

• Its objects are pairs (𝑇 , 𝑓 ), where 𝑇 is a zigzag type and 𝑓 is a zigzag of
type 𝑇 in u� from 𝑋 to 𝑌 .

• A morphism (𝑇 ′, 𝑓 ′) → (𝑇 , 𝑓 ) is a pair (𝛼, 𝛽) where 𝛼 : 𝑇 → 𝑇 ′ is a
morphism in 𝐙 and 𝛽 : 𝛼∗𝑓 ′ → 𝑓 is a morphism in u�𝑇 (𝑋, 𝑌 ).

• The composite of a pair of morphisms (𝛼′, 𝛽′) : (𝑇 ″, 𝑓 ″) → (𝑇 ′, 𝑓 ′) and
(𝛼, 𝛽) : (𝑇 ′, 𝑓 ′) → (𝑇 , 𝑓 ) is given by (𝛼′ ∘ 𝛼, 𝛽 ∘ 𝛼∗𝛽′).

There is an evident projection functor u�(𝐙)(𝑋, 𝑌 ) → 𝐙op, and by construction it
is a Grothendieck opfibration with a canonical splitting.

Lemma a.4.43. Given a commutative diagram of the form below in a relative
category u�,

𝑋 𝑌

𝑋′ 𝑌 ′

𝑎

𝑓

𝑏

𝑓 ′
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if 𝑎 and 𝑏 are weak equivalences in u�, then we obtain the following morphisms
of zigzags:

𝑋 𝑋 𝑌 𝑌 ′

𝑋′ 𝑋′ 𝑌 ′ 𝑌 ′

𝑋′ 𝑋 𝑌 𝑌

𝑋′ 𝑋′ 𝑌 ′ 𝑌

𝑎

𝑓

𝑏

𝑏

𝑎 𝑓 ′

𝑎

𝑎 𝑓

𝑏

𝑓 ′ 𝑏

In particular, 𝑋
𝑓
→ 𝑌

𝑏
→ 𝑌 ′ and 𝑋

𝑎
→ 𝑋′ 𝑓 ′

→ 𝑌 ′ are in the same connected
component of u�(𝐙)(𝑋, 𝑌 ′); and 𝑋′ 𝑎

← 𝑋
𝑓
→ 𝑌 and 𝑋′ 𝑓 ′

→ 𝑌 ′ 𝑏
← 𝑌 are in the

same connected component of u�(𝐙)(𝑋′, 𝑌 ). ■

Theorem a.4.44. Let 𝑋 and 𝑌 be objects in a relative category u�.

(i) For each zigzag type 𝑇 , the map that sends an object in u�𝑇 (𝑋, 𝑌 ) to the
corresponding composite in Ho u�(𝑋, 𝑌 ) is a functor when the latter is re-
garded as a discrete category.

(ii) The functors described above constitute a jointly surjective cocone from
the diagram u�∗(𝑋, 𝑌 ) to Ho u�(𝑋, 𝑌 ).

(iii) The induced functor u�(𝐙)(𝑋, 𝑌 ) → Ho u�(𝑋, 𝑌 ) is surjective, and moreover
two objects in u�(𝐙)(𝑋, 𝑌 ) become equal in Ho u� if and only if they are in
the same connected component.

Proof. All obvious except for the last part of claim (iii), for which we refer to
paragraphs 33.8 and 33.10 in [DHKS]. □

a.5 Kan extensions
Prerequisites. §§0.1, a.1.

In this section we use the explicit universe convention.

Definition a.5.1. Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be two functors. A left Kan
extension (resp. right Kan extension) of 𝐺 along 𝐹 is an initial (resp. terminal)
object of the category (𝐺 ↓ 𝐹 ∗) (resp. (𝐹 ∗ ↓ 𝐺)) described below:
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• The objects are pairs (𝐻, 𝛼) where 𝐻 is a functor u� → ℰ and 𝛼 is a natural
transformation of type 𝐺 ⇒ 𝐻𝐹 (resp. 𝐻𝐹 ⇒ 𝐺).

• The morphisms (𝐻 ′, 𝛼′) → (𝐻, 𝛼) are those natural transformations 𝛽 :
𝐻 ′ ⇒ 𝐻 such that 𝛽𝐹 ∙ 𝛼′ = 𝛼 (resp. 𝛼 ∙ 𝛽𝐹 = 𝛼′).

Remark a.5.2. Clearly, Kan extensions are unique up to unique isomorphism if
they exist. We write (Lan𝐹 𝐺, ) for the left Kan extension of 𝐺 along 𝐹 and say

is the unit of Lan𝐹 𝐺; dually, we write (Ran𝐹 𝐺, ) for the right Kan extension
of 𝐺 along 𝐹 and say is the counit of Ran𝐹 𝐺.

Lemma a.5.3. Let 𝐔 be a pre-universe and let 𝐒𝐞𝐭 be the category of 𝐔-sets. Let
ℬ be a 𝐔-small category and let u� be a locally 𝐔-small category. Given functors
𝐹 : ℬ → u� and 𝐺 : ℬ → 𝐒𝐞𝐭, if 𝐻 : u� → 𝐒𝐞𝐭 is the functor defined by the
formula below,

𝐻(𝐶) = [ℬ, 𝐒𝐞𝐭](u�(𝐶, 𝐹 −), 𝐺−)

and 𝐵 : 𝐻(𝐹 𝐵) → 𝐺(𝐵) is defined by evaluation at id𝐹 𝐵, then (𝐻, ) is the
right Kan extension of 𝐺 along 𝐹 .

Proof. Note that 𝐻(𝐶) so defined is indeed a 𝐔-set, because ℬ is 𝐔-small and u�
is locally 𝐔-small. The claim amounts to saying that (𝐻, ) is a terminal object
in the comma category (𝐹 ∗ ↓ 𝐺), so that is what we must show.

Let 𝜑 : (𝑋, 𝛼) → (𝐻, ) be a morphism in (𝐹 ∗ ↓ 𝐺), i.e. a natural transform-
ation 𝜑 : 𝑋 ⇒ 𝐻 such that ∙ 𝜑𝐹 = 𝛼. Let 𝐶 be an object in u�, let 𝑥 be an
element of 𝑋(𝐶), and consider the element 𝜑𝐶(𝑥) of 𝐻(𝐶). By definition, this
is a natural transformation u�(𝐶, 𝐹 ) ⇒ 𝐺, so we may consider its component at
an object 𝐵 in ℬ, which will be a map u�(𝐶, 𝐹 𝐵) → 𝐺(𝐵). Let 𝑓 : 𝐶 → 𝐹 𝐵 be
an arrow in u�. By hypothesis,

𝛼𝐶(𝑥) = 𝐶(𝜑𝐶(𝑥)𝐵 ∘ u�(𝑓 , 𝐹 𝐵)) = 𝜑𝐶(𝑥)𝐵(𝑓 )

thus the action of 𝜑 is entirely determined by 𝛼. Conversely, given any object
(𝑋, 𝛼) in the comma category (𝐹 ∗ ↓ 𝐺), it is easily verified that the above equa-
tion defines a morphism 𝜑 : (𝑋, 𝛼) → (𝐻, ), so (𝐻, ) is indeed a terminal
object in (𝐹 ∗ ↓ 𝐺). ■

Corollary a.5.4. For any two functors 𝐹 : ℬ → u� and 𝐺 : ℬ → 𝐒𝐞𝐭, if ℬ is
𝐔-small and u� is locally 𝐔-small, then the following are equivalent:

(i) (Ran𝐹 𝐺, ) is a right Kan extension of 𝐺 along 𝐹 .
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(ii) The maps (Ran𝐹 𝐺)(𝐶) → [ℬ, 𝐒𝐞𝐭](u�(𝐶, 𝐹 ), 𝐺) defined by 𝑥 ↦ ∙ 𝑥𝐹 ,
where 𝑥 : u�(𝐶, −) ⇒ 𝐺 is the unique natural transformation such that
( 𝑥)𝐶(id𝐶) = 𝑥, are bijections that are natural in 𝐶 . ■

Definition a.5.5. Let 𝐹 : u� → u� and 𝐺 : u� → ℰ be two functors.

• A functor 𝐿 : ℰ → ℱ preserves left Kan extensions of 𝐺 along 𝐹 if,
given any left Kan extension (𝐻, 𝛼) of 𝐺 along 𝐹 , (𝐿𝐻, 𝐿𝛼) is a left Kan
extension of 𝐿𝐺 along 𝐹 .

• A functor 𝑅 : ℰ → ℱ preserves right Kan extensions of 𝐺 along 𝐹 if,
given any right Kan extension (𝐻, 𝛼) of 𝐺 along 𝐹 , (𝑅𝐻, 𝑅𝛼) is a right
Kan extension of 𝐿𝐺 along 𝐹 .

If a Kan extension is preserved by all functors, then it is said to be absolute.

Definition a.5.6. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-small
sets, let ℰ be a locally 𝐔-small category, and let 𝐹 : u� → u� and 𝐺 : u� → ℰ be
two functors.

• A pointwise left Kan extension of 𝐺 along 𝐹 is one that is preserved by
all functors of the form ℰ(−, 𝐸) : ℰ → 𝐒𝐞𝐭 op.

• A pointwise right Kan extension of 𝐺 along 𝐹 is one that is preserved
by all functors of the form ℰ(𝐸, −) : ℰ → 𝐒𝐞𝐭.

Definition a.5.7. Let 𝐹 : ℬ → u� be a functor and let 𝐶 be an object in u�.

• The tautological cocone to 𝐶 induced by 𝐹 is the cocone : 𝐹 𝑃𝐶 ⇒ Δ𝐶 ,
where 𝑃𝐶 : (𝐹 ↓ 𝐶) → ℬ is the projection functor sending an object (𝐵, 𝑓 )
in the comma category (𝐹 ↓ 𝐶) to the object 𝐵 in ℬ, and (𝐵,𝑓) = 𝑓 .

• The tautological cone from 𝐶 induced by 𝐹 is the cone : Δ𝐶 ⇒ 𝐹 𝑃 𝐶 ,
where 𝑃 𝐶 : (𝐶 ↓ 𝐹 ) → u� is the projection functor sending an object (𝐵, 𝑓 )
in the comma category (𝐶 ↓ 𝐹 ) to the object 𝐵 in ℬ, and (𝐵,𝑓) = 𝑓 .

Lemma a.5.8. Let u� be any category, let ℬ be a 𝐔-small category, let u� be
locally 𝐔-small category, and let 𝑈 : u� → u�, 𝑉 : ℬ → u�, and 𝑌 : ℬ → 𝐒𝐞𝐭
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be functors. Consider the following diagram of functors and natural transform-
ations,

(𝑈 ↓ 𝑉 ) ℬ

u� u�

𝑃

𝑄

𝑉

𝑈

where (𝑈 ↓ 𝑉 ) is the comma category, 𝑃 : (𝑈 ↓ 𝑉 ) → u� and 𝑄 : (𝑈 ↓ 𝑉 ) → ℬ
are the two projections, and : 𝑈𝑃 ⇒ 𝑉 𝑄 is the tautological natural trans-
formation defined by (𝐴,𝐵,𝑓) = 𝑓 . If (𝑍, ) is a right Kan extension of 𝑌 along
𝑉 , then (𝑍𝑈, 𝑄 ∙ 𝑍 ) is a right Kan extension of 𝑌 𝑄 along 𝑃 .

Proof. By lemma a.5.3, we may take 𝑍 : u� → 𝐒𝐞𝐭 to be the functor defined by
the formula below,

𝑍(𝐶) = [𝔹, 𝐒𝐞𝐭](u�(𝐶, 𝐹 −), 𝑌 −)

with : 𝑉 ∗(𝑍) ⇒ 𝑌 being the natural transformation obtained by evaluating
elements of 𝑍(𝑉 𝐵) at id𝑉 𝐵.

Let 𝜑 : (𝑋, 𝛼) → (𝑍𝑈, 𝑄 ∙ 𝑍 ) be a morphism in (𝑃 ∗ ↓ 𝑌 𝑄), i.e. a natural
transformation 𝜑 : 𝑋 ⇒ 𝑍𝑈 such that 𝑄 ∙ 𝑍 ∙ 𝜑𝑃 = 𝛼. Let 𝐴 be an object
in u�, let 𝑥 be an element of 𝑋(𝐴), and consider the element 𝜑𝐴(𝑥) of 𝑍(𝑈𝐴).
By definition, this is a natural transformation N𝑉 (𝐶) ⇒ 𝑌 , so we may consider
its component at an object 𝐵 in ℬ, which will be a map u�(𝑈𝐴, 𝑉 𝐵) → 𝑌 (𝐵).
Let 𝑓 : 𝑈𝐴 → 𝑉 𝐵 be an arrow in u�; then (𝐴, 𝐵, 𝑓) is an object in the comma
category (𝑈 ↓ 𝑉 ), and (𝐴,𝐵,𝑓) = 𝑓 by definition. By hypothesis,

𝛼(𝐴,𝐵,𝑓)(𝑥) = 𝐵(𝜑𝐴(𝑥)𝐵 ∘ u�(𝑓 , 𝑉 𝐵)) = 𝜑𝐴(𝑥)𝐵(𝑓 )

thus the action of 𝜑 is entirely determined by 𝛼. Conversely, given any object
(𝑋, 𝛼) in the comma category (𝑃 ∗ ↓ 𝑌 𝑄), it is easily verified that the above equa-
tion defines a morphism 𝜑 : (𝑋, 𝛼) → (𝑍𝑈, 𝑄 ∙ 𝑍 ), so (𝑍𝑈, 𝑄 ∙ 𝑍 ) is
indeed a terminal object in (𝑃 ∗ ↓ 𝑌 𝑄). ■

Corollary a.5.9. Let ℬ be a 𝐔-small category and let u� be a locally 𝐔-small
category. Given functors 𝐹 : ℬ → u� and 𝐺 : ℬ → 𝐒𝐞𝐭, if (𝐻, ) is a right Kan
extension of 𝐺 along 𝐹 , then, for each object 𝐶 in u�, the image under 𝐻 of the
tautological cone from 𝐶 induced by 𝐹 is a limiting cone in 𝐒𝐞𝐭.
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Proof. In the lemma, take u� to be the terminal category 𝟙, take 𝑈 : 𝟙 → u�
to be the functor sending the unique object in 𝟙 to 𝐶 , and take 𝑉 = 𝐹 ; then
(𝐻𝑈, 𝑄 ∙ 𝐻 ) is a right Kan extension of 𝐺𝑄 : (𝐶 ↓ 𝐹 ) → 𝐒𝐞𝐭 along the
unique functor 𝑃 : (𝐶 ↓ 𝐹 ) → 𝟙, but it is clear that a right Kan extension of 𝐺𝑄
along 𝑃 amounts to a limit for the diagram 𝐺𝑄 in 𝐒𝐞𝐭. ■

It is convenient at this juncture to introduce a concept borrowed from en-
riched category theory. The notation below follows [Kelly, 2005, §3.1].

Definition a.5.10. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
and let u� be a locally 𝐔-small category. Given functors 𝑊 : u� → 𝐒𝐞𝐭 and
𝐴 : u� → u�, a 𝑊 -weighted limit of 𝐴 is an object {𝑊 , 𝐴}u� in u� together with
bijections

u�(𝐶, {𝑊 , 𝐴}u� ) ≅ [u� , 𝐒𝐞𝐭](𝑊 , u�(𝐶, 𝐴))

that are natural in 𝐶 . We may also write lim←−−
𝑊 𝑗
𝑗:u�

𝐴𝑗 instead of {𝑊 , 𝐴}u� , if we
wish to use an explicit variable 𝑗.

Dually, given functors 𝑊 : u� op → 𝐒𝐞𝐭 and 𝐴 : u� → u�, a 𝑊 -weighted
colimit of 𝐴 is an object 𝑊 ⋆u� 𝐴 in u� together with bijections

u�(𝑊 ⋆u� 𝐴, 𝐶) ≅ [u� op, 𝐒𝐞𝐭](𝑊 , u�(𝐴, 𝐶))

that are natural in 𝐶 . We may also write lim−−→
𝑊 𝑗
𝑗:u�

𝐴𝑗 instead of 𝑊 ⋆u� 𝐴, if we
wish to use an explicit variable 𝑗.

Remark a.5.11. Clearly, weighted limits and colimits are unique up to unique
isomorphism if they exist.

It is also not hard to spell out the above definition in elementary terms; for
example, one notes that to give a natural transformation 𝑊 ⇒ u�(𝐶, 𝐴), one
must give a morphism 𝑗,𝑥 : 𝐶 → 𝐴𝑗 for each object 𝑗 in u� and each element
𝑥 of 𝑊 𝑗, and these are required to make various diagrams commute. This is
a 𝑊 -weighted cone from 𝐶 to 𝐴, and {𝑊 , 𝐴}u� is an object equipped with
a universal 𝑊 -weighted cone to 𝐴. Similarly, one may define the notion of a
𝑊 -weighted cocone from 𝐴 to 𝐶 , and then 𝑊 ⋆u� 𝐴 is an object equipped with
a universal 𝑊 -weighted cocone from 𝐴. In particular, if 𝑊 𝑗 = 1 for all 𝑗, then
𝑊 -weighted limits and colimits reduce to ordinary limits and colimits.

The above discussion also shows that the concept of a weighted limit or
colimit (within a fixed category!) does not depend on 𝐔 in any essential way.
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Lemma a.5.12. Let u� be a 𝐔-small category. Given functors 𝐹 , 𝐺 : u� → 𝐒𝐞𝐭,
the 𝐹 -weighted limit of 𝐺 exists in 𝐒𝐞𝐭, and we have bijections

{𝐹 , 𝐺}u� ≅ [u� , 𝐒𝐞𝐭](𝐹 , 𝐺)

that are natural in 𝐹 and 𝐺.

Proof. One simply has to check that this works. ⧫

Proposition a.5.13. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
and let 𝐹 : u� → u� be any functor where u� and u� are locally 𝐔-small categories.

(i) For each weight 𝑊 : u� → 𝐒𝐞𝐭 and each diagram 𝐴 : u� → u�, if the
weighted limits {𝑊 , 𝐴}u� and {𝑊 , 𝐹 𝐴}u� both exist, then there is a ca-
nonical comparison morphism

𝐹 {𝑊 , 𝐴}u� → {𝑊 , 𝐹 𝐴}u�

corresponding to the natural maps

[u� , 𝐒𝐞𝐭](𝑊 , u�(𝐶, 𝐴)) → [u� , 𝐒𝐞𝐭](𝑊 , u�(𝐹 𝐶, 𝐹 𝐴))

induced by the functor 𝐹 .

(ii) For any object 𝐶 in u�, the functor u�(𝐶, −) : u� → 𝐒𝐞𝐭 preserves all
weighted limits.

(iii) The functors u�(𝐶, −) : u� → 𝐒𝐞𝐭 jointly reflect weighted limits.

(iv) If 𝐹 has a left adjoint, then 𝐹 preserves weighted limits.

Dually:

(i′) For each weight 𝑊 : u� op → 𝐒𝐞𝐭 and each diagram 𝐴 : u� → u�, if
the weighted colimits 𝑊 ⋆u� 𝐴 and 𝑊 ⋆u� 𝐹 𝐴 both exist, then there is a
canonical comparison morphism

𝑊 ⋆u� 𝐹 𝐴 → 𝐹 (𝑊 ⋆u� 𝐴)

corresponding to the natural maps

[u� , 𝐒𝐞𝐭](𝑊 , u�(𝐴, 𝐶)) → [u� , 𝐒𝐞𝐭](𝑊 , u�(𝐹 𝐴, 𝐹 𝐶))

induced by the functor 𝐹 .
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(ii′) For any object 𝐶 in u�, the functor u�(−, 𝐶) : u� op → 𝐒𝐞𝐭 sends any weighted
colimit in u� to the corresponding weighted limit in 𝐒𝐞𝐭.

(iii′) The functors u�(−, 𝐶) : u� → 𝐒𝐞𝐭 op jointly reflect weighted colimits.

(iv′) If 𝐹 has a right adjoint, then 𝐹 preserves weighted colimits.

Proof. All straightforward. ⧫

Definition a.5.14. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let u� be a locally 𝐔-small category. Given a functor 𝐹 : u� → u�, the 𝐹 -nerve
functor N𝐹 : u� → [u� op, 𝐒𝐞𝐭] is defined by

N𝐹 (𝐷)(𝐶) = u�(𝐹 𝐶, 𝐷)

i.e. N𝐹 = 𝐹 ∗h•, where h• : u� → [u�op, 𝐒𝐞𝐭] is the usual Yoneda embedding.

Theorem a.5.15. Let u�, u� and ℰ be locally 𝐔-small categories. Given functors
𝐹 : u� → u� and 𝐺 : u� → ℰ, the following are equivalent:

(i) (𝐻, 𝛼) is a pointwise right Kan extension of 𝐺 along 𝐹 .

(ii) For each object 𝑑 in u�, the weighted limit {N𝐹 op
(𝑑), 𝐺}

u� exists in ℰ, and
there are isomorphisms

𝐻𝑑 ≅ {N𝐹 op
(𝑑), 𝐺}

u�

natural in 𝑑, with 𝛼𝑐 : 𝐻𝐹 𝑐 → 𝐺𝑐 corresponding to the element id𝐹 𝑐 of
N𝐹 op

(𝐹 𝑐)(𝑐) = u�(𝐹 𝑐, 𝐹 𝑐).

(iii) (Assuming u� is 𝐔-small.) For each object 𝑑 in u�, if 𝑃 𝑑 : (𝑑 ↓ 𝐹 ) → u�
is the projection sending (𝑐, 𝑓 ) in the comma category (𝑑 ↓ 𝐹 ) to 𝑐, and
𝜑 : Δ𝑑 ⇒ 𝐹 𝑃 𝑑 is the tautological cone in u�, then the cone 𝛼𝑃 𝑑 ∙ 𝐻𝜑 :
Δ𝐻𝑑 ⇒ 𝐺𝑃 𝑑 is limiting; and for each 𝑔 : 𝑑 → 𝑑′ in u�, the morphism
𝐻𝑔 : 𝐻𝑑 → 𝐻𝑑′ is the one induced by the functor (𝑑′ ↓ 𝐹 ) → (𝑑 ↓ 𝐹 )
sending (𝑐′, 𝑓 ′) to (𝑐′, 𝑓 ′ ∘ 𝑔). In particular, 𝛼𝑐 : 𝐻𝐹 𝑐 → 𝐺𝑐 must be
(equal to) the component of the limiting cone Δ𝐹 𝑐 ⇒ 𝐺𝑃 𝑑 at the object
(𝑐, id𝐹 𝑐) of (𝐹 𝑐 ↓ 𝐹 ).

In particular, if u� is a 𝐔-small category and ℰ is 𝐔-complete, then the right Kan
extension of 𝐺 along 𝐹 exists and is pointwise.
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Dually, the following are equivalent:

(i′) (𝐻, 𝛼) is a pointwise left Kan extension of 𝐺 along 𝐹 .

(ii′) For each object 𝑑 in u�, the weighted colimit N𝐹 (𝑑) ⋆u� 𝐺 exists in ℰ, and
there are isomorphisms

𝐻𝑑 ≅ N𝐹 (𝑑) ⋆u� 𝐺

natural in 𝑑, with 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐 corresponding to the element id𝐹 𝑐 of
N𝐹 (𝐹 𝑐)(𝑐) = u�(𝐹 𝑐, 𝐹 𝑐).

(iii′) (Assuming u� is 𝐔-small.) For each object 𝑑 in u�, if 𝑃𝑑 : (𝐹 ↓ 𝑑) → u�
is the projection sending (𝑐, 𝑓 ) in the comma category (𝐹 ↓ 𝑑) to 𝑐, and
𝜑 : 𝐹 𝑃𝑑 ⇒ Δ𝑑 is the tautological cocone in u�, then the cocone 𝐻𝜑∙𝛼𝑃𝑑 :
𝐺𝑃𝑑 ⇒ Δ𝐻𝑑 is colimiting; and for each 𝑔 : 𝑑 → 𝑑′ in u�, the morphism
𝐻𝑔 : 𝐻𝑑 → 𝐻𝑑′ is the one induced by the functor (𝐹 ↓ 𝑑) → (𝐹 ↓ 𝑑′)
sending (𝑐, 𝑓 ) to (𝑐, 𝑔 ∘ 𝑓 ). In particular, 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐 must be (equal
to) the component of the colimiting cocone 𝐺𝑃𝑑 ⇒ Δ𝐹 𝑐 at the object
(𝑐, id𝐹 𝑐) of (𝐹 ↓ 𝐹 𝑐).

In particular, if u� is a 𝐔-small category and ℰ is 𝐔-cocomplete, then the left Kan
extension of 𝐺 along 𝐹 exists and is pointwise.

Proof. (i) ⇔ (ii). This is just a matter of unwinding the definitions.

(i) ⇔ (iii). Corollary a.5.9 implies that the construction in (iii) does indeed define
a right Kan extension in the special case ℰ = 𝐒𝐞𝐭, so we deduce that statements (i)
and (iii) are equivalent by applying the Yoneda lemma; see also [CWM, Ch. X,
§§3 and 5]. □

Remark a.5.16. It is possible to extract an elementary characterisation of point-
wise Kan extensions from the results above, thereby showing that the property
of being pointwise does not depend on the choice of universe 𝐔.

Corollary a.5.17. Let 𝐹 : u� → u� be a functor. If u� is 𝐔-small and u� is locally
𝐔-small, then the functor 𝐹 ∗ : [u�, 𝐒𝐞𝐭] → [u�, 𝐒𝐞𝐭] has both a left adjoint Lan𝐹
and a right adjoint Ran𝐹 . ■

Corollary a.5.18. If (𝐻, 𝛼) is a pointwise right Kan extension of 𝐺 : u� → ℰ
along 𝐹 : u� → u�, and 𝑅 : ℰ → ℱ is a functor, then (𝑅𝐻, 𝑅𝛼) is a pointwise
right Kan extension of 𝑅𝐺 along 𝐹 , provided either:
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(i) 𝑅 preserves all weighted limits, or

(ii) 𝑅 preserves limits for 𝐔-small diagrams and u� is 𝐔-small.

If (𝐻, 𝛼) is a pointwise left Kan extension of 𝐺 : u� → ℰ along 𝐹 : u� → u�, and
𝐿 : ℰ → ℱ is a functor, then (𝐿𝐻, 𝐿𝛼) is a pointwise left Kan extension of 𝐿𝐺
along 𝐹 , provided either:

(i′) 𝐿 preserves all weighted colimits, or

(ii′) 𝐿 preserves colimits for 𝐔-small diagrams and u� is 𝐔-small. ■

Corollary a.5.19. If (𝐻, 𝛼) is a pointwise right (resp. left) Kan extension of
𝐺 : u� → ℰ along a fully faithful functor 𝐹 : u� → u�, then 𝛼 : 𝐻𝐹 ⇒ 𝐺 (resp.
𝛼 : 𝐺 ⇒ 𝐻𝐹 ) is a natural isomorphism.

Proof. If 𝐹 is fully faithful, then the comma category (𝐹 𝑐 ↓ 𝐹 ) (resp. (𝐹 ↓ 𝐹 𝑐))
has an initial (resp. terminal) object, namely (𝑐, id𝐹 𝑐), so the component 𝛼𝑐 :
𝐻𝐹 𝑐 → 𝐺𝑐 (resp. 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐) must be an isomorphism. ■

Theorem a.5.20. Let 𝐹 : u� → u� and 𝐺 : u� → u� be functors, and let 𝑖 :
u� → u�+ and 𝑗 : u� → u�+ be fully faithful functors. Consider the following (not
necessarily commutative) diagram:

u� u� u�+

u�

u�+

𝐹

𝐺 𝑗

𝑖

𝐻

𝐻+

(i) If 𝐻+ is a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 , and 𝐻+𝑖 ≅ 𝑗𝐻 ,
then 𝐻 is a pointwise right Kan extension of 𝐺 along 𝐹 .

(ii) Suppose 𝑗𝐻 is a pointwise right Kan extension of 𝑗𝐺 along 𝐹 . If 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖, then the counit 𝐻+𝑖 ⇒ 𝑗𝐻
is a natural isomorphism, and 𝐻+ is also a pointwise right Kan extension
of 𝑗𝐺 along 𝑖𝐹 ; conversely, if 𝐻+ is a pointwise right Kan extension of
𝑗𝐺 along 𝑖𝐹 , then it is also a pointwise right Kan extension of 𝑗𝐻 along
𝑖.
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(iii) If 𝐔 is a pre-universe such that u� is 𝐔-small and 𝑗 preserves limits for all
𝐔-small diagrams, and 𝐻 is a pointwise right Kan extension of 𝐺 along
𝐹 , then a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 can be computed
as a pointwise right Kan extension of 𝑗𝐻 along 𝑖 (if either one exists).

Dually:

(i′) If 𝐻+ is a pointwise left Kan extension of 𝑗𝐺 along 𝑖𝐹 , and 𝐻+𝑖 ≅ 𝑗𝐻 ,
then 𝐻 is a pointwise left Kan extension of 𝐺 along 𝐹 .

(ii′) Suppose 𝑗𝐻 is a pointwise left Kan extension of 𝑗𝐺 along 𝐹 . If 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖, then the unit 𝑗𝐻 ⇒ 𝐻+𝑖 is a
natural isomorphism, and 𝐻+ is also a pointwise left Kan extension of 𝑗𝐺
along 𝑖𝐹 ; conversely, if 𝐻+ is a pointwise left Kan extension of 𝑗𝐺 along
𝑖𝐹 , then it is also a pointwise left Kan extension of 𝑗𝐻 along 𝑖.

(iii′) If 𝐔 is a pre-universe such that u� is 𝐔-small and 𝑗 preserves colimits for
all 𝐔-small diagrams, and 𝐻 is a pointwise left Kan extension of 𝐺 along
𝐹 , then a pointwise left Kan extension of 𝑗𝐺 along 𝑖𝐹 can be computed as
a pointwise left Kan extension of 𝑗𝐻 along 𝑖 (if either one exists).

Proof. (i). Theorem a.5.15 gives an explicit description of 𝐻+ : u�+ → u�+ as a
weighted limit:

𝐻+(𝐶′) ≅ {u�+(𝐶′, 𝑖𝐹 ), 𝑗𝐺}u�

Since 𝑖 is fully faithful, the weights u�(𝐶, 𝐹 ) and u�+(𝑖𝐶, 𝑖𝐹 ) are naturally iso-
morphic, hence,

𝑗𝐻(𝐶) ≅ 𝐻+(𝑖𝐶) ≅ {u�+(𝑖𝐶, 𝑖𝐹 ), 𝑗𝐺}u� ≅ {u�(𝐶, 𝐹 ), 𝑗𝐺}u�

but, since 𝑗 is fully faithful, 𝑗 reflects all weighted limits, therefore 𝐻 must be a
pointwise right Kan extension of 𝐺 along 𝐹 .

(ii). Let 𝐔+ be a pre-universe such that u� and u� are 𝐔+-small categories and
u�, u�+, u�+ are locally 𝐔+-small categories, and let 𝐒𝐞𝐭+ be the category of 𝐔+-sets.
Using the interchange law (theorem a.6.17) and propositions a.6.11 and a.6.18,
we obtain the following natural bijections:

u�+(𝐷′, 𝐻+(𝐶′)) ≅ u�+(𝐷′, {u�+(𝐶′, 𝑖), 𝑗𝐻}u�)

≅ ∫𝐶:u�
𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐶), u�+(𝐷′, 𝑗𝐻𝐶))
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≅ ∫𝐶:u�
𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐶), u�+(𝐷′, {u�(𝐶, 𝐹 ), 𝑗𝐺}u�))

≅ ∫𝐶:u� ∫𝐴:u�
𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐶), 𝐒𝐞𝐭+(u�(𝐶, 𝐹 𝐴), u�+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐶:u� ∫𝐴:u�
𝐒𝐞𝐭+(u�(𝐶, 𝐹 𝐴), 𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐶), u�+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐴:u� ∫𝐶:u�
𝐒𝐞𝐭+(u�(𝐶, 𝐹 𝐴), 𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐶), u�+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐴:u�
𝐒𝐞𝐭+(u�+(𝐶′, 𝑖𝐹 𝐴), u�+(𝐷′, 𝑗𝐺𝐴))

≅ u�+(𝐷′, {u�+(𝐶′, 𝑖𝐹 ), 𝑗𝐺}u�)

Thus, 𝐻+ is a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 if and only if 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖. The fact that the counit 𝐻+𝑖 ⇒ 𝑗𝐻
is a natural isomorphism is just corollary a.5.19.

(iii). Apply corollary a.5.18 to claim (ii). ■

Proposition a.5.21. Let u� and u� be any two categories, and let 𝐹 : u� → u� and
𝐺 : u� → u� be any two functors. The following are equivalent:

(i) 𝐹 ⊣ 𝐺, with unit : idu� ⇒ 𝐺𝐹 and counit : 𝐹 𝐺 ⇒ idu�.

(ii) (𝐹 , ) is an absolute right Kan extension of idu� along 𝐺.

(iii) (𝐹 , ) is a right Kan extension of idu� along 𝐺 that is preserved by 𝐹 .

(iv) (𝐺, ) is an absolute left Kan extension of idu� along 𝐹 .

(v) (𝐺, ) is a left Kan extension of idu� along 𝐹 that is preserved by 𝐺.

Proof. See [CWM, Ch. X, §7]. □

Proposition a.5.22.
• Left adjoints preserve all left Kan extensions.

• Right adjoints preserve all right Kan extensions.

Proof. See Theorem 1 in [CWM, Ch. X, §5]. □
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Definition a.5.23. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let u� be a locally 𝐔-small category. A dense functor is a functor 𝐹 : ℬ → u�
such that the 𝐹 -nerve functor N𝐹 : u� → [ℬop, 𝐒𝐞𝐭] is fully faithful. A dense
subcategory of u� is a subcategory ℬ such that the inclusion ℬ ↪ u� is a dense
functor.

Dually, a codense functor is a functor 𝐹 : ℬ → u� such that the opposite
functor 𝐹 op : ℬop → u� op is dense, and a codense subcategory of u� is a subcat-
egory ℬ such that the inclusion ℬ ↪ u� is a codense functor.

Example a.5.24. The Yoneda lemma implies idu� : u� → u� is a dense and
codense functor.

One may extract an elementary definition for ‘(co)dense functor’ from the
following proposition.

Proposition a.5.25. With notation as in definition a.5.23, the following are equi-
valent:

(i) 𝐹 : ℬ → u� is a dense functor.

(ii) For each object 𝐶 in u�, the maps

u�(𝐶, 𝐶′) → [ℬop, 𝐒𝐞𝐭](N𝐹 (𝐶), u�(𝐹 , 𝐶′))

induced by N𝐹 : u� → [ℬop, 𝐒𝐞𝐭] are natural bijections, exhibiting 𝐶 as a
weighted colimit N𝐹 (𝐶) ⋆ℬ 𝐹 in u�.

(iii) For each object 𝐶 in u�, the tautological cocone to 𝐶 induced by 𝐹 is a
colimiting cocone.

(iv) (idu� , id𝐹 ) is a pointwise left Kan extension of 𝐹 along 𝐹 .

Dually, the following are equivalent:

(i′) 𝐹 : ℬ → u� is a codense functor.

(ii′) For each object 𝐶 in u�, the maps

u�(𝐶′, 𝐶) → [ℬ, 𝐒𝐞𝐭](N𝐹 op
(𝐶), u�(𝐶′, 𝐹 ))

induced by N𝐹 op
: u� op → [ℬ, 𝐒𝐞𝐭] are natural bijections, exhibiting 𝐶 as

a weighted limit {N𝐹 op
(𝐶), 𝐹 }

ℬ in u�.
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(iii′) For each object 𝐶 in u�, the tautological cone from 𝐶 induced by 𝐹 is a
limiting cone.

(iv′) (idu� , id𝐹 ) is a pointwise right Kan extension of 𝐹 along 𝐹 .

Proof. (i) ⇔ (ii). The indicated maps are bijections for all 𝐶 and 𝐶′ if and only
if N𝐹 is fully faithful, by definition.

(ii) ⇔ (iii) ⇔ (iv). This is an application of theorem a.5.15. ■

Definition a.5.26. Let 𝐺 : u� → u� be a functor. A densely-defined partial left
adjoint for 𝐺 is a triple (𝐹 , 𝑖, ), where 𝐹 : ℬ → u� is a functor, 𝑖 : ℬ → u� is a
dense functor, and : 𝑖 ⇒ 𝐺𝐹 is a natural transformation such that the maps

u�(𝐹 𝐵, 𝐷) → u�(𝑖𝐵, 𝐺𝐷)
𝑔 ↦ 𝐺𝑔 ∘ 𝐵

are bijections that are natural in 𝐵 and 𝐷.
Dually, given a functor 𝐹 : u� → u�, a codensely-defined partial right

adjoint for 𝐹 is a triple (𝐺, 𝑗, ), where 𝐺 : ℬ → u� is a functor, 𝑗 : ℬ → u� is a
codense functor, and : 𝐹 𝐺 ⇒ 𝑗 is a natural transformation such that the maps

u�(𝐶, 𝐺𝐵) → u�(𝐹 𝐶, 𝑗𝐵)
𝑓 ↦ 𝐵 ∘ 𝐹 𝑓

are bijections that are natural in 𝐵 and 𝐶 .

Example a.5.27. The Yoneda embedding h• : ℬ → [ℬop, 𝐒𝐞𝐭] has a densely-
defined partial left adjoint, namely (idℬ, h•, idh•).

Remark a.5.28. (𝐹 , idu� , ) is a densely-defined partial left adjoint for 𝐺 if and
only if 𝐹 is a left adjoint for 𝐺 in the usual sense, with being the adjunction
unit.

Proposition a.5.29. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
and let u� and u� be locally 𝐔-small categories. Given functors 𝐺 : u� → u�,
𝐹 : ℬ → u�, and 𝑖 : ℬ → u�, the following are equivalent:

(i) (𝐹 , 𝑖, ) is a densely-defined partial left adjoint for 𝐺.
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(ii) The functor 𝑖 : ℬ → u� is dense, and there exists a diagram

u� [u�op, 𝐒𝐞𝐭]

u� [ℬop, 𝐒𝐞𝐭]

𝐺

h•

(𝐹 op)∗

N𝑖

𝛼

where 𝛼 factors through ∗ : N𝐺𝐹 ⇒ N𝑖 and is a natural isomorphism.

(iii) The functor 𝑖 : ℬ → u� is dense, and the diagram

u� [u�op, 𝐒𝐞𝐭]

u� [ℬop, 𝐒𝐞𝐭]

𝐺

h•

(𝐹 op)∗

N𝑖

commutes up to natural isomorphism.

Dually, given functors 𝐹 : u� → u�, 𝐺 : ℬ → u�, and 𝑗 : ℬ → u�, the following
are equivalent:

(i′) (𝐺, 𝑗, ) is a codensely-defined partial right adjoint for 𝐹 .

(ii′) The functor 𝑗 : ℬ → u� is codense, and there exists a diagram

u� op [u�, 𝐒𝐞𝐭]

u�op [ℬ, 𝐒𝐞𝐭]

𝐹 op

h•

𝐺∗

N𝑗 op

𝛽

where 𝛽 factors through ( op)∗ : N𝐹 op𝐺op
⇒ N𝑗 op

and is a natural iso-
morphism.

(iii′) The functor 𝑗 : ℬ → u� is codense, and the diagram

u� op [u�, 𝐒𝐞𝐭]

u�op [ℬ, 𝐒𝐞𝐭]

𝐹 op

h•

𝐺∗

N𝑗 op

commutes up to natural isomorphism.
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Proof. (i) ⇒ (ii). This immediately follows from the definition.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (i). The displayed diagram commutes up to natural isomorphism precisely
when there are bijections

𝛼𝐵,𝐷 : u�(𝐹 𝐵, 𝐷) → u�(𝑖𝐵, 𝐺𝐷)

that are natural in both 𝐵 and 𝐷. Taking 𝐷 = 𝐹 𝐵, let 𝐵 : 𝑖𝐵 → 𝐺𝐹 𝐵 be the
morphism corresponding to id𝐹 𝐵 : 𝐹 𝐵 → 𝐹 𝐵. Applying the Yoneda lemma,
we see that the natural bijection 𝛼𝐵,𝐷 must be the map 𝑔 ↦ 𝐺𝑔 ∘ 𝐵. ■

Corollary a.5.30. Let u� and u� be any two categories. If a functor 𝐺 : u� → u�
has a densely-defined partial left adjoint, then 𝐺 preserves:

(i) limits for all diagrams in u�,

(ii) weighted limits, and

(iii) pointwise right Kan extensions.

Dually, if a functor 𝐹 : u� → u� has a codensely-defined partial right adjoint,
then 𝐹 preserves:

(i′) colimits for all diagrams in u�,

(ii′) weighted colimits, and

(iii′) pointwise left Kan extensions.

Proof. Choose a universe 𝐔 such that the domain of 𝑖 : ℬ → u� is 𝐔-small and
both u� and u� are locally 𝐔-small, and consider the following diagram:

u� [u�op, 𝐒𝐞𝐭]

u� [ℬop, 𝐒𝐞𝐭]

𝐺

h•

(𝐹 op)∗

N𝑖

Since 𝑖 is dense, the 𝑖-nerve functor N𝑖 : u� → [ℬop, 𝐒𝐞𝐭] is fully faithful. Corol-
lary a.5.17 implies (𝐹 op)∗ : [u�op, 𝐒𝐞𝐭] → [ℬop, 𝐒𝐞𝐭] is a right adjoint, and the
Yoneda embedding h• : u� → [u�op, 𝐒𝐞𝐭] preserves all limits and weighted limits
(see proposition a.5.13), so we use the fact that N𝑖 reflects limits and weighted
limits to conclude that 𝐺 preserves them. We then apply corollary a.5.18. ■
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Definition a.5.31. A cofinal functor (resp. coinitial functor) is a functor 𝐹 :
u� → u� such that, for each object 𝐷 in u�, the comma category (𝐷 ↓ 𝐹 ) (resp.
(𝐹 ↓ 𝐷)) is connected.

Theorem a.5.32. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let 𝐹 : u� → u� be a functor between 𝐔-small categories. The following are
equivalent:

(i) 𝐹 : u� → u� is a coinitial functor.

(ii) The commutative diagram of functors shown below satisfies the left Beck–
Chevalley condition:

𝐒𝐞𝐭 [u�, 𝐒𝐞𝐭]

𝐒𝐞𝐭 [u�, 𝐒𝐞𝐭]

id

Δ

𝐹 ∗

Δ

(iii) The commutative diagram of functors shown below satisfies the right Beck–
Chevalley condition:

𝐒𝐞𝐭 𝐒𝐞𝐭

[u�, 𝐒𝐞𝐭] [u�, 𝐒𝐞𝐭]

Δ

id

Δ

𝐹 ∗

(iv) For all locally 𝐔-small categories ℰ and all diagrams 𝐺 : u� → ℰ, lim←−−u�
𝐺𝐹

exists if and only if lim←−−u�
𝐺 exists, in which case the canonical comparison

morphism lim←−−u�
𝐺 → lim←−−u�

𝐺𝐹 is an isomorphism.

Dually, the following are equivalent:

(i′) 𝐹 : u� → u� is a cofinal functor.

(ii′) The commutative diagram of functors shown below satisfies the right Beck–
Chevalley condition:

𝐒𝐞𝐭 [u�, 𝐒𝐞𝐭]

𝐒𝐞𝐭 [u�, 𝐒𝐞𝐭]

id

Δ

𝐹 ∗

Δ
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(iii′) The commutative diagram of functors shown below satisfies the left Beck–
Chevalley condition:

𝐒𝐞𝐭 𝐒𝐞𝐭

[u�, 𝐒𝐞𝐭] [u�, 𝐒𝐞𝐭]

Δ

id

Δ

𝐹 ∗

(iv′) For all locally 𝐔-small categories ℰ and all diagrams 𝐺 : u� → ℰ, lim−−→u�
𝐺𝐹

exists if and only if lim−−→u�
𝐺 exists, in which case the canonical comparison

morphism lim−−→u�
𝐺𝐹 → lim−−→u�

𝐺 is an isomorphism.

Proof. (i) ⇔ (ii). Using the colimit formula for Lan𝐹 : [u�, 𝐒𝐞𝐭] → [u�, 𝐒𝐞𝐭]
indicated in theorem a.5.15, it is clear that the comma categories (𝐹 ↓ 𝐷) is con-
nected if and only if the left Beck–Chevalley transformation Δ ⇒ Ran𝐹 (Δ−) is
a natural isomorphism.

(ii) ⇔ (iii). Apply proposition a.1.12.

(iii) ⇒ (iv). We have the following natural bijections:

[u�, ℰ](Δ𝐸, 𝐺𝐹 ) ≅ lim−−→
u�

ℰ(𝐸, 𝐺𝐹 )

≅ lim−−→
u�

ℰ(𝐸, 𝐺)

≅ [u�, ℰ](Δ𝐸, 𝐺)

Thus, there is a natural bijection between cones from 𝐸 to 𝐺𝐹 and cones from
𝐸 to 𝐺; this implies that limits for 𝐺𝐹 exist in ℰ if and only if limits for 𝐺 exist
in ℰ and that they are canonically isomorphic.

(iv) ⇒ (iii). Obvious. ■

Definition a.5.33. A sifted category is a category u� with the following prop-
erty:

• For every finite set of objects in u� , say 𝑗1, … , 𝑗𝑛, there exist an object 𝑘
and a cocone 𝑗• → 𝑘 in u� .

Remark a.5.34. Every filtered category is sifted.
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Remark a.5.35. If u� is a category with an object 𝑘 such that, for every object 𝑗
in u� , there is a morphism 𝑗 → 𝑘 in u� , then u� is a sifted category.

Theorem a.5.36. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let u� be a 𝐔-small category. The following are equivalent:

(i) u� is a sifted category.

(ii) u� is (inhabited and) connected, and the diagonal functor Δ : u� → u� × u�
is cofinal.

(iii) The functor lim−−→u�
: [u� , 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves finite products.

Proof. (i) ⇒ (ii). If u� is sifted, then there is an object in u� . Let (𝑗0, 𝑗1) be a pair
of objects in u� . If u� is sifted, then there exist an object 𝑘 and morphisms 𝑗0 → 𝑘
and 𝑗1 → 𝑘, so the comma category ((𝑗0, 𝑗1) ↓ Δ) is inhabited and u� is connec-
ted; repeating this argument, we find that ((𝑗0, 𝑗1) ↓ Δ) itself is connected. Thus
Δ : u� → u� × u� is indeed a cofinal functor.

(ii) ⇒ (iii). If u� is connected, then lim−−→u�
: [u� , 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves terminal

objects. Let 𝑋, 𝑌 : u� → 𝐒𝐞𝐭 be diagrams and suppose u� is sifted. Since
(−) × (−) : 𝐒𝐞𝐭 × 𝐒𝐞𝐭 → 𝐒𝐞𝐭 preserves colimits in each variable (because 𝐒𝐞𝐭 is
cartesian closed), the canonical map

lim−−→
u� ×u�

𝑋 ⊠ 𝑌 →
(

lim−−→
u�

𝑋
)

×
(

lim−−→
u�

𝑌
)

is a bijection, where 𝑋⊠𝑌 : u� ×u� → 𝐒𝐞𝐭 is the diagram defined by (𝑋 ⊠ 𝑌 )(𝑗0, 𝑗1) =
𝑋𝑗0 × 𝑌 𝑗1; and since Δ : u� → u� × u� is cofinal, the canonical map

lim−−→
u�

𝑋 × 𝑌 → lim−−→
u� ×u�

𝑋 ⊠ 𝑌

is also a bijection. We then deduce (by induction) that lim−−→u�
: [u� , 𝐒𝐞𝐭] → 𝐒𝐞𝐭

preserves finite products.

(iii) ⇒ (i). Let 𝑗0, … , 𝑗𝑛 be objects in u� . For any object 𝑗 in u� , we have
lim−−→u�

u� (𝑗, −) ≅ 1; thus, if lim−−→u�
: [u� , 𝐒𝐞𝐭] → 𝐒𝐞𝐭 preserves finite products,

then
lim−−→

u�
u� (𝑗0, −) × ⋯ × u� (𝑗𝑛, −) ≅ 1

and in particular, there must exist an object 𝑘 and a cocone 𝑗• → 𝑘 in u� . ■
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a.6 Ends and coends
Prerequisites. §§0.1, a.5

In this section we use the explicit universe convention.

Definition a.6.1. Let 𝐹 , 𝐺 : u� op × u� → u� be functors. A dinatural transform-
ation 𝛼 : 𝐹 ⬦→ 𝐺 is a family (𝛼𝐶 : 𝐹 (𝐶, 𝐶) → 𝐺(𝐶, 𝐶) | 𝐶 ∈ ob u�) such that
the diagram

𝐹 (𝐶, 𝐶) 𝐺(𝐶, 𝐶)

𝐹 (𝐶, 𝐶′) 𝐺(𝐶′, 𝐶)

𝐹 (𝐶′, 𝐶′) 𝐺(𝐶′, 𝐶′)

𝛼𝐶

𝐺(𝑓,id𝐶)𝐹 (id𝐶 ,𝑓)

𝐹 (𝑓 ,id𝐶′)

𝛼𝐶′

𝐺(id𝐶′,𝑓)

commutes for all morphisms 𝑓 : 𝐶′ → 𝐶 in u�.

Example a.6.2. Let 𝐔 be a pre-universe, let u� be a locally 𝐔-small category, and
let 𝐒𝐞𝐭 be the category of 𝐔-sets. Consider the functor Homu� : u� op × u� → 𝐒𝐞𝐭
that sends a pair of objects in u� to their hom-set. For each natural number 𝑛, we
have an dinatural transformation Homu�

⬦→ Homu� defined by 𝑒 ↦ 𝑒𝑛, where 𝑒𝑛

denotes the 𝑛-fold iterate of the endomorphism 𝑒.

Definition a.6.3. A wedge from an object 𝐷 in u� to a functor 𝐺 : u� op × u� → u�
is a dinatural transformation Δ𝐷

⬦
→ 𝐺, where Δ𝐷 : u� op × u� → u� is the constant

functor with value 𝐷; dually, a cowedge from a functor 𝐹 : u� op × u� → u� to an
object 𝐷 in u� is a dinatural transformation 𝐹

⬦
→ Δ𝐷.

Definition a.6.4. An end for a functor 𝐺 : u� op × u� → u� is an object 𝐸 and a
wedge : Δ𝐸 ⬦→ 𝐺 with the following universal property:

• For each wedge 𝜑 : Δ𝐷
⬦
→ 𝐺, there is a unique morphism 𝑓 : 𝐷 → 𝐸 in

u� such that 𝜑𝐶 = 𝐶 ∘ 𝑓 for all objects 𝐶 in u�.

We define the following formula to mean that 𝐸 is an end for 𝐺:

𝐸 = ∫𝐶:u�
𝐺(𝐶, 𝐶)

Dually, a coend for a functor 𝐹 : u� op × u� → u� is an object 𝐸 and a cowedge
: 𝐹 ⬦→ Δ𝐸 with the following universal property:
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• For each cowedge 𝜑 : 𝐹
⬦
→ Δ𝐷, there is a unique morphism 𝑓 : 𝐸 → 𝐷

in u� such that 𝜑𝐶 = 𝑓 ∘ 𝐶 for all objects 𝐶 in u�.

We define the following formula to mean that 𝐸 is a coend for 𝐹 :

𝐸 = ∫
𝐶:u�

𝐹 (𝐶, 𝐶)

Remark a.6.5. Let 𝐔 be a pre-universe, let 𝔻 be a 𝐔-small category, and let u�
be a locally 𝐔-small category. Then, for all functors 𝐹 , 𝐺 : 𝔻 → u�, we have a
bijection

[𝔻, u�](𝐹 , 𝐺) ≅ ∫𝑑:𝔻
u�(𝐹 𝑑, 𝐺𝑑)

and this is natural in both 𝐹 and 𝐺. (The size restriction ensures that the LHS is
a 𝐔-set.) See also lemma a.5.12.

Proposition a.6.6. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, let
ℂ be a 𝐔-small category, let 𝐹 : ℂ → 𝐒𝐞𝐭 be a diagram, and let 𝐺 : ℂop → 𝐒𝐞𝐭
be a weight. Then the coend (in 𝐒𝐞𝐭)

∫𝑐:ℂ
𝐺(𝑐) × 𝐹 (𝑐)

can be identified with the set of connected components of the following category
𝐆(𝐺, ℂ, 𝐹 ):

• The objects are triples (𝑦, 𝑐, 𝑥) where 𝑐 is an object in ℂ, 𝑥 is an element
of 𝐹 (𝑐), and 𝑦 is an element of 𝐺(𝑐).

• The morphisms (𝑦′, 𝑐′, 𝑥′) → (𝑦, 𝑐, 𝑥) are morphisms 𝑓 : 𝑐′ → 𝑐 in ℂ such
that 𝐹 (𝑓)(𝑥′) = 𝑥 and 𝐺(𝑓)(𝑦) = 𝑦′.

• Identities and composition are inherited from ℂ.

Proof. Observe that a morphism 𝑓 : 𝑐′ → 𝑐 in ℂ defines a morphism (𝑦′, 𝑐′, 𝑥′) →
(𝑦, 𝑐, 𝑥) in 𝐆(𝐺, ℂ, 𝐹 ) if and only if both of the following conditions hold:

• 𝐺(𝑓) × id𝐹 (𝑐′) : 𝐺(𝑐) × 𝐹 (𝑐′) → 𝐺(𝑐′) × 𝐹 (𝑐′) sends the element (𝑦, 𝑥′) to
(𝑦′, 𝑥′).

• id𝐺(𝑐) × 𝐹 (𝑓) : 𝐺(𝑐) × 𝐹 (𝑐′) → 𝐺(𝑐) × 𝐹 (𝑐) sends the element (𝑦, 𝑥′) to
(𝑦, 𝑥).
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In particular, (𝑦′, 𝑐′, 𝑥′) and (𝑦, 𝑐, 𝑥) are in the same connected component of
𝐆(𝐺, ℂ, 𝐹 ) if and only if (𝑦′, 𝑥′) and (𝑦, 𝑥) are mapped to the same element of
the coend ∫𝑐:ℂ 𝐺(𝑐)×𝐹 (𝑐). Thus, the set of connected components of 𝐆(𝐺, ℂ, 𝐹 )
can be identified with ∫𝑐:ℂ 𝐺(𝑐) × 𝐹 (𝑐), as claimed. ■

Definition a.6.7. Let 𝐔 be a pre-universe, let 𝐂𝐚𝐭 be the category of 𝐔-small
categories, and let § be the (non-full) subcategory of 𝐂𝐚𝐭 consisting of the two
embeddings 𝟙 → 𝟚. Given a 𝐔-small category 𝔻, the Mac Lane subdivision
category 𝔻§ is the comma category (§ ↓ 𝔻), where we regard 𝔻 as an object in
𝐂𝐚𝐭.

Remark a.6.8. More explicitly, 𝔻§ is the following category:

• The objects are either objects in 𝔻 or morphisms in 𝔻.

• The non-identity morphisms are of the form 𝑋 → 𝑓 or 𝑌 → 𝑓 , where
𝑓 : 𝑋 → 𝑌 is a morphism in 𝔻.

• The only composable pairs of morphisms are trivial.

It is clear from this description that 𝔻§ is (isomorphic to) a poset regarded as a
category. Note also that, for any regular cardinal , the category 𝔻 is -small if
and only if 𝔻§ is -small.

Proposition a.6.9. Let 𝔻 be a category and let 𝔻§ be the Mac Lane subdivision
category. Then there is a natural coinitial functor 𝜋R : 𝔻§ → 𝔻.

Proof. We define the functor 𝜋R : 𝔻§ → 𝔻 as follows: given an object 𝑋 in 𝔻,
we set 𝜋R𝑋 = 𝑋, and given a morphism 𝑓 : 𝑋 → 𝑌 in 𝔻, we set 𝜋R𝑓 = 𝑌 ,
𝜋R(𝑋 → 𝑓) = 𝑓 , and 𝜋R(𝑌 → 𝑓) = id𝑌 . This functor is clearly natural in 𝔻.
It remains to be shown that 𝜋R : 𝔻§ → 𝔻 is a cofinal functor. Let 𝑌 be an
object in 𝔻 and consider the comma category (𝜋R ↓ 𝑌 ). It is not hard to see that
(𝜋R ↓ 𝑌 ) is isomorphic to the Mac Lane subdivision category (𝔻∕𝑌 )

§; but 𝔻∕𝑌
has a terminal object (so is a connected category a fortiori), therefore (𝔻∕𝑌 )

§

must be a connected category, as required. ■

Proposition a.6.10. Let 𝐔 be a pre-universe and let 𝔻 be a 𝐔-small category. If
u� is a 𝐔-complete category, then u� has ends for all functors 𝐴 : 𝔻op × 𝔻 → u�.
Dually, if u� is a 𝐔-cocomplete category, then u� has coends for all functors 𝐴 :
𝔻op × 𝔻 → u�.
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Proof. It is clear from the definition that an end is a special kind of limit, and
a coend is a special kind of colimit. To make this precise, one can use the Mac
Lane subdivision category u�§: see [CWM, Ch. IX, §5]. □

Proposition a.6.11. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
and let 𝐹 : u� → u� be any functor where u� and u� are locally 𝐔-small categories.

(i) For any functor 𝐴 : u� op × u� → u�, if the ends ∫u� 𝐴 and ∫u� 𝐹 𝐴 both exist,
with being the universal wedge in u�, then there is a canonical comparison
morphism

𝐹 ∫u�
𝐴 → ∫u�

𝐹 𝐴

induced by the wedge 𝐹 .

(ii) For any object 𝐶 in u�, the functor u�(𝐶, −) : u� → 𝐒𝐞𝐭 preserves all ends.

(iii) The functors u�(𝐶, −) jointly reflect ends.

(iv) If 𝐹 has a left adjoint, then 𝐹 preserves ends.

Dually:

(i′) For any functor 𝐴 : u� op × u� → u�, if the coends ∫u� 𝐴 and ∫u� 𝐹 𝐴 both
exist, with being the universal cowedge in u�, then there is a canonical
comparison morphism

∫
u�

𝐹 𝐴 → 𝐹 ∫
u�

𝐴

induced by the cowedge 𝐹 .

(ii′) For any object 𝐶 in u�, the functor u�(−, 𝐶) : u� → 𝐒𝐞𝐭 sends any coend in
u� to the corresponding end in 𝐒𝐞𝐭.

(iii′) The functors u�(−, 𝐶) : u� → 𝐒𝐞𝐭 op jointly reflect coends.

(iv′) If 𝐹 has a right adjoint, then 𝐹 preserves coends.

Proof. All straightforward. ⧫
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Definition a.6.12. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let 𝟙 be the trivial category with ∗ as its only object. A tensored 𝐔-category
is a locally 𝐔-small category u� such that, for all weights 𝑊 : 𝟙 → 𝐒𝐞𝐭 and
all diagrams 𝐴 : 𝟙 → 𝐒𝐞𝐭, a 𝑊 -weighted colimit for 𝐴 exists in u�; if u� is a
tensored 𝐔-category, then we write 𝑋 ⊙ 𝐶 for the weighted colimit 𝑊 ⋆𝟙 𝐴,
where 𝑋 = 𝑊 (∗) and 𝐶 = 𝐴(∗).

Dually, a cotensored 𝐔-category is a locally 𝐔-small category u� such that,
for all weights 𝑊 : 𝟙 → 𝐒𝐞𝐭 and all diagrams 𝐴 : 𝟙 → 𝐒𝐞𝐭, a 𝑊 -weighted limit
for 𝐴 exists in u�; if u� is a cotensored 𝐔-category, then we write 𝑋 ⋔ 𝐶 for the
weighted limit {𝑊 , 𝐴}𝟙, where 𝑋 = 𝑊 (∗) and 𝐶 = 𝐴(∗).

Proposition a.6.13 (Tensor–hom–cotensor adjunction). Let 𝐔 be a pre-universe,
let 𝐒𝐞𝐭 be the category of 𝐔-sets, let u� be a locally 𝐔-small category.

(i) If u� is a tensored 𝐔-category, then the assignment (𝑋, 𝐶) ↦ 𝑋 ⊙ 𝐶 can
be extended to a functor 𝐒𝐞𝐭 ×u� → u� such that, for each object 𝐶 , we have
the following adjunction:

− ⊙ 𝐶 ⊣ u�(𝐶, −) : u� → 𝐒𝐞𝐭

(ii) If u� is a cotensored 𝐔-category, then the assignment (𝑋, 𝐶) ↦ 𝑋 ⋔ 𝐶 can
be extended to a functor 𝐒𝐞𝐭 op × u� → u� such that, for each object 𝐶 , the
functors − ⋔ 𝐶 : 𝐒𝐞𝐭 op → u� and u�(−, 𝐶) : u� op → 𝐒𝐞𝐭 are contravariantly
adjoint on the right.

(iii) If u� is a tensored and cotensored 𝐔-category, then for each set 𝑋, we have
the following adjunction:

𝑋 ⊙ − ⊣ 𝑋 ⋔ − : u� → u�

Proof. Claims (i) and (ii) are formally dual and are straightforward applications
of the parametrised adjunction theorem.[8] For claim (iii), simply observe that
we have bijections

u�(𝑋 ⊙ 𝐴, 𝐵) ≅ 𝐒𝐞𝐭(𝑋, u�(𝐴, 𝐵)) ≅ u�(𝐴, 𝑋 ⋔ 𝐵)

and these are natural in 𝐴, 𝐵, and 𝑋. ■

[8] See Theorem 3 in [CWM, Ch. IV, §7].
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Theorem a.6.14. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let u� be a locally 𝐔-small category. The following are equivalent:

(i) u� is a 𝐔-complete category.

(ii) u� is a cotensored 𝐔-category and, for all 𝐔-small categories 𝔻 and all
functors 𝐵 : 𝔻op × 𝔻 → u�, an end for 𝐴 exists in u�.

(iii) For all weights 𝑊 : 𝔻op → 𝐒𝐞𝐭 and all diagrams 𝐴 : 𝔻 → 𝐒𝐞𝐭, u� has a
𝑊 -weighted limit for 𝐴, provided 𝔻 is a 𝐔-small category.

Dually, the following are equivalent:

(i′) u� is a 𝐔-cocomplete category.

(ii′) u� is a tensored 𝐔-category and, for all 𝐔-small categories 𝔻 and all func-
tors 𝐵 : 𝔻op × 𝔻 → u�, a coend for 𝐴 exists in u�.

(iii′) For all weights 𝑊 : 𝔻op → 𝐒𝐞𝐭 and all diagrams 𝐴 : 𝔻 → 𝐒𝐞𝐭, u� has a
𝑊 -weighted colimit for 𝐴, provided 𝔻 is a 𝐔-small category.

Proof. (i) ⇒ (ii). It is clear that 𝑋 ⋔ 𝐶 is nothing more than an 𝑋-fold product
of copies of 𝐶 , so u� is certainly 𝐔-cotensored if it is 𝐔-complete, and proposi-
tion a.6.10 says u� also has the required ends in that case.

(ii) ⇒ (iii). We have the following natural bijections:

u�(𝐶, {𝑊 , 𝐴}𝔻) ≅ [𝔻, 𝐒𝐞𝐭](𝑊 , u�(𝐶, 𝐴))

≅ ∫𝑑:𝔻
𝐒𝐞𝐭(𝑊 𝑑, u�(𝐶, 𝐴𝑑))

≅ ∫𝑑:𝔻
u�(𝐶, 𝑊 𝑑 ⋔ 𝐴𝑑)

≅ u�(𝐶, ∫𝑑:𝔻
𝑊 𝑑 ⋔ 𝐴𝑑)

Thus, using the Yoneda lemma and assuming u� is a cotensored 𝐔-category, the
weighted limit {𝑊 , 𝐴}𝔻 exists if and only if the end ∫𝑑:𝔻 𝑊 𝑑 ⋔ 𝐴𝑑 exists.

(iii) ⇒ (i). Ordinary limits are a special case of weighted limits, as remarked in
a.5.11. ■
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Proposition a.6.15. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
let u� be a locally 𝐔-small category, and let u� be any category. If u� is a tensored
𝐔-category and has weighted limits for all weights 𝑊 : u� → 𝐒𝐞𝐭 and diagrams
𝐴 : u� → u�, then:

(i) (𝑊 , 𝐴) ↦ {𝑊 , 𝐴}u� extends to a functor [u� , 𝐒𝐞𝐭]op × u� → u�.

(ii) For each diagram 𝐴 : u� → u�, the functors {−, 𝐴}u� : [u� , 𝐒𝐞𝐭]op → u� and
u�(−, 𝐴) : u� op → [u� , 𝐒𝐞𝐭] are contravariantly adjoint on the right.

(iii) For each weight 𝑊 : u� → 𝐒𝐞𝐭, we have the following adjunction:

𝑊 ⊙ − ⊣ {𝑊 , −}u� : [u� , u�] → u�

Here, 𝑊 ⊙ 𝐶 : u� → u� is the diagram 𝑗 ↦ 𝑊 𝑗 ⊙ 𝐶 .

Dually, if u� is a cotensored 𝐔-category and has weighted colimits for all weights
𝑊 : u� op → 𝐒𝐞𝐭 and diagrams 𝐴 : u� → u�, then:

(i′) (𝑊 , 𝐴) ↦ 𝑊 ⋆u� 𝐴 extends to a functor [u� op, 𝐒𝐞𝐭] × u� → u�.

(ii′) For each diagram 𝐴 : u� → u�, we have the following adjunction:

− ⋆u� 𝐴 ⊣ u�(𝐴, −) : u� → [u� op, 𝐒𝐞𝐭]

(iii′) For each weight 𝑊 : u� op → 𝐒𝐞𝐭, we have the following adjunction:

𝑊 ⋆u� − ⊣ 𝑊 ⋔ − : u� → [u� , u�]

Here, 𝑊 ⋔ 𝐶 : u� → u� is the diagram 𝑗 ↦ 𝑊 𝑗 ⋔ 𝐶 .

Proof. Claim (i) is straightforward, and for claims (ii) and (iii), observe that we
have bijections

u�(𝐶, {𝑊 , 𝐴}u� ) ≅ [u� , 𝐒𝐞𝐭](𝑊 , u�(𝐶, 𝐴))

≅ ∫𝑗:u�
𝐒𝐞𝐭(𝑊 𝑗, u�(𝐶, 𝐴𝑗))

≅ ∫𝑗:u�
u�(𝑊 𝑗 ⊙ 𝐶, 𝐴𝑗)

≅ [u� , u�](𝑊 ⊙ 𝐶, 𝐴)

and these are natural in 𝑊 , 𝐴, and 𝐶 . ■
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Lemma a.6.16. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets, and
let 𝕀 and 𝕁 be 𝐔-small categories. For all functors 𝐴 : 𝕀op × 𝕁op × 𝕀 × 𝕁 → 𝐒𝐞𝐭:

(i) The assignment (𝑖′, 𝑖) ↦ ∫𝑗:𝕁 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) extends to a functor 𝕀op×𝕀 → 𝐒𝐞𝐭.

(ii) There is a unique morphism making the diagram below commute for all
𝑖 and 𝑗,

∫𝑖′:𝕀 ∫𝑗′:𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑗′:𝕁

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

∫(𝑖′,𝑗′):𝕀×𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) 𝐴(𝑖, 𝑗, 𝑖, 𝑗)

where the unlabelled arrows are the components of the respective universal
wedges, and is moreover an isomorphism.

(iii) There is a unique morphism 𝜎 making the diagram below commute for all
𝑖 and 𝑗,

∫𝑖′:𝕀 ∫𝑗′:𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑗′:𝕁

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

𝐴(𝑖, 𝑗, 𝑖, 𝑗)

∫𝑗′:𝕁 ∫𝑖′:𝕀
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑖′:𝕀

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

𝜎

where the unmarked arrows are the components of the respective universal
wedges, and 𝜎 is moreover an isomorphism.

Proof. See [CWM, Ch. IX, §8]. □

Theorem a.6.17 (Interchange law for ends and coends). Let u� be any category
and let 𝐴 : ℐop × u� op × ℐ × u� → 𝐒𝐞𝐭 be any functor. If the end ∫𝑖:ℐ 𝐴(𝑖, 𝑗′, 𝑖, 𝑗)
exists in u� for all 𝑗′ and 𝑗 in u� , and the end ∫𝑗:u� 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) exists in u� for all 𝑖′

and 𝑖 in ℐ, then the following are equivalent:

(i) The end ∫(𝑖,𝑗):ℐ×u� 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.
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(ii) The iterated end ∫𝑖:ℐ ∫𝑗:u� 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.

(iii) The iterated end ∫𝑗:u� ∫𝑖:ℐ 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.

In this case, we have a canonical isomorphism in u�:

∫𝑖:ℐ ∫𝑗:u�
𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫(𝑖,𝑗):ℐ×u�

𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫𝑗:u� ∫𝑖:ℐ
𝐴(𝑖, 𝑗, 𝑖, 𝑗)

Dually, if the coend ∫𝑖:ℐ 𝐴(𝑖, 𝑗′, 𝑖, 𝑗) exists in u� for all 𝑗′ and 𝑗 in u� , and the
coend ∫𝑗:u� 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) exists in u� for all 𝑖′ and 𝑖 in ℐ, then the following are
equivalent:

(i′) The coend ∫(𝑖,𝑗):ℐ×u� 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.

(ii′) The iterated coend ∫𝑖:ℐ ∫𝑗:u� 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.

(iii′) The iterated coend ∫𝑗:u� ∫𝑖:ℐ 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in u�.

In this case, we have a canonical isomorphism in u�:

∫
𝑖:ℐ

∫
𝑗:u�

𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫
(𝑖,𝑗):ℐ×u�

𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫
𝑗:u�

∫
𝑖:ℐ

𝐴(𝑖, 𝑗, 𝑖, 𝑗)

Proof. Choose a pre-universe 𝐔 such that ℐ and u� are 𝐔-small categories and
u� is a locally 𝐔-small category, and use the Yoneda lemma to reduce the claims
to the previous lemma. ■

Proposition a.6.18. Let 𝐔 be a pre-universe, let 𝐒𝐞𝐭 be the category of 𝐔-sets,
and let u� and u� be locally 𝐔-small categories.

(i) For all 𝑗 in u� and all functors 𝐴 : u� → u�, the Yoneda bijection

u�(𝐶, 𝐴𝑗) ≅ [u� , 𝐒𝐞𝐭](h 𝑗 , u�(𝐶, 𝐴))

exhibits 𝐴𝑗 as the weighted limit {h 𝑗 , 𝐴}
u� in u�.

(ii) If u� is a cotensored 𝐔-category, then the end ∫𝑗′:u� u� (𝑗, 𝑗′) ⋔ 𝐴𝑗′ exists in
u� and can be canonically identified with 𝐴𝑗.

(iii) For all functors 𝐻 : u� op × u� → u�, the weighted limit {Homu� , 𝐻}
u� op×u�

exists in u� if and only if the end ∫𝑗:u� 𝐻(𝑗, 𝑗) exists in u�, and there is a
canonical identification of the two.

832



a.7. Familial regularity and exactness

Dually:

(i′) For all 𝑗 in u� and all functors 𝐴 : u� → u�, the Yoneda bijection

u�(𝐴𝑗, 𝐶) ≅ [u� op, 𝐒𝐞𝐭](h𝑗 , u�(𝐴, 𝐶))

exhibits 𝐴𝑗 as the weighted colimit h𝑗 ⋆u� 𝐴 in u�.

(ii′) If u� is a tensored 𝐔-category, then the coend ∫𝑗′:u� u� (𝑗′, 𝑗) ⊙ 𝐴𝑗′ exists in
u� and can be canonically identified with 𝐴𝑗.

(iii′) For all functors 𝐻 : u� op ×u� → u�, the weighted colimit Homu� op ⋆u� op×u� 𝐻
exists in u� if and only if the coend ∫𝑗:u� 𝐻(𝑗, 𝑗) exists in u�, and there is a
canonical identification of the two.

Proof. (i). This is an immediate consequence of the Yoneda lemma and the
definition of weighted limit.

(ii). Use the identification constructed in the proof of theorem a.6.14.

(iii). For all objects 𝐶 in u�, using claim (ii) and the interchange law for ends
(theorem a.6.17), there are bijections

[u� op × u� , 𝐒𝐞𝐭](Homu� , u�(𝐶, 𝐻)) ≅ ∫(𝑗′,𝑗):u� op×u�
𝐒𝐞𝐭(u� (𝑗′, 𝑗), u�(𝐶, 𝐻(𝑗′, 𝑗)))

≅ ∫𝑗:u� ∫𝑗′:u� op
𝐒𝐞𝐭(u� (𝑗′, 𝑗), u�(𝐶, 𝐻(𝑗′, 𝑗)))

≅ ∫𝑗:u�
u�(𝐶, 𝐻(𝑗, 𝑗))

and these are natural in 𝐶; now apply propositions a.5.13 and a.6.11. ■

a.7 Familial regularity and exactness
Prerequisites. §a.3.

Definition a.7.1. A strict initial object in a category u� is an initial object 0 in
u� such that every morphism 𝑋 → 0 in u� is an isomorphism.

Example a.7.2. The empty set is a strict initial object in 𝐒𝐞𝐭.
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Proposition a.7.3. Let u� be a category with a strict initial object 0.

(i) For any object 𝑌 in u�, the unique morphism 0 → 𝑌 is a monomorphism.

(ii) For any object 𝑌 in u�, 0 → 𝑌 is a strict initial object in the slice category
u�∕𝑌 .

Proof. Obvious. ⧫

Definition a.7.4. Let be a (not necessarily small) regular cardinal. A -ary
extensive category is a category ℰ satisfying the following axioms:

• ℰ has coproducts for -small families of objects (including the empty fam-
ily).

• Given a -small family of objects in ℰ, say (𝐴𝑖 | 𝑖 ∈ 𝐼), a morphism 𝑓 :
𝐵 → ∐𝑖∈𝐼 𝐴𝑖, and commutative diagrams as below,

𝐵𝑗 𝐵

𝐴𝑗 ∐𝑖∈𝐼 𝐴𝑖

𝑓

where the morphisms 𝐴𝑗 → ∐𝑖∈𝐼 𝐴𝑖 are the coproduct insertions, the
family of morphisms 𝐵𝑗 → 𝐵 is a coproduct cocone if and only if each of
the above commutative diagrams are pullback squares.

An extensive category is an ℵ0-ary extensive category, and an infinitary ex-
tensive category is a -ary extensive category where is the cardinality of the
universe.

Examples a.7.5.
(a) The category 𝐒𝐞𝐭 is an infinitary extensive category.

(b) More generally, if ℰ is a locally cartesian closed category with coproducts
for -small families of objects, then ℰ is a -ary extensive category.

(c) The category 𝐓𝐨𝐩 is an infinitary extensive category but is neither cartesian
closed nor locally cartesian closed.

Proposition a.7.6. Let be a (not necessarily small) regular cardinal. If ℰ is
a -ary extensive category, then for any object 𝐴 in ℰ, the slice category ℰ∕𝐴 is
also a -ary extensive category.
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Proof. This is an immediate consequence of the fact that the projection functor
ℰ∕𝐴 → ℰ creates all colimits and pullbacks. ■

Theorem a.7.7. Let be a (not necessarily small) regular cardinal and let u�
be a category with coproducts for -small families of objects. The following are
equivalent:

(i) u� is a -ary extensive category.

(ii) For any -small family of objects in u�, say (𝑋𝑖 | 𝑖 ∈ 𝐼), the functor

∏
𝑖∈𝐼

u�∕𝑋𝑖
→ u�∕ ∐𝑖∈𝐼 𝑋𝑖

induced by ∐𝑖∈𝐼 is fully faithful and essentially surjective on objects.

Proof. See Proposition 2.14 in [Carboni, Lack, and Walters, 1993]. □

Proposition a.7.8. Let u� be a category with an initial object 0. The following
are equivalent:

(i) 0 is a strict initial object in u�.

(ii) The slice category u�∕0 is equivalent to the terminal category 𝟙.

(iii) For any morphism 𝑓 : 𝑋 → 𝑌 , the following diagram is a pullback square:

0 0

𝑋 𝑌

id

𝑓

Proof. (i) ⇒ (ii). If 𝑓 : 𝑋 → 0 is an object in u�∕0, then 𝑓 is an isomorphism in
u�, and 𝑋 is also an initial object in u�. Thus, any two objects in u�∕0 are connected
by a unique isomorphism, and the unique functor u�∕0 → 𝟙 is fully faithful and
surjective on objects, with quasi-inverse the functor 𝟙 → u�∕0 sending the unique
object in 𝟙 to the object id : 0 → 0.

(ii) ⇒ (i), (i) ⇒ (iii). Obvious.

(iii) ⇒ (i). Take 𝑌 = 0; then 0 → 𝑋 must be an isomorphism with 𝑓 : 𝑋 → 0
as its inverse. ■
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Corollary a.7.9. Initial objects in extensive categories are strict.

Proof. The second axiom in the case where 𝐼 = ∅ says that the initial object is
preserved by pullbacks. ■

Definition a.7.10. Let u� be a category.

• An extremal epimorphism in u� is an epimorphism 𝑒 in u� such that, for
any morphisms 𝑚 and 𝑧 in u�, such that 𝑒 = 𝑚 ∘ 𝑧, if 𝑚 is a monomorphism
in u�, then 𝑚 is an isomorphism.

• A regular epimorphism in u� is a morphism 𝑒 in u� for which there exist
morphisms 𝑓0, 𝑓1 in u� such that 𝑒 is their coequaliser in u�.

• An effective epimorphism in u� is a morphism 𝑒 in u� such that 𝑒 has a
kernel pair in u� and is their coequaliser in u�.

Proposition a.7.11. Let u� be a category and let 𝑒 be a morphism in u�. Consider
the following statements:

(i) 𝑒 is an effective epimorphism.

(ii) 𝑒 is a regular epimorphism.

(iii) 𝑒 is a strong epimorphism.

(iv) 𝑒 is an extremal epimorphism.

(v) 𝑒 is an epimorphism.

We always have the implications (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (iv), and (iv) ⇒ (v);
if u� has kernel pairs, then (ii) ⇒ (i); and if u� has pullbacks of monomorphisms,
then (iv) ⇒ (iii).

Proof. (i) ⇒ (ii), (iv) ⇒ (v). Immediate.

(ii) ⇒ (iii). Suppose 𝑒 : 𝑍 → 𝑊 is a coequaliser for 𝑓0, 𝑓1 : 𝑇 → 𝑍 in u�, and
consider a commutative diagram of the form below in u�:

𝑍 𝑋

𝑊 𝑌

𝑒

𝑧

𝑚

𝑤
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It is clear that 𝑒 : 𝑍 → 𝑊 is an epimorphism in u�. If 𝑚 : 𝑋 → 𝑌 is a
monomorphism in u�, then 𝑧 ∘ 𝑓0 = 𝑧 ∘ 𝑓1, so there must exist a unique morphism
ℎ : 𝑊 → 𝑋 in u� such that 𝑧 = ℎ∘𝑒; and 𝑚∘𝑧 = 𝑤∘𝑒, so we must have 𝑚∘ℎ = 𝑤
as well. Thus 𝑒 : 𝑍 → 𝑊 has the required orthogonality property.

(iii) ⇒ (iv). This is the special case where 𝑤 = id; the existence of ℎ such that
𝑚 ∘ ℎ = id implies 𝑚 is both a monomorphism and a split epimorphism, so 𝑚
must be an isomorphism in this case.

(ii) ⇒ (i). Suppose 𝑒 : 𝑍 → 𝑊 is a coequaliser for 𝑓0, 𝑓1 : 𝑇 → 𝑍 in u�.
Let 𝑘0, 𝑘1 : 𝐾 → 𝑍 be a kernel pair for 𝑒 : 𝑍 → 𝑊 . There is then a unique
morphism 𝑟 : 𝑇 → 𝐾 in u� such that 𝑘0 ∘ 𝑟 = 𝑓0 and 𝑘1 ∘ 𝑟 = 𝑓1. Consider
any morphism 𝑧 : 𝑍 → 𝑋 in u� such that 𝑧 ∘ 𝑘0 = 𝑧 ∘ 𝑘1. Then 𝑧 ∘ 𝑓0 = 𝑧 ∘ 𝑓1
as well, so there is a unique morphism ℎ : 𝑊 → 𝑋 such that 𝑧 = ℎ ∘ 𝑒. By
definition, we have 𝑒 ∘ 𝑘0 = 𝑒 ∘ 𝑘1, so it follows that 𝑒 : 𝑍 → 𝑊 is a coequaliser
for 𝑘0, 𝑘1 : 𝐾 → 𝑍 in u� as well.

(iv) ⇒ (iii). Suppose 𝑒 : 𝑍 → 𝑊 is a strong epimorphism in u�, and consider a
commutative diagram of the form below in u�:

𝑍 𝑋

𝑊 𝑌

𝑒

𝑧

𝑚

𝑤

There is then a comparison morphism 𝑍 → 𝑊 ×𝑌 𝑋, and if 𝑚 : 𝑋 → 𝑌 is a
monomorphism in u�, then so is the projection 𝑊 ×𝑌 𝑋 → 𝑊 . Since 𝑒 : 𝑍 → 𝑊
is a strong epimorphism, the projection 𝑊 ×𝑌 𝑋 → 𝑊 must be an isomorphism,
so we obtain a (unique) morphism ℎ : 𝑊 → 𝑋 in u� such that ℎ ∘ 𝑒 = 𝑧 and
𝑚 ∘ ℎ = 𝑤, as required. ■

Definition a.7.12. A regular category is a category u� that satisfies the following
axioms:

• u� has finite limits.

• u� has coequalisers for kernel pairs.

• The class of regular epimorphisms in u� is closed under pullbacks.
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Example a.7.13. 𝐒𝐞𝐭 is a regular category. More generally, any ΣΠ-category[9]

with coequalisers for kernel pairs is a regular category.

Theorem a.7.14. Let u� be a regular category.

(i) Every morphism in u� admits a (regular epi, mono)-factorisation.

(ii) Every extremal epimorphism in u� is a regular epimorphism.

(iii) The class of regular epimorphisms in u� is closed under composition.

Proof. (i). See Theorem 2.1.3 in [Borceux, 1994b].

(ii). Let 𝑓 be an extremal epimorphism in u�, and suppose 𝑓 = 𝑚 ∘ 𝑒 where 𝑚 is a
monomorphism and 𝑒 is a regular epimorphism. Then 𝑚 must be an isomorph-
ism, so 𝑓 is indeed a regular epimorphism. □

Proposition a.7.15. In a regular category:

(i) The class of regular epimorphisms is closed under composition, pullbacks,
and retracts.

(ii) If 𝑔 ∘ 𝑓 is a regular epimorphism, then 𝑔 is also a regular epimorphism.

(iii) The class of regular epimorphisms is closed under finite products.

Proof. (i). Recalling proposition a.7.11, theorem a.7.14 implies that strong epi-
morphisms in a regular category are the same as regular epimorphisms, so we
may apply proposition a.3.17.

(ii). Similarly, we may apply proposition a.3.18.

(iii). Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be regular epimorphisms in a regular
category. Then 𝑓 × 𝑔 = (𝑓 × id𝑊 ) ∘ (id𝑋 × 𝑔), and both 𝑓 × id𝑊 and id𝑋 × 𝑔
are regular epimorphisms (because the class of regular epimorphisms is closed
under pullbacks), so their composite is a regular epimorphism as well. ■

[9] See definition a.2.18.
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Definition a.7.16. A weak pullback square in a regular category u� is a com-
mutative diagram in u�, say

𝑍 𝑋

𝑊 𝑌
such that the comparison morphism 𝑍 → 𝑊 ×𝑌 𝑋 is a regular epimorphism.

Lemma a.7.17. Let u� be a regular category, and consider a commutative dia-
gram in u� of the form below:

𝑋″ 𝑋′ 𝑋

𝑌 ″ 𝑌 ′ 𝑌

(i) If the two squares are weak pullback squares in u�, then the outer rectangle
is a weak pullback diagram in u�.

(ii) If the right square is an ordinary pullback square and outer rectangle is
weak pullback diagram in u�, then the left square is a weak pullback square
in u�.

Proof. (i). First, form the following pullback diagram in u�:

𝑇 𝑌 ″ ×𝑌 𝑋

𝑋′ 𝑌 ′ ×𝑌 𝑋

Since 𝑋′ → 𝑌 ′ ×𝑌 𝑋 is a regular epimorphism, so is 𝑇 → 𝑌 ″ ×𝑌 𝑋. Next, form
a pullback diagram in u� of the form below:

𝑆 𝑇

𝑋″ 𝑌 ″ ×𝑌 ′ 𝑋′

Since 𝑋″ → 𝑌 ″ ×𝑌 ′ 𝑋′ is a regular epimorphism, so is 𝑆 → 𝑇 . We thus
obtain a regular epimorphism 𝑆 → 𝑌 ″ ×𝑌 𝑋 that factors through the comparison
morphism 𝑋″ → 𝑌 ″ ×𝑌 𝑋, so we may use proposition a.7.15 to deduce that
𝑋″ → 𝑌 ″ ×𝑌 𝑋 is a regular epimorphism.
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(ii). Start by forming the following pullback diagram in u�:

𝑇 𝑌 ″ ×𝑌 ′ 𝑋′

𝑋″ 𝑌 ″ ×𝑌 𝑋

Since 𝑋″ → 𝑌 ″ ×𝑌 𝑋 is a regular epimorphism, so is 𝑇 → 𝑌 ″ ×𝑌 ′ 𝑋′. On the
other hand, we have a commutative diagram of the form below in u�,

𝑌 ″ ×𝑌 𝑋 𝑋′ 𝑋

𝑌 ″ 𝑌 ′ 𝑌

so 𝑇 → 𝑌 ″ ×𝑌 ′ 𝑋′ factors through the comparison morphism 𝑋″ → 𝑌 ″ ×𝑌 ′ 𝑋′.
Thus, 𝑋″ → 𝑌 ″ ×𝑌 ′ 𝑋′ is a regular epimorphism, as required. ■

Definition a.7.18. A regular functor (or Barr-exact functor) is a functor between
regular categories that preserves finite limits and regular epimorphisms.

Remark a.7.19. By proposition a.7.11, a regular functor is the same thing as a
functor between regular categories that preserves finite limits and coequalisers
of kernel pairs. Thus, a regular functor between abelian categories automatically
preserves finite colimits.

Definition a.7.20. An exact fork in a category u� is a diagram in u� of the form
below,

𝑋 𝑌 𝑍
𝑓0

𝑓1

𝑔

where 𝑔 : 𝑌 → 𝑍 is a coequaliser for 𝑓0, 𝑓1 : 𝑋 → 𝑌 in u� and 𝑓0, 𝑓1 : 𝑋 → 𝑌
is a kernel pair for 𝑔 : 𝑌 → 𝑍 in u�.

Theorem a.7.21 (Regular embedding theorem). Let u� be a small regular cat-
egory and let ℰ be the full subcategory of [u� op, 𝐒𝐞𝐭] spanned by those presheaves
u� op → 𝐒𝐞𝐭 that send exact forks in u� to equaliser diagrams in 𝐒𝐞𝐭.

(i) ℰ is a reflective subcategory of [u� op, 𝐒𝐞𝐭], and the reflector [u� op, 𝐒𝐞𝐭] → ℰ
preserves finite limits.
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(ii) The Yoneda embedding h• : u� → [u� op, 𝐒𝐞𝐭] factors through the inclusion
ℰ ↪ [u� op, 𝐒𝐞𝐭], and the resulting functor u� → ℰ is fully faithful, regular,
and preserves all limits.

Proof. (i). This follows from the fact that ℰ is the category of sheaves for a Gro-
thendieck topology on u�: see Lemma 2.7.2 in [Borceux, 1994b] and Theorem
3.3.12 in [Borceux, 1994c].

(ii). See Theorem 2.7.3 in [Borceux, 1994b]. □

Theorem a.7.22 (Barr). For each small regular category u�, there exist a set 𝐵
and a conservative regular functor u� → 𝐒𝐞𝐭𝐵.

Proof. See Theorem 1.6 in [Barr, 1971, Ch. III] or Corollary 1.5.4 in [Johnstone,
2002, Part D]. □

Definition a.7.23.
• An effective equivalence relation in a category u� is an (internal) equival-

ence relation in u� that appears as part of an exact fork in u�, i.e. is a kernel
pair for an effective epimorphism in u�.

• An effective regular category (or Barr-exact category) is a regular cat-
egory in which all (internal) equivalence relations are effective.

Remark a.7.24. A regular category with coequalisers for all parallel pairs of
morphisms is automatically an effective regular category, but effective regular
categories need not have coequalisers in general.

Lemma a.7.25. Let u� be an effective regular category. Given a parallel pair
of morphisms in u�, say 𝑝0, 𝑝1 : 𝑋 → 𝑌 , if the regular image of the morphism
⟨𝑝0, 𝑝1⟩ : 𝑋 → 𝑌 × 𝑌 defines an equivalence relation 𝑅 on 𝑌 , then 𝑝0, 𝑝1 :
𝑋 → 𝑌 have a coequaliser in u�, and the kernel pair of the coequaliser is the
equivalence relation 𝑅.

Proof. By definition of 𝑅, there exist a regular epimorphism 𝑒 : 𝑋 → 𝑅 and two
projections 𝑟0, 𝑟1 : 𝑅 → 𝑌 such that 𝑝0 = 𝑟0 ∘ 𝑒 and 𝑝1 = 𝑟1 ∘ 𝑒. Let 𝑞 : 𝑌 → 𝑍
be the coequaliser of 𝑟0 and 𝑟1 in u�; such exists because u� is an effective regular
category. Note that the kernel pair of 𝑞 : 𝑌 → 𝑍 is 𝑟0, 𝑟1 : 𝑅 → 𝑌 . Now,
𝑞 ∘ 𝑟0 = 𝑞 ∘ 𝑟1, so we must have 𝑞 ∘ 𝑝0 = 𝑞 ∘ 𝑝1 as well; but if 𝑓 : 𝑌 → 𝑇 is
any morphism in u� such that 𝑓 ∘ 𝑝0 = 𝑓 ∘ 𝑝1, then we must have 𝑓 ∘ 𝑞0 = 𝑓 ∘ 𝑞1
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(because 𝑒 : 𝑋 → 𝑅 is an epimorphism), and so there is a unique morphism
̄𝑓 : 𝑍 → 𝑇 such that ̄𝑓 ∘ 𝑞 = 𝑓 . Thus, 𝑞 : 𝑌 → 𝑍 is also the coequaliser of 𝑝0

and 𝑝1 in u�. ■

Definition a.7.26. Let be a (not necessarily small) regular cardinal. A -ary
pretopos is a category that is both -ary extensive and effective regular. A
𝜎-pretopos is an ℵ1-ary pretopos.

Proposition a.7.27. Let be a (not necessarily small) regular cardinal. A -ary
pretopos is a (positive) -ary coherent category.

Proof. See Theorem 5.15 in [Shulman, 2012]. □

Remark a.7.28. The above proposition implies that our definition of ‘pretopos’
agrees with the one given by Johnstone [2002, Part A, §1.4].

Proposition a.7.29. Any epimorphism in a pretopos is a regular epimorphism.

Proof. See Corollary 1.4.9 in [Johnstone, 2002, Part A]. □

Proposition a.7.30.
(i) Every 𝜎-pretopos has coequalisers for all parallel pairs; hence, they have

colimits for all countable diagrams.

(ii) Every regular functor between 𝜎-pretoposes that preserves coproducts for
countable families also preserves coequalisers.

Proof. (i). See Lemma 1.4.19 in [Johnstone, 2002, Part A].

(ii). See Lemma 2.5.7 in [Johnstone, 2002, Part A]. □

Proposition a.7.31. Let be a small regular cardinal. If u� is a small -ary pre-
topos, then there exist a Grothendieck topos ℰ and a fully faithful regular functor
u� → ℰ that preserves coproducts for -small families of objects. Moreover, if
is uncountable, then the embedding u� → ℰ also preserves coequalisers.

Proof. By Theorem 5.15 in [Shulman, 2012], or Example 2.1.11(b) in [Johnstone,
2002, Part A], we may take ℰ to be the category of sheaves for the -ary coherent
topology on u�; then apply proposition a.7.30. □

Theorem a.7.32 (Deligne). For each small pretopos u�, there exist a set 𝐵 and
a conservative regular functor u� → 𝐒𝐞𝐭𝐵 that preserves coproducts for finite
families of objects.
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Proof. See Proposition 9.0 in [SGA 4b, Exposé VI], Corollary 3 in [ML–M,
Ch. IX, §11], or Proposition 3.3.13 in [Johnstone, 2002, Part D]. □
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B

Higher generalities

b.1 Monoidal categories
Standard references for monoidal categories include [CWM, Ch. VII and Ch. XI]
and [Kelly, 2005, Ch. 1]. To fix notation, we will quickly review the main defin-
itions in the theory of monoidal categories.

Definition b.1.1. A strict monoidal category is a category u� together with an
object 𝐼 and a functor ⊗ : u� × u� → u� satisfying the following axioms:

• (Left unit). 𝐼 ⊗ (−) = idu� .

• (Right unit). (−) ⊗ 𝐼 = idu� .

• (Associativity). For all objects 𝑋, 𝑌 , and 𝑍 in u�,

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 = 𝑋 ⊗ (𝑌 ⊗ 𝑍)

and similarly for morphisms in u�.

𝐼 is called the monoidal unit, and ⊗ is called the monoidal product.

In short, a strict monoidal category is an internal monoid in the metacategory
of all categories.

Example b.1.2. For any category u�, the endofunctor category [u�, u�] is a strict
monoidal category with idu� as the monoidal unit and endofunctor composition
as the monoidal product.
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Despite the above example, strict monoidal categories turn out to be less use-
ful than one might hope: not even 𝐒𝐞𝐭 equipped with the usual cartesian product
is a strict monoidal category.[1] The problem is in the equations we have imposed
in the axioms above: in naturally-occurring examples, we do not get identities
but only natural isomorphisms. This observation led Bénabou [1963] to propose
the following notion instead:

Definition b.1.3. A monoidal category is a category u� together with an object
𝐼 , a functor (−) ⊗ (−) : u� × u� → u�, and three natural isomorphisms 𝞴, 𝞺, and
𝞪,[2] of type

𝞴𝑋 : 𝐼 ⊗ 𝑋
≅
→ 𝑋

𝞺𝑋 : 𝑋 ⊗ 𝐼
≅
→ 𝑋

𝞪𝑋,𝑌 ,𝑍 : (𝑋 ⊗ 𝑌 ) ⊗ 𝑍
≅
→ 𝑋 ⊗ (𝑌 ⊗ 𝑍)

such that the following diagrams commute for all choices of objects in u�:

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍))

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍) 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝞪𝑊 ,𝑋⊗𝑌 ,𝑍

𝞪𝑊 ⊗𝑋,𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗id𝑍

id𝑊 ⊗𝞪𝑋,𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗𝑍

(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌 )

𝑋 ⊗ 𝑌
𝞺𝑋⊗id𝑌

𝞪𝑋,𝐼,𝑌

id𝑋⊗𝞴𝑌

The natural isomorphisms 𝞴, 𝞺, and 𝞪 are called, respectively, the left unitor,
right unitor, and associator of the monoidal category u�.

Remark b.1.4. Since 𝞴, 𝞺, and 𝞪 are natural isomorphisms, a monoidal structure
on u� induces a monoidal structure on u� op. Less obviously, we can define a mon-
oidal category u� rev whose underlying category is the same as u�, but 𝑋 ⊗rev 𝑌 =
𝑌 ⊗ 𝑋, 𝞴rev = 𝞺, 𝞺rev = 𝞴, and 𝞪 rev = 𝞪−1.

[1] In fact, even if we identify all isomorphic objects, there is still a problem: see the closing remarks
in [CWM, Ch. VII, §1].

[2] Beware: Mac Lane [CWM, Ch. VII] uses the opposite convention for 𝞪.
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¶ b.1.5. A fairly non-trivial theorem of Mac Lane [1963] and Kelly [1964]
essentially states that these two axioms are enough to prove that “all diagrams
involving only 𝞴, 𝞺, and 𝞪 commute”. For example, using the pentagon axiom
and the triangle axiom, we may derive

(𝐼 ⊗ 𝑋) ⊗ 𝑌 𝐼 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ 𝑌
𝞴𝑋⊗id𝑌

𝞪𝐼,𝑋,𝑌

𝞴𝑋⊗𝑌

from which the equation (!) below can be obtained:

𝞴𝐼 = 𝞺𝐼

Definition b.1.6. Let u� and u� be monoidal categories.

• A lax monoidal functor u� → u� consists of a functor 𝐹 : u� → u� of the
underlying categories, together with a morphism 𝞰 : 𝐼u� → 𝐹 𝐼u� in u� and
a natural transformation 𝞵 of type 𝐹 (−) ⊗u� 𝐹 (−) ⇒ 𝐹 (− ⊗u� −) making
these diagrams commute:

𝐼u� ⊗u� 𝐹 𝑋 𝐹 𝐼u� ⊗u� 𝐹 𝑋

𝐹 𝑋 𝐹 (𝐼u� ⊗u� 𝑋)

𝞴𝐹 𝑋

𝞰⊗u�id𝐹 𝑋

𝞵𝐼u� ,𝑋

𝐹 𝞴𝑋

𝐹 𝑋 ⊗u� 𝐼u� 𝐹 𝑋 ⊗u� 𝐹 𝐼u�

𝐹 𝑋 𝐹 (𝑋 ⊗u� 𝐼u�)

𝞺𝐹 𝑋

id𝐹 𝑋⊗u�𝞰

𝞵𝑋,𝐼u�

𝐹 𝞺𝑋

(𝐹 𝑋 ⊗u� 𝐹 𝑌 ) ⊗u� 𝐹 𝑍 𝐹 𝑋 ⊗u� (𝐹 𝑌 ⊗u� 𝐹 𝑍)

𝐹 (𝑋 ⊗u� 𝑌 ) ⊗u� 𝐹 𝑍 𝐹 𝑋 ⊗u� 𝐹 (𝑌 ⊗u� 𝑍)

𝐹 ((𝑋 ⊗u� 𝑌 ) ⊗u� 𝑍) 𝐹 (𝑋 ⊗u� (𝑌 ⊗u� 𝑍))

𝞵𝑋,𝑌 ⊗u�id𝐹 𝑍

𝞪𝐹 𝑋,𝐹 𝑌 ,𝐹 𝑍

id𝐹 𝑋⊗u�𝞵𝑌 ,𝑍

𝞵𝑋⊗u�𝑌 ,𝑍 𝞵𝑋,𝑌 ⊗u�𝑍

𝐹 𝞪𝑋,𝑌 ,𝑍

• An oplax monoidal functor u� → u� is a lax monoidal functor u� op → u�op.

• A strong monoidal functor is a lax monoidal functor such that 𝞰 and 𝞵
are isomorphisms.
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B. Higher generalities

• A strict monoidal functor is a lax monoidal functor such that 𝞰 and 𝞵 are
identities.

Definition b.1.7. Let u� and u� be monoidal categories and let 𝐹 , 𝐹 ′ : u� → u� be
lax monoidal functors. A monoidal natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′ is a
natural transformation making the following diagrams commute:

𝐼u� 𝐹 𝐼u�

𝐼u� 𝐹 ′𝐼u�

id

𝞰

𝜑𝐼u�

𝞰′

𝐹 𝑋 ⊗u� 𝐹 𝑌 𝐹 (𝑋 ⊗u� 𝑌 )

𝐹 ′𝑋 ⊗u� 𝐹 ′𝑌 𝐹 ′(𝑋 ⊗u� 𝑌 )

𝜑𝑋⊗u�𝜑𝑌

𝞵𝑋,𝑌

𝜑𝑋⊗u�𝑌

𝞵′
𝑋,𝑌

Remark b.1.8. Note that if u� and u� are both strict monoidal categories, then the
diagrams above simplify to more familiar ones:

𝐹 𝑋 𝐹 𝐼u� ⊗u� 𝐹 𝑋

𝐹 𝑋
id𝐹 𝑋

𝞰⊗u�id𝐹 𝑋

𝞵𝐼u� ,𝑋

𝐹 𝑋 𝐹 𝑋 ⊗u� 𝐹 𝐼u�

𝐹 𝑋
id𝐹 𝑋

id𝐹 𝑋⊗u�𝞰

𝞵𝑋,𝐼u�

𝐹 𝑋 ⊗u� 𝐹 𝑌 ⊗u� 𝐹 𝑍

𝐹 (𝑋 ⊗u� 𝑌 ) ⊗u� 𝐹 𝑍 𝐹 𝑋 ⊗u� 𝐹 (𝑌 ⊗u� 𝑍)

𝐹 (𝑋 ⊗u� 𝑌 ⊗u� 𝑍)

𝞵𝑋,𝑌 ⊗u�id𝐹 𝑍 id𝐹 𝑋⊗u�𝞵𝑌 ,𝑍

𝞵𝑋⊗u�𝑌 ,𝑍 𝞵𝑋,𝑌 ⊗u�𝑍

Thus, we see one reason for defining lax monoidal functors as we have done: if
𝟙 is the terminal category, then a lax monoidal functor 𝟙 → u� is the same thing
as an internal monoid[3] in u�, and a monoidal natural transformation of such lax
monoidal functors is the same thing as a homomorphism of internal monoids.

Many natural examples of monoidal categories have a “commutative” mon-
oidal product. For example, the cartesian product in any category satisfies 𝑋 ×
𝑌 ≅ 𝑌 × 𝑋. As usual, to do anything useful, we must demand not only the
existence of such isomorphisms but also that they be natural and coherent in the
following sense:

[3] — in the monoidal category sense, of course.
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b.1. Monoidal categories

Definition b.1.9. A braided monoidal category is a monoidal category u� to-
gether with a natural isomorphism 𝞬 of type

𝞬𝑋,𝑌 : 𝑋 ⊗ 𝑌
≅
→ 𝑌 ⊗ 𝑋

such that the following diagrams commute for all choices of objects in u�:

𝑋 ⊗ (𝑌 ⊗ 𝑍)

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 (𝑌 ⊗ 𝑍) ⊗ 𝑋

(𝑌 ⊗ 𝑋) ⊗ 𝑍 𝑌 ⊗ (𝑍 ⊗ 𝑋)

𝑌 ⊗ (𝑋 ⊗ 𝑍)

𝞬𝑋,𝑌 ⊗𝑍

𝞬𝑋,𝑌 ⊗id𝑍

𝞪𝑋,𝑌 ,𝑍

𝞪𝑌 ,𝑍,𝑋

𝞪𝑌 ,𝑋,𝑍 id𝑌 ⊗𝞬𝑋,𝑍

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍

𝑋 ⊗ (𝑌 ⊗ 𝑍) 𝑍 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ (𝑍 ⊗ 𝑌 ) (𝑍 ⊗ 𝑋) ⊗ 𝑌

(𝑋 ⊗ 𝑍) ⊗ 𝑌

𝞬𝑋⊗𝑌 ,𝑍

id𝑋⊗𝞬𝑌 ,𝑍

𝞪−1
𝑋,𝑌 ,𝑍

𝞪−1
𝑌 ,𝑍,𝑋

𝞪−1
𝑌 ,𝑋,𝑍

𝞬𝑋,𝑍⊗id𝑌

𝐼 ⊗ 𝑋 𝑋 ⊗ 𝐼

𝑋
𝞴𝑋

𝞬𝐼,𝑋

𝞺𝑋

The natural isomorphism 𝞬 is called the braiding of u�. A symmetric monoidal
category is a braided monoidal category u� satisfying the following additional
axiom:

𝞬 ∙ 𝞬 = idu�

A braided / symmetric strict monoidal category is a braided / symmetric mon-
oidal category that is strict as a monoidal category.
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B. Higher generalities

There is a coherence theorem for braided and symmetric monoidal categories
as well, but in the braided case it is somewhat subtle compared to the coherence
theorem for monoidal categories – we cannot be so cavalier as to say that “all dia-
grams commute” in a braided monoidal category. Instead, just as before, every
braided / symmetric monoidal category is equivalent to a strict one via functors
respecting the various structural isomorphisms.

Definition b.1.10. Let u� and u� be braided monoidal categories. A lax / oplax /
strong / strict braided monoidal functor u� → u� is a lax / oplax / strong / strict
monoidal functor 𝐹 : u� → u� making the diagram below commute:

𝐹 𝑋 ⊗u� 𝐹 𝑌 𝐹 (𝑋 ⊗u� 𝑌 )

𝐹 𝑌 ⊗u� 𝐹 𝑋 𝐹 (𝑌 ⊗u� 𝑋)

𝞬𝐹 𝑋,𝐹 𝑌

𝞵𝑋,𝑌

𝐹 𝞬𝑋,𝑌

𝞵𝑌 ,𝑋

Remark b.1.11. The appropriate notion of natural transformation for lax braided
monoidal functors is precisely that of a monoidal natural transformation: we
need not impose any extra conditions.

Here is an example of an equation that does not necessarily hold in a braided
monoidal category, even though they have the same domain and codomain:

𝞬𝑋,𝑌
?
= 𝞬−1

𝑌 ,𝑋

Indeed, if it were true, then every braided monoidal category would be a sym-
metric monoidal category! On the other hand, in a symmetric strict monoidal
category, it is true that any two composites of braiding operations with the same
domain and codomain are equal – provided each object is identified with a differ-
ent letter, so that we do not get absurdities like this:

𝞬𝑋,𝑋
?
= id𝑋⊗𝑋

A similar restriction applies to our claim that “all diagrams commute” in a mon-
oidal category, so it is not unreasonable to say the same is true in a symmetric
monoidal category.

We pause briefly to indicate an important special case of a symmetric mon-
oidal category.
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b.1. Monoidal categories

Definition b.1.12. A cartesian monoidal category is a category with products
for all finite families of objects, and a cartesian monoidal functor is a functor
between cartesian monoidal categories that preserves all finite products.

Proposition b.1.13.
(i) A category with all finite products is automatically a symmetric monoidal

category, with the terminal object 1 as its monoidal unit and the cartesian
product × as the monoidal product.

(ii) If u� and u� are two categories with finite products regarded as symmetric
monoidal categories, then every functor u� → u� can be equipped with a
canonical oplax braided monoidal functor structure.

(iii) A cartesian monoidal functor is canonically equipped with the structure
of a strong braided monoidal functor.

Proof. (i). The verification of the axioms is straightforward and left to the reader
as an exercise.

(ii). Let 𝐹 : u� → u� be a functor. The universal property of the terminal object
gives a unique morphism 𝞮 : 𝐹 1 → 1 in u�, and the universal property of binary
products gives a canonical morphism 𝞭𝑋,𝑌 : 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 . It can be
shown that the diagrams below commute,

𝐹 (1u� ×u� 𝑋) 𝐹 1u� ×u� 𝐹 𝑋

𝐹 𝑋 1u� ×u� 𝐹 𝑋

𝐹 𝞴𝑋

𝞭1u� ,𝑋

𝞮×u�id𝐹 𝑋

𝞴𝐹 𝑋

𝐹 (𝑋 ×u� 1u�) 𝐹 𝑋 ×u� 𝐹 1u�

𝐹 𝑋 𝐹 𝑋 ×u� 1u�

𝐹 𝞺𝑋

𝞭𝑋,1u�

id𝐹 𝑋×u�𝞮

𝞺𝐹 𝑋

𝐹 ((𝑋 ×u� 𝑌 ) ×u� 𝑍) 𝐹 (𝑋 ×u� (𝑌 ×u� 𝑍))

𝐹 (𝑋 ×u� 𝑌 ) ×u� 𝐹 𝑍 𝐹 𝑋 ×u� 𝐹 (𝑌 ×u� 𝑍)

(𝐹 𝑋 ×u� 𝐹 𝑌 ) ×u� 𝐹 𝑍 𝐹 𝑋 ×u� (𝐹 𝑌 ×u� 𝐹 𝑍)

𝞭𝑋×u�𝑌 ,𝑍

𝐹 𝞪𝑋,𝑌 ,𝑍

𝞭𝑋,𝑌 ×u�𝑍

𝞭𝑋,𝑌 ×u�id𝐹 𝑍 id𝐹 𝑋×u�𝞭𝑌 ,𝑍

𝞪𝐹 𝑋,𝐹 𝑌 ,𝐹 𝑍
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B. Higher generalities

𝐹 (𝑋 ×u� 𝑌 ) 𝐹 𝑋 ×u� 𝐹 𝑌

𝐹 (𝑌 ⊗u� 𝑋) 𝐹 𝑌 ⊗u� 𝐹 𝑋

𝐹 𝞬𝑋,𝑌

𝞭𝑋,𝑌

𝞬𝐹 𝑋,𝐹 𝑌

𝞭𝑌 ,𝑋

making 𝐹 into an oplax braided monoidal functor u� → u�.

(iii). A functor is cartesian monoidal precisely if 𝞮 and 𝞭 as defined above are
isomorphisms. ◊

Definition b.1.14. Let 𝑌 and 𝑍 be objects in a monoidal category u�.

• A right internal hom object for 𝑌 and 𝑍 is an object Hom(𝑌 , 𝑍) in u�
together with a morphism ev𝑌 ,𝑍 : Hom(𝑌 , 𝑍) ⊗ 𝑌 → 𝑍 having the
following universal property: for all morphisms 𝑓 : 𝑋 ⊗ 𝑌 → 𝑍 in
u�, there is a unique morphism ̃𝑓 : 𝑋 → Hom(𝑌 , 𝑍) in u� such that
ev𝑌 ,𝑍 ∘( ̃𝑓 ⊗ id𝑌 ) = 𝑓 ; equivalently, Hom(𝑌 , 𝑍) is an object in u� equipped
with bijections

u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑋, Hom(𝑌 , 𝑍))

that are natural for each object 𝑋 in u�. We may also write [𝑌 , 𝑍] or 𝑌 ⊸𝑍
for a right internal hom object for 𝑌 and 𝑍.

• A left internal hom object for 𝑌 and 𝑍 is a right internal hom object
𝑌 ⋔ 𝑍 in the reverse monoidal structure on u�; equivalently, 𝑌 ⋔ 𝑍 is an
object equipped with bijections

u�(𝑌 ⊗ 𝑋, 𝑍) ≅ u�(𝑋, 𝑌 ⋔ 𝑍)

that are natural for each object 𝑋 in u�. We may also write 𝑍𝑌 or 𝑍 ⟜ 𝑌
for a left internal hom object for 𝑌 and 𝑍.

• A right-closed monoidal category is a monoidal category that has right
internal hom object for all pairs of objects.

• A left-closed monoidal category is a monoidal category that has left in-
ternal hom objects for all pairs of objects.

• A biclosed monoidal category is a monoidal category that is both left-
closed and right-closed.
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b.2. Enriched categories

Note that in a symmetric monoidal category, 𝑌 ⋔𝑍 and Hom(𝑌 , 𝑍) are naturally
isomorphic if they exist; a symmetric monoidal closed category is a symmetric
monoidal category that is biclosed.

Proposition b.1.15. Let u� be a right-closed monoidal category.

(i) The assignment (𝑌 , 𝑍) ↦ Hom(𝑌 , 𝑍) extends to a functor u� op × u� → u�
making the bijection

u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑋, Hom(𝑌 , 𝑍))

natural in 𝑋, 𝑌 , and 𝑍.

(ii) For each object 𝑌 , we have an adjunction

(−) ⊗ 𝑌 ⊣ Hom(𝑌 , −) : u� → u�

whose counit is ev𝑌 ,− : Hom(𝑌 , −) ⊗ 𝑌 ⇒ idu� .

(iii) If 𝐼 is the monoidal unit of u�, then there is a bijection

u�(𝑌 , 𝑍) ≅ u�(𝐼, Hom(𝑌 , 𝑍))

that is natural in 𝑌 and 𝑍.

Proof. (i). This is a straightforward example of an adjunction with a parameter.[4]

(ii). This is clear from the definition of Hom(𝑌 , 𝑍) and ev𝑌 ,−.

(iii). The left unitor 𝞴𝑌 : 𝑌
≅
→ 𝐼 ⊗ 𝑌 induces the required bijection. ■

Remark b.1.16. A cartesian monoidal category is a closed symmetric monoidal
category if and only if it is a cartesian closed category (definition a.2.3).

b.2 Enriched categories
Prerequisites. §0.1, b.1.

In this section, we use the explicit universe convention.

[4] See [CWM, Ch. IV, §7].
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B. Higher generalities

Definition b.2.1. Let u� be a monoidal category. A u�-enriched category u� con-
sists of the following data:

• A set of objects, ob u�.

• For each pair (𝐴, 𝐵) of elements of ob u�, an object u�(𝐴, 𝐵) in u� .

• For each element 𝐴 of ob u�, a morphism 𝑒𝐴 : 𝐼 → u�(𝐴, 𝐴) in u� .

• For each triple (𝐴, 𝐵, 𝐶) of elements of ob u�, a morphism

𝑐𝐶,𝐵,𝐴 : u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) → u�(𝐴, 𝐶)

such that the following diagrams in u� commute,

(L)
𝐼 ⊗ u�(𝐴, 𝐵) u�(𝐵, 𝐵) ⊗ u�(𝐴, 𝐵)

u�(𝐵, 𝐴)
𝞴

𝑒𝐵⊗id

𝑐𝐵,𝐵,𝐴

(R)
u�(𝐴, 𝐵) ⊗ 𝐼 u�(𝐴, 𝐵) ⊗ u�(𝐴, 𝐴)

u�(𝐴, 𝐵)
𝞺

id⊗𝑒𝐴

𝑐𝐵,𝐴,𝐴

(A)
u�(𝐶, 𝐷) ⊗ u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) u�(𝐶, 𝐷) ⊗ u�(𝐴, 𝐶)

u�(𝐵, 𝐷) ⊗ u�(𝐴, 𝐵) u�(𝐴, 𝐷)

𝑐𝐷,𝐶,𝐵⊗id

id⊗𝑐𝐶,𝐵,𝐴

𝑐𝐷,𝐶,𝐴

𝑐𝐷,𝐵,𝐴

where in the last diagram we have suppressed the associator of u� .

Definition b.2.2. Let 𝐔 be a pre-universe and let u� be a locally 𝐔-small mon-
oidal category.

• A 𝐔-small u�-enriched category is a u�-category u� where ob u� is a 𝐔-set.

• A locally 𝐔-small u�-enriched category is a u�-category where ob u� is a
𝐔-class.
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b.2. Enriched categories

Definition b.2.3. Let u� be a monoidal category and let u� be a u�-enriched cat-
egory. The underlying ordinary category of u� is the category u� where:

• The objects in u� are the objects in u�.

• The morphisms 𝐴 → 𝐵 in u� are the morphisms 𝐼 → u�(𝐴, 𝐵) in u� .

• For each object 𝐴, id𝐴 : 𝐴 → 𝐴 is 𝑒𝐴 : 𝐼 → u�(𝐴, 𝐴) regarded as a
morphism in u�.

• Given morphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 in u� corresponding to
morphisms 𝑓 : 𝐼 → u�(𝐴, 𝐵) and 𝑔 : 𝐼 → u�(𝐵, 𝐶) in u� , the composite
𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is the morphism in u� corresponding to 𝑐𝐶,𝐵,𝐴 ∘ (𝑔 ⊗ 𝑓) ∘ 𝞴−1

𝐼
in u� .

We refer to u� as a u�-enrichment of u� if u� is (isomorphic to) the underlying
ordinary category of u�.

Remark b.2.4. Given a u�-enriched category u�, there is an evident u� rev-enriched
category u� op whose underlying ordinary category is u� op. If we assume u� is a
symmetric monoidal category, we can also identify u� op with a u�-enriched cat-
egory.

Proposition b.2.5. Let u� be a right-closed monoidal category. Then u� is (iso-
morphic to) the underlying category of a u�-enriched category u� where:

• The objects are the objects in u� .

• We have u�(𝐴, 𝐵) = Hom(𝐴, 𝐵).

• For each object 𝐴 in u� , 𝑒𝐴 : 𝐼 → u�(𝐴, 𝐴) is the right adjoint transpose of
𝞴𝐴 : 𝐼 ⊗ 𝐴 → 𝐴.

• For each triple (𝐴, 𝐵, 𝐶) of objects in u� ,

𝑐𝐶,𝐵,𝐴 : u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) → u�(𝐴, 𝐶)

is the right adjoint transpose of the following morphism in u�:

ev𝐵,𝐶 ∘ (id ⊗ ev𝐴,𝐵) ∘ 𝞪 : (u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵)) ⊗ 𝐴 → 𝐶

Proof. Straightforward, if tedious. ⧫
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B. Higher generalities

Definition b.2.6. Let u� be a monoidal category and let u� and u� be u�-enriched
categories. A u�-enriched functor 𝐹 : u� → u� consists of the following data:

• A map 𝐹 : ob u� → ob u�.

• For each pair (𝐴, 𝐵) of objects in u�, a morphism 𝐹 𝐴,𝐵 : u�(𝐴, 𝐵) →
u�(𝐹 𝐴, 𝐹 𝐵), such that the following diagrams in u� commute:

(U)
𝐼 u�(𝐴, 𝐴)

𝐼 u�(𝐹 𝐴, 𝐹 𝐴)

𝑒𝐴

𝐹 𝐴,𝐴

𝑒𝐹 𝐴

(M)
u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) u�(𝐴, 𝐶)

u�(𝐹 𝐵, 𝐹 𝐶) ⊗ u�(𝐹 𝐴, 𝐹 𝐵) u�(𝐹 𝐴, 𝐹 𝐶)

𝐹 𝐵,𝐶⊗𝐹 𝐴,𝐵

𝑐𝐶,𝐵,𝐴

𝐹 𝐴,𝐶

𝑐𝐹 𝐶,𝐹 𝐵,𝐹 𝐴

Remark b.2.7. Every u�-enriched functor 𝐹 : u� → u� defines an underlying
ordinary functor 𝐹 : u� → u� in the obvious way.

Proposition b.2.8. Let u� be a right-closed monoidal category and let u� be a
u�-enriched category. For each object 𝐴 in u�, there is a u�-enriched functor
u�(𝐴, −) : u� → u� where:

• The map of objects is given by 𝐵 ↦ u�(𝐴, 𝐵).

• The morphism u�(𝐴, −)𝐵,𝐶 : u�(𝐵, 𝐶) → u�(u�(𝐴, 𝐵), u�(𝐴, 𝐶)) is the right
adjoint transpose of 𝑐𝐶,𝐵,𝐴 : u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) → u�(𝐴, 𝐶).

Dually, assuming u� is a left-closed monoidal category, for each object 𝐶 in u�,
there is a u� rev-enriched functor u�(−, 𝐶) : u� op → u� rev where:

• The map of objects is given by 𝐵 ↦ u�(𝐵, 𝐶).

• The morphism u�(−, 𝐶)𝐵,𝐴 : u�(𝐴, 𝐵) → u�(u�(𝐵, 𝐶), u�(𝐴, 𝐶)) is the right
adjoint transpose of 𝑐𝐴,𝐵,𝐶 : u�(𝐴, 𝐵) ⊗rev u�(𝐵, 𝐶) → u�(𝐴, 𝐶).

Proof. By adjointness, axiom U corresponds to axiom L, and axiom M corres-
ponds to axiom A. ■
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Definition b.2.9. Let u� be a monoidal category and let 𝐹 , 𝐺 : u� → u� be a
parallel pair of u�-enriched functors. A u�-enriched natural transformation
𝜑 : 𝐹 ⇒ 𝐺 consists of the following data:

• For each object 𝐴 in u�, a morphism 𝜑𝐴 : 𝐼 → u�(𝐹 𝐴, 𝐺𝐴) in u� , such that
the following diagram in u� commutes for all pairs (𝐴, 𝐵) of objects in u�:

𝐼 ⊗ u�(𝐴, 𝐵) u�(𝐹 𝐴, 𝐺𝐴) ⊗ u�(𝐹 𝐴, 𝐹 𝐵)

u�(𝐴, 𝐵) u�(𝐹 𝐴, 𝐺𝐵)

u�(𝐴, 𝐵) ⊗ 𝐼 u�(𝐺𝐴, 𝐺𝐵) ⊗ u�(𝐹 𝐴, 𝐺𝐴)

𝜑𝐴⊗𝐹 𝐴,𝐵

𝑐𝐹 𝐴,𝐹 𝐵,𝐺𝐴𝞴−1

𝞺−1

𝐺𝐴,𝐵⊗𝜑𝐵

𝑐𝐹 𝐴,𝐺𝐴,𝐺𝐵

Remark b.2.10. Every u�-enriched natural transformation 𝜑 : 𝐹 ⇒ 𝐺 defines an
underlying ordinary natural transformation 𝜑 : 𝐹 ⇒ 𝐺 in the obvious way.
Furthermore, there is at most one u�-enriched natural transformation 𝜑 : 𝐹 ⇒ 𝐺
whose underlying ordinary natural transformation is a given natural transform-
ation 𝜑 : 𝐹 ⇒ 𝐺, so being a u�-enriched natural transformation is really just
a property of an ordinary natural transformation. Henceforth, we will identify
u�-enriched natural transformations with their underlying ordinary natural trans-
formations; in particular, we will think of 𝜑𝐴 as a morphism 𝐹 𝐴 → 𝐺𝐴 in u�,
not a morphism 𝐼 → u�(𝐹 𝐴, 𝐺𝐴) in u� .

Definition b.2.11. A u�-enriched natural isomorphism is a u�-enriched natural
transformation whose underlying ordinary natural transformation is a natural iso-
morphism (in the usual sense).

Remark b.2.12. Let 𝐔 be a pre-universe and let u� be a locally 𝐔-small mon-
oidal category. With the definitions above, there is an evident (locally 𝐔-small)
2-category ℭ𝔞𝔱(u�) where:

• The objects are the 𝐔-small u�-enriched categories.

• The morphisms are the u�-enriched functors.

• The 2-cells are the u�-enriched natural transformations.

• Identities and composition are defined in the obvious way.
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This is the 2-category of 𝐔-small u�-enriched categories. There is then an evi-
dent 2-functor ℭ𝔞𝔱(u�) → ℭ𝔞𝔱 sending each u�-enriched category (resp. functor,
natural transformation) to its underlying ordinary category (resp. functor, natural
transformation).
Remark b.2.13. It is not hard to verify that a u�-enriched natural isomorphism is
the same thing as an invertible 2-cell in ℭ𝔞𝔱(u�).

Lemma b.2.14 (Weak Yoneda lemma). Let u� be a right-closed monoidal cat-
egory and let u� be a u�-enriched category. For each object 𝐴 in u� and each
u�-enriched functor 𝐹 : u� → u� , the map 𝜑 ↦ 𝜑𝐴 ∘ 𝑒𝐴 is a bijection between
the set of u�-enriched natural transformations 𝜑 : u�(𝐴, −) ⇒ 𝐹 and the set of
morphisms 𝐼 → 𝐹 𝐴 in u� .

Proof. The proof is similar to that of the classical Yoneda lemma.
First, we show existence. Let 𝑥 : 𝐼 → 𝐹 𝐴 be given. For each object 𝐵 in u�,

let 𝜑𝐶 : u�(𝐴, 𝐵) → 𝐹 𝐵 be the composite

u�(𝐴, 𝐵) u�(𝐴, 𝐵) ⊗ 𝐼 u�(𝐹 𝐴, 𝐹 𝐵) ⊗ 𝐹 𝐴 𝐹 𝐴𝞺−1 𝐹 𝐴,𝐵⊗𝑥 ev𝐹 𝐴,𝐹 𝐵

and observe that axiom U (plus the definition of 𝑒𝐹 𝐴) guarantees that 𝜑𝐴 ∘𝑒𝐴 = 𝑥,
while axiom M implies u�-enriched naturality.

For uniqueness, we note that the morphism

𝑐 ∘ (⌜𝜑𝐵⌝ ⊗ u�(𝐴, −)𝐴,𝐵) : 𝐼 ⊗ u�(𝐴, 𝐵) → u�(u�(𝐴, 𝐴), 𝐹 𝐵)

where ⌜𝜑𝐵⌝ denotes the morphism 𝐼 → u�(u�(𝐴, 𝐵), 𝐹 𝐵) corresponding to 𝜑𝐵 :
u�(𝐴, 𝐵) → 𝐹 𝐵, corresponds under adjunction to the morphism

ev ∘ (id ⊗ ev) ∘ (⌜𝜑𝐵⌝ ⊗ u�(𝐴, −)𝐴,𝐵 ⊗ id) : 𝐼 ⊗ u�(𝐴, 𝐵) ⊗ u�(𝐴, 𝐴) → 𝐹 𝐵

which after a computation is seen to be equal to

𝜑𝐵 ∘ 𝑐 ∘ (𝞴 ⊗ id) : 𝐼 ⊗ u�(𝐴, 𝐵) ⊗ u�(𝐴, 𝐴) → 𝐹 𝐵

but we also have the morphism

𝑐 ∘ (𝐹 ⊗ ⌜𝜑𝐴⌝) : u�(𝐴, 𝐵) ⊗ 𝐼 → u�(u�(𝐴, 𝐴), 𝐹 𝐵)

corresponding under adjunction to

ev ∘ (id ⊗ ev) ∘ (𝐹 ⊗ ⌜𝜑𝐴⌝ ⊗ id) : u�(𝐴, 𝐵) ⊗ 𝐼 ⊗ u�(𝐴, 𝐴) → 𝐹 𝐵
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which is equal to

ev ∘ (𝐹 ⊗ 𝜑𝐴) ∘ (id ⊗ 𝞴) : u�(𝐴, 𝐵) ⊗ 𝐼 ⊗ u�(𝐴, 𝐴) → 𝐹 𝐵

and thus u�-enriched naturality of 𝜑 implies that 𝜑𝐵 : u�(𝐴, 𝐵) → 𝐹 𝐵 must be
defined as in the previous paragraph. ■

Definition b.2.15. Let u� be a symmetric monoidal category and let u� and u� be
u�-enriched categories. The tensor product u� ⊗ u� is the following u�-enriched
category:

• The objects in u� ⊗ u� are pairs (𝐴, 𝐷) where 𝐴 is an object in u� and 𝐷 is
an object in u�.

• For each pair ((𝐴, 𝐷), (𝐵, 𝐸)) of objects in u� ⊗ u�,

(u� ⊗ u�)((𝐴, 𝐷), (𝐵, 𝐸)) = u�(𝐴, 𝐵) ⊗ u�(𝐵, 𝐸)

• For each object (𝐴, 𝐷) in u� ⊗ u�:

𝑒(𝐴,𝐷) = (𝑒𝐴 ⊗ 𝑒𝐷) ∘ 𝞺

• For each triple ((𝐴, 𝐷), (𝐵, 𝐸), (𝐶, 𝐹 )) of objects in u� ⊗ u�,

𝑐(𝐶,𝐹 ),(𝐵,𝐸),(𝐴,𝐷) = (𝑐𝐶,𝐵,𝐴 ⊗ 𝑐𝐹 ,𝐸,𝐷) ∘ (id ⊗ 𝞬 ⊗ id)

where we have suppressed the associator of u� .

We will often abuse notation and write u� ⊗ u� for the underlying ordinary cat-
egory of u� ⊗ u�.

Remark b.2.16. Using the fact that u�(𝐼, −) : u� → 𝐒𝐞𝐭 is a lax monoidal functor,
it is not hard to see that there is a canonical functor u� × u� → u� ⊗ u�, which is
an isomorphism if u� is a cartesian monoidal category.
Remark b.2.17. If u� is a symmetric monoidal category, then ℭ𝔞𝔱(u�) is also a
symmetric monoidal category where the monoidal product is the tensor product
defined above and the monoidal unit is the u�-enriched category 𝕀 with a unique
object ∗ and 𝕀(∗, ∗) = 𝐼 . Note also that there is a natural bijection between the
set of u�-enriched functors 𝕀 → u� and the set of objects in u�.
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Proposition b.2.18. Let u� be a symmetric monoidal category and let u�, u�, and
ℰ be u�-enriched categories.

(i) Given a u�-enriched functor 𝐹 : u� ⊗ u� → ℰ, for each object 𝐴 in u�,
there is a u�-enriched functor 𝐹 (𝐴, −) : u� → ℰ defined by the following
composite,

u� 𝕀 ⊗ u� u� ⊗ u� ℰ𝞴−1 ⌜𝐴⌝⊗id 𝐹

where ⌜𝐴⌝ : 𝕀 → u� is the unique u�-enriched functor sending ∗ in 𝕀 to 𝐴
in u�; and similarly, for each object 𝐷 in u�, there is a u�-enriched functor
𝐹 (−, 𝐷) : u� → ℰ defined by the following composite:

u� u� ⊗ 𝕀 u� ⊗ u� ℰ𝞺−1 id⊗⌜𝐷⌝ 𝐹

Moreover, the following diagram commutes:

u�(𝐴, 𝐵) ⊗ u�(𝐷, 𝐸) ℰ(𝐹 (𝐴, 𝐸), 𝐹 (𝐵, 𝐸)) ⊗ ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐴, 𝐸))

ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐵, 𝐸))

u�(𝐷, 𝐸) ⊗ u�(𝐴, 𝐵) ℰ(𝐹 (𝐵, 𝐷), 𝐹 (𝐵, 𝐸)) ⊗ ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐴, 𝐸))

𝞬

𝐹

𝐹 (−,𝐸)⊗𝐹 (𝐴,−)

𝑐

𝐹 (𝐵,−)⊗𝐹 (−,𝐷)

𝑐

(ii) Conversely, given u�-enriched functors 𝐺𝐴 : u� → ℰ and 𝐻𝐷 : u� → ℰ for
all objects 𝐴 in u� and all objects 𝐷 in u�, if 𝐺𝐴𝐷 = 𝐹 (𝐴, 𝐷) = 𝐻𝐷𝐴 for
all pairs (𝐴, 𝐷) and the following diagram commutes for all (𝐴, 𝐷) and
(𝐵, 𝐸),

u�(𝐴, 𝐵) ⊗ u�(𝐷, 𝐸) ℰ(𝐹 (𝐴, 𝐸), 𝐹 (𝐵, 𝐸)) ⊗ ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐴, 𝐸))

ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐵, 𝐸))

u�(𝐷, 𝐸) ⊗ u�(𝐴, 𝐵) ℰ(𝐹 (𝐵, 𝐷), 𝐹 (𝐵, 𝐸)) ⊗ ℰ(𝐹 (𝐴, 𝐷), 𝐹 (𝐴, 𝐸))

𝞬

𝐻𝐸⊗𝐺𝐴

𝑐

𝐺𝐵⊗𝐻𝐷

𝑐

then there is a unique u�-enriched functor 𝐹 : u� ⊗ u� → ℰ such that
𝐺𝐴 = 𝐹 (𝐴, −) and 𝐻𝐷 = 𝐹 (−, 𝐷).
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Proof. Straightforward. ⧫

Corollary b.2.19. Let u� be a symmetric monoidal closed category and let u� be
a u�-enriched category. Then there is a (unique) u�-enriched functor u�(−, −) :
u� op ⊗ u� → u� with u�(𝐴, −) : u� → u� and u�(−, 𝐵) : u� op → u� as defined
previously.

Proof. This essentially boils down to axiom A. ■

Proposition b.2.20. Let u� be a symmetric monoidal category and let u�, u�, and
ℰ be u�-enriched categories. Given two u�-enriched functors 𝐹 , 𝐺 : u� ⊗ u� → ℰ
and a natural transformation 𝜑 : 𝐹 ⇒ 𝐺, the following are equivalent:

(i) 𝜑 is (the underlying ordinary natural transformation of) a u�-enriched nat-
ural transformation 𝐹 ⇒ 𝐺.

(ii) 𝜑𝐴,• is a u�-enriched natural transformation 𝐹 (𝐴, −) ⇒ 𝐺(𝐴, −) for each
object 𝐴 in u�, and 𝜑•,𝐷 is a u�-enriched natural transformation 𝐹 (−, 𝐷) ⇒
𝐺(−, 𝐷) for each object 𝐷 in u�.

Proof. Straightforward. ⧫

Corollary b.2.21. Let u� be a symmetric monoidal closed category and let 𝐹 :
u� → u� be a u�-enriched functor. Then the morphisms

𝐹 𝐴,𝐵 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵)

constitute a u�-enriched natural transformation u�(−, −) ⇒ u�(𝐹 −, 𝐹 −).

Proof. By proposition b.2.20 and duality, it suffices to verify that the indicated
morphisms constitute a u�-enriched natural transformation

u�(𝐹 , −) ⇒ u�(𝐹 𝐴, 𝐹 −)

for each object 𝐴 in u�; and by adjointness, this boils down to axiom M. ■

Definition b.2.22. Let u� be a right-closed monoidal category.

• Let u� be a u�-enriched category. A representation of a u�-enriched functor
𝐹 : u� → u� is pair (𝐴, 𝑥), where 𝐴 is an object in u� and 𝑥 is a morphism
𝐼 → 𝐹 𝐴 in u� such that the corresponding u�-enriched natural transforma-
tion u�(𝐴, −) ⇒ 𝐹 (as described by the weak Yoneda lemma) is invertible.
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• A representable u�-enriched functor is one that admits a representation.

Lemma b.2.23. Let u� be a right-closed monoidal category, let u� be a u�-enriched
category, and let 𝐹 : u� → u� be a u�-enriched functor. Given any two represent-
ations of 𝐹 , say (𝐴, 𝑥) and (𝐵, 𝑦), there is a unique morphism 𝑓 : 𝐴 → 𝐵 in u�
such that 𝐹 𝑓 ∘ 𝑥 = 𝑦 in u� , and it is an isomorphism.

Proof. Let 𝜑 : u�(𝐴, −) ⇒ 𝐹 and 𝜓 : u�(𝐵, −) ⇒ 𝐹 be the u�-enriched natural
isomorphisms such that 𝜑𝐴 ∘𝑒𝐴 = 𝑥 and 𝜓𝐵 ∘𝑒𝐵 = 𝑦; such exist and are unique by
the weak Yoneda lemma (b.2.14). Consider 𝜑−1 ∙ 𝜓 : u�(𝐵, −) ⇒ u�(𝐴, −). The
weak Yoneda lemma implies this corresponds to a morphism ⌜𝑓⌝ : 𝐼 → u�(𝐴, 𝐵)
in u� , namely ⌜𝑓⌝ = 𝜑−1

𝐵 ∘ 𝑦; but ⌜𝑓⌝ : 𝐼 → u�(𝐴, 𝐵) corresponds to a morphism
𝑓 : 𝐴 → 𝐵 in u�, and the following diagram in u� commutes,

𝐼 u�(𝐴, 𝐴) 𝐹 𝐴

𝐼 u�(𝐴, 𝐵) 𝐹 𝐵

𝑒𝐴

u�(𝐴,𝑓)

𝜑𝐴

𝐹 𝑓

⌜𝑓⌝ 𝜑𝐵

so we deduce that 𝐹 𝑓 ∘ 𝑥 = 𝑦, as required. Reversing the argument shows that
𝑓 : 𝐴 → 𝐵 is the unique such morphism in u�, and it follows that 𝑓 : 𝐴 → 𝐵
must be an isomorphism: its inverse is the unique morphism 𝑔 : 𝐵 → 𝐴 in u�
such that 𝐹 𝑔 ∘ 𝑦 = 𝑥. ■

Proposition b.2.24. Let u� be a symmetric monoidal closed category, let u� and
u� be u�-enriched categories, let 𝐻 : u� op ⊗ u� → u� be a u�-enriched functor, and
for each object 𝐴 in u� and each object 𝐷 in u�, let 𝜑𝐴,𝐷 : u�(𝐹 𝐴, 𝐷) → 𝐻(𝐴, 𝐷)
be an isomorphism in u� . If each 𝜑𝐴,• is a u�-enriched natural isomorphism
u�(𝐹 𝐴, −) ⇒ 𝐻(𝐴, −), then there is a unique u�-enriched functor 𝐹 : u� → u�
such that 𝜑 is a u�-enriched natural isomorphism u�(𝐹 −, −) ⇒ 𝐻 .

Proof. See §1.10 in [Kelly, 2005]. □

Definition b.2.25. Let u� be a monoidal category. An u�-enriched adjunction
consists of the following data:

• A u�-enriched functor 𝐹 : u� → u�, called the left adjoint.

• A u�-enriched functor 𝐺 : u� → u�, called the right adjoint.

• A u�-enriched natural transformation : idu� ⇒ 𝐺𝐹 , called the unit.
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• A u�-enriched natural transformation : 𝐹 𝐺 ⇒ idu�, called the counit.

These are moreover required to satisfy the triangle identities:

𝐹 ∙ 𝐹 = id𝐹 𝐺 ∙ 𝐺 = id𝐺

If such data exist, we write

𝐹 ⊣ 𝐺 : u� → u�

and say that 𝐹 is a left adjoint of 𝐺, and 𝐺 is a right adjoint of 𝐹 .

Proposition b.2.26. Let u� be a symmetric monoidal closed category and let
𝐹 : 𝐶 → u� and 𝐺 : u� → u� be u�-enriched functors.

(i) Given a pair ( , ) of u�-enriched natural transformations

: idu� ⇒ 𝐺𝐹 and : 𝐹 𝐺 ⇒ idu�

satisfying the triangle identities, the composites

u�(𝐹 𝐴, 𝐷) u�(𝐺𝐹 𝐴, 𝐺𝐷) u�(𝐴, 𝐺𝐷)
𝐺𝐹 𝐴,𝐷 u�( 𝐴,𝐺𝐷)

u�(𝐴, 𝐺𝐷) u�(𝐹 𝐴, 𝐹 𝐺𝐷) u�(𝐹 𝐴, 𝐷)
𝐹 𝐴,𝐺𝐷 u�(𝐹 𝐴, 𝐷)

constitute a mutually inverse pair of u�-enriched natural isomorphisms of
the following form:

u�(𝐹 −, −) ≅ u�(−, 𝐺−)

(ii) Given a mutually inverse pair of u�-enriched natural isomorphisms of the
form above, say

𝜑 : u�(𝐹 −, −) ⇒ u�(−, 𝐺−)
𝜓 : u�(−, 𝐺−) ⇒ u�(𝐹 −, −)

the morphisms 𝐴 : 𝐴 → 𝐺𝐹 𝐴 (in u�) and 𝐷 : 𝐹 𝐺𝐷 → 𝐷 (in u�) defined
(respectively) by

𝜑𝐴,𝐹 𝐴 ∘ 𝑒𝐹 𝐴 : 𝐼 → u�(𝐴, 𝐺𝐹 𝐴)
𝜓𝐺𝐷,𝐷 ∘ 𝑒𝐺𝐷 : 𝐼 → u�(𝐹 𝐺𝐷, 𝐷)

constitute a pair ( , ) of u�-enriched natural transformations satisfying
the triangle identities.
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(iii) Moreover, the two constructions described above are mutually inverse.

Proof. See the first paragraph of §1.11 in [Kelly, 2005]. □

Corollary b.2.27. Let u� be a symmetric monoidal closed category. The follow-
ing are equivalent for a u�-enriched functor 𝐺 : u� → u�:

(i) 𝐺 : u� → u� admits a u�-enriched left adjoint.

(ii) For each object 𝐴 in u�, the u�-enriched functor u�(𝐴, 𝐺−) : u� → u� is
representable.

Dually, the following are equivalent for a u�-enriched functor 𝐹 : u� → u�:

(i′) 𝐹 : u� → u� admits a u�-enriched right adjoint.

(ii′) For each object 𝐷 in u�, the u�-enriched functor u�(𝐹 −, 𝐷) : u� op → u� is
representable.

Proof. Combine propositions b.2.24 and b.2.26. ■

Proposition b.2.28. Let u� be a symmetric monoidal closed category.

(i) There exist a u�-enriched functor ⊗ : u� ⊗ u� → u� and isomorphisms

u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑋, u�(𝑌 , 𝑍))

that constitute a u�-enriched natural isomorphism of u�-enriched functors
u� op ⊗ u� op ⊗ u� → u� .

(ii) In particular, for each object 𝑌 in u� , there is a u�-enriched adjunction of
the form below:

(−) ⊗ 𝑌 ⊣ u�(𝑌 , −) : u� → u�

(iii) The isomorphisms 𝞬𝑋,𝑌 : 𝑋 ⊗𝑌 → 𝑌 ⊗𝑋 constitute a u�-enriched natural
transformation of u�-enriched functors u� ⊗ u� → u� .

Proof. (i). By proposition b.2.24, it suffices to show that there is a u�-enriched
natural isomorphism

u�(𝑋 ⊗ 𝑌 , −) ≅ u�(𝑋, u�(𝑌 , −))
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for each pair (𝑋, 𝑌 ) of objects in u� . First, let us show that there is an ordinary
natural transformation of the required form. There are bijections

u�(𝑊 , u�(𝑋 ⊗ 𝑌 , 𝑍)) ≅ u�(𝑊 ⊗ (𝑋 ⊗ 𝑌 ), 𝑍)
≅ u�((𝑊 ⊗ 𝑋) ⊗ 𝑌 , 𝑍)
≅ u�(𝑊 ⊗ 𝑋, u�(𝑌 , 𝑍))
≅ u�(𝑊 , u�(𝑋, u�(𝑌 , 𝑍)))

that are natural in 𝑊 , 𝑋, 𝑌 , and 𝑍, so by the Yoneda lemma, there are isomorph-
isms

u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑋, u�(𝑌 , 𝑍))

that are natural in 𝑋, 𝑌 , and 𝑍. For u�-enriched naturality, it suffices (by adjoint-
ness) to verify that a certain diagram in u� of the form below commutes,

u�(𝑍, 𝑊 ) ⊗ u�(𝑋 ⊗ 𝑌 , 𝑍) u�(𝑋 ⊗ 𝑌 , 𝑊 )

u�(𝑍, 𝑊 ) ⊗ u�(𝑋, u�(𝑌 , 𝑍)) u�(𝑋, u�(𝑌 , 𝑊 ))

≅

𝑐

≅

but this is straightforward, given the definition of u�(𝑌 , −)𝑍,𝑊 .

(ii). Apply proposition b.2.26.

(iii). By proposition b.2.20 and adjointness, it suffices to verify the commutativ-
ity of certain diagrams in u� of the forms below,

u�(𝑋′, 𝑋) ⊗ 𝑋′ ⊗ 𝑌 𝑋 ⊗ 𝑌

u�(𝑋′, 𝑋) ⊗ 𝑌 ⊗ 𝑋′ 𝑌 ⊗ 𝑋

id⊗𝞬𝑋′,𝑌

ev𝑋′,𝑋⊗id

𝞬𝑋,𝑌

u�(𝑌 ′, 𝑌 ) ⊗ 𝑋 ⊗ 𝑌 ′ 𝑋 ⊗ 𝑌

u�(𝑌 ′, 𝑌 ) ⊗ 𝑌 ′ ⊗ 𝑋 𝑌 ⊗ 𝑋

id⊗𝞬𝑋,𝑌 ′ 𝞬𝑋,𝑌

ev𝑌 ′,𝑌 ⊗id

where as usual we have suppressed the associator of u� ; but this is again straight-
forward. ■

Definition b.2.29. Let u� be a monoidal category.
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• A fully faithful u�-enriched functor is a u�-enriched functor 𝐹 : u� → u�
such that each 𝐹 𝐴,𝐵 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵) is an isomorphism in u� .

• A u�-enriched functor is injective on objects (resp. essentially surjective
on objects) if its underlying ordinary functor is injective on objects (resp.
essentially surjective on objects).

• A full u�-enriched subcategory of a u�-enriched category u� is a u�-enriched
category u�′ equipped with a fully faithful u�-enriched functor 𝐹 : u�′ → u�
that is injective on objects, called the inclusion, such that 𝐹 𝐴 = 𝐴 for all
objects 𝐴 in u�′ and 𝐹 𝐴,𝐵 = id for all pairs (𝐴, 𝐵) of objects in u�′.

Remark b.2.30. If 𝐹 : u� → u� is a fully faithful u�-enriched functor, then the
underlying ordinary functor 𝐹 : u� → u� is also fully faithful. The converse is
true when u�(𝐼, −) : u� → 𝐒𝐞𝐭 is a conservative functor.

Definition b.2.31. Let u� be a monoidal category.

• An equivalence of u�-enriched categories consists of a pair of u�-enriched
functors, say 𝐹 : u� → u� and 𝐺 : u� → u�, together with u�-enriched natural
isomorphisms idu� ≅ 𝐺𝐹 and 𝐹 𝐺 ≅ idu�.

• Two u�-enriched categories are equivalent if there is an equivalence of
u�-enriched categories between them.

Proposition b.2.32. Let u� be a monoidal category and let 𝐹 : u� → u� be a
u�-enriched functor. The following are equivalent:

(i) 𝐹 : u� → u� is a fully faithful u�-enriched functor and essentially surjective
on objects.

(ii) 𝐹 : u� → u� admits a u�-enriched left or right adjoint where the unit and
counit are u�-enriched natural isomorphisms.

(iii) There exist u�-enriched functors 𝐿, 𝑅 : u� → u� and u�-enriched natural
isomorphisms idu� ≅ 𝐿𝐹 and 𝐹 𝑅 ≅ idu�.

Proof. (i) ⇒ (ii). First, choose for every object 𝐷 in u� an object 𝐺𝐷 in u� and
an isomorphism 𝐷 : 𝐹 𝐺𝐷 → 𝐷 in u�. We may do this because 𝐹 : u� → u� is
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essentially surjective on objects. We then define 𝐺𝐷,𝐸 : u�(𝐷, 𝐸) → u�(𝐺𝐷, 𝐺𝐸)
as the following composite,

u�(𝐷, 𝐸) u�(𝐹 𝐺𝐷, 𝐹 𝐺𝐸) u�(𝐺𝐷, 𝐺𝐸)≅ (𝐹 𝐺𝐷,𝐺𝐸)
−1

where u�(𝐷, 𝐸) → u�(𝐹 𝐺𝐷, 𝐹 𝐺𝐸) is the isomorphism in u� induced by 𝐷 :
𝐹 𝐺𝐷 → 𝐷 and −1

𝐸 : 𝐸 → 𝐹 𝐺𝐸. It is straightforward to see that 𝐺 satisfies
axioms U and M, so we have a functor 𝐺 : u� → u�. Moreover, the construction
ensures that is a u�-enriched natural isomorphism 𝐺𝐹 ⇒ idu�.

Next, we show that there is a u�-enriched natural isomorphism idu� ⇒ 𝐺𝐹 .
Let 𝐴 : 𝐴 → 𝐺𝐹 𝐴 be the unique morphism in u� such that 𝐹 𝐴 = −1

𝐹 𝐴. We know
that −1𝐹 is a u�-enriched natural isomorphism 𝐹 ⇒ 𝐹 𝐺𝐹 , so it follows that
is a u�-enriched natural transformation idu� ⇒ 𝐺𝐹 . Moreover, by construction,
we have the left triangle identity 𝐹 ∙ 𝐹 = id𝐹 , and the right triangle identity
𝐺 ∙ 𝐺 = id𝐺 is then a formal consequence. Thus, 𝐺 : u� → u� is a u�-enriched
right adjoint for 𝐹 : u� → u� where the unit and counit are u�-enriched natural
isomorphisms.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Observe that the u�-enriched natural isomorphism idu� ≅ 𝐿𝐹 gives us
a retraction for 𝐹 𝐴,𝐵 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵), namely,

u�(𝐹 𝐴, 𝐹 𝐵) u�(𝐿𝐹 𝐴, 𝐿𝐹 𝐵) u�(𝐴, 𝐵)
𝐿𝐹 𝐴,𝐹 𝐵 ≅

where u�(𝐿𝐹 𝐴, 𝐿𝐹 𝐵) → u�(𝐴, 𝐵) is the isomorphism in u� induced by idu� ≅ 𝐿𝐹 .
The same construction applied to the u�-enriched natural isomorphism 𝐹 𝑅 ≅ idu�
yields a section for 𝐹 𝐴,𝐵 : u�(𝐴, 𝐵) → u�(𝐹 𝐴, 𝐹 𝐵). Thus, we may deduce that
𝐹 : u� → u� is fully faithful. Moreover, the existence of a natural isomorphism
𝐹 𝑅 ≅ idu� certainly implies that 𝐹 : u� → u� is essentially surjective on objects,
so we are done. ■

b.3 Enriched diagrams
Prerequisites. §§b.2

¶ b.3.1. Throughout this section, u� is a locally small symmetric monoidal
closed category with limits for all small diagrams.
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Definition b.3.2. Let u� and u� be u�-enriched categories and let 𝐹 , 𝐺 : u� → u�
be u�-enriched functors. The object of u�-enriched natural transformations
𝐹 ⇒ 𝐺 consists of the following data:

• An object [u�, u�](𝐹 , 𝐺) in u� .

• For each object 𝐶 in u�, a morphism 𝜋𝐶 : [u�, u�](𝐹 , 𝐺) → u�(𝐹 𝐶, 𝐺𝐶),
such that the following equation in u� is satisfied for every pair (𝐴, 𝐵) of
objects in u�:

𝑐𝐺𝐵,𝐺𝐴,𝐹 𝐴 ∘ (𝐺𝐴,𝐵 ⊗ 𝜋𝐴) ∘ 𝞬[u�,u�](𝐹 ,𝐺),u�(𝐴,𝐵) = 𝑐𝐺𝐵,𝐹 𝐵,𝐹 𝐴 ∘ (𝜋𝐵 ⊗ 𝐹 𝐴,𝐵)

Moreover, the morphisms 𝜋𝐶 : [u�, u�](𝐹 , 𝐺) → u�(𝐹 𝐶, 𝐺𝐶) are required to be
universal, i.e. for each object 𝑋 in u�, the map 𝛼 ↦ (𝜋𝐶 ∘ 𝛼 | 𝐶 ∈ ob u�) is a
bijection between the set of morphisms 𝑋 → [u�, u�](𝐹 , 𝐺) and the ensemble of
families of morphisms 𝜑𝐶 : 𝑋 → u�(𝐹 𝐶, 𝐺𝐶) in u� satisfying the equations

𝑐𝐺𝐵,𝐺𝐴,𝐹 𝐴 ∘ (𝐺𝐴,𝐵 ⊗ 𝜑𝐴) ∘ 𝞬𝑋,u�(𝐴,𝐵) = 𝑐𝐺𝐵,𝐹 𝐵,𝐹 𝐴 ∘ (𝜑𝐵 ⊗ 𝐹 𝐴,𝐵)

for every pair (𝐴, 𝐵) of objects in u�.

Remark b.3.3. Assuming [u�, u�](𝐹 , 𝐺) exists, the universality condition implies
that there is a bijection between the set of morphisms 𝐼 → [u�, u�](𝐹 , 𝐺) and the
ensemble of u�-enriched natural transformations 𝐹 ⇒ 𝐺. In particular, the ex-
istence of [u�, u�](𝐹 , 𝐺) implies that there are not “too many” u�-enriched natural
transformations 𝐹 ⇒ 𝐺.
Remark b.3.4. By adjointness, it is not hard to see that [u�, u�](𝐹 , 𝐺) is the limit
of the following diagram in u� :

• For each object 𝐶 in u�, there is a vertex with value u�(𝐹 𝐶, 𝐺𝐶).

• For each pair (𝐴, 𝐵) of objects in u�, we have a vertex and two arrows with
values as in the diagram below,

u�(𝐹 𝐴, 𝐺𝐴) u�(u�(𝐴, 𝐵), u�(𝐹 𝐴, 𝐺𝐵)) u�(𝐹 𝐵, 𝐺𝐵)

where u�(𝐹 𝐴, 𝐺𝐴) → u�(u�(𝐴, 𝐵), u�(𝐹 𝐴, 𝐺𝐵)) is the right adjoint trans-
pose of

𝑐𝐺𝐵,𝐺𝐴,𝐹 𝐴 ∘ (𝐺𝐴,𝐵 ⊗ idu�(𝐹 𝐴,𝐺𝐴)) ∘ 𝞬u�(𝐹 𝐵,𝐺𝐵),u�(𝐴,𝐵)

and u�(𝐹 𝐵, 𝐺𝐵) → u�(u�(𝐴, 𝐵), u�(𝐹 𝐴, 𝐺𝐵)) is the right adjoint tranpose
of

𝑐𝐺𝐵,𝐹 𝐵,𝐹 𝐴 ∘ (idu�(𝐹 𝐵,𝐺𝐵) ⊗ 𝐹 𝐴,𝐵)
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In particular, this diagram is small if u� is, so [u�, u�](𝐹 , 𝐺) exists whenever u� is
a small u�-enriched category.

More generally, if u�′ is a small full u�-enriched subcategory of u� such that
the inclusion u�′ ↪ u� is essentially surjective on objects, then [u�, u�](𝐹 , 𝐺) exists
and is naturally isomorphic to [u�′, u�](𝐹 , 𝐺).

Definition b.3.5. Let u� and u� be u�-enriched categories. Assuming [u�, u�](𝐹 , 𝐺)
exists for all u�-enriched functors 𝐹 , 𝐺 : u� → u�, the u�-enriched functor cat-
egory [u�, u�] is defined as follows:

• The objects are u�-enriched functors u� → u�.

• For each pair (𝐹 , 𝐺) of u�-enriched functors u� → u�, [u�, u�](𝐹 , 𝐺) is as
defined previously.

• For each 𝐹 : u� → u�, 𝑒𝐹 : 𝐼 → [u�, u�](𝐹 , 𝐹 ) is the unique morphism in u�
making the following diagram in u� commute for all objects 𝐶 in u�:

𝐼 [u�, u�](𝐹 , 𝐹 )

𝐼 u�(𝐹 𝐶, 𝐹 𝐶)

𝑒𝐹

𝜋𝐶

𝑒𝐹 𝐶

• For each triple (𝐹 , 𝐺, 𝐻) of u�-enriched functors u� → u�,

𝑐𝐻,𝐺,𝐹 : [u�, u�](𝐺, 𝐻) ⊗ [u�, u�](𝐹 , 𝐺) → [u�, u�](𝐹 , 𝐻)

is the unique morphism making the following diagram in u� commute for
all objects 𝐶 in u�:

[u�, u�](𝐺, 𝐻) ⊗ [u�, u�](𝐹 , 𝐺) [u�, u�](𝐹 , 𝐻)

u�(𝐺𝐶, 𝐻𝐶) ⊗ u�(𝐹 𝐶, 𝐺𝐶) u�(𝐹 𝐶, 𝐻𝐶)

𝜋𝐶⊗𝜋𝐶

𝑐𝐻,𝐺,𝐹

𝜋𝐶

𝑐𝐻𝐶,𝐺𝐶,𝐹 𝐶

Remark b.3.6. By remark b.3.3, the underlying ordinary category of [u�, u�] is the
category whose objects are the u�-enriched functors u� → u� and whose morph-
isms are the u�-enriched natural transformations. To avoid confusion, we write
𝐅𝐮𝐧u�(u�, u�) for the ordinary category of u�-enriched functors, and we reserve
[u�, u�] for the ordinary category of ordinary functors. Note that 𝐅𝐮𝐧u�(u�, u�) al-
ways exists, even when [u�, u�] does not.
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Theorem b.3.7. Let u� and u� be u�-enriched categories such that the u�-enriched
functor category [u�, u�] exists.

(i) For each object 𝐶 in u�, there is a u�-enriched functor 𝐶∗ : [u�, u�] → u�
where 𝐶∗𝐹 = 𝐹 𝐶 and 𝐶∗

𝐹 ,𝐺 = 𝜋𝐶 : [u�, u�](𝐹 , 𝐺) → u�(𝐹 𝐶, 𝐺𝐶).

(ii) There is a (unique) u�-enriched functor evu�,u� : [u�, u�] ⊗ u� → u� such that
evu�,u�(−, 𝐶) = 𝐶∗ and evu�,u�(𝐹 , −) = 𝐹 .

(iii) For each u�-enriched category u�, there is an isomorphism

𝐅𝐮𝐧u�(u� ⊗ u�, u�) ≅ 𝐅𝐮𝐧u�(u�, [u�, u�])

that is 2-natural in u� and sends evu�,u� : [u�, u�] ⊗ u� → u� to id : [u�, u�] →
[u�, u�].

Proof. (i). The definition of 𝑒 and 𝑐 in [u�, u�] ensures that the announced defin-
ition satisfies axioms U and M, respectively.

(ii). By proposition b.2.18, it suffices to verify that the following diagram com-
mutes,

[u�, u�](𝐹 , 𝐺) ⊗ u�(𝐴, 𝐵) u�(𝐹 𝐵, 𝐺𝐵) ⊗ u�(𝐹 𝐴, 𝐹 𝐵)

u�(𝐹 𝐴, 𝐺𝐵)

u�(𝐴, 𝐵) ⊗ [u�, u�](𝐹 , 𝐺) u�(𝐺𝐴, 𝐺𝐵) ⊗ u�(𝐹 𝐴, 𝐺𝐴)

𝞬

𝜋𝐵⊗𝐹 𝐴,𝐵

𝑐𝐺𝐵,𝐹 𝐵,𝐹 𝐴

𝐺𝐴,𝐵⊗𝜋𝐴

𝑐𝐺𝐵,𝐹 𝐴,𝐹 𝐴

but this is guaranteed by the definition of [u�, u�](𝐹 , 𝐺).

(iii). See §2.3 in [Kelly, 2005]. □

Corollary b.3.8. The 2-category of small u�-enriched categories is a symmetric
monoidal closed 2-category. ■

Proposition b.3.9 (Strong Yoneda lemma). Let u� be a u�-enriched category, let
𝐹 : u� → u� be a u�-enriched functor, and let 𝐶 be an object in u�. Then the
object of u�-enriched natural transformations u�(𝐶, −) ⇒ 𝐹 exists: it can be
identified with 𝐹 𝐶 , with 𝜋𝐴 : 𝐹 𝐶 → u�(u�(𝐶, 𝐴), 𝐹 𝐴) defined to be the right
adjoint transpose of 𝐹 𝐶,𝐴 : u�(𝐶, 𝐴) → u�(𝐹 𝐶, 𝐹 𝐴).
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Proof. Let 𝑋 be any object in u� . It is a straightforward exercise in adjointness to
see that there is a natural bijection between the ensemble of u�-enriched natural
transformations u�(𝐶, −) ⇒ u�(𝑋, 𝐹 −) and the ensemble of families of morph-
isms 𝜑𝐴 : 𝑋 → u�(u�(𝐶, 𝐴), 𝐹 𝐴) satisfying the equations

𝑐𝐹 𝐵,𝐹 𝐴,u�(𝐶,𝐴) ∘ (𝐹 𝐴,𝐵 ⊗ 𝜑𝐴) ∘ 𝞬 = 𝑐𝐹 𝐵,u�(𝐶,𝐵),u�(𝐶,𝐴) ∘ (𝜑𝐵 ⊗ u�(𝐶, −)𝐴,𝐵)

for every pair (𝐴, 𝐵) of objects in u�. Thus, by the weak Yoneda lemma (b.2.14),
the latter can be identified with the set of morphisms 𝐼 → u�(𝑋, 𝐹 𝐶) in u� ,
and hence, with the set of morphisms 𝑋 → 𝐹 𝐶 in u� . By tracing the various
bijections, one sees that the family 𝜋𝐴 : 𝐹 𝐶 → u�(u�(𝐶, 𝐴), 𝐹 𝐴) announced
above corresponds to id : 𝐹 𝐶 → 𝐹 𝐶 , and this completes the proof. ■

Corollary b.3.10. Let u� be a small u�-enriched category and let h be the u�-en-
riched functor u� → [u� op, u�] defined by h𝐶 = u�(𝐶, −). Then there is a u�-enriched
natural isomorphism of the form below:

[u� op, u�](h•, −) ⇒ evu�,u�(−, •)

Proof. The strong Yoneda lemma (proposition b.3.9) tells us that there are iso-
morphisms

[u� op, u�](h𝐶 , 𝐹 ) → 𝐹 𝐶 = evu�,u�(𝐹 , 𝐶)

for each object 𝐶 in u� and each u�-enriched functor 𝐹 : u� → u�; it remains to
be shown that these constitute u�-enriched natural transformation, and by pro-
position b.2.20, it suffices to verify u�-enriched naturality in 𝐶 and in 𝐹 sep-
arately. But since the structure of [u� op, u�] is defined entirely in terms of the
universal property of objects of natural transformations, we may as well take
[u� op, u�](h𝐶 , 𝐹 ) = 𝐹 𝐶; then u�-enriched naturality is clear. ■

Corollary b.3.11 (Enriched Yoneda embedding). Let u� be a small u�-enriched
category and let h be the u�-enriched functor u� → [u� op, u�] defined by h𝐶 =
u�(𝐶, −). Then h : u� → [u� op, u�] is fully faithful and essentially surjective onto
the full u�-enriched subcategory spanned by the u�-enriched representable func-
tors u� op → u� .

Proof. It suffices to prove the following claim: for all pairs (𝐴, 𝐵) of objects
in u�, the unique morphism u�(𝐴, 𝐵) → [u� op, u�](h𝐴, h𝐵) making the following
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diagrams in u� commute

u�(𝐴, 𝐵) [u� op, u�](h𝐴, h𝐵)

u�(𝐴, 𝐵) u�(u�(𝐶, 𝐴), u�(𝐶, 𝐵))

𝜋𝐶

u�(𝐶,−)𝐴,𝐵

for all objects 𝐶 in u� is an isomorphism in u� . But by the strong Yoneda lemma
(proposition b.3.9), we may as well take [u� op, u�](h𝐴, h𝐵) = u�(𝐴, 𝐵) and 𝜋𝐶 =
u�(𝐶, −)𝐴,𝐵, so that the morphism in question is id : u�(𝐴, 𝐵) → u�(𝐴, 𝐵). This
proves the claim. ■

Definition b.3.12. Let u� and u� be u�-enriched categories.

• Let 𝑊 : u� → u� and 𝐹 : u� → u� be u�-enriched functors, and assume
that the u�-enriched functor category [u� , u�] exists. A 𝑊 -weighted limit
for 𝐹 is a pair ({𝑊 , 𝐹 }u� , ) where {𝑊 , 𝐹 }u� is an object in u� and :
𝑊 ⇒ u�({𝑊 , 𝐹 }u� , 𝐹 ) is a u�-enriched natural transformation such that
({𝑊 , 𝐹 }u� , ⌜ ⌝) is a representation for the following u�-enriched functor,

[u� , u�](𝑊 , u�(−, 𝐹 )) : u� op → u�

where ⌜ ⌝ : 𝐼 → [u� , u�](𝑊 , u�({𝑊 , 𝐹 }u� , 𝐹 )) is the morphism in u�
corresponding to . We refer to 𝑊 as the weight and 𝐹 as the diagram.

• Let 𝑊 : u� op → u� and 𝐹 : u� → u� be u�-enriched functors, and as-
sume that the u�-enriched functor category [u� op, u�] exists. A 𝑊 -weighted
colimit for 𝐹 is a pair (𝑊 ⋆u� 𝐹 , ) where 𝑊 ⋆u� 𝐹 is an object in u� and

: 𝑊 ⇒ u�(𝐹 , 𝑊 ⋆u� 𝐹 ) is a u�-enriched natural transformation such that
(𝑊 ⋆u� 𝐹 , ⌜ ⌝) is a representation for the following u�-enriched functor,

[u� op, u�](𝑊 , u�(𝐹 , −)) : u� op → u�

where ⌜ ⌝ : 𝐼 → [u� op, u�](𝑊 , u�(𝐹 , 𝑊 ⋆u� 𝐹 )) is the morphism in u�
corresponding to . We refer to 𝑊 as the weight and 𝐹 as the diagram.

Remark b.3.13. By lemma b.2.23, weighted limits/colimits for a given weight
and diagram are unique up to unique isomorphism.
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Definition b.3.14. Let 𝐹 : u� → u� be a u�-enriched functor and let u� be a
u�-enriched category.

• Let 𝑊 : u� → u� and 𝐶 : u� → u� be u�-enriched functors, and assume
that the u�-enriched functor category [u� , u�] exists. We say 𝐹 preserves
𝑊 -weighted limits for 𝐶 if, for every 𝑊 -weighted limit for 𝐶 , say (𝐿, ),
the pair (𝐹 𝐿, 𝐹 ∗ ) is a 𝑊 -weighted limit for 𝐹 𝐶 , where

𝐹 ∗ : 𝑊 ⇒ u�(𝐹 𝐿, 𝐹 𝐶)

is the u�-enriched natural transformation obtained by vertically composing
: 𝑊 ⇒ u�(𝐿, 𝐶) and the u�-enriched natural transformation u�(𝐿, 𝐶) ⇒

u�(𝐹 𝐿, 𝐹 𝐶) induced by 𝐹 : u�(−, −) ⇒ u�(𝐹 −, 𝐹 −).

• Let 𝑊 : u� op → u� and 𝐶 : u� → u� be u�-enriched functors, and assume
that the u�-enriched functor category [u� op, u�] exists. We say 𝐹 preserves
𝑊 -weighted colimits for 𝐶 if, for every 𝑊 -weighted colimit for 𝐶 , say
(𝐿, ), the pair (𝐹 𝐿, 𝐹 ∗ ) is a 𝑊 -weighted colimit for 𝐹 𝐶 , where

𝐹 ∗ : 𝑊 ⇒ u�(𝐹 𝐶, 𝐹 𝐿)

is the u�-enriched natural transformation obtained by vertically composing
: 𝑊 ⇒ u�(𝐶, 𝐿) and the u�-enriched natural transformation u�(𝐶, 𝐿) ⇒

u�(𝐹 𝐶, 𝐹 𝐿) induced by 𝐹 : u�(−, −) ⇒ u�(𝐹 −, 𝐹 −).

Proposition b.3.15. Let u� be a u�-enriched category and let

𝐹 ⊣ 𝐺 : u� → u�

be a u�-enriched adjunction.

• For any u�-enriched weight 𝑊 : u� → u� , assuming the u�-enriched functor
category [u� , u�] exists, 𝐺 : u� → u� preserves 𝑊 -weighted limits for all
u�-enriched diagrams u� → u�.

• For any u�-enriched weight 𝑊 : u� op → u� , assuming the u�-enriched func-
tor category [u� op, u�] exists, 𝐹 : u� → u� preserves 𝑊 -weighted colimits
for all u�-enriched diagrams u� → u�.
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Proof. The two claims are formally dual; we will prove the first version.
Let 𝐷 : u� → u� be a u�-enriched diagram and suppose u� has a 𝑊 -weighted

limit for 𝐷. Proposition b.2.26 implies we have the following u�-enriched natural
isomorphisms:

u�(𝐹 −, {𝑊 , 𝐷}u� ) ≅ u�(−, 𝐺{𝑊 , 𝐷}u� )
[u� , u�](𝑊 , u�(𝐹 −, 𝐷)) ≅ [u� , u�](𝑊 , u�(−, 𝐺𝐷))

Thus, 𝐺{𝑊 , 𝐷}u� is (the object part of) a 𝑊 -weighted limit for 𝐺𝐷 : u� → u�. To
complete the proof, we must verify that the universal u�-enriched natural trans-
formation 𝑊 ⇒ u�({𝑊 , 𝐷}u� , 𝐷) is sent to a universal u�-enriched natural trans-
formation 𝑊 ⇒ u�(𝐺{𝑊 , 𝐷}u� , 𝐺𝐷), but this is a straightforward application
of the right triangle identity. ■

Proposition b.3.16. Let u� and u� be u�-enriched categories. Assuming the u�-en-
riched functor categories [u� , u�] and [u� , u�] exist:

(i) Let 𝑊 : u� → u� be a u�-enriched weight. If 𝑊 -weighted limits for all
u�-enriched diagrams u� → u� exist, then there exist a u�-enriched functor
{𝑊 , −}u� : [u� , u�] → u� and isomorphisms in u�

u�(𝐶, {𝑊 , 𝐹 }u� ) ≅ [u� , u�](𝑊 , u�(𝐶, 𝐹 ))

that constitute a u�-enriched natural isomorphism of u�-enriched functors
u� op ⊗ [u� , u�] → u� .

(ii) If the above condition holds for all u�-enriched weights 𝑊 : u� → u� , then
there is a u�-enriched functor {−, −}u� : [u� , u�]op ⊗ [u� , u�] → u� making
the above isomorphisms a u�-enriched natural isomorphism of u�-enriched
functors u� op ⊗ [u� , u�]op ⊗ [u� , u�] → u� .

(iii) In particular, when {−, −}u� : [u� , u�]op ⊗ [u� , u�] → u� exists, for each
u�-enriched diagram 𝐹 : u� → u�, the there is a u�-enriched adjunction of
the form below:

u�(−, 𝐹 ) ⊣ {−, 𝐹 }u� : [u� , u�]op → u�

Dually, assuming the u�-enriched functor categories [u� op, u�] and [u� , u�] exist:
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(i′) Let 𝑊 : u� op → u� be a u�-enriched weight. If 𝑊 -weighted colimits for all
u�-enriched diagrams u� → u� exist, then there exist a u�-enriched functor
𝑊 ⋆u� (−) : [u� , u�] → u� and isomorphisms in u�

u�(𝑊 ⋆u� 𝐹 , 𝐶) ≅ [u� op, u�](𝑊 , u�(𝐹 , 𝐶))

that constitute a u�-enriched natural isomorphism of u�-enriched functors
[u� , u�]op ⊗ u� → u� .

(ii′) If the above condition holds for all u�-enriched weights 𝑊 : u� op → u� , then
there is a u�-enriched functor (−) ⋆u� (−) : [u� op, u�] ⊗ [u� , u�] → u� making
the above isomorphisms a u�-enriched natural isomorphism of u�-enriched
functors [u� , u�]op ⊗ [u� , u�]op ⊗ u� → u� .

(iii′) In particular, when (−) ⋆u� (−) : [u� , u�]op ⊗ [u� , u�] → u� exists, for each
u�-enriched diagram 𝐹 : u� → u�, the there is a u�-enriched adjunction of
the form below:

− ⋆u� 𝐹 ⊣ u�(𝐹 , −) : [u� op, u�] → u�

Proof. (i) and (ii). Apply proposition b.2.24.

(iii). Apply proposition b.2.26. ■

Definition b.3.17.
• A complete u�-enriched category is a u�-enriched category u� such that,

for all small u�-enriched categories u� , weighted limits for all u�-enriched
diagrams u� → u� and all u�-enriched weights u� → u� exist in u�.

• A cocomplete u�-enriched category is a u�-enriched category u� such that,
for all small u�-enriched categories u� , weighted colimits for all u�-enriched
diagrams u� → u� and all u�-enriched weights u� op → u� exist in u�.

Theorem b.3.18. Let u� be a u�-enriched category such that the u�-enriched func-
tor category [u� , u�] exists.

(i) For all u�-enriched functors 𝑊 : u� → u� and 𝐹 : u� → u� , there is a
u�-enriched natural isomorphism of the form below:

[u� , u�](𝑊 , u�(−, 𝐹 )) ≅ u�(−, [u� , u�](𝑊 , 𝐹 ))

In particular, the weighted limit {𝑊 , 𝐹 }u� exists in u� .
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(ii) The above extends to a u�-enriched natural isomorphism [u� , u�](−, −) ≅
{−, −}u� .

(iii) For each u�-enriched weight 𝑊 : u� → u� , {𝑊 , −}u� : [u� , u�] → u� has a
u�-enriched left adjoint, namely the u�-enriched functor u� → [u� , u�] that
sends an object 𝑋 in u� to the u�-enriched diagram 𝑊 ⊗ 𝑋 : u� → u� .

Proof. (i). First, we must establish that there is an ordinary natural isomorphism
of the required form. Let 𝑋 be any object in u� . By definition, u�(𝑋, −) : u� → u�
is a right adjoint, so it preserves all limits; but remark b.3.4 says that objects
of natural transformations are certain limits, and by adjointness, the (ordinary)
natural isomorphisms

u�(𝑋, u�(𝑌 , −)) ≅ u�(𝑌 , u�(𝑋, −))

induced by 𝞬 make the following diagram in u� commute,

u�(𝑋, u�(𝑊 𝑗, 𝐹 𝑗)) u�(𝑋, u�(u� (𝑗, 𝑘), u�(𝑊 𝑗, 𝐹 𝑘))) u�(𝑋, u�(𝑊 𝑘, 𝐹 𝑘))

u�(𝑊 𝑗, u�(𝑋, 𝐹 𝑗)) u�(u� (𝑗, 𝑘), u�(𝑊 𝑗, u�(𝑋, 𝐹 𝑘))) u�(𝑊 𝑘, u�(𝑋, 𝐹 𝑘))

≅ ≅ ≅

so we indeed have an ordinary natural isomorphism

u�(−, [u� , u�](𝑊 , 𝐹 )) ≅ [u� , u�](𝑊 , u�(−, 𝐹 ))

as required. For u�-enriched naturality, it suffices (by adjointness) to verify that
a certain diagram in u� of the form below commutes:

u�(𝑌 , [u� , u�](𝑊 , 𝐹 )) ⊗ u�(𝑋, 𝑌 ) u�(𝑋, [u� , u�](𝑊 , 𝐹 ))

[u� , u�](𝑊 , u�(𝑌 , 𝐹 )) ⊗ u�(𝑋, 𝑌 ) [u� , u�](𝑊 , u�(𝑋, 𝐹 ))

≅

𝑐

≅

But the universal property of [u� , u�](𝑊 , u�(𝑋, 𝐹 )) implies it is enough to check
that the above equation is satisfied after composing with every projection 𝜋𝑗 :
[u� , u�](𝑊 , u�(𝑋, 𝐹 )) → u�(𝑊 𝑗, u�(𝑋, 𝐹 𝑗)), and this is straightforward.

(ii). Since we may take {𝑊 , 𝐹 }u� = [u� , u�](𝑊 , 𝐹 ), it suffices to prove that the
isomorphisms constructed above already define a u�-enriched natural transform-
ation of u�-enriched functors u� op ⊗ [u� , u�]op ⊗ [u� , u�] → u� ; for this, similar
arguments work.
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(iii). By proposition b.2.28 and theorem b.3.7, there is a u�-enriched natural
isomorphism

u�(𝑊 𝑗 ⊗ (−), 𝑗∗(−)) ≅ u�(𝑊 𝑗, u�(−, 𝑗∗(−)))

and it is straightforward to see that these yield a u�-enriched natural isomorphism

[u� , u�](𝑊 ⊗ (−), −) ≅ [u� , u�](𝑊 , u�(−, −))

so by proposition b.2.26, we have a u�-enriched adjunction

𝑊 ⊗ (−) ⊣ {𝑊 , −}u� : [u� , u�] → u�

as required. ■

Theorem b.3.19. If u� has colimits for all small diagrams, then for any small
u�-enriched category u� :

(i) For all u�-enriched weights 𝑊 : u� op → u� and all u�-enriched diagrams
𝐹 : u� → u� , the weighted colimit 𝑊 ⋆u� 𝐹 exists in u� , and there is a
u�-enriched natural isomorphism of the form below:

u�(𝑊 ⋆u� 𝐹 , −) ≅ {𝑊 , u�(𝐹 , −)}u� op

(ii) There is a u�-enriched functor (−) ⋆u� (−) : [u� op, u�] ⊗ [u� , u�] → u� mak-
ing the above a u�-enriched natural isomorphism of u�-enriched functors
[u� op, u�] ⊗ [u� , u�] ⊗ u� → u� .

(iii) For each u�-enriched weight 𝑊 : u� op → u� , 𝑊 ⋆u� (−) : [u� , u�] → u� has a
u�-enriched right adjoint, namely the u�-enriched functor u� → [u� , u�] that
sends an object 𝑋 in u� to the u�-enriched diagram u�(𝑊 , 𝑋) : u� → u� .

Proof. (i). Recall that a weighted colimit 𝑊 ⋆u� 𝐹 is (the same thing as) an
object equipped with a u�-enriched natural isomorphism of the form below:

u�(𝑊 ⋆u� 𝐹 , −) ≅ [u� op, u�](𝑊 , u�(𝐹 , −))

But by theorem b.3.18, we have a u�-enriched natural isomorphism

[u� op, u�](𝑊 , u�(𝐹 , −)) ≅ {𝑊 , u�(𝐹 , −)}u� op

so it suffices to construct 𝑊 ⋆u� 𝐹 . In view of remark b.3.4, we should define
𝑊 ⋆u� 𝐹 by the dual colimit. More precisely, consider the following (ordinary)
diagram in u� :
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• For each object 𝑗 in u� , there is a vertex with value 𝑊 𝑗 ⊗ 𝐹 𝑗.

• For each pair (𝑗, 𝑘) of objects in u� , we have a vertex and two arrows with
values as in the diagram below,

𝑊 𝑗 ⊗ 𝐹 𝑗 u� (𝑗, 𝑘) ⊗ 𝑊 𝑘 ⊗ 𝐹 𝑗 𝑊 𝑘 ⊗ 𝐹 𝑘

where u� (𝑗, 𝑘) ⊗ 𝑊 𝑘 ⊗ 𝐹 𝑗 → 𝑊 𝑗 ⊗ 𝐹 𝑗 is

(ev𝑊 𝑗,𝑊 𝑘 ∘ (𝑊 𝑘,𝑗 ⊗ id𝑊 𝑘)) ⊗ id𝐹 𝑗

and u� (𝑗, 𝑘) ⊗ 𝑊 𝑘 ⊗ 𝐹 𝑗 → 𝑊 𝑘 ⊗ 𝐹 𝑘 is

𝞬𝐹 𝑘,𝑊 𝑘 ∘ ((ev𝐹 𝑗,𝐹 𝑘 ∘ (𝐹 𝑗,𝑘 ⊗ id𝐹 𝑗)) ⊗ id𝑊 𝑘) ∘ (idu� (𝑗,𝑘) ⊗ 𝞬𝑊 𝑘,𝐹 𝑗)

The above diagram is small, so there is a colimit for it in u� , say 𝑊 ⋆u� 𝐹 . By
proposition b.2.28, there us a u�-enriched natural isomorphism

u�((−) ⊗ (−), −) ≅ u�(−, u�(−, −))

and since u�(−, 𝑋) sends colimits in u� to limits in u� , we obtain isomorphisms

u�(𝑊 ⋆u� 𝐹 , 𝑋) ≅ [u� op, u�](𝑊 , u�(𝐹 , 𝑋))

that are natural in 𝑋. For u�-enriched naturality, it suffices (by adjointness) to
verify that a certain diagram in u� of the form below commutes:

u�(𝑋, 𝑌 ) ⊗ u�(𝑊 ⋆u� 𝐹 , 𝑋) u�(𝑊 ⋆u� 𝐹 , 𝑋)

u�(𝑋, 𝑌 ) ⊗ [u� op, u�](𝑊 , u�(𝐹 , 𝑋)) [u� op, u�](𝑊 , u�(𝐹 , 𝑌 ))

≅

𝑐

≅

But the universal property of [u� op, u�](𝑊 , u�(𝐹 , 𝑌 )) implies it is enough to check
that the above equation is satisfied after composing with every projection 𝜋𝑗 :
[u� op, u�](𝑊 , u�(𝐹 , 𝑌 )) → u�(𝑊 𝑗, u�(𝐹 𝑗, 𝑌 )), and this is straightforward.

(ii). The existence (and uniqueness) of the u�-enriched functor (−) ⋆u� (−) is an
instance of proposition b.2.24.

(iii). By proposition b.2.28 and theorem b.3.7, there are u�-enriched natural iso-
morphisms
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u�(𝑊 𝑗, u�(𝑗∗(−), −))
≅ u�(𝑊 𝑗 ⊗ 𝑗∗(−), −) ≅ u�(𝑗∗(−) ⊗ 𝑊 𝑗, −)

≅ u�(𝑗∗(−), u�(𝑊 𝑗, −))

and it is straightforward to see that these yield a u�-enriched natural isomorphism

u�(𝑊 ⋆u� (−), −) ≅ [u� op, u�](𝑊 , u�(−, −)) ≅ [u� , u�](−, u�(𝑊 , −))

so by proposition b.2.26, we have a u�-enriched adjunction

𝑊 ⋆u� (−) ⊣ u�(𝑊 , −) : u� → [u� op, u�]

as required. ■

Definition b.3.20. Let u� be a u�-enriched category and let u� be a u�-enriched
category such that the u�-enriched functor category [u� op ⊗ u� , u�] exists.

• An end for a u�-enriched functor 𝑇 : u� op ⊗ u� → u� is a 𝐻-weighted limit
for 𝑇 in u�, where 𝐻 is the u�-enriched functor u� (−, −) : u� op ⊗ u� → u� .
We write

∫𝑗:u�
𝑇 (𝑗, 𝑗)

for the object part of an end for 𝑇 .

• A coend for a u�-enriched functor 𝑇 : u� op ⊗ u� → u� is a 𝐻-weighted
colimit for 𝑇 in u�, where 𝐻 is the u�-enriched functor u� op(−, −) : u� ⊗
u� op → u� . We write

∫
𝑗:u�

𝑇 (𝑗, 𝑗)

for the object part of a coend for 𝑇 .

Lemma b.3.21. Let u� be a u�-enriched category such that the u�-enriched func-
tor category [u� op ⊗ u� , u�] exists, and let 𝑇 : u� op ⊗ u� → u� be a u�-enriched
functor. Then ∫𝑗:u� 𝑇 (𝑗, 𝑗) is the limit of the following diagram in u�:

• For each object 𝑗 in u� , there is a vertex with value 𝑇 (𝑗, 𝑗).

• For each pair (𝑗, 𝑘) of objects in u� , we have a vertex and two arrows with
values as in the diagram below,

𝑇 (𝑗, 𝑗) u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘)) 𝑇 (𝑘, 𝑘)

879



B. Higher generalities

where 𝑇 (𝑗, 𝑗) → u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘)) is the right adjoint transpose of

ev𝑇 (𝑗,𝑗),𝑇 (𝑗,𝑘) ∘ (𝑇 (𝑗, −)𝑗,𝑘 ⊗ id𝑇 (𝑗,𝑗)) ∘ 𝞬𝑇 (𝑗,𝑗),u� (𝑗,𝑘)

and 𝑇 (𝑘, 𝑘) → u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘)) is the right adjoint tranpose of

ev𝑇 (𝑘,𝑘),𝑇 (𝑗,𝑘) ∘ (𝑇 (−, 𝑘)𝑘,𝑗 ⊗ id𝑇 (𝑘,𝑘)) ∘ 𝞬𝑇 (𝑘,𝑘),u� (𝑗,𝑘)

Proof. By remark b.3.4 and theorem b.3.18, ∫𝑗:u� 𝑇 (𝑗, 𝑗) is the limit of the fol-
lowing diagram in u� :

• For each pair (𝑗, 𝑘) of objects in u� , there is a vertex with value

u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘))

• For each quadruple (𝑗′, 𝑗, 𝑘, 𝑘′) of objects in u� , we have a vertex and two
arrows with values in the diagram below,

u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘)) u�(u� (𝑗′, 𝑘′), 𝑇 (𝑗′, 𝑘′))

u�(u� (𝑗′, 𝑗) ⊗ u� (𝑘, 𝑘′), u�(u� (𝑗, 𝑘), 𝑇 (𝑗′, 𝑘′)))

where the arrow on the left is induced by 𝑇 : u� op ⊗ u� → u� and the arrow
on the right is induced by u� (−, −) : u� op ⊗ u� → u� .

To prove the claim, it is enough to give a natural bijection between cones over
the two diagrams. Observe that there is an evident commutative diagram in u� of
the form below,

𝑇 (𝑗, 𝑗) u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘)) 𝑇 (𝑘, 𝑘)

u�(u� (𝑗′, 𝑗), 𝑇 (𝑗′, 𝑗)) • u�(u� (𝑘, 𝑘′), 𝑇 (𝑘, 𝑘′))

𝑇 (𝑗′, 𝑗′) u�(u� (𝑗′, 𝑘′), 𝑇 (𝑗′, 𝑘′)) 𝑇 (𝑘′, 𝑘′)

where the vertex in the middle is u�(u� (𝑗′, 𝑗) ⊗ u� (𝑘, 𝑘′), u�(u� (𝑗, 𝑘), 𝑇 (𝑗′, 𝑘′))).
Consideration of this diagram shows that every cone over the first diagram in-
duces a cone over the second diagram.
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On the other hand, suppose we are given a cone over the second diagram, say
with components 𝜑𝑗,𝑘 : 𝑋 → u�(u�(𝑗, 𝑘), 𝑇 (𝑗, 𝑘)). Observe that the morphism

𝑇 (𝑗, 𝑗) → u�(u� (𝑗, 𝑗), 𝑇 (𝑗, 𝑗))

appearing in the first diagram admits a retraction, namely

𝑟𝑗 = evu� (𝑗,𝑗),𝑇 (𝑗,𝑗) ∘ (idu�(u� (𝑗,𝑗),𝑇 (𝑗,𝑗)) ⊗ 𝑒𝑗) ∘ 𝞺−1
u�(u� (𝑗,𝑗),𝑇 (𝑗,𝑗))

which can also be identified with u�(𝑒𝑗 , 𝑇 (𝑗, 𝑗)) if we suppress the canonical
isomorphism 𝑇 (𝑗, 𝑗) → u�(𝐼, 𝑇 (𝑗, 𝑗)). Moreover, by considering a certain com-
mutative diagram in u� of the following form,

u�(u� (𝑗, 𝑗), 𝑇 (𝑗, 𝑗)) u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘))

u�(u� (𝑗, 𝑗) ⊗ u� (𝑗, 𝑘), u�(u� (𝑗, 𝑗), 𝑇 (𝑗, 𝑘)))

𝑇 (𝑗, 𝑗) u�(u� (𝑗, 𝑗) ⊗ u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘))

u�(u� (𝑗, 𝑘), 𝑇 (𝑗, 𝑘))

𝑟𝑗

id

u�(u� (𝑗,𝑗)⊗u� (𝑗,𝑘),u�(𝑒𝑗 ,𝑇 (𝑗,𝑘)))

u�(𝑒𝑗⊗id,𝑇 (𝑗,𝑘))

where we have suppressed various canonical isomorphisms involving 𝐼 , we see
that 𝑟𝑗 ∘ 𝜑𝑗,𝑗 : 𝑋 → 𝑇 (𝑗, 𝑗) defines a cone over the first diagram.

It is clear that the two constructions given above are mutually inverse, so we
have a natural bijection between cones over the first diagram and cones over the
second diagram, as required. ■

Corollary b.3.22. Let u� be a u�-enriched category such that the u�-enriched
functor category [u� op ⊗ u� , u�] exists. Then, for any u�-enriched category u� and
any pair (𝐹 , 𝐺) of u�-enriched functors u� → u�, the end

∫𝑗:u�
u�(𝐹 𝑗, 𝐺𝑗)

is (the object part of) an object of u�-enriched natural transformations 𝐹 ⇒ 𝐺.
In particular, the u�-enriched functor category [u� , u�] exists.

Proof. Simply compare the construction of [u� , u�](𝐹 , 𝐺) given in remark b.3.4
with the characterisation of ∫𝑗:u� u�(𝐹 𝑗, 𝐺𝑗) given in lemma b.3.21. ■
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Proposition b.3.23. Let u� and u� be u�-enriched categories such that the u�-en-
riched functor category [u� op ⊗ u� , u�] exists.

• Let u� be a u�-enriched category such that the u�-enriched functor category
[u�, u�] exists. If 𝑊 : u� → u� is a u�-enriched weight such that 𝑊 -weighted
limits for all u�-enriched diagrams u� → u� exist in u�, then 𝑊 -weighted
limits for all u�-enriched diagrams u� → [u� , u�] exist in [u� , u�] and can be
computed componentwise.

• Let u� be a u�-enriched category such that the u�-enriched functor cat-
egory [u�op, u�] exists. If 𝑊 : u�op → u� is a u�-enriched weight such
that 𝑊 -weighted limits for all u�-enriched diagrams u� → u� exist in u�,
then 𝑊 -weighted limits for all u�-enriched diagrams u� → [u� , u�] exist in
[u� , u�] and can be computed componentwise.

Proof. The two claims are formally dual; we will prove the first version.
Let 𝐺 : u� → [u� , u�] be a u�-enriched functor, let 𝐺′ : u� → [u�, u�] be the

u�-enriched functor defined by 𝐺′(𝑗)(𝑘) = 𝐺(𝑘)(𝑗), and let 𝐻 : u� → u� be the
u�-enriched functor defined by 𝐻(𝑗) = {𝑊 , 𝐺′(𝑗)}u�. We wish to construct a
u�-enriched natural isomorphism of the form below:

[u�, u�](𝑊 , [u� , u�](−, 𝐺)) ≅ [u� , u�](−, 𝐻)

Proposition b.3.15 and theorem b.3.18 imply [u�, u�](𝑊 , −) preserves weighted
limits, and corollary b.3.22 says that objects of natural transformations are ends
(hence, weighted limits), so we have the following u�-enriched natural isomorph-
ism:

[u�, u�](𝑊 , [u� , u�](−, 𝐺)) ≅ ∫𝑗:u�
[u�, u�](𝑊 , u�(𝑗∗(−), 𝐺′(𝑗)))

On the other hand, by definition, we have a u�-enriched natural isomorphism

[u�, u�](𝑊 , u�(−, 𝐺)) ≅ u�(−, 𝐻)

of u�-enriched functors u� op ⊗ u� → u� , and

∫𝑗:u�
u�(𝑗∗(−), 𝐻(𝑗)) ≅ [u� , u�](−, 𝐻)

so we are done. ■
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b.4 Categories with actions
Prerequisites. §b.1, b.2, b.3.

Definition b.4.1. Let u� be a monoidal category.

• A left u�-action on a category u� is a strong monoidal functor u� → [u�, u�],
where [u�, u�] is regarded as a strict monoidal category under composition.

• A right u�-action on u� is a strong monoidal functor u� → [u�, u�]rev, where
[u�, u�] is regarded as a strict monoidal category under composition.

Remark b.4.2. We can unfold the above definition somewhat by taking the left
exponential transpose of the strong monoidal functor u� → [u�, u�]: let ⊘ be the
corresponding functor u� × u� → u�. Since the original functor was strong mon-
oidal, we get a natural isomorphism 𝞰 : idu� ⇒ 𝐼 ⊘(−) and a natural isomorphism
𝞵𝑋,𝑌 : 𝑋 ⊘ (𝑌 ⊘ (−)) ⇒ (𝑋 ⊗ 𝑌 ) ⊘ (−) for each pair of objects 𝑋 and 𝑌 in u� ;
these moreover satisfy the following coherence laws:

𝑋 ⊘ (𝑌 ⊘ (−)) (𝑋 ⊗ 𝑌 ) ⊘ (−)

𝑋′ ⊘ (𝑌 ′ ⊘ (−)) (𝑋 ⊗ 𝑌 ) ⊘ (−)

𝑓⊘(𝑔⊘id)

𝞵𝑋,𝑌

(𝑓⊗𝑔)⊘id

𝞵𝑋′,𝑌 ′

𝑋 ⊘ (−) 𝐼 ⊘ (𝑋 ⊘ (−))

𝑋 ⊘ (−) (𝐼 ⊗ 𝑋) ⊘ (−)

id

𝞰(𝑋⊘(−))

𝞵𝐼,𝑋

𝞴𝑋⊘id

𝑋 ⊘ (−) 𝑋 ⊘ (𝐼 ⊘ (−))

𝑋 ⊘ (−) (𝑋 ⊗ 𝐼) ⊘ (−)

id

(𝑋⊘(−))𝞰

𝞵𝑋,𝐼

𝞺𝑋⊘id

𝑊 ⊘ (𝑋 ⊘ (𝑌 ⊘ (−)))

(𝑊 ⊗ 𝑋) ⊘ (𝑌 ⊘ (−)) 𝑊 ⊘ ((𝑋 ⊗ 𝑌 ) ⊘ (−))

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊘ (−) (𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊘ (−)

𝞵𝑊 ,𝑋(𝑌 ⊘(−)) id𝑊 ⊘𝞵𝑋,𝑌

𝞵𝑊 ⊗𝑋,𝑌 𝞵𝑊 ,𝑋⊗𝑌

𝞪𝑊 ,𝑋,𝑌 ⊘id

Conversely, any functor ⊘ : u� × u� → u� equipped with such a collection of
natural isomorphisms defines a left u�-action on u�.
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Proposition b.4.3 (Bénabou). For any monoidal category u�, there is a faithful
strong monoidal functor 𝐹 : u� → [u�, u�] defined by the following data:

𝐹 𝑋 = 𝑋 ⊗ (−)
𝞰 = 𝞴−1

(𝞵𝑋,𝑌 )𝑍 = 𝞪−1
𝑋,𝑌 ,𝑍

In particular, this defines a left u�-action on u�, called the left regular represent-
ation of u�.

Proof. 𝐹 is clearly a faithful functor. In this case, the strong monoidal functor
axioms become the following diagrams:

𝑋 ⊗ 𝑌 𝐼 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ 𝑌 (𝐼 ⊗ 𝑋) ⊗ 𝑌

id

𝞴−1
𝑋⊗𝑌

𝞪−1
𝐼,𝑋,𝑌

𝞴𝑋⊗id𝑌

𝑋 ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌 )

𝑋 ⊗ 𝑌 (𝑋 ⊗ 𝐼) ⊗ 𝑌

id

id𝑋⊗𝞴−1
𝑌

𝞪−1
𝑋,𝐼,𝑌

𝞺𝑋⊗id𝑌

𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍) 𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍

𝞪−1
𝑊 ,𝑋,𝑌 ⊗𝑍 id𝑊 ⊗𝞪−1

𝑋,𝑌 ,𝑍

𝞪−1
𝑊 ⊗𝑋,𝑌 ,𝑍 𝞪−1

𝑊 ,𝑋⊗𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗id𝑍

The left square commutes by the coherence theorem, while the right square and
the pentagon are seen to be immediate consequences of the triangle and pentagon
axioms, respectively. ■

Proposition b.4.4. Let u� be a monoidal category and let u� be a category.

• If ⊘ : u� × u� → u� defines a left u�-action on u� such that, for each object
𝑋 in u� , the endofunctor 𝑋 ⊘ (−) has a right adjoint (−) ⟜ 𝑋, then the
functor ⟜ : u� × u� op → u� defines a right u� op-action on u�.

• If ⦸ : u� × u� → u� defines a right u�-action on u� such that, for each object
𝑋 in u� , the endofunctor (−) ⦸ 𝑋 has a right adjoint 𝑋 ⊸ (−), then the
functor ⊸ : u� op × u� → u� defines a left u� op-action on u�.
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• If ⟜ : u� × u� op → u� defines a right u� op-action on u� such that, for each
object 𝑋 in u� , the endofunctor 𝑋 ⟜ (−) has a left adjoint 𝑋 ⊘ (−), then
the functor ⊘ : u� × u� → u� defines a left u�-action on u�.

• If ⊸ : u� op × u� → u� defines a left u� op-action on u� such that, for each
object 𝑋 in u� , the endofunctor 𝑋 ⊸ (−) has a left adjoint (−) ⦸ 𝑋, then
the functor ⦸ : u� × u� → u� defines a right u�-action on u�.

Proof. The four statements are related by applying (−)op and (−)rev at the appro-
priate points, so it suffices to prove the first claim.

First, note that ⟜ is indeed a functor u� × u� op → u�, by the parameter theorem
for adjunctions.[5] Let ev𝑋,𝐴 : 𝑋 ⊘ (𝐴 ⟜ 𝑋) → 𝐴 denote the component of
the counit of the adjunction 𝑋 ⊘ (−) ⊣ (−) ⟜ 𝑋 at an object 𝐴 in u�. For each
pair of objects 𝑋 and 𝑌 in u� and each object 𝐴 in u�, we define the morphism
(𝞭𝑋,𝑌 )𝐴 : 𝐴 ⟜ (𝑋 ⊗ 𝑌 ) → (𝐴 ⟜ 𝑋) ⟜ 𝑌 to be the right adjoint transpose of
ev𝑋⊗𝑌 ,𝐴 ∘ (𝞵𝑋,𝑌 )(𝐴⟜𝑋)⟜𝑌 , and for each 𝐴, we define 𝞮𝐴 : 𝐴 ⟜ 𝐼 → 𝐴 to be the
composite ev𝐼,𝐴 ∘ 𝞰𝐴⟜𝐼 . These are clearly natural in 𝐴, and it is straightforward
to check that 𝞭𝑋,𝑌 is also natural in 𝑋 and 𝑌 . One may then use the calculus of
mates to show that 𝞮 and 𝞭𝑋,𝑌 are natural isomorphisms and that they satisfy the
axioms for making the right exponential transpose of ⟜ : u� × u� op → u� into a
strong monoidal functor u� op → [u�, u�]rev, i.e. a right u� op-action on u�. ■

Example b.4.5. u� is a left-closed (resp. right-closed) monoidal category if and
only if the left (resp. right) self-action of u� has a parametrised right adjoint as
in the proposition, and the right adjoint right (resp. left) u� op-action so obtained
is precisely a left (resp. right) internal hom functor.

Definition b.4.6. Let u� be a monoidal category, let u� be a u�-enriched category,
let 𝑋 be an object in u� , and let 𝐶 be an object in u�.

• Assuming u� is right-closed with right internal hom functor ⊸, a tensor
product of 𝑋 and 𝐶 is a pair (𝑋 ⊙ 𝐶, ) where 𝑋 ⊙ 𝐶 is an object in u�
and is a morphism 𝑋 → u�(𝐶, 𝑋 ⊙ 𝐶) in u� such that the u�-enriched
natural transformation

u�(𝑋 ⊙ 𝐶, −) ⇒ 𝑋 ⊸ u�(𝐶, −)

induced (as in the weak Yoneda lemma) by the corresponding morphism
⌜ ⌝ : 𝐼 → 𝑋 ⊸ u�(𝐶, 𝑋 ⊙ 𝐶) is a u�-enriched natural isomorphism.

[5] See [CWM, Ch. IV, §7].
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• Assuming u� is left-closed with left internal hom functor ⟜, a cotensor
product of 𝑋 and 𝐶 is a pair (𝑋 ⋔ 𝐶, ) where 𝑋 ⋔ 𝐶 is an object in u�
and is a morphism 𝑋 → u�(𝑋 ⋔ 𝐶, 𝐶) in u� such that the u�-enriched
natural transformation

u�(−, 𝑋 ⋔ 𝐶) ⇒ u�(−, 𝐶) ⟜ 𝑋

induced (as in the weak Yoneda lemma) by the corresponding morphism
⌜ ⌝ : 𝐼 → u�(𝑋 ⋔ 𝐶, 𝐶) ⟜ 𝑋 is a u�-enriched natural isomorphism. We
may also write 𝐶 ⟜ 𝑋 instead of 𝑋 ⋔ 𝐶 .

Remark b.4.7. By lemma b.2.23, cotensor products (resp. tensor products) are
unique up to unique isomorphism. Moreover, if u� is a symmetric monoidal
closed category, then a cotensor product (resp. tensor product) is just a weighted
limit (resp. weighted colimit) for a u�-enriched diagram of shape 𝕀, where 𝕀 is the
u�-enriched category with only one object ∗ and 𝕀(∗, ∗) = 𝐼 .

Definition b.4.8. Let u� be a monoidal category.

• Assuming u� is right-closed, a u�-tensored category is a u�-enriched cat-
egory u� equipped with a choice of tensor product for each object in u� × u�.

• Assuming u� is left-closed, a u�-cotensored category is a u�-enriched cat-
egory u� equipped with a choice of cotensor product for each object in
u� × u�.

Remark b.4.9. Suppose u� is a symmetric monoidal closed category. By propos-
ition b.3.16, if u� is a u�-tensored category (resp. u�-cotensored category), then
there is a u�-enriched functor ⊙ : u� ⊗ u� → u� (resp. ⟜ : u� ⊗ u� op → u�) sending a
pair (𝑋, 𝐶) to their chosen tensor product 𝑋 ⊙𝐶 (resp. cotensor product 𝐶 ⟜𝑋).

Proposition b.4.10. Let u� be a symmetric monoidal closed category.

• If u� is a u�-tensored category, then the functor ⊙ : u� × u� → u� defines a
left u�-action on u�.

• If u� is a u�-cotensored category, then the functor ⟜ : u� × u� op → u� defines
a right u� op-action on u�.
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Proof. The two claims are formally dual; we will prove the first version.
Following remark b.4.2, we seek natural isomorphisms 𝞰 : idu� ⇒ 𝐼 ⊙ (−)

and 𝞵𝑋,𝑌 : 𝑋 ⊙ (𝑌 ⊙ (−)) ⇒ (𝑋 ⊗ 𝑌 ) ⊙ (−) satisfying the relevant coherence
laws. To that end, observe that we have the following natural bijections:

u�(𝐴, 𝐵) ≅ u�(𝐼, u�(𝐴, 𝐵))
≅ u�(𝐼 ⊙ 𝐴, 𝐵)

u�((𝑋 ⊗ 𝑌 ) ⊙ 𝐴, 𝐵) ≅ u�(𝑋 ⊗ 𝑌 , u�(𝐴, 𝐵))
≅ u�(𝑋, u�(𝑌 , u�(𝐴, 𝐵)))
≅ u�(𝑋, u�(𝑌 ⊙ 𝐴, 𝐵))
≅ u�(𝑋 ⊙ (𝑌 ⊙ 𝐴), 𝐵)

Thus, by the Yoneda lemma, we have natural isomorphisms of the required form.
The coherence laws remain to be verified: this is straightforward, if tedious. (See
also proposition b.2.5.) ■

Definition b.4.11. Let u� be a monoidal category and let u� be a category.

• A right u�-hom system for u� consists of a left u�-action ⊘ : u� × u� → u�, a
functor u� : u� op ×u� → u� , and a right u� op-action ⟜ : u� ×u� op → u� together
with natural bijections of the types below,

u�(𝑋, u�(𝐴, 𝐵)) ≅ u�(𝐴, 𝐵 ⟜ 𝑋)
u�(𝑋 ⊘ 𝐴, 𝐵) ≅ u�(𝐴, 𝐵 ⟜ 𝑋)
u�(𝑋 ⊘ 𝐴, 𝐵) ≅ u�(𝑋, u�(𝐴, 𝐵))

where 𝑋 varies over the objects in u� , and 𝐴 and 𝐵 vary over the objects in
u�, such that the cyclic composition of the three bijections is the identity.

• A left u�-hom system for u� consists of a right u�-action ⦸ : u� × u� → u�, a
functor u� : u� op × u� → u� , and a left u� op-action ⊸ : u� op × u� → u� , together
with natural bijections of the types below,

u�(𝑋, u�(𝐴, 𝐵)) ≅ u�(𝐴, 𝑋 ⊸ 𝐵)
u�(𝐴 ⦸ 𝑋, 𝐵) ≅ u�(𝐴, 𝑋 ⊸ 𝐵)
u�(𝐴 ⦸ 𝑋, 𝐵) ≅ u�(𝑋, u�(𝐴, 𝐵))

where 𝑋 varies over the objects in u� , and 𝐴 and 𝐵 vary over the objects in
u�, such that the cyclic composition of the three bijections is the identity.
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Remark b.4.12. The cyclic composition condition implies it is enough to provide
two out of the three natural bijections: the third is then forced to be the inverse
of the composite of the other two.

Example b.4.13. If u� is a biclosed monoidal category with right internal hom
functor Hom and left internal hom functor ⋔, then (⊗, ⋔, Hom) is a left u�-hom
system for u� :

u�(𝑌 , 𝑋 ⋔ 𝑍) ≅ u�(𝑋, Hom(𝑌 , 𝑍))
u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑋, Hom(𝑌 , 𝑍))
u�(𝑋 ⊗ 𝑌 , 𝑍) ≅ u�(𝑌 , 𝑋 ⋔ 𝑍)

Proposition b.4.14. Let u� be a symmetric monoidal closed category and let u�
be a u�-enriched category that is both u�-tensored and u�-cotensored.

(i) For each object 𝑋 in u� , there exist u�-enriched natural isomorphisms

u�(𝑋 ⊙ (−), −) ≅ u�(𝑋, u�(−, −)) ≅ u�(−, (−) ⟜ 𝑋)

and moreover, these constitute u�-enriched natural isomorphisms of u�-en-
riched functors u� op ⊗ u� op ⊗ u� → u� .

(ii) In particular, for each object 𝑋 in u� , there is a u�-enriched adjunction of
the form below:

𝑋 ⊙ (−) ⊣ (−) ⟜ 𝑋 : u� → u�

(iii) (⊙, u�, ⟜) is a right u�-hom system for u�.

Proof. (i). This is a special case of proposition b.3.16.

(ii). Apply proposition b.2.26.

(iii). The u�-enriched natural isomorphisms have underlying natural bijections

u�(𝑋 ⊙ 𝐴, 𝐵) ≅ u�(𝑋, u�(𝐴, 𝐵)) ≅ u�(𝐴, 𝐵 ⟜ 𝑋)

as required. ■

Theorem b.4.15. Let u� be a monoidal category and let u� be a category.
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(i) If ⊘ is a left u�-action on u� and u� : u� op × u� → u� is a functor with natural
bijections of the form below,

u�(𝑋 ⊘ 𝐴, 𝐵) ≅ u�(𝑋, u�(𝐴, 𝐵))

then u� is the hom functor of a u�-enriched category u� whose underlying
ordinary category is isomorphic to u�.

(ii) Moreover, if u� is right-closed, then the hypothesised natural bijection un-
derlies a u�-enriched natural isomorphism

u�(𝑋 ⊘ 𝐴, −) ≅ u�(𝑋, u�(𝐴, −))

for each object 𝑋 in u� and each object 𝐴 in u�. In particular, u� is a
u�-tensored category.

Dually:

(i) If ⟜ is a right u� op-action on u� and u� : u� op × u� → u� is a functor with
natural bijections of the form below,

u�(𝐴, 𝐵 ⟜ 𝑋) ≅ u�(𝑋, u�(𝐴, 𝐵))

then u� is the hom functor of a u�-enriched category u� whose underlying
ordinary category is isomorphic to u�.

(ii) Moreover, if u� is left-closed, then the hypothesised natural bijection un-
derlies a u�-enriched natural isomorphism

u�(−, 𝐵 ⟜ 𝑋) ≅ u�(𝑋, u�(−, 𝑋))

for each object 𝑋 in u� and each object 𝐵 in u�. In particular, u� is a
u�-cotensored category.

Proof. (i). The natural isomorphism 𝐴 ≅ 𝐼 ⊘ 𝐴 induces a family of bijections

u�(𝐴, 𝐵) ≅ u�(𝐼, u�(𝐴, 𝐵))

natural in 𝐴 and 𝐵, so we have a morphism 𝑒𝐴 : 𝐼 → u�(𝐴, 𝐴) in u� for every
object 𝐴 in u� corresponding to id𝐴 : 𝐴 → 𝐴 in u�. Let ev𝐴,𝐵 : u�(𝐴, 𝐵) ⊘ 𝐴 → 𝐵
be the component at 𝐵 of the counit of the adjunction (−) ⊘ 𝐴 ⊣ u�(𝐴, −), and
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B. Higher generalities

define 𝑐𝐴,𝐵,𝐶 : u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵) → u�(𝐴, 𝐶) to be the right adjoint transpose of
the following morphism in u�:

ev𝐵,𝐶 ∘ (idu�(𝐵,𝐶) ⊘ ev𝐴,𝐵) ∘ (𝞵u�(𝐵,𝐶),u�(𝐴,𝐵))
−1
𝐴 : (u�(𝐵, 𝐶) ⊗ u�(𝐴, 𝐵)) ⊘ 𝐴 → 𝐶

By definition, the left adjoint transpose of 𝑒𝐵 is 𝞰−1
𝐵 , so the left and right unit

axioms are satisfied:

𝑐𝐴,𝐵,𝐵 ∘ (𝑒𝐵 ⊗ idu�(𝐴,𝐵)) = 𝞴u�(𝐴,𝐵)

𝑐𝐵,𝐵,𝐶 ∘ (idu�(𝐵,𝐶) ⊗ 𝑒𝐵) = 𝞺u�(𝐵,𝐶)

One may similarly verify the associativity axiom:

𝑐𝐴,𝐵,𝐷 ∘ (𝑐𝐵,𝐶,𝐷 ⊗ idu�(𝐴,𝐵)) = 𝑐𝐴,𝐶,𝐷 ∘ (idu�(𝐶,𝐷) ⊗ 𝑐𝐴,𝐵,𝐶) ∘ 𝞪u�(𝐶,𝐷),u�(𝐵,𝐶),u�(𝐴,𝐵)

(ii). See Lemma 2.1 in [Janelidze and Kelly, 2001]. □

Definition b.4.16. Let u� be a monoidal category, and let u� and u� be categor-
ies with left u�-actions. A u�-strength for a functor 𝐹 : u� → u� is a natural
transformation 𝞼 : (−) ⊘ 𝐹 (−) ⇒ 𝐹 (− ⊘ −) making these diagrams commute:

𝐹 𝐴

𝐼 ⊘ 𝐹 𝐴 𝐹 (𝐼 ⊘ 𝐴)

𝞰𝐹 𝐴 𝐹 𝞰𝐴

𝞼𝐼,𝐴

𝑋 ⊘ (𝑌 ⊘ 𝐹 𝐴)

𝑋 ⊘ 𝐹 (𝑌 ⊘ 𝐴) (𝑋 ⊗ 𝑌 ) ⊘ 𝐹 𝐴

𝐹 (𝑋 ⊘ (𝑌 ⊘ 𝐴)) 𝐹 ((𝑋 ⊗ 𝑌 ) ⊘ 𝐴)

id𝑋⊘𝞼𝑌 ,𝐴 (𝞵𝑋,𝑌 )𝐴

𝞼𝑋,𝑌 ⊘𝐴 𝞼𝑋⊗𝑌 ,𝐴

𝐹 (𝞵𝑋,𝑌 )𝐴

A u�-strong functor is a functor equipped with a u�-strength.

Theorem b.4.17 (Kock). Let u� be a right-closed monoidal category, let u� and
u� be u�-tensored categories, and let 𝐹 : u� → u� be an ordinary functor.
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b.4. Categories with actions

(i) Given a u�-enriched functor 𝐹 : u� → u� whose underlying ordinary functor
is 𝐹 : u� → u�, there is a (unique) natural transformation

u�((−) ⊙ (−), −) ⇒ u�((−) ⊙ 𝐹 (−), 𝐹 (−))

whose components make the following diagram commute,

u�(𝑋 ⊙ 𝐴, 𝐵) u�(𝑋, u�(𝐴, 𝐵))

u�(𝑋 ⊙ 𝐹 𝐴, 𝐹 𝐵) u�(𝑋, u�(𝐹 𝐴, 𝐹 𝐵))

≅

u�(𝑋,𝐹 𝐴,𝐵)

≅

where the horizontal arrows are the components of underlying natural
bijections of the canonical u�-enriched natural isomorphisms. In partic-
ular, for any (ordinary) functors 𝑃 : u� → u� and 𝑄, 𝑅 : u� → u�, there
is an induced map from the ensemble of (ordinary) natural transforma-
tions 𝑃 ⊙ 𝑄 ⇒ 𝑅 to the ensemble of (ordinary) natural transformations
𝑃 ⊙ 𝐹 𝑄 ⇒ 𝐹 𝑅.

(ii) Moreover, the natural transformation 𝞼 : (−) ⊙ 𝐹 (−) ⇒ 𝐹 (− ⊙ −) in-
duced by id : (−) ⊙ (−) ⇒ (−) ⊙ (−) is a u�-strength for 𝐹 : u� → u�.

(iii) This construction defines a bijection between the ensemble of u�-strengths
for 𝐹 : u� → u� and the ensemble of u�-enriched functors u� → u� whose
underlying ordinary functor is 𝐹 .

Proof. (i). Straightforward; but see also remark a.6.5.

(ii) and (iii). See Theorem 1.3 in [Kock, 1972]. □TODO: Give a
proper proof;
the cited one

is incomplete.
Definition b.4.18. Let u� be a monoidal category, let u� and u� be categories with
left u�-actions, and let 𝐹 , 𝐹 ′ : u� → u� be functors with u�-strengths 𝞼 and 𝞼′

respectively. A u�-strong natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′ is a natural
transformation making the following diagram commute:

𝑋 ⊘ 𝐹 𝐴 𝐹 (𝑋 ⊘ 𝐴)

𝑋 ⊘ 𝐹 ′𝐴 𝐹 ′(𝑋 ⊘ 𝐴)

id𝑋⊘𝜑𝐴

𝞼𝑋,𝐴

𝜑𝑋⊘𝐴

𝞼′
𝑋,𝐴
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B. Higher generalities

Theorem b.4.19 (Kock). Let u� be a right-closed monoidal category, let u� and
u� be u�-tensored categories and let 𝐹 , 𝐹 ′ : u� → u� be u�-enriched functors. The
following are equivalent for an ordinary natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′:

(i) 𝜑 : 𝐹 ⇒ 𝐹 ′ is the underlying ordinary natural transformation of a
u�-enriched natural transformation 𝐹 ⇒ 𝐹 ′.

(ii) 𝜑 : 𝐹 ⇒ 𝐹 ′ is a u�-strong natural transformation (with respect to the
u�-strengths induced by 𝐹 and 𝐹 ′).

Proof. See Remark 1.4 in [Kock, 1972]. □ TODO: Give a
proper proof.

b.5 Indexed categories
Prerequisites. §§a.1, a.2, a.3, a.4.

Definition b.5.1. Let ℬ be a category. A ℬ-indexed category 𝔼 consists of the
following data:

• For each object 𝐵 in ℬ, a category ℰ𝐵, called the fibre of 𝔼 over 𝐵.

• For each morphism 𝑓 : 𝐵′ → 𝐵 in ℬ, a functor 𝑓 ∗ : ℰ𝐵 → ℰ𝐵′
, called the

reindexing functor along 𝑓 : 𝐵′ → 𝐵.

• For each object 𝐵 in ℬ, a natural isomorphism 𝞰𝐵 : idℰ𝐵 ⇒ (id𝐵)∗.

• For each commutative triangle in ℬ of the form below,

𝐵″

𝐵′ 𝐵

𝑓∘𝑓 ′

𝑓 ′

𝑓

a natural isomorphism 𝞵𝑓,𝑓 ′ : 𝑓 ′∗𝑓 ∗ ⇒ (𝑓 ∘ 𝑓 ′)∗.

These data are moreover required to satisfy the equations shown below:

𝞵𝑓,id𝐵′ ∙ 𝞰𝐵′𝑓 ∗ = id𝑓 ∗

𝞵id𝐵,𝑓 ∙ 𝑓 ∗𝞰𝐵 = id𝑓 ∗

𝞵𝑓∘𝑓 ′,𝑓 ″ ∙ 𝑓 ′′∗𝞵𝑓,𝑓 ′ = 𝞵𝑓,𝑓 ′∘𝑓 ″ ∙ 𝞵𝑓 ′,𝑓 ″𝑓 ∗

A strict ℬ-indexed category is a ℬ-indexed category where the natural iso-
morphisms 𝞰𝐵 and 𝞵𝑓,𝑓 ′ are identities.
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b.5. Indexed categories

¶ b.5.2. If 𝔼 is a ℬop-indexed category and 𝑓 : 𝐵′ → 𝐵 is a morphism in
ℬ, then we will usually write ℰ𝐵 for the fibre over 𝐵 and either 𝑓! or 𝑓∗ for the
reindexing functor ℰ𝐵′ → ℰ𝐵, depending on context.

Definition b.5.3. Let ℬ be a category and let 𝔻 and 𝔼 be ℬ-indexed categories.
An oplax ℬ-indexed functor 𝐹 : 𝔻 → 𝔼 consists of the following data:

• For each object 𝐵 in ℬ, a functor 𝐹 𝐵 : u�𝐵 → ℰ𝐵.

• For each morphism 𝑓 : 𝐵′ → 𝐵 in ℬ, a natural transformation 𝞱𝑓 as in
the diagram below:

u�𝐵 ℰ𝐵

u�𝐵′
ℰ𝐵′

𝑓 ∗

𝐹 𝐵

𝑓 ∗

𝐹 𝐵′

𝞱𝑓

These data are required to satisfy the equations shown below:

u�𝐵 u�𝐵 ℰ𝐵

u�𝐵 u�𝐵 ℰ𝐵

id

𝐹 𝐵

(id𝐵)∗

𝐹 𝐵

𝞰𝐵 𝞱id =
u�𝐵 ℰ𝐵 ℰ𝐵

u�𝐵 ℰ𝐵 ℰ𝐵

id

𝐹 𝐵

id (id𝐵)∗

𝐹 𝐵

𝞰𝐵

u�𝐵 ℰ𝐵

u�𝐵′

u�𝐵″
ℰ𝐵″

𝑓 ∗
𝐹 𝐵

(𝑓∘𝑓 ′)∗

𝑓 ′∗

𝐹 𝐵″

𝞱𝑓″𝞵𝑓,𝑓′ =

u�𝐵 ℰ𝐵

u�𝐵′
ℰ𝐵′

u�𝐵″
ℰ𝐵″

(𝑓∘𝑓 ′)∗

𝑓 ∗

𝐹 𝐵

𝑓 ∗

𝑓 ′∗

𝐹 𝐵′

𝑓 ′∗

𝐹 𝐵″

𝞱𝑓

𝞱𝑓′

𝞵𝑓,𝑓′

A ℬ-indexed functor (resp. strict ℬ-indexed functor) is an oplax ℬ-indexed
functor such that the natural transformations 𝞱𝑓 are natural isomorphisms (resp.
identities).

Definition b.5.4. Let ℬ be a category and let 𝐹 , 𝐺 : 𝔻 → 𝔼 be a parallel pair of
ℬ-indexed functors. A ℬ-indexed natural transformation 𝛼 : 𝐹 ⇒ 𝐺 consists
of a natural transformation 𝛼𝐵 : 𝐹 𝐵 ⇒ 𝐺𝐵 for each object 𝐵 in ℬ, such that the
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B. Higher generalities

following equation holds:

u�𝐵 ℰ𝐵

u�𝐵′
ℰ𝐵′

u�𝐵′
ℰ𝐵′

𝑓 ∗

𝐺𝐵

𝑓 ∗

𝐺𝐵′

𝐹 𝐵′

𝞱𝑓

𝛼𝐵′

=

u�𝐵 ℰ𝐵

u�𝐵 ℰ𝐵

u�𝐵′
ℰ𝐵′

𝐹 𝐵

𝑓 ∗

𝐺𝐵

𝑓 ∗

𝐺𝐵′

𝛼𝐵

𝞱𝑓

Remark b.5.5. In other words, a ℬ-indexed category is a contravariant pseudo-
functor from the category ℬ to the meta-2-category of all (not necessarily small)
categories, a ℬ-indexed functor is a pseudonatural transformation between such
pseudofunctors, and in turn, a ℬ-indexed natural transformation is a modification
between such pseudonatural transformations.

Example b.5.6. Any contravariant (strict) functor from ℬ to the meta-category
of all (not necessarily small) categories is a ℬ-indexed category in a trivial way.
In particular, every presheaf on ℬ can be regarded as a ℬ-indexed category.

¶ b.5.7. Given two ℬ-indexed categories, say 𝔻 and 𝔼, we may form a cat-
egory [𝔻, 𝔼] whose objects are ℬ-indexed functors 𝔻 → 𝔼 and whose morphisms
are ℬ-indexed natural transformations. Of course, these are the hom-categories
of the evident meta-2-category of ℬ-indexed categories, ℬ-indexed functors, and
ℬ-indexed natural transformations.

Lemma b.5.8. Let ℬ be a category, let 𝐵 be an object in ℬ, and let 𝔼 be a
ℬ-indexed category. Then the following functor is (half of) an equivalence of
categories,

[h𝐵, 𝔼] → ℰ𝐵

𝐹 ↦ 𝐹 𝐵(id𝐵)

where h𝐵 is the representable presheaf on ℬ regarded as a ℬ-indexed category.

Proof. First, we show that the given functor is fully faithful. Let 𝐹 , 𝐺 : h𝐵 → 𝔼
be two ℬ-indexed functors, and let 𝛼 : 𝐹 ⇒ 𝐺 be a ℬ-indexed natural trans-
formation. Then, for any morphism 𝑓 : 𝐵′ → 𝐵 in ℬ, we have the following
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b.5. Indexed categories

commutative diagram:

𝐹 𝐵′
(𝑓 ) 𝐺𝐵′

(𝑓 )

𝑓 ∗𝐹 𝐵(id𝐵) 𝑓 ∗𝐺𝐵(id𝐵)

(𝞱𝑓 )id

(𝛼𝐵′)𝑓

(𝞱𝑓 )id

𝑓 ∗((𝛼𝐵)id)

Since 𝞱𝑓 : 𝐹 𝐵′
𝑓 ∗ ⇒ 𝑓 ∗𝐹 𝐵 is a natural isomorphism, we may deduce that all

the components of 𝛼 are uniquely determined by (𝛼𝐵)id : 𝐹 𝐵(id𝐵) → 𝐺𝐵(id𝐵).
Conversely, given any morphism 𝑔 : 𝐹 𝐵(id𝐵) → 𝐺𝐵(id𝐵), we may define a
ℬ-indexed natural transformation 𝛼 : 𝐹 ⇒ 𝐺 such that (𝛼𝐵)id = 𝑔: the com-
ponents of 𝛼 are determined as above, and it is straightforward to check that the
various axioms are satisfied.

It now suffices to show that the given functor [h𝐵, 𝔼] → ℰ𝐵 is essentially
surjective on objects. Let 𝐸 be an object in ℰ𝐵. We define a ℬ-indexed functor
𝐹 : h𝐵 → 𝔼 as follows: given a morphism 𝑓 : 𝐵′ → 𝐵 in ℬ, set 𝐹 𝐵′

(𝑓 ) = 𝑓 ∗𝐸,
and given another morphism 𝑓 ′ : 𝐵″ → 𝐵′ in ℬ, set (𝞱𝑓 ′)𝑓 = (𝞵𝑓,𝑓 ′)

−1
𝐸 . It

is easy to verify that these data indeed constitute a ℬ-indexed functor, and by
construction, we have a canonical isomorphism 𝐸 → 𝐹 𝐵(id𝐵), namely (𝞰𝐵)𝐸 :
𝐸 → (id𝐵)∗𝐸. ■

Definition b.5.9. Let 𝑃 : ℰ → ℬ be a functor.

• A 𝑃 -vertical morphism is a morphism in ℰ whose image in ℬ is an iden-
tity morphism.

• The fibre of 𝑃 over an object 𝐵 in ℬ is the subcategory 𝑃 −1{𝐵} ⊆ ℰ
whose objects are those 𝐸 such that 𝑃 𝐸 = 𝐵 and whose morphisms are
the 𝑃 -vertical morphisms.

Remark b.5.10. The fibres of a functor 𝑃 : ℰ → ℬ are usually not full subcat-
egories of ℰ. Moreover, the notion of 𝑃 -vertical morphism is not stable under
equivalence: indeed, a morphism in ℰ may be isomorphic to a 𝑃 -vertical morph-
ism without being a 𝑃 -vertical morphism.

Lemma b.5.11. Let 𝑃 : ℰ → ℬ be a functor. The inverse of any 𝑃 -vertical
morphism is also a 𝑃 -vertical morphism.

Proof. Obvious. ⧫
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B. Higher generalities

Definition b.5.12. Let 𝑃 : ℰ → ℬ be a functor.

• A weakly 𝑃 -cartesian morphism in ℰ is a morphism 𝑔 : 𝐸′ → 𝐸 with the
following property: for each morphism ℎ : 𝐸″ → 𝐸 in ℰ, if 𝑃 𝐸″ = 𝑃 𝐸′

and 𝑃 ℎ = 𝑃 𝑔, then there is a unique 𝑃 -vertical morphism 𝑔′ : 𝐸″ → 𝐸′

such that ℎ = 𝑔 ∘ 𝑔′.

• A weakly 𝑃 -cocartesian morphism in ℰ is a morphism 𝑔 : 𝐸 → 𝐸′

with the following property: for each morphism ℎ : 𝐸 → 𝐸″ in ℰ, if
𝑃 𝐸″ = 𝑃 𝐸′ and 𝑃 ℎ = 𝑃 𝑔, then there is a unique 𝑃 -vertical morphism
𝑔′ : 𝐸′ → 𝐸″ such that ℎ = 𝑔′ ∘ 𝑔.

Remark. In the French literature (e.g. [SGA 1, Exposé VI]), weakly cartesian
morphisms are simply called ‘morphismes cartésiens’.

Lemma b.5.13 (Chevalley). Let 𝑃 : ℰ → ℬ be a functor, let 𝐸 be an ob-
ject in ℰ, let 𝐵 = 𝑃 𝐸, let 𝑓 : 𝐵′ → 𝐵 be a morphism in ℬ, and let 𝑄 :
𝑃 −1{𝐵′} → (𝐵′ ↓ 𝑃 ) be the evident functor sending each object 𝐸″ in 𝑃 −1{𝐵′}
to (𝐵′, 𝐸″, id𝐵) in the comma category (ℬ ↓ 𝑃 ). The following are equivalent
for a morphism 𝑔 : 𝐸′ → 𝐸 in ℰ such that 𝑃 𝑔 = 𝑓 :

(i) The morphism 𝑔 : 𝐸′ → 𝐸 is a weakly 𝑃 -cocartesian morphism.

(ii) For every object 𝐸″ in 𝑃 −1{𝐵′}, the following map is a bijection:

𝑃 −1{𝐵′}(𝐸″, 𝐸′) → (𝐵′ ↓ 𝑃 )(𝑄𝐸″, (𝐵′, 𝐸, 𝑓 ))
𝑔′ ↦ 𝑔 ∘ 𝑔′

(iii) The object (𝐸′, 𝑔) in the comma category (𝑄 ↓ (𝐵′, 𝐸, 𝑓 )) is a terminal
object.

Proof. This is a straightforward exercise. ■

Corollary b.5.14. Let 𝑃 : ℰ → ℬ be a functor. If both 𝑔 : 𝐸′ → 𝐸 and
ℎ : 𝐸″ → 𝐸 are weakly 𝑃 -cartesian morphisms with 𝑃 𝑔 = 𝑃 𝑔′, then there is
a unique 𝑃 -vertical morphism 𝑔′ : 𝐸″ → 𝐸′ such that ℎ = 𝑔 ∘ 𝑔′, and it is an
isomorphism in 𝑃 𝐸′. ■
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Definition b.5.15. Let 𝑃 : ℰ → ℬ be a functor.

• A 𝑃 -prone morphism is a morphism 𝑔 : 𝐸′ → 𝐸 in ℰ with the following
property: if 𝑓 : 𝐵′ → 𝐵 is the image of 𝑔 under 𝑃 , and ℎ : 𝐸″ → 𝐸 is
any morphism in ℰ such that 𝑃 ℎ = 𝑓 ∘ 𝑓 ′ for some 𝑓 ′ : 𝐵″ → 𝐵′ in ℬ,
then there is a unique morphism 𝑔′ : 𝐸″ → 𝐸′ in ℰ such that 𝑃 𝑔′ = 𝑓 ′

and ℎ = 𝑔 ∘ 𝑔′:
𝐸″

𝐸′ 𝐸

𝐵″

𝐵′ 𝐵

ℎ
𝑔′

∃!

𝑔

𝑓∘𝑓 ′

𝑓 ′

𝑓

• A 𝑃 -supine morphism is a morphism 𝑔 : 𝐸 → 𝐸′ in ℰ with the following
property: if 𝑓 : 𝐵 → 𝐵′ is the image of 𝑔 under 𝑃 , and ℎ : 𝐸 → 𝐸″ is
any morphism in ℰ such that 𝑃 ℎ = 𝑓 ′ ∘ 𝑓 for some 𝑓 ′ : 𝐵′ → 𝐵″ in ℬ,
then there is a unique morphism 𝑔′ : 𝐸 → 𝐸″ in ℰ such that 𝑃 𝑔′ = 𝑓 ′ and
ℎ = 𝑔′ ∘ 𝑔:

𝐸″

𝐸 𝐸′

𝐵″

𝐵 𝐵′

ℎ

𝑔

∃!
𝑔′

𝑓 ′∘𝑓

𝑓

𝑓 ′

Remark. In the French literature (e.g. [Giraud, 1964]), prone morphisms are
called ‘morphismes hypercartésiens’, whereas in the English literature (e.g. [Bén-
abou, 1985]), they are simply called ‘cartesian morphisms’. To avoid confusion,
we will avoid the latter term.
Remark b.5.16. Clearly, every 𝑃 -prone (resp. 𝑃 -supine) morphism in ℰ is also
weakly 𝑃 -cartesian (resp. weakly 𝑃 -cocartesian).

Example b.5.17. Let ℬ be a category, let [𝟚, ℬ] be the arrow category, and let 𝑃 :
[𝟚, ℬ] → ℬ be the evident functor that sends an object in [𝟚, ℬ] to its codomain
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(considered as a morphism in ℬ). Then a morphism in [𝟚, ℬ] is 𝑃 -prone if and
only if it is a pullback square in ℬ. This is the reason why 𝑃 -prone morphisms are
often called ‘(strongly) 𝑃 -cartesian’. However, a morphism in [𝟚, ℬ] is 𝑃 -supine
if and only if the top arrow is an isomorphism in ℬ—not a pushout square, as
one might expect!

Lemma b.5.18 (Chevalley). Let 𝑃 : ℰ → ℬ be a functor, let 𝑄 : ℰ → (ℬ ↓ 𝑃 ) be
the evident functor sending each object 𝐸 in ℰ to (𝑃 𝐸, 𝐸, id𝑃 𝐸) in the comma
category (ℬ ↓ 𝑃 ), and let 𝑓 : 𝐵′ → 𝐵 be a morphism in ℬ. The following are
equivalent for any morphism 𝑔 : 𝐸′ → 𝐸 in ℰ such that 𝑃 𝑔 = 𝑓 :

(i) The morphism 𝑔 : 𝐸′ → 𝐸 is a 𝑃 -prone morphism in ℰ.

(ii) For every object 𝐸″ in ℰ, the following map is a bijection:

ℰ(𝐸″, 𝐸′) → (ℬ ↓ 𝑃 )(𝑄𝐸″, (𝐵′, 𝐸, 𝑓 ))
𝑔′ ↦ (𝑃 𝑔′, 𝑔 ∘ 𝑔′)

(iii) The object (𝐸′, (id𝐵′, 𝑓)) in the comma category (𝑄 ↓ (𝐵′, 𝐸, 𝑓 )) is a
terminal object.

Proof. This is a straightforward exercise. ◊

Corollary b.5.19. Let 𝑃 : ℰ → ℬ be a functor. If both 𝑔 : 𝐸′ → 𝐸 and
ℎ : 𝐸″ → 𝐸 are 𝑃 -prone morphisms with 𝑃 𝑔 = 𝑃 𝑔′, then there is a unique
𝑃 -vertical morphism 𝑔′ : 𝐸″ → 𝐸′ such that ℎ = 𝑔∘𝑔′, and it is an isomorphism
in the fibre of 𝑃 𝐸′. ■

Definition b.5.20.
• A Grothendieck prefibration (resp. Grothendieck fibration) is a functor

𝑃 : ℰ → ℬ with the following lifting property: for every object 𝐸 in ℰ and
every morphism 𝑓 : 𝐵′ → 𝑃 𝐸 in ℬ, there exists a weakly 𝑃 -cartesian
(resp. 𝑃 -prone) morphism 𝑔 : 𝑓 ∗𝐸 → 𝐸 in ℰ with 𝑃 𝑔 = 𝑓 .

• A Grothendieck pre-opfibration (resp. Grothendieck opfibration) is a
functor 𝑃 : ℰ → ℬ with the following lifting property: for every object
𝐸 in ℰ and every morphism 𝑓 : 𝑃 𝐸 → 𝐵′ in ℬ, there exists a weakly
𝑃 -cocartesian (resp. 𝑃 -supine) morphism 𝑔 : 𝐸 → 𝑓∗𝐸 in ℰ with 𝑃 𝑔 = 𝑓 .
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Lemma b.5.21. Let ℬ and u� be categories.

• The projection ℬ × u� → ℬ is a Grothendieck fibration, and the prone
morphisms are precisely the morphisms whose u�-component is an iso-
morphism.

• The projection ℬ × u� → ℬ is a Grothendieck opfibration, and the su-
pine morphisms are precisely the morphisms whose u�-component is an
isomorphism.

Proof. This is a straightforward exercise. ◊

Lemma b.5.22. Let 𝑃 : ℰ → ℬ be a Grothendieck prefibration (resp. Gro-
thendieck fibration). Then every morphism in ℰ can be factored as a 𝑃 -vertical
morphism followed by a weakly 𝑃 -cartesian (resp. 𝑃 -prone) morphism, and this
factorisation is unique up to unique 𝑃 -vertical isomorphism.

Proof. Let ℎ : 𝐸″ → 𝐸 be a morphism in ℰ and let 𝑓 = 𝑃 ℎ. By hypothesis,
there is a weakly 𝑃 -cartesian (resp. 𝑃 -prone) morphism 𝑔 : 𝐸′ → 𝐸 in ℰ such
that 𝑃 𝑔 = 𝑓 ; and since 𝑔 : 𝐸′ → 𝐸 is weakly 𝑃 -cartesian (resp. 𝑃 -prone),
there is a unique 𝑃 -vertical morphism 𝑔′ : 𝐸″ → 𝐸′ such that ℎ = 𝑔 ∘ 𝑔′.
Corollary b.5.14 (resp. corollary b.5.19) then implies that this factorisation is
unique up to unique 𝑃 -vertical isomorphism. ■

Proposition b.5.23. Let 𝑃 : ℰ → ℬ be a functor. The following are equivalent:

(i) 𝑃 : ℰ → ℬ is a Grothendieck prefibration.

(ii) For each object 𝐵′ in ℬ, there exists a right adjoint for the evident functor
𝑄 : 𝑃 −1{𝐵′} → (𝐵′ ↓ 𝑃 ) that sends each object 𝐸′ in 𝑃 −1{𝐵′} to the
object (𝐸′, id𝐵′) in the comma category (𝐵′ ↓ 𝑃 ).

Proof. Apply lemma b.5.13. ■

Proposition b.5.24. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration. The following
are equivalent for a morphism 𝑔 : 𝐸′ → 𝐸 in ℰ:

(i) 𝑔 : 𝐸′ → 𝐸 is 𝑃 -prone.

(ii) 𝑔 : 𝐸′ → 𝐸 is weakly 𝑃 -cartesian.
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Proof. (i) ⇒ (ii). See remark b.5.16.

(ii) ⇒ (i). Suppose 𝑔 : 𝐸′ → 𝐸 is weakly 𝑃 -cartesian. Let 𝑓 = 𝑃 𝑔. Since 𝑃 :
ℰ → ℬ is a Grothendieck fibration, there is a 𝑃 -prone morphism ℎ : 𝑓 ∗𝐸 → 𝐸
in ℰ such that 𝑃 ℎ = 𝑓 ; but 𝑃 -prone morphisms are also weakly 𝑃 -cartesian, so
by corollary b.5.14, there is a 𝑃 -vertical isomorphism 𝑔′ : 𝑓 ∗𝐸 → 𝐸′ such that
ℎ = 𝑔 ∘ 𝑔′, and therefore 𝑔 : 𝐸′ → 𝐸 is also 𝑃 -prone. ■

Lemma b.5.25. For any functor 𝑃 : ℰ → ℬ, the class of 𝑃 -prone morphisms in
ℰ is closed under retracts.

Proof. Suppose we have a commutative diagram in ℰ of the form below,

𝐴′ 𝐸′ 𝐴′

𝐴 𝐸 𝐴

𝑎
𝑠′

id

𝑔
𝑟′

𝑎

𝑠

id

𝑟

where 𝑔 : 𝐸′ → 𝐸 is a 𝑃 -cartesian morphism. Let ℎ : 𝐴″ → 𝐴 be a morphism
in ℰ and let 𝑓 ′ : 𝑃 𝐴″ → 𝑃 𝐴′ be a morphism in ℬ such that 𝑃 ℎ = 𝑃 𝑎 ∘ 𝑃 𝑓 ′.
There is a unique morphism 𝑔′ : 𝐴″ → 𝐸′ in ℰ such that 𝑠 ∘ ℎ = 𝑔 ∘ 𝑔′ and
𝑃 𝑔′ = 𝑃 𝑠′ ∘ 𝑓 ′. Let 𝑎′ = 𝑟′ ∘ 𝑔′. Then,

ℎ = 𝑟 ∘ 𝑠 ∘ ℎ = 𝑟 ∘ 𝑔 ∘ 𝑔′ = 𝑎 ∘ 𝑟′ ∘ 𝑔′ = 𝑎 ∘ 𝑎′

𝑃 𝑎′ = 𝑃 𝑟′ ∘ 𝑃 𝑔′ = 𝑃 𝑟′ ∘ 𝑃 𝑠′ ∘ 𝑓 ′ = 𝑓 ′

and moreover, for any morphism ℎ′ : 𝐴″ → 𝐴′ in ℰ such that ℎ = 𝑎 ∘ ℎ′ and
𝑃 ℎ′ = 𝑓 ′, we must have

𝑠 ∘ ℎ = 𝑠 ∘ 𝑎 ∘ ℎ′ = 𝑔 ∘ 𝑠′ ∘ ℎ′

𝑃 (𝑠′ ∘ ℎ′) = 𝑃 𝑠′ ∘ 𝑓 ′

so 𝑠′ ∘ ℎ′ = 𝑔′, and therefore ℎ′ = 𝑟′ ∘ 𝑠′ ∘ ℎ′ = 𝑟′ ∘ 𝑔′ = 𝑎′. Thus 𝑎 : 𝐴′ → 𝐴 is
indeed 𝑃 -cartesian. ■

Lemma b.5.26. Let 𝑃 : ℰ → ℬ be a functor and let 𝑔 : 𝐸′ → 𝐸 be a 𝑃 -prone
morphism in ℰ. The following are equivalent for a morphism 𝑔′ : 𝐸″ → 𝐸′ in
ℰ:
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(i) 𝑔′ : 𝐸″ → 𝐸′ is 𝑃 -prone.

(ii) 𝑔 ∘ 𝑔′ : 𝐸″ → 𝐸 is 𝑃 -prone.

Proof. (i) ⇒ (ii). Let 𝑔′ : 𝐸″ → 𝐸′ is a 𝑃 -prone morphism in ℰ, let ℎ : 𝐸‴ → 𝐸
be a morphism in ℰ and let 𝑓 ″ : 𝑃 𝐸‴ → 𝑃 𝐸″ be a morphism in ℬ such that
𝑃 ℎ = 𝑃 𝑔 ∘ 𝑃 𝑔′ ∘ 𝑓 ″. We must show that there is a unique morphism 𝑔″ : 𝐸‴ →
𝐸″ in ℰ such that ℎ = 𝑔 ∘ 𝑔′ ∘ 𝑔″ and 𝑃 𝑔″ = 𝑓 ″. To that end, observe that there is
a unique morphism ℎ′ : 𝐸‴ → 𝐸′ in ℰ such that ℎ = 𝑔 ∘ ℎ′ and 𝑃 ℎ′ = 𝑃 𝑔′ ∘ 𝑓 ″,
and thus there is a unique morphism 𝑔″ : 𝐸‴ → 𝐸″ in ℰ such that ℎ′ = 𝑔′ ∘ 𝑔″

and 𝑃 𝑔″ = 𝑓 ″; in particular, ℎ = 𝑔 ∘ 𝑔′ ∘ 𝑔″. Moreover, if ℎ″ : 𝐸‴ → 𝐸″ is
any morphism in ℰ such that ℎ = 𝑔 ∘ 𝑔′ ∘ ℎ″ and 𝑃 ℎ″ = 𝑓 ″, then we must have
ℎ′ = 𝑔′ ∘ ℎ″ and hence 𝑔″ = ℎ″. This proves that 𝑔 ∘ 𝑔′ : 𝐸″ → 𝐸 is a 𝑃 -prone
morphism in ℰ.

(ii) ⇒ (i). Suppose 𝑔 ∘ 𝑔′ : 𝐸″ → 𝐸 is a 𝑃 -prone morphism in ℰ. Let ℎ′ : 𝐸‴ →
𝐸′ be a morphism in ℰ and let 𝑓 ″ : 𝑃 𝐸‴ → 𝑃 𝐸″ be a morphism in ℬ such that
𝑃 ℎ′ = 𝑃 𝑔′ ∘ 𝑓 ″. We must show that there is a unique morphism 𝑔″ : 𝐸‴ → 𝐸″

in ℰ such that ℎ′ = 𝑔′ ∘ 𝑔″ and 𝑃 𝑔″ = 𝑓 ″. But since 𝑔 ∘ 𝑔′ : 𝐸″ → 𝐸 is 𝑃 -prone,
there is a unique morphism 𝑔″ : 𝐸‴ → 𝐸″ in ℰ such that 𝑔 ∘ ℎ′ = 𝑔 ∘ 𝑔′ ∘ 𝑔″ and
𝑃 𝑔″ = 𝑓 ″; and since 𝑔 : 𝐸′ → 𝐸 is 𝑃 -prone, we must have ℎ′ = 𝑔′ ∘ 𝑔″. Thus,
𝑔′ : 𝐸″ → 𝐸′ is a 𝑃 -prone morphism in ℰ. ■

Remark b.5.27. In the special case where 𝑃 is codom : [𝟚, ℬ] → ℬ, we recover
the well-known pullback pasting lemma.

Proposition b.5.28. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration. The following
are equivalent for a morphism 𝑔 : 𝐸′ → 𝐸:

(i) The morphism 𝑔 : 𝐸′ → 𝐸 is a 𝑃 -prone morphism in ℰ.

(ii) The morphism 𝑔 : 𝐸′ → 𝐸 is right orthogonal to every 𝑃 -vertical morph-
ism in ℰ.

(iii) The morphism 𝑔 : 𝐸′ → 𝐸 has the right lifting property with respect to
every 𝑃 -vertical morphism in ℰ.
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Proof. (i) ⇒ (ii). Consider a lifting problem in ℰ of the form below,

𝐴′ 𝐸′

𝐴 𝐸

𝑎

𝑒′

𝑔

𝑒

where 𝑎 : 𝐴′ → 𝐴 is a 𝑃 -vertical morphism and 𝑔 : 𝐸′ → 𝐸 is a 𝑃 -prone
morphism. Then, 𝑃 𝑒 = 𝑃 (𝑒 ∘ 𝑎) = 𝑃 𝑔 ∘ 𝑃 𝑒′, so there is a unique morphism
ℎ : 𝐴 → 𝐸′ in ℰ such that 𝑒 = 𝑔 ∘ ℎ and 𝑃 ℎ = 𝑃 𝑒′. Thus, 𝑔 ∘ 𝑒′ = 𝑔 ∘ ℎ ∘ 𝑎 and
𝑃 𝑒′ = 𝑃 (ℎ ∘ 𝑎), so we must have 𝑒′ = ℎ ∘ 𝑎 as well. Moreover, if 𝑙 : 𝐴 → 𝐸′ is
any morphism such that 𝑒′ = 𝑙 ∘ 𝑎 and 𝑒 = 𝑔 ∘ 𝑙, then 𝑃 𝑙 = 𝑃 (𝑙 ∘ 𝑎) = 𝑃 𝑒′, so
we must have ℎ = 𝑙. Thus, 𝑔 : 𝐸′ → 𝐸 is right orthogonal to every 𝑃 -vertical
morphism in ℰ.

(ii) ⇒ (iii). Immediate.

(iii) ⇒ (i). Let ℎ : 𝐸″ → 𝐸 be a morphism in ℰ with the right lifting property
with respect to every 𝑃 -vertical morphism in ℰ. By lemma b.5.22, ℎ = 𝑔 ∘ 𝑔′ for
some 𝑃 -prone morphism 𝑔 : 𝐸′ → 𝐸 and 𝑃 -vertical morphism 𝑔′ : 𝐸″ → 𝐸′.
Thus, there is a morphism 𝑟 : 𝐸′ → 𝐸″ making the following diagram commute,

𝐸″ 𝐸″

𝐸′ 𝐸

𝑔′

id

ℎ
𝑟

𝑔

and thus ℎ : 𝐸″ → 𝐸 is a retract of 𝑔 : 𝐸′ → 𝐸. But proposition b.5.30 says
that the class of 𝑃 -prone morphisms is closed under retracts, so it follows that
ℎ : 𝐸″ → 𝐸 is indeed 𝑃 -prone. ■

Corollary b.5.29. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration. Then there is an
orthogonal factorisation system on ℰ where:

• The left class contains all 𝑃 -vertical morphisms.

• The right class is the class of 𝑃 -prone morphisms.

Proof. Apply the retract argument (proposition a.3.19) to lemma b.5.22 and pro-
position b.5.28. ■
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Proposition b.5.30. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration.

(i) Every isomorphism in ℰ is 𝑃 -prone.

(ii) The class of 𝑃 -prone morphisms in ℰ is closed under composition.

(iii) The class of 𝑃 -prone morphisms in ℰ is closed under retracts.

(iv) The class of 𝑃 -prone morphisms in ℰ is closed under pullback.

(v) The class of 𝑃 -prone morphisms in ℰ is closed under limits in [𝟚, ℰ].

Proof. (i)–(v). Apply proposition a.3.17 to proposition b.5.28. ■

Proposition b.5.31. Let 𝑃 : ℰ → ℬ be a functor. The following are equivalent:

(i) 𝑃 : ℰ → ℬ is a Grothendieck fibration.

(ii) 𝑃 : ℰ → ℬ is a Grothendieck prefibration such that the class of weakly
𝑃 -cartesian morphisms in ℰ is closed under composition.

(iii) There exists a right adjoint for the evident functor 𝑄 : ℰ → (ℬ ↓ 𝑃 ) that
sends an object 𝐸 in ℰ to the object (𝑃 𝐸, 𝐸, id𝑃 𝐸) in the comma category
(ℬ ↓ 𝑃 ).

Proof. (i) ⇒ (ii). Suppose 𝑃 : ℰ → ℬ is a Grothendieck fibration. Remark b.5.16
then implies 𝑃 : ℰ → ℬ is a Grothendieck prefibration. We then combine
propositions b.5.24 and b.5.30 to deduce that the class of weakly 𝑃 -cartesian
morphisms in ℰ is closed under composition.

(ii) ⇒ (i). Suppose 𝑃 : ℰ → ℬ is a Grothendieck prefibration such that the class
of weakly 𝑃 -cartesian morphisms in ℰ is closed under composition. To verify
that 𝑃 : ℰ → ℬ is a Grothendieck fibration, it suffices to show that every weakly
𝑃 -cartesian morphism in ℰ is a 𝑃 -prone morphism.

Let 𝑔 : 𝐸′ → 𝐸 be a weakly 𝑃 -cartesian morphism in ℰ, let ℎ : 𝐸″ → 𝐸
be a morphism in ℰ, and let 𝑓 ′ : 𝑃 𝐸″ → 𝑃 𝐸′ be a morphism in ℬ such that
𝑃 ℎ = 𝑃 𝑔∘𝑓 ′. By hypothesis, there is a weakly 𝑃 -cartesian morphism ̃𝑓 ′ : ̃𝐸″ →
𝐸′ such that 𝑃 ̃𝑓 ′ = 𝑓 ′; moreover, 𝑔 ∘ ̃𝑓 ′ is weakly 𝑃 -cartesian, so there exists a
unique 𝑃 -vertical morphism 𝑘 : 𝐸″ → ̃𝐸″ such that ℎ = 𝑔∘ ̃𝑓 ′∘𝑘. Let 𝑔′ = ̃𝑓 ′∘𝑘.
Clearly, ℎ = 𝑔 ∘ 𝑔′ and 𝑃 𝑔′ = 𝑓 ′. Suppose ℎ′ : 𝐸″ → 𝐸′ is a morphism in ℰ
such that ℎ = 𝑔 ∘ ℎ′ and 𝑃 ℎ′ = 𝑓 ′. Then there is a unique 𝑃 -vertical morphism

903



B. Higher generalities

𝑙 : 𝐸″ → ̃𝐸″ such that ℎ′ = ̃𝑓 ′ ∘ 𝑙; but then 𝑔 ∘ ̃𝑓 ′ ∘ 𝑘 = 𝑔 ∘ ̃𝑓 ′ ∘ 𝑙, so we must
have 𝑘 = 𝑙 and hence 𝑔′ = ℎ′. Thus, 𝑔 : 𝐸′ → 𝐸 is indeed a 𝑃 -prone morphism
in ℰ.

(i) ⇔ (iii). Apply lemma b.5.18. ■

Proposition b.5.32 (Bénabou). Let 𝑃 : ℰ → ℬ be a Grothendieck fibration. The
following are equivalent:

(i) Every fibre of 𝑃 : ℰ → ℬ is a groupoid.

(ii) Every morphism in ℰ is 𝑃 -prone.

(iii) The functor 𝑃 : ℰ → ℬ is conservative.

Proof. (i) ⇒ (ii). By lemma b.5.22, every morphism in ℰ factors as a 𝑃 -vertical
morphism followed by a 𝑃 -prone morphism, but since every 𝑃 -vertical morph-
ism is an isomorphism, proposition b.5.30 implies every morphism is 𝑃 -prone.
(ii) ⇒ (iii). First, let us observe that lemma a.3.10 and proposition b.5.28 im-

ply that every 𝑃 -vertical morphism in ℰ is an isomorphism. Let 𝑔 : 𝐸′ → 𝐸
be a morphism in ℰ and suppose 𝑃 𝑔 : 𝑃 𝐸′ → 𝑃 𝐸 has an inverse in ℬ, say
𝑓 −1 : 𝐵 → 𝐵′. Since 𝑃 : ℰ → ℬ is a Grothendieck fibration, there must be
a 𝑃 -prone morphism 𝑔′ : 𝐸″ → 𝐸′ in ℰ such that 𝑃 𝑔′ = 𝑓 −1, hence also a
𝑃 -prone morphism 𝑔″ : 𝐸‴ → 𝐸″ in ℰ such that 𝑃 𝑔″ = 𝑓 . By construc-
tion, 𝑔 ∘ 𝑔′ and 𝑔′ ∘ 𝑔″ are 𝑃 -vertical morphisms in ℰ, so they are isomorphisms.
We may then apply the 2-out-of-6 property of isomorphisms (lemma a.4.14) to
deduce that 𝑔 : 𝐸′ → 𝐸 is an isomorphism in ℰ, as required.

(iii) ⇒ (i). If 𝑃 : ℰ → ℬ is conservative, then every 𝑃 -vertical morphism must
be an isomorphism. The claim is then a consequence of lemma b.5.11. ■

Lemma b.5.33. Let 𝑃 : ℰ → ℬ and 𝐹 : ℬ′ → ℬ be functors and suppose we
have a pullback diagram of the form below:

ℰ′ ℰ

ℬ′ ℬ

𝑃 ′

𝐺

𝑃

𝐹
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• The 𝑃 ′-prone morphisms in ℰ′ are precisely the ones whose image in ℰ
are 𝑃 -prone morphisms; in particular, if 𝑃 : ℰ → ℬ is a Grothendieck
fibration, then 𝑃 ′ : ℰ′ → ℬ′ is also a Grothendieck fibration.

• The 𝑃 ′-supine morphisms in ℰ′ are precisely the ones whose image in ℰ
are 𝑃 -supine morphisms; in particular, if 𝑃 : ℰ → ℬ is a Grothendieck
opfibration, then 𝑃 ′ : ℰ′ → ℬ′ is also a Grothendieck opfibration.

Proof. This is a straightforward exercise. ◊

Lemma b.5.34. Let 𝑃 : ℰ → ℬ be a functor and let 𝐸 be an object in ℰ.

• The projection ℰ∕𝐸 → ℰ reflects prone morphisms, and if 𝑃 : ℰ → ℬ is
a Grothendieck fibration, then the induced functor 𝑃𝐸 : ℰ∕𝐸 → ℬ∕𝑃 𝐸 is a
Grothendieck fibration whose fibres have terminal objects.

• The projection 𝐸∕ℰ → ℰ reflects supine morphisms, and if 𝑃 : ℰ → ℬ is a
Grothendieck opfibration, then the induced functor 𝑃𝐸 : ℰ∕𝐸 → ℬ∕𝑃 𝐸 is a
Grothendieck opfibration whose fibres have initial objects.

Proof. This is a straightforward exercise. ◊

Definition b.5.35. Let ℬ be a category, let 𝔼 be a ℬ-indexed category, and let
𝔽 be a ℬop-indexed category. The Grothendieck construction 𝐆(𝔼, ℬ, 𝔽 ) is the
following category:

• The objects are triples (𝐸, 𝐵, 𝐹 ), where 𝐵 is an object in ℬ, 𝐸 is an object
in ℰ𝐵, and 𝐹 is an object in ℱ𝐵.

• The morphisms (𝐸′, 𝐵′, 𝐹 ′) → (𝐸, 𝐵, 𝐹 ) are triples (𝑔, 𝑓 , ℎ), where 𝑓 :
𝐵′ → 𝐵 is a morphism in ℬ, 𝑔 : 𝐸′ → 𝑓 ∗𝐸 is a morphism in ℰ𝐵′

, and
ℎ : 𝑓∗𝐹 ′ → 𝐹 is a morphism in ℱ𝐵.

• Identities and composition are defined using composition in ℬ and the
fibres of 𝔼 and 𝔽 as well as the coherence data of 𝔼 and 𝔽 .

Note that there is a canonical projection 𝐆(𝔼, ℬ, 𝔽 ) → ℬ whose fibre over 𝐵 is
(isomorphic to) ℰ𝐵 × ℱ𝐵.

Remark b.5.36. Let 𝐔 be a pre-universe. If ℬ is a 𝐔-small category and the fibres
of both 𝔼 and 𝔽 are 𝐔-small, then the Grothendieck construction 𝐆(𝔼, ℬ, 𝔽 ) is
also 𝐔-small.
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Proposition b.5.37. Let ℬ be a category.

• For any ℬ-indexed category 𝔼, the projection 𝑃 : 𝐆(𝔼, ℬ, Δ𝟙) → ℬ is
a Grothendieck fibration, where Δ𝟙 is the unique ℬop-indexed category
whose fibres are 𝟙. Moreover, the 𝑃 -prone morphisms are precisely those
(𝑔, 𝑓 ) where 𝑔 : 𝐸′ → 𝑓 ∗𝐸 is an isomorphism in ℰdom 𝑓 .

• For any ℬop-indexed category 𝔽 , the projection 𝑄 : 𝐆(Δ𝟙, 𝔹, 𝔽 ) → ℬ is
a Grothendieck opfibration, where Δ𝟙 is the unique ℬ-indexed category
whose fibres are 𝟙. Moreover, the 𝑄-supine morphisms are precisely those
(𝑓 , ℎ) where ℎ : 𝑓∗𝐹 → 𝐹 ′ is an isomorphism in ℱcodom 𝑓 .

Proof. The two claims are formally dual; we will prove the first version.
Let ℰ = 𝐆(𝔼, ℬ, Δ𝟙). Suppose (𝑔, 𝑓 ) : (𝐸′, 𝐵′) → (𝐸, 𝐵) is a morphism

in ℰ where 𝑔 : 𝐸′ → 𝑓 ∗𝐸 is an isomorphism in ℰ𝐵′
. Let ℎ : 𝐸″ → 𝑓 ∗𝐸 be a

morphism in ℰ𝐵′
. Then there is a unique morphism 𝑔′ : 𝐸″ → (id𝐵′)∗ in ℰ𝐵′

such that
𝑔 ∘ (𝞰𝐵′)

−1
𝐸′ ∘ 𝑔′ = ℎ

i.e. such that (𝑔, 𝑓 ) ∘ (𝑔′, id𝐵′) = (ℎ, 𝑓 ) as morphisms in ℰ. Thus (𝑔, 𝑓 ) :
(𝐸′, 𝐵′) → (𝐸, 𝐵) is a weakly 𝑃 -cartesian morphism. In particular, (id𝑓 ∗𝐸 , 𝑓) :
(𝑓 ∗𝐸, 𝐵′) → (𝐸, 𝐵) is a weakly 𝑃 -cartesian morphism in ℰ.

Conversely, suppose (𝑔, 𝑓 ) : (𝐸′, 𝐵′) → (𝐸, 𝐵) is a weakly 𝑃 -cartesian
morphism. Then, by corollary b.5.14 and the above observation, there is a unique
isomorphism 𝑔′ : 𝐸′ → 𝑓 ∗𝐸 in ℰ𝐵′

such that 𝑔 = id𝑓 ∗𝐸 ∘ 𝑔′, i.e. 𝑔 : 𝐸′ → 𝑓 ∗𝐸
itself is an isomorphism in ℰ𝐵′

.
It now follows that 𝑃 : ℰ → ℬ is a Grothendieck prefibration where the class

of weakly 𝑃 -cartesian morphisms is closed under composition, so by proposi-
tion b.5.31, 𝑃 : ℰ → ℬ is indeed a Grothendieck fibration. ■

Lemma b.5.38. Let u� and ℬ be categories, let 𝔼 be a ℬ-indexed category, and
let 𝔽 be a ℬop-indexed category.

• We have a natural commutative diagram of the form below,

𝐆(𝔼, ℬ, 𝔽 × Δu�) 𝐆(𝔼, ℬ, 𝔽 ) × u�

ℬ ℬ

≅

where the two vertical arrows are the evident projections and the top ho-
rizontal arrow is defined by (𝐸, 𝐵, (𝐹 , 𝐴)) ↦ ((𝐸, 𝐵, 𝐹 ), 𝐴).
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• We have a natural commutative diagram of the form below,

𝐆(Δu� × 𝔼, ℬ, 𝔽 ) u� × 𝐆(𝔼, ℬ, 𝔽 )

ℬ ℬ

≅

where the two vertical arrows are the evident projections and the top ho-
rizontal arrow is defined by ((𝐴, 𝐸), 𝐵, 𝐹 ) ↦ (𝐴, (𝐸, 𝐵, 𝐹 )).

Proof. This is a straightforward exercise. ◊

Lemma b.5.39. Let 𝑈 : u� → ℬ be a functor, let 𝔼 be a ℬ-indexed category,
and let 𝔽 be a ℬop-indexed category. Then there is a natural pullback square of
the form below,

𝐆(𝔼 ∘ 𝑈, u�, 𝔽 ∘ 𝑈) 𝐆(𝔼, ℬ, 𝔽 )

u� ℬ𝑈

where the vertical arrows are the canonical projections.

Proof. This is a straightforward exercise. ◊

Proposition b.5.40. Let ℬ be a category, let 𝔼 be a ℬ-indexed category, and let
𝔽 be a ℬop-indexed category. Then there are natural isomorphisms

𝐆(Δ𝟙, 𝐆(𝔼, ℬ, Δ𝟙), 𝔽 ∘ 𝑃 ) ≅ 𝐆(𝔼, ℬ, 𝔽 ) ≅ 𝐆(𝔼 ∘ 𝑄, 𝐆(Δ𝟙, ℬ, 𝔽 ), Δ𝟙)

where 𝑃 : 𝐆(𝔼, ℬ, Δ𝟙) → ℬ and 𝑄 : 𝐆(Δ𝟙, ℬ, 𝔽 ) → ℬ are the canonical
projections, such that the following diagram commutes,

𝐆(Δ𝟙, 𝐆(𝔼, ℬ, Δ𝟙), 𝔽 ∘ 𝑃 ) 𝐆(𝔼, ℬ, Δ𝟙) ℬ

𝐆(𝔼, ℬ, 𝔽 ) ℬ

𝐆(𝔼 ∘ 𝑄, 𝐆(Δ𝟙, ℬ, 𝔽 ), Δ𝟙) 𝐆(Δ𝟙, ℬ, 𝔽 ) ℬ

≅

≅

where the horizontal arrows are the canonical projections and the diagonal ar-
rows are induced by the unique indexed functors 𝔼 → Δ𝟙 and 𝔽 → Δ𝟙.
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Proof. This is a straightforward exercise. ◊

Definition b.5.41. Let ℬ be a category.

• A fibred ℬ-category is a category ℰ equipped with a Grothendieck fibra-
tion ℰ → ℬ. We will often abuse notation by omitting mention of ℰ → ℬ.

• Let ℰ and ℱ be fibred ℬ-categories. A fibred ℬ-functor ℰ → ℱ is a functor
that is compatible with the projections and preserves prone morphisms.

• A fibred natural transformation between fibred ℬ-functors is a natural
transformation whose components are vertical morphisms.

We write 𝐅𝐢𝐛(ℰ, ℱ) for the category whose objects are the fibred ℬ-functors ℰ →
ℱ and whose morphisms are the fibred natural transformations.

Lemma b.5.42. Let 𝑃 : ℰ → ℬ and 𝑄 : ℱ → ℬ be Grothendieck fibrations.
The following are equivalent for a fibred ℬ-functor 𝐻 : ℰ → ℱ:

(i) The functor 𝐻 : ℰ → ℱ is faithful (resp. full, essentially surjective on
objects).

(ii) For each object 𝐵, the induced functor 𝐻𝐵 : 𝑃 −1{𝐵} → 𝑄−1{𝐵} is faith-
ful (resp. full, essentially surjective on objects).

Proof. (i) ⇒ (ii). It is clear that 𝐻𝐵 : 𝑃 −1{𝐵} → 𝑄−1{𝐵} is faithful if 𝐻 :
ℰ → ℱ is faithful. Since 𝑄𝐻 = 𝑃 , it follows that 𝐻𝐵 : 𝑃 −1{𝐵} → 𝑄−1{𝐵} is
full if 𝐻 : ℰ → ℱ is full. Essential surjectivity remains to be verified, so con-
sider an object 𝐹 in 𝑄−1{𝐵}. By assumption, there exist an object 𝐸 in ℰ and
an isomorphism 𝑔 : 𝐹 → 𝐻𝐸 in ℱ, and by proposition b.5.30, 𝑔 : 𝐹 → 𝐻𝐸 is
a 𝑄-prone morphism. But 𝑃 : ℰ → ℬ is a Grothendieck fibration, so there is a
𝑃 -prone morphism ̃𝑔 : 𝐸′ → 𝐸 such that 𝑃 ̃𝑔 = 𝑄𝑔, and since 𝐻 ̃𝑔 : 𝐻𝐸′ →
𝐻𝐸 is a 𝑄-prone morphism with 𝑄 ̃𝑔 = 𝑄𝑔, we must have a vertical isomorph-
ism 𝐹 → 𝐻𝐸′ in ℱ, by corollary b.5.19. Thus 𝐻 : 𝑃 −1{𝐵} → 𝑄−1{𝐵} is
essentially surjective on objects if 𝐻 : ℰ → ℬ is.

(ii) ⇒ (i). Let 𝐸 and 𝐸″ be objects in ℰ and consider morphisms ℎ0, ℎ1 : 𝐸″ → 𝐸
in ℰ. Suppose 𝐻ℎ0 = 𝐻ℎ1 in ℱ. Since 𝑄𝐻 = 𝑃 , we must also have 𝑃 ℎ0 = 𝑃 ℎ1.
Choose a 𝑃 -prone morphism 𝑔 : 𝐸′ → 𝐸 in ℰ such that 𝑃 𝑔 = 𝑃 ℎ0 = 𝑃 ℎ1. Then
there are unique 𝑃 -vertical morphisms 𝑔′

0, 𝑔′
1 : 𝐸″ → 𝐸′ such that 𝑔 ∘ 𝑔′

0 = 𝑔0
and 𝑔 ∘ 𝑔′

1 = 𝑔1; and similarly, since 𝐻𝑔 : 𝐻𝐸′ → 𝐻𝐸 is a 𝑄-prone morphism
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in ℱ, we must have 𝑄𝑔′
0 = 𝑄𝑔′

1. Thus, if 𝐻𝑃 𝐸′
: 𝑃 −1{𝑃 𝐸′} → 𝑄−1{𝑃 𝐸′} is

faithful, we must have 𝑔′
0 = 𝑔′

1 and hence 𝑔0 = 𝑔1.
Now, let ℎ : 𝐻𝐸″ → 𝐻𝐸 be a morphism in ℱ and choose a 𝑃 -prone morph-

ism 𝑔 : 𝐸′ → 𝐸 in ℰ such that 𝑃 𝑔 = 𝑄ℎ. Then 𝐻𝑔 : 𝐻𝐸′ → 𝐻𝐸 is a 𝑄-prone
morphism in ℱ, so there is a unique 𝑄-vertical morphism 𝑔′ : 𝐻𝐸″ → 𝐻𝐸′

such that ℎ = 𝐻𝑔 ∘ 𝑔′; so if 𝐻𝑃 𝐸′
: 𝑃 −1{𝑃 𝐸′} → 𝑄−1{𝑃 𝐸′} is full, we must

have a 𝑃 -vertical morphism ̃𝑔′ : 𝐸″ → 𝐸′ in ℰ such that 𝑔′ = 𝐻 ̃𝑔′ and hence a
morphism ℎ̃ : 𝐸″ → 𝐸 in ℰ such that ℎ = 𝐻ℎ̃.

Finally, we note that it is clear that 𝐻 : ℰ → ℬ is essentially surjective on
objects if every 𝐻𝐵 : 𝑃 −1{𝐵} → 𝑄−1{𝐵} is essentially surjective on objects.

■

Proposition b.5.43. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration, let u� be a
category, and let 𝑄 : ℬ × u� → u� be the evident projection.

(i) Let 𝐹 : ℰ → ℬ × u� be a functor and let 𝑅 : ℬ × u� → u� be the other
projection. Assuming 𝑄𝐹 = 𝑃 , 𝐹 : ℰ → ℬ × u� is a fibred ℬ-functor
if and only if 𝑅𝐹 : ℰ → u� sends every 𝑃 -prone morphism in ℰ to an
isomorphism in u�.

(ii) Let u� be the category obtained by freely inverting all 𝑃 -prone morphisms
in ℰ and let : ℰ → u� be the localising functor. Then the evident functor

[u�, u�] → 𝐅𝐢𝐛ℬ(ℰ, ℬ × u�)

defined on objects by 𝐺 ↦ ⟨𝑃 , 𝐺 ⟩ is an isomorphism of categories.

(iii) Let 0 be an initial object in ℬ. The restriction of : ℰ → u� yields a functor
𝑃 −1{0} → u� that is fully faithful and essentially surjective on objects.

Proof. (i). Use lemma b.5.21.

(ii). This is a consequence of (i) and proposition a.4.21.

(iii). Let 𝑔 : 𝐸′ → 𝐸 be any morphism in ℰ and choose a 𝑃 -prone morphism
𝐸0 → 𝐸 (resp. 𝐸′

0 → 𝐸′) in ℰ lying over the unique morphism 0 → 𝑃 𝐸 (resp.
0 → 𝑃 𝐸′) in ℬ. Then there is a unique 𝑃 -vertical morphism 𝑔0 : 𝐸′

0 → 𝐸0 in ℰ
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making the following diagram commute:

𝐸′
0 𝐸′

𝐸0 𝐸

𝑔0 𝑔

In particular, the functor 𝑃 −1{0} → u� is essentially surjective on objects. More-
over, since 0 is an initial object in ℬ, every morphism 𝐸′

0 → 𝐸0 is 𝑃 -vertical; but
if 𝑔 : 𝐸′ → 𝐸 is 𝑃 -prone, then corollary b.5.19 implies that 𝑔0 : 𝐸′

0 → 𝐸0 is a
(𝑃 -vertical) isomorphism. Thus, by considering appropriate representations of
morphisms in u� as zigzags in ℰ, we see that the functor 𝑃 −1{0} → u� is indeed
fully faithful. ■

Definition b.5.44.
• A cleavage for a Grothendieck fibration 𝑃 : ℰ → ℬ is a choice of 𝑃 -prone

morphism 𝑔 : 𝑓 ∗𝐸 → 𝐸 for every object 𝐸 in ℰ and every morphism
𝑓 : 𝐵′ → 𝑃 𝐸 such that 𝑃 𝑔 = 𝑓 .

• A cloven Grothendieck fibration is a Grothendieck fibration equipped
with a cleavage.

Remark b.5.45. For any ℬ-indexed category 𝔼, the induced Grothendieck fibra-
tion 𝐆(𝔼, ℬ, Δ𝟙) → ℬ has a canonical cleavage; conversely, given a cloven Gro-
thendieck fibration 𝑃 : ℰ → ℬ, one can construct a ℬ-indexed category 𝔼 such
that there is a fibred isomorphism ℰ ≅ 𝐆(𝔼, ℬ, Δ𝟙) compatible with the cleav-
ages.

Lemma b.5.46. Every Grothendieck fibration admits a cleavage.

Proof. Use the axiom of choice. ■

¶ b.5.47. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration. For each object 𝐵 in
ℬ, we have the following pullback diagram,

(𝐵 ↓ 𝑃 ) ℰ

𝐵∕ℬ ℬ

𝐵𝑃 𝑃

where the horizontal arrows are the evident projections, so by lemma b.5.33,
𝐵𝑃 : (𝐵 ↓ 𝑃 ) → 𝐵∕ℬ is also a Grothendieck fibration. It is clear that this defines
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a strict ℬ-indexed category (− ↓ 𝑃 ) whose reindexing functors preserve prone
morphisms (in the appropriate sense).

Definition b.5.48. The free strict indexed category associated with a Grothen-
dieck fibration 𝑃 : ℰ → ℬ is the strict ℬ-indexed category 𝕊𝕥(𝑃 ) defined below:

• The fibre St (𝑃 )𝐵 is the category obtained by freely inverting all 𝐵𝑃 -prone
morphisms in (𝐵 ↓ 𝑃 ).

• The reindexing functors St (𝑃 )𝐵 → St (𝑃 )𝐵′
are the ones induced by the

corresponding reindexing functors (𝐵 ↓ 𝑃 ) → (𝐵′ ↓ 𝑃 ).

The canonical embedding ℰ → 𝐆(𝕊𝕥(𝑃 ), ℬ, Δ𝟙) is the evident fibred ℬ-functor
defined on objects by 𝐸 ↦ (𝑃 𝐸, (𝐸, id𝑃 𝐸)) and on morphisms by 𝑔 ↦ (𝑃 𝑔, 𝑔).

Remark b.5.49. Given a cleavage for a Grothendieck fibration 𝑃 : ℰ → ℬ, the
fibre St (𝑃 )𝐵′

admits the following simplified description:

• The objects are pairs (𝐸, 𝑓 ) where 𝐸 is an object in ℰ and 𝑓 : 𝐵′ → 𝑃 𝐸
is a morphism in ℬ.

• The morphisms (𝐸0, 𝑓0) → (𝐸1, 𝑓1) are morphisms 𝑓 ∗
0 𝐸0 → 𝑓 ∗

1 𝐸1 in the
fibre 𝑃 −1{𝐵′}.

• Composition and identities are inherited from 𝑃 −1{𝐵′}.

Remark b.5.50. Let 𝐔 be a pre-universe. If ℰ and ℬ are 𝐔-small, then so are the
fibres of 𝕊𝕥(𝑃 ).

Theorem b.5.51. Let 𝑃 : ℰ → ℬ be a Grothendieck fibration.

(i) The canonical embedding ℰ → 𝐆(𝕊𝕥(𝑃 ), ℬ, Δ𝟙) is a fibred ℬ-functor and
is fully faithful and essentially surjective on objects.

(ii) Let 𝔽 be a strict ℬ-indexed category. Then for each fibred ℬ-functor ℰ →
𝐆(𝔽 , ℬ, Δ𝟙), there is a unique strict ℬ-indexed functor 𝕊𝕥(𝑃 ) → 𝔽 making
the induced diagram commute:

ℰ 𝐆(𝕊𝕥(𝑃 ), ℬ, Δ𝟙)

𝐆(𝔽 , ℬ, Δ𝟙)
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(iii) Let [𝕊𝕥(𝑃 ), 𝔽 ]strict be the category of strict ℬ-indexed functors 𝕊𝕥(𝑃 ) → 𝔽 .
Then the functor

[𝕊𝕥(𝑃 ), 𝔽 ]strict → 𝐅𝐢𝐛ℬ(ℰ, 𝐆(𝔽 , ℬ, Δ𝟙))

induced by the Grothendieck construction 𝐆(−, ℬ, Δ𝟙) and the canonical
embedding ℰ → 𝐆(𝕊𝕥(𝑃 ), ℬ, Δ𝟙) is an isomorphism of categories.

Proof. (i). The canonical embedding is clearly compatible with the projections,
and by proposition b.5.37, it also preserves prone morphisms. We then apply
lemma b.5.42 and proposition b.5.43 to deduce that the canonical embedding is
fully faithful and essentially surjective on objects.

(ii) and (iii). See Théorème 2.4.2 in [Giraud, 1971, Ch. 1]. ■
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2-out-of-3 property, 796
2-out-of-4 property, 796

special —, 796
2-out-of-6 property, 796

accessible category, 16
classification theorem, 19

accessible extension, 53, 55, 56
accessible functor, 19

strongly —, 33
accessible subcategory, 42
action

— on a category, 883
adjoint

densely-defined partial —, 818
adjoint functor theorem

accessible —, 26, 56
adjunction, 749

— of quasicategories, 647
derived —, see derived adjunction
Frobenius —, 760

ℵ-number, 7
anodyne extension

— of simplicial sets, 106, 112
— with respect to an elementary Cis-

inski homotopy structure, 613
inner — of simplicial sets, 649

arity class, 8

classification theorem, 8
aspherical

— category, 227
— functor, 230
— morphism, 684
— object, 683

bar complex, 154, 159
— of sets, 152

bar construction
— in simplicial sets, 166

bar resolution, 178
basic localiser, 682

— of a derivator, 683
minimal —, 689

Beck–Chevalley condition, 753
derived —, 383

bisimplicial set, 137
boundary

— of a representable functor, 487
— of a standard simplex, 94

Bousfield localisation, 637
Bousfield–Kan colimit

— in a simplicially enriched category,
292

— in simplicial sets, 183
Bousfield–Kan extension, 208
Bousfield–Kan limit
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— in a simplicially enriched category,
292

— in simplicial sets, 183

calculus of cocycles, 397
functorial —, 404

calculus of cospans, see calculus of spans
fundamental theorem of —, see cal-

culus of spans, fundamental the-
orem of —

calculus of cycles, see calculus of cocycles
calculus of fractions, 408
calculus of spans, 396

fundamental theorem of —, 401
cardinal, 7

classification theorem, 7
regular —, 8
strongly inaccessible —, 9

cartesian closed category, 757
cartesian closed functor, 758
cartesian morphism, see also prone morph-

ism
weakly —, 895

category
— over a set of objects, 302
fibred —, see fibred category
finite —, 8
locally small —, 2
small —, 2, 8

category of fibrant objects, 424
category of simplices

— of a category, 566
— of a simplicial set, 243
projection functor, 243, 566, 569

category with weak equivalences, 357
Čech nerve, 719
cell complex, 59

Reedy —, 496
relative —, 496

relative —, 59
chain, 12
Cisinski homotopy structure, 615

elementary —, 613
class, 2
classification theorem

— for accessible categories, 19
— for arity classes, 8
— for cardinalities, 7
— for compactly generated categor-

ies, 31
— for locally presentable categor-

ies, 22
— for well-ordered sets, 5

classifying diagram
— of a category, 252

closed object, see local object in a relat-
ive category

cobar complex, 154, 159
— of sets, 152

cobar construction
— in simplicial sets, 166

cobar resolution, 178
cocartesian morphism, see also supine

morphism
weakly —, 895

cocomplete category, 3
enriched —, 875
simplicially enriched —, 259

cocycle
— in a relative category, 396

codegeneracy operator, 81
codense functor, 817
coend, 824

enriched —, 879
coface operator, 81
cofibrant

— object, 442
Reedy —, 505
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— replacement, 452
— replacement functor, 452

cofibration, 61, 442
— in the Dwyer–Kan model struc-

ture, 309
— of categories, see isocofibration
— of groupoids, see isocofibration
— of simplicial sets, 95
injective — of diagrams of simpli-

cial sets, 188
injective — of simplicial sheaves,

730
projective — of diagrams of sim-

plicial sets, 188
projective — of simplicial presheaves,

737
Reedy —, 505

cofinal
— functor, 821
— subset of a poset, 8
homotopy —, see homotopy cofi-

nal
coinitial

— functor, 821
homotopy —, see homotopy coini-

tial
colimit

Bousfield Kan—, see Bousfield–Kan
colimit

conical —, see conical colimit
homotopy —, see homotopy colimit
weighted —, see weighted colimit

colocal equivalence
— in a model category, 633

colocal object
— in a model category, 632
— in a relative category, 413

colocal replacement
— in a model category, 635

compact object, 14
compact–open topology, 767
compactly defined functor, 31
compactly generated category, 29
compactly generated Hausdorff space, 86,

767
compactness rank, 29
complete category, 3

enriched —, 875
simplicially enriched —, 259

conical colimit
— in a simplicially enriched category,

258
conical limit

— in a simplicially enriched category,
258

conjugate pair, 752
pasting lemma, 755

connected components, 90
contractible simplicial set, 98

weakly —, 128
contracting homotopy, 98, 270
cosimplicial identities, 82
cosimplicial simplicial set, 142
coskeleton

— of a simplicial set, 92
cotensor product

— in an enriched category, 885
cotensored category, 828, 886
cowedge, 824
cycle

— in a relative category, see cocycle
in a relative category

cylinder
relative —, 108

cylinder functor
Cisinski —, 609

cylinder object
— in a model category, 462
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deformable adjunction, 380
deformable functor, 367

functorially —, 388
deformation retract

— for a composable pair of func-
tors, 374

— for a functor, 367, 472
— of a relative category, 367
2-category of —, 378
functorial — for a functor, 388
Quillen —, 471

degeneracy operator, 83
dense functor, 817
dependent product, 765
dependent sum, 764
derivable category, 443

Reedy-admissible —, 508
saturated —, 456
simplicial —, 273

derivator, 669
— of a DHK model category, 674
— of a model category, 674
strong, 669

derivator domain, 659
derived adjunction, 366, 474
derived functor

total —, 395, 472
derived hom-space

— in a resolvable category, 539, 549
— in a simplicial derivable category,

276
— in a simplicial model category,

277
derived pullback, 584

— diagram, 586
derived pullback diagram

homotopy —, 237
derived pushout, 584

— diagram, 586

descent condition
— for simplicial presheaves, 720

dinatural transformation, 824
direct category, 484
directed preorder, 10
Dwyer–Kan adjunction

— of simplicially enriched categor-
ies, 289

Dwyer–Kan contractible category, 289
Dwyer–Kan equivalence

— of relative categories, 329
— of simplicially enriched categor-

ies, 284
Dwyer–Kan isofibration

— of simplicially enriched categor-
ies, 354

Dwyer–Kan pre-adjoint functor, 290

edge
— of a simplicial set, 85
principal —, 248

end, 824
enriched —, 879

endofunctor
algebra for an —, 48
pointed —, 48

enriched adjunction, 862
enriched category, 854

locally small —, 854
small —, 854
2-category of —, 857

enriched functor, 855
enriched category of —, 869
essentially surjective on objects, 865
fully faithful —, 865
injective on objects, 865
ordinary category of —, 869
representable —, 861
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enriched natural isomorphism, 857, see
also enriched natural transform-
ation

enriched natural transformation, 857
object of —, 868

epimorphism, 836
effective —, 836
extremal —, 836
regular —, 836
strong —, 771

equivalence
— in a model category, 478
— in a quasicategory, 644
— in a relative category, 359
— of enriched categories, 866
— of quasicategories, 646
— with respect to a basic localiser,

683
— with respect to a derivator, 683
— with respect to a prederivator, 675

equivalence relation
effective —, 841

Ex∞ functor, 149, 292
exact fork, 840
exact square, 665

pasting lemma, 666
exponential ideal, 761
exponential object, 756, see also cartesian

closed category
extension

— of a simplicial object, 702
— of a simplicial set, 146

extensive category, 834

face operator, 83
factorisation system

algebraic —, 74, 790
free —, 793

cofibrantly generated —, 64, 779

extension of —, 68, 779
fibrantly generated —, 779
functorial —, 64, 781
natural weak —, 787

free —, 74, 792
orthogonal —, 772, 781, 783
proper —, 773
weak —, 772, 786

fibrant
— object, 442

Reedy —, 505
— replacement, 452
— replacement functor, 452

fibrant object
— with respect to a Cisinski homo-

topy structure, 615
category of —, see category of fi-

brant objects
fibrantly representable functor, 287
fibration, 424, 442

— in the Dwyer–Kan model struc-
ture, 306

— of Reedy categories, see Reedy
category, fibration of —

— of categories, see isofibration
— of groupoids, see isofibration
— of simplicial sets, see Kan fibra-

tion
— with respect to a Cisinski homo-

topy structure, 616
Grothendieck —, see Grothendieck

fibration
injective — of diagrams of simpli-

cial sets, 188
injective — of simplicial sheaves,

730
inner —, 649
local — of simplicially enriched cat-

egories, 306
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local injective — of simplicial pre-
sheaves, 734

local Kan —, see Kan fibration, local
—

local projective — of simplicial pre-
sheaves, 737

projective — of diagrams of sim-
plicial sets, 188

Reedy —, 505
fibre

— of a functor, 895
— of an indexed category, 892

fibred category, 908
fibred functor, 908
fibred natural transformation, 908
filtered category, 10
flattening, 329
flex

— of a zigzag type, 802
frame, 522
functor

— between quasicategories, 641, 644
fibred —, see fibred functor
locally weakly constant —, 236

fundamental category, 88
— of a Kan complex, 110
— of a graph, 248

fundamental groupoid, 91
— of a Kan complex, 111

geometric realisation
— of a simplicial set, 86

Grothendieck construction, 905
Grothendieck fibration, 898

cloven —, 910
Grothendieck opfibration, 898
Grothendieck pre-opfibration, 898
Grothendieck prefibration, 898

hammock, 322

— localisation, see localisation, ham-
mock —

reduced —, 323
hom system, 887
homotopical approximation

— for a functor, 390, 395
— for a natural transformation, 392

homotopical calculus of fractions, 347
fundamental theorem of —, 349

homotopical category, 357
saturated —, see relative category,

saturated —
slice —, 358

homotopical equivalence, 361
adjoint —, 361

homotopical functor, 357
homotopical Kan extension, 365

absolute —, 365
homotopical three-arrow calculus, 330

fundamental theorem of —, 333
homotopically contractible category, 362
homotopically coquadrable morphism, 579
homotopically initial object

— in a homotopical category, 362
homotopically quadrable morphism, 579
homotopically replete subcategory, 359
homotopically representable functor, 287
homotopically terminal object

— in a homotopical category, 362
homotopy

— in a category of fibrant objects,
432

— in a simplicially enriched category,
281

intrinsic —, 95
left —

— in a model category, 462
— in a quasicategory, 642

right —
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— in a category of fibrant objects,
430

— in a model category, 462
— in a quasicategory, 642

weak —, 359
homotopy 2-category

— of quasicategories, 646
homotopy category, 795

— of Kan complexes, 119
— of a cartesian model category,

626
— of a category of fibrant objects,

428
primitive —, 432

— of a derivable category, 456
— of a model category, 455, 463,

478
— of a quasicategory, 643
— of simplicial sets, 136
— with respect to a Cisinski cylin-

der functor, 610
intrinsic —, 96
Quillen —, see homotopy category,

— of a model category
simplicial —, 282

homotopy codescent object
— in Kan-enriched categories, 297

homotopy cofinal
— functor, 222, 231, see also as-

pherical, — functor
— morphism, 674, 684

homotopy coinitial
— functor, 222, 231, see also as-

pherical, — functor
— morphism, 674, 684

homotopy colimit, see also Bousfield–
Kan colimit

— functor for a Kan-enriched cat-
egory, 295

— in a Kan-enriched category, 295
— in a prederivator, 673
— in simplicial sets, 195

homotopy copower
— in a Kan-enriched category, 300

homotopy descent object
— in Kan-enriched categories, 297

homotopy equivalence
— in a model category, 463, 478
— in a simplicially enriched category,

281
— of simplicial sets, 97

homotopy extension property, 103
homotopy function complex, 538
homotopy inverse

— in a model category, 463, 467
— in simplicial sets, 97

homotopy Kan extension, see also Bousfield–
Kan extension, 212

— in a prederivator, 664
homotopy lifting property, 103
homotopy limit, see also Bousfield–Kan

limit
— functor for a Kan-enriched cat-

egory, 295
— in a Kan-enriched category, 295
— in a prederivator, 673
— in simplicial sets, 195

homotopy power
— in a Kan-enriched category, 300

homotopy pullback, 434
homotopy type

weak —, 136
homotopy weighted colimit

— in simplicial sets, 196
homotopy weighted limit

— in simplicial sets, 196
homotopy-coherent diagram, 350
homotopy-coherent equivalence

931



Index

— in a quasicategory, 645
homotopy-coherent natural transforma-

tion, 353
horn, 105

inner —, 89
hypercover, 712

bounded —, 718
category of —, 743
refinement of —, 715

hypersheaf, 724

ind-completion, 16
ind-object, 16
indexed category, 892

free strict —, 911
indexed functor, 893

oplax —, 893
indexed natural transformation, 893
∞-category, see quasicategory
∞-connected morphism, see 𝑛-connected

morphism
initial object

strict —, 833
injective model structure, 475

— for hypersheaves, see model struc-
ture, — for hypersheaves

— for stacks of ∞-groupoids, see
model structure, — for stacks
of ∞-groupoids

— on bisimplicial sets, 138
— on simplicial sheaves, see model

structure, Heller–Joyal —
combinatorial —, 599
Reedy —, 511

injective morphism, 61
internal hom object, 852
intrinsic homotopy

relative —, 108, 109
inverse category, 484

isocofibration
— of categories or groupoids, 628

isofibration
— of categories or groupoids, 628
— of quasicategories, 654
Dwyer–Kan —, see Dwyer–Kan isofibra-

tion

Kan complex, 110
internal —, 692
weak —, see quasicategory

Kan extension, 806
absolute —, 808
homotopical —, see homotopical Kan

extension
homotopy —, see homotopy Kan ex-

tension
pointwise —, 808, 812

Kan fibration, 110, 114
internal —, 691
local —, 710
local trivial —, 710
trivial —, 112, 132

Kan–Quillen model structure, 129, 608
— and bisimplicial sets, 139
— and cosimplicial simplicial sets,

145
Kan-enriched category, 286, see also sim-

plicially enriched category, fi-
brant —

— over a set of objects, 302, see
also simplicially enriched cat-
egory, — over a set of objects,
fibrant —

latching
— category, 486
— morphism, 488
— object, 488
relative — morphism, 488
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relative — object, 488
Lawvere cylinder, 611
lifting property, 767

homotopical —, 109
homotopy —, see homotopy lifting

property
limit

Bousfield Kan—, see Bousfield–Kan
limit

conical —, see conical limit
homotopy —, see homotopy limit
weighted —, see weighted limit

local epimorphism, 709
local equivalence

— in a model category, 633
local isomorphism

— of simplicial presheaves, 710
local object

— in a model category, 632
— in a relative category, 413

local replacement
— in a model category, 635

localisation
— of a relative category, 795
— of a simplicially enriched category,

280
hammock —, 323

— of a resolvable category, 566
standard simplicial —, 318

locally presentable category, 21
classification theorem, 22

matching
— category, 486
— morphism, 488
— object, 488
relative — morphism, 488
relative — object, 488

mate, see conjugate pair

maximal augmentation
— of a cosimplicial simplicial set,

142
model category, 442

algebraic —, 605
strongly —, 606

cartesian —, 624
Cisinski —, 608, 616
cofibrantly generated —, 595
combinatorial —, 599

strongly —, 599
compact —, 603
DHK —, 443
framed —, 524
monoidal —, 622
simplicial —, 272

model structure, 441
— for hypersheaves, 726

injective —, see also model struc-
ture, local Jardine —

projective —, see also model struc-
ture, local Blander —

— for stacks of ∞-groupoids, 721
— for strong stacks of ∞-groupoids

injective —, 723
projective —, 723

algebraic —, 605
Blander —, 739
Bousfield–Kan —, 188
canonical — for categories, 628, 655
canonical — for groupoids, 631
cosimplicial resolution —, 543
discrete —, 443
Dwyer–Kan —, 306
Heller —, 189
Heller–Joyal —, 733
injective —, see also model struc-

ture, Heller —, see injective model
structure
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Joyal — for quasicategories, 655
Kan–Quillen —, see Kan–Quillen

model structure, 656
left proper —, 582
local Blander —, 738
local Jardine —, 735
mono–epi —, 444
opposite —, 273, 444
product —, 450
projective —, see also model struc-

ture, Bousfield–Kan —, see pro-
jective model structure

proper —, 582
Reedy —, see Reedy model struc-

ture
right proper —, 582
simplicial —, 272
simplicial resolution —, 543
slice —, 449
sub-Reedy —, 508

monad
accessible —, 46
strongly accessible —, 46

monoidal category, 846
braided —, 849
cartesian —, 851
closed —, 852
self-enrichment of —, 855
strict —, 845
symmetric —, 849

monoidal functor, 847
braided —, 850
cartesian —, 851

monoidal natural transformation, 848
monomorphism

strong —, 771

𝑛-connected morphism
— of Kan complexes, 120

natural equivalence
— of functors between quasicate-

gories, 646
natural transformation

— of functors between quasicate-
gories, 644

fibred —, see fibred natural trans-
formation

nerve
— functor, 812
— of a category, 87
bisimplicial —, 252, 285
homotopy-coherent —, 351

opposite
— of a quasicategory, 642
— of a simplicial object, 83

opposite category
enriched —, 855

ordinal, 4
orthogonality, 767
orthogonality-reflecting functor, 769

path object
— in a category of fibrant objects,

424
functorial —, 425

— in a model category, 462
pre-universe, 1
prederivator, 660

— of a model category, 673
— of a relative category, 660, 663
representable —, 660

pretopos, 842
projective model structure, 475

— for hypersheaves, see model struc-
ture, — for hypersheaves

— for stacks of ∞-groupoids, see
model structure, — for stacks
of ∞-groupoids
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— on simplicial sheaves, see model
structure, Blander —

cofibrantly generated —, 598
Reedy —, 511

prone morphism, 896
pullback

derived —, see derived pullback
homotopy —, see homotopy pull-

back
weak —, 839

pushout
derived —, see derived pushout

quasi-inverse, 359
— in a quasicategory, 644

quasicategory, 641
small —, 643

Quillen adjunction, 468, 474, 549
— of two variables, 620

Quillen equivalence, 474
— condition for relative categories,

387
— of derivable categories, 468
— of model categories, 468

Quillen functor, 468

rank
— of a functor, 29
— of a set, 6

realisation
— in a simplicially enriched category,

266
— of a bisimplicial set, 138
— of a simplicial simplicially en-

riched category over a set of ob-
jects, 311

Reedy category, 485
— with cofibrant constants, 514
— with fibrant constants, 514
fibration of —, 517

locally finite —, 487
morphism of —, 516

Reedy lifting property, 490
Reedy model structure, 512

— on bisimplicial sets, 137
— on cosimplicial simplicial sets,

142
Reedy-acyclic morphism, 488
Reedy-injective, 494
Reedy-projective, 494
reflexive graph, 303

simplicially enriched —, 303
regular category, 837

effective —, 841
regular functor, 840
reindexing

— in an indexed category, 892
relative category, 794

maximal —, 795
minimal —, 795
opposite —, 795
saturated —, 357, 795
semi-saturated —, 795

relative equivalence, see homotopical equi-
valence

relative functor, 794, 795
resolution, 519, 529
resolvable category, 520

semiderivator, 660
cocomplete —, 668
complete —, 668
strong —, 661

set, 2
sharply less than, 20
sifted category, 822
ΣΠ-category, 765
simplex

— of a simplicial set, 85
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degenerate —, 85
simplex category, 81
simplicial category, 251

locally small —, 252
small —, 252

simplicial functor, 251
simplicial homotopy, 282
simplicial identities, 83
simplicial natural transformation, 251
simplicial object, 81

constant —, 262
weakly constant —, 528

simplicial presheaf
cellular —, 708
locally fibrant —, 710

simplicial set, 83
discrete —, 90
finite —, 85
𝑛-coskeletal, 92
𝑛-skeletal, 92
simplicial category of —, 255

simplicially enriched category, 252
— associated with a simplicial set,

352
— over a set of objects, 302
discrete —, 255
fibrant —, 286, see also Kan-enriched

category
locally small —, 254
slice —, 255
small —, 254

simplicially enriched functor, 253, see
also simplicial functor

— category, 256
simplicially enriched natural transform-

ation, 254, see also simplicial
natural transformation

simplicially enriched natural weak ho-
motopy equivalence, 287, see

also simplicially enriched nat-
ural transformation

singular set, 86
skeleton

— of a simplicial set, 92
small object argument

admissible for —, 63
Garner’s —, 74
Quillen’s —, 64

spine, 248
stability under universe enlargement

— of accessible adjunctions, 56
— of cofibrantly generated factor-

isation systems, 68
— of combinatorial model categor-

ies, 604
— of weak homotopy types, 136

stack
— of ∞-groupoids, 720

strong —, 722
standard cofibration

— of simplicially enriched categor-
ies over a set of objects, 308

standard resolution
— of a category, 311
— of a relative category, 318
— of a simplicially enriched category,

311
— with respect to a comonad, 270

standard simplex
— as a simplicial set, 84
— as a topological space, 86

strong functor, 890
strong natural transformation, 891
subdivision

— of a category, 826
— of a simplicial set, 147

Quillen —, 243
supine morphism, 897
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tautological cocone, 808, 817
tautological cone, 808, 817
tensor product

— in an enriched category, 885
— of enriched categories, 859

tensored category, 828, 886
three-arrow calculus, 418

functorial —, 419
fundamental theorem of —, 422
homotopical —, see homotopical three-

arrow calculus
totalisation

— in a simplicially enriched category,
266

— of a cosimplicial simplicial set,
143

transitive set, 5
trivial cofibration

injective — of diagrams of simpli-
cial sets, 188

injective — of simplicial sheaves,
730

local injective — of simplicial pre-
sheaves, 734

local projective — of simplicial pre-
sheaves, 737

projective — of diagrams of sim-
plicial sets, 188

trivial fibration
— in a Cisinski model category, 610
— of simplicial sets, see Kan fibra-

tion, trivial —
injective — of diagrams of simpli-

cial sets, 188
injective — of simplicial sheaves,

730
local Kan —, see Kan fibration, local

trivial —

projective — of diagrams of sim-
plicial sets, 188

projective — of simplicial presheaves,
737

truncation
— of a simplicial set, 91

underlying ordinary
— category, 855
— functor, 856
— natural transformation, 857

uni-fractionable category, 418
universe, 1
universe convention

explicit —, 4
one —, 4
two —, 673

vertex
— of a simplicial set, 85
interior — of a zigzag type, 802

vertical morphism, 895
virtually cofibrant diagram, 572
virtually fibrant diagram, 572

weak categorical equivalence, 648
weak equivalence, 359, 424, 442, 445

— in a combinatorial model category,
602

— in the Joyal model structure for
quasicategories, see weak cat-
egorical equivalence

— in the Kan–Quillen model struc-
ture, see weak homotopy equi-
valence, — of simplicial sets

— of bisimplicial sets, 137
— of cosimplicial simplicial sets,

142
— with respect to a Cisinski homo-

topy structure, 615
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Dugger–Isaksen —, 696
natural —, 361
Reedy —, 505

weak homotopy equivalence
— of categories, 225
— of simplicial sets, 126, 134
— of simplicial sheaves, 730
internal — of simplicial objects, 706
local — of simplicial presheaves, 710,

see also weak hypersheaf equi-
valence

weak hypersheaf equivalence, 724, see
also weak homotopy equival-
ence, local — of simplicial pre-
sheaves

weak stack equivalence, 721
wedge, 824
weighted colimit, 810

enriched —, 872
weighted limit, 810

enriched —, 872
well-ordered set

classification theorem, 5
Whitehead property, 360

zigzag, see also hammock, 803
zigzag type, 324, 799

concatenation of —, 803
degenerate —, 803
flex of —, see flex, – of a zigzag

type
interior vertex of —, see vertex, in-

terior — of a zigzag type
marked —, 551
morphism of —, 800

kernel of —, 801
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