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PREFACE

These notes are intended as a kind of annotated index to the various standard
references in homotopical algebra: the focus is on definitions and statements of
results, not proofs.
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0.1

00—

FouNDATIONS

Set theory

In category theory it is often convenient to invoke a certain set-theoretic device
commonly known as a ‘Grothendieck universe’, but we shall say simply ‘uni-
verse’, so as to simplify exposition and proofs by eliminating various circumlo-
cutions involving cardinal bounds, proper classes etc.

Definition 0.1.1. A pre-universe is a set U satisfying these axioms:
1. f xeyand y € U, then x € U.
2. If x € Uand y € U (but not necessarily distinct), then {x, y} € U.
3. If x € U, then & (x) € U, where & (x) denotes the set of all subsets of x.
4. If x € Uand f : x - Uis amap, then | J,_  f(i) € U.
A universe is a pre-universe U with this additional property:
5. @ € U, where w is the set of all finite (von Neumann) ordinals.

Example o0.1.2. The empty set is a pre-universe, and with very mild assump-
tions, so is the set HF of all hereditarily finite sets.

9 0.1.3. The notion of universe makes sense in any material set theory, but
their existence must be postulated. We adopt the following:

¢ Grothendieck—Verdier universe axiom. For each set x, there exists a
universe U with x € U.



0. FOUNDATIONS

For definiteness, we may take our base theory to be Mac Lane set theory, which
is a weak subsystem of Zermelo—Fraenkel set theory with choice (ZFC). Readers
interested in the details of Mac Lane set theory are referred to [Mathias, 2001],
but in practice, as long as one is working at all times inside some universe, one
may as well be working in ZFC. Indeed:

Proposition 0.1.4. With the assumptions of Mac Lane set theory, any universe
is a transitive model of ZFC.

Proof. Let U be a universe. By definition, U is a transitive set containing pairs,
power sets, unions, and @, so the axioms of extensionality, empty set, pairs,
power sets, unions, choice, and infinity are all automatically satisfied. We must
show that the axiom schemas of separation and replacement are also satisfied,
and in fact it is enough to check that replacement is valid; but this is straightfor-
ward using axioms 2 and 4. ]

Definition 0.1.5. Let U be a pre-universe. A U-set is a member of U, a U-class
is a subset of U, and a proper U-class is a U-class that is not a U-set.

Lemma 0.1.6. A U-class X is a U-set if and only if there exists a U-class Y such
that X € Y. H

Proposition 0.1.7. If' U is a universe in Mac Lane set theory, then the collection
of all U-classes is a transitive model of Morse—Kelley class—set theory (MK),
and so is a transitive model of von Neumann—Bernays—Godel class—set theory
(NBG) in particular. [ |

Definition 0.1.8. A U-small category is a category C such that ob C and mor C
are U-sets. A locally U-small category is a category D satisfying these condi-
tions:

¢ ob D and mor D are U-classes, and
» for all objects x and y in D, the hom-set D(x, y) is a U-set.

An essentially U-small category is a category D for which there exist a U-small
category C and a functor C — D that is fully faithful and essentially surjective
on objects.

Proposition 0.1.9. If D is a U-small category and C is a locally U-small cat-
egory, then the functor category [D, C] is locally U-small.
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Proof. Strictly speaking, this depends on the set-theoretic implementation of
ordered pairs, categories, functors, etc., but at the very least [D, C] should be
isomorphic to a locally U-small category.

In the context of [D, C], we may regard functors D — C as being the pair
consisting of the graph of the object map obD — ob C and the graph of the
morphism map morD — morC, and these are U-sets by the U-replacement
axiom. Similarly, if F and G are objects in [D, C], then we may regard a natural
transformation a : F = G as being the triple (F, G, A), where A is the set of all
pairs (c, ac). [ ]

One complication introduced by having multiple universes concerns the ex-
istence of (co)limits.

Theorem o.1.10 (Freyd). Let C be a category and let k be a cardinal such that
l[mor C| < «x. If C has products for families of size k, then any two parallel
morphisms in C must be equal.

Proof. Suppose, for a contradiction, that f,g : X — Y are distinct morphisms
in C. Let Z be the product of k-many copies of Y in C. The universal property
of products implies there are at least 2*-many distinct morphisms X — Z; but
C(X, Z) C mor C, so this is an absurdity. [ |

Definition 0.1.11. Let U be a pre-universe. A U-complete (resp. U-cocomplete)
category is a category C with the following property:

* For all U-small categories D and all diagrams A : D — C, a limit (resp.
colimit) of A exists in C.

We may instead say C has all finite limits (resp. finite colimits) in the special
case U = HF.

Proposition 0.1.12. Let C be a category and let U be a non-empty pre-universe.
The following are equivalent:

(i) Cis U-complete.

(ii) C has all finite limits and products for all families of objects indexed by a
U-set.
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(iii) For each U-small category D, there exists an adjunction
A—|l(iLnD:[ID,C]—>C
where AX is the constant functor with value X.
Dually, the following are equivalent:
(i") C is U-cocomplete.

(ii") C has all finite colimits and coproducts for all families of objects indexed
by a U-set.

(iii") For each U-small category D, there exists an adjunction
lim 4A:C - [D,C]
—D
where AX is the constant functor with value X.

Proof. This is a standard result; but we remark that we do require a sufficiently
powerful form of the axiom of choice to pass from (ii) to (iii). O

1 o0.1.13. In the explicit universe convention, the words ‘set’, ‘class’, etc.
have their usual meanings, and in the one-universe convention, these instead
abbreviate ‘U-set’, ‘U-class’, etc. for a fixed (but arbitrary) universe U. However,
the word ‘category’ always refers to a category that is contained in some universe,
which may or may not be locally U-small, and we shall use the word ‘ensemble’
to refer to sets which may or may not be in U. In subsequent chapters, the implicit
universe convention should be assumed unless otherwise stated.

We now recall some definitions and results about ordinal and cardinal num-
bers. Readers familiar with axiomatic set theory may wish to skip ahead.

Definition 0.1.14. A von Neumann ordinal is a set @ with the following prop-
erties:

e Ifxeyandy € a, then x € a.
* The binary relation € is strict total ordering of a.
e If S is a subset of a such that

- ges,



0.1. Set theory

- IfpeSandpu{f}ea,thenpu{p} €sS.
-IfTCS,thenJT € S.

then .S = «a.

We identify O with the von Neumann ordinal @, and by induction, we identify
the natural number n + 1 with the von Neumann ordinal {0, ..., n}.

Proposition 0.1.15.
(i) If @ is a von Neumann ordinal, then every member of a is an initial segment
of a and is in particular a von Neumann ordinal.

(ii) If @ is a von Neumann ordinal, so is a U {a}. (This is usually denoted by
a + 1 and called the successor of a.)

(iii) The union of a set S of von Neumann ordinals is another von Neumann
ordinal. (This is usually denoted by sup S and called the supremum of
S.)

(iv) If U is a pre-universe and x(U) is the set of von Neumann ordinals in U,
then k(U) a von Neumann ordinal, but x(U) ¢ U.

Proof. Claims (i) — (iii) are all easy, and claim (iv) is Burali-Forti’s paradox. ‘

Theorem 0.1.16 (Classification of well-orderings).
(i) In Zermelo—Fraenkel set theory, every well-ordered set is isomorphic to a
unique von Neumann ordinal.

(ii) In Mac Lane set theory, if U is a pre-universe and X is a well-ordered set
in U, then X is isomorphic to a unique von Neumann ordinal in U.

Proof. Claim (i) is a standard result in axiomatic set theory, and claim (ii) is an
obvious corollary. O

Definition 0.1.17. A transitive set is a set T such that, given x € y,if y € T,
then x € T as well. The transitive closure of a set X is a set tcl(X) such that,
for all transitive sets T with X C T, we have tcl(X) C T as well.

Lemma 0.1.18. In Mac Lane set theory, every set has a unique transitive closure.
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Proof. One of the axioms of Mac Lane set theory states that every set X is a
member of some transitive set T, and so X C T. Clearly, the intersection of any
family of transitive sets containing X is again a transitive set containing X, so
tcl(X) exists and is unique so long as there is at least one transitive set containing

X. |

Definition 0.1.19. A partial rank function from a transitive set 7' to a well-
ordered set W is a partial function p : T — W with these properties:

* If @ € T, then p(@) is the least element of W'
e If y € T and p(x) is defined for all x € y, then
p(y) =min{w € W |Vx € y. p(x) < w}
provided the RHS is defined.

* Otherwise p(y) is undefined.

A total rank function is a partial rank function that is defined on its entire do-
main. The rank of a set X, if it exists, the least von Neumann ordinal rank(X)
for which there exists a total rank function tcl(X) — rank(X).

Proposition 0.1.20. In Mac Lane set theory:

(i) If T is a transitive set and W' is a well-ordered set, then there is a unique
partial rank function p : T — W.

(ii) If U is a pre-universe and x € U, then rank(x) can be defined by a A,-for-
mula with U as a parameter, and for each von Neumann ordinal « in U,
the set

V,={x € U|rank(x) < a}

is a U-set.

(iii) Assuming the Grothendieck—Verdier universe axiom, rank(x) is defined for
all x.

Proof. (i). This is a straightforward application of well-founded induction.

(ii). U is a transitive set and the set x(U) of all von Neumann ordinals in U
is well-ordered by inclusion, so by claim (i) there is a partial rank function p :

6
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U — «(U). ZFC proves that every set has a rank, so p must in fact be a total
rank function; hence, for any x € U, rank(x) is defined. It is clear that p can be
defined by a A,-formula with only U as a parameter, and the rest of the claim
follows.

(iii). Obvious, assuming claim (ii). Il

Definition 0.1.21. Two sets are equinumerous if there exists a bijection between
them. A cardinality class in a pre-universe U is an equivalence class under the
relation of equinumerosity.

Definition 0.1.22. An N-number is an infinite von Neumann ordinal « such
that, for any von Neumann ordinal 4 such that k¥ and A are equinumerous, we
have Kk C A.

Example 0.1.23. The first infinite von Neumann ordinal, i.e. ® = {0, 1,2, ...},
is the N-number NX,.

Lemma 0.1.24. If k is an N-number, then there exists a unique N-number k*
with the following property:

o For any R-number A such that k < A, we have k* < A.
The cardinal successor of k is k™.

Proof. The class of N-numbers is well-ordered and unbounded, so the class of
all X-numbers > x has a minimal element k*, as required. [ |

Theorem o0.1.25 (Classification of cardinalities).
(i) In Zermelo—Fraenkel set theory, for every well-ordered infinite set X, there
exists a unique N-number k such that X and k are equinumerous.

(ii) In Zermelo—Fraenkel set theory with the axiom of choice, the same is true
for any infinite set whatsoever.

(iii) In Mac Lane set theory, if U is a universe and X is an infinite set in U,
then there exists a unique N-number « in the cardinality class of X.

(iv) In Mac Lane set theory with the Grothendieck—Verdier universe axiom, if
U is a pre-universe and k is an N-number not in U, then the cardinality of
U is at most k.
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Proof. Claim (i) is a standard fact, whence claims (ii) and (iii), by the well-
ordering theorem. Claim (iv) can be proven using axiom 4 for pre-universes. []

1 0.1.26. Henceforth, we identify the cardinality class of a finite set with the
unique von Neumann ordinal contained in that class, and similarly we identify
the cardinality class of an infinite set with the unique R-number in that class.
These are the cardinal numbers.

Definition 0.1.27. A cofinal subset of a partially-ordered set X is a subset
Y C X such that, for all x in X, there exists some y in Y such that x < y.
A regular cardinal number is an X-number « such that any cofinal subset of k
has cardinality equal to k. A singular cardinal number is an R-number that is
not regular.

The following helps to motivate the definition of regular cardinal numbers.

Definition 0.1.28. Let U be a pre-universe. An arity class in U is a U-class K
of cardinal numbers satisfying the following conditions:

e ]l K.

e If «x € K and A : k — K is a function, then the cardinal sum Zaa AMa) is
alsoin K.

e [f x € K and A : k = U is a function such that each A(«) is a cardinal
number and ZaeK AMa) € K, then A(a) € K as well.

Theorem o0.1.29 (Classification of arity classes). In Mac Lane set theory, if K
is an arity class in a pre-universe U, then K must be either

o {1}, or
e {0,1}, or

e of the form {1 € U| A is a cardinal number and A < x} for some regular
cardinal number k (possibly not in U).

Proof. The notion of arity class and this result are due to Shulman [2012]. []

Definition 0.1.30. Let x be a regular cardinal number. A x-small category
is a category C such that mor C has cardinality < . A finite category is an
N,-small category, i.e. a category C such that mor C is finite. A finite diagram

8



0.1. Set theory

(resp. k-small diagram, U-small diagram) in a category C is a functor D — C
where D is a finite (resp. k-small, U-small) category.

Theorem 0.1.31. Let U be a pre-universe, let U* be a universe with U € U*, let
Set be the category of U-sets, and let Set™ be the category of U™ -sets.

(i) If X : D — Set is a U-small diagram, then there exist a limit and a colimit
for X in Set.

(ii) The inclusion Set < Set™ is fully faithful and preserves limits and colimits
for all U-small diagrams.

Proof. One can construct products, equalisers, coproducts, coequalisers, and
hom-sets in a completely explicit way, making the preservation properties ob-
vious. ¢

Corollary 0.1.32. The inclusion Set < Set™ reflects limits and colimits for all
U-small diagrams. [ |

Corollary 0.1.33. For any U-small category C:

(i) The functor category [C, Set] is U-complete and U-cocomplete, with limits
and colimits for U-small diagrams computed componentwise in Set.

(ii) The inclusion [C,Set] < [C, Set*] is fully faithful and both preserves and
reflects limits and colimits for all U-small diagrams. [ ]

Definition 0.1.34. An strongly inaccessible cardinal number is a regular car-
dinal number « such that, for all sets X of cardinality less than k, the power set
P (X) is also of cardinality less than k.

Example 0.1.35. N, is a strongly inaccessible cardinal number and is the only
one that can be proven to exist in ZFC. It is more conventional to exclude N,
from the definition of strongly inaccessible cardinal number by demanding that
they be uncountable.

Proposition 0.1.36. In Mac Lane set theory:

(i) If U is a non-empty pre-universe, then there exists a strongly inaccessible
cardinal number k such that the members of U are all the sets of rank less
than k. Moreover, this k is the rank and the cardinality of U.
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(ii) If U is a universe and x is a strongly inaccessible cardinal number such
that x € U, then there exists a U-set V_ whose members are all the sets of
rank less than k, and V. is a pre-universe.

(iii) If U and U’ are pre-universes, then either U C U’ or U C U; and if
UGU, thenUeU.

Proof. (i). Let k be the set of all von Neumann ordinals in U; this exists by
A,-separation applied to U. Since U is closed under power sets and internally-
indexed unions, k¥ must be a strongly inaccessible cardinal.

We can construct the set all of U-sets of rank less than k using transfinite
recursion on k as follows: starting with V, = @, for each von Neumann ordinal «
less than k, wesetV, , = & (Va) , and for each ordinal A that is not a successor,
we set V, = (J,_, V,. The well-foundedness of € (restricted to U) implies that
in fact this must be all of U.

Clearly, every set of rank less than « is in fact a U-set, and U is itself a set of
rank k. The cardinality of U is also k, since k is a regular cardinal number and
any cardinal number less than x is a member of U.

(ii). We may construct V, using the same method as in (i). By construction V.
satisfies axiom 1; since « is infinite, V_ satisfies axioms 2 and 3; and since « is
strongly inaccessible, V. satisfies axiom 4. Thus V_ is a pre-universe.

(iii). Again, let k be the rank of U. If k¥ € U’ then we can show by transfinite
induction that V.. € U’ and so U & U’; else we must have U' €V, = U. [ |

Accessibility and ind-completions

Prerequisites. §o.1.

A classical technology for controlling size problems in category theory, due
to Gabriel and Ulmer [1971], Grothendieck and Verdier [SGA 4a, Exposé I, §9],
and Makkai and Paré [1989], is the notion of accessibility. Though we make use
of universes, accessibility remains important and is a crucial tool in verifying the
stability of various universal constructions when one passes from one universe
to a larger one.

10
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Definition 0.2.1. Let x be a regular cardinal.
* A k-filtered category is a category .J with the following property:

— For each k-small diagram A in 7, there exist an object j and a cocone
A=>Aj.

A k-filtered diagram in a category C is a functor J — C where J is a
k-filtered category.

* A k-directed preorder is a preordered set X that is x-filtered when con-
sidered as a category, i.e. a preorder with the following property:

— For each x-small subset Y C X, there exists an element x of X such
that y < x forall yin Y.

A k-directed diagram in a category C is a functor J — C where [J is a
k-directed preorder (considered as a category).

In both cases, it is conventional to omit k¥ when k = N,,.

REMARK 0.2.2. For any regular cardinal x, the category with one object and only
one non-trivial arrow f is k-filtered if and only if f = f o f. In particular, any
category that has colimits for small x-filtered diagrams must also have splittings
for idempotents.

Example 0.2.3. Let X be any set. The set of all finite subsets of X, partially
ordered by inclusion, is a directed preorder. More generally, if k is any regu-
lar cardinal, then the set of all subsets of X of cardinality < « is a k-directed
preorder.

Lemma 0.2.4. Let J be a category. The following are equivalent:
(i) J is a filtered category.

(ii) J is inhabited; for any two objects j and j' in J there exist an object
j" and morphisms j — j" and j' — j" in J; and for any parallel pair
foo f1 2 J — Jj inJ, there is a morphism g : j' — j" in J such that
gofo=8°f1

11
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Proof. (i) = (ii). The conditions say precisely that .7 has cocones for diagrams
of shape @, {e, e}, and {e =3 e}, respectively.

(ii) = (i). See Lemma 2.13.2 in [Borceux, 1994a]. O

Definition 0.2.5. Let a be an ordinal. An a-chain in a category C is a functor
a — C, where we have identified a with the well-ordered set of ordinals < a.

ReEMARK 0.2.6. If @ is an ordinal with cofinality «, then «a is a k-directed preorder.
In particular, a-chains are x-directed diagrams.

Lemma o.2.7. Let T be any category and let J be a filtered category. Given a
full functor F : T — [J, the following are equivalent:

() F: I - J isa cofinal functor.")

(ii) For each object j in J, there exist an object i in 1T and a morphism j — Fi

inJ.

Proof. (i) = (ii). Since F : T — [J is a cofinal functor, the comma category
(j | F) is connected; in particular, it is inhabited.

(ii) = (i). The hypothesis says that the comma category (j | F) is inhabited
for all objects j in J; it remains to be shown that each (j | F) is connected.
Suppose we have morphisms f : j — Fiand f' : j —» Fi' in J. Since J is a
filtered category, there exist morphisms g : Fi — j' and g’ : Fi’ — j such that
ge f = g’ o f'. By hypothesis, there is a morphism A : j' — Fi” in J, and since

F : T — [J is full, there exist morphisms k : i — i” and k' : i’ - i” in T such
that Fk = hogand Fk' = ho g'. Thus, we have Fko f = Fk' o f',s0 (j | F)
is indeed connected. [ ]

Lemma 0.2.8. Let T be a filtered category and let J be any preorder. Given a
functor F : T — [, the following are equivalent:

(i) F: 1 — J isa cofinal functor.

(ii) For each object j in J, there exist an object i in T such that j < Fiin [J.

See definition A.5.31.

12
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Proof. (i) = (ii). Since F : T — [J is a cofinal functor, the comma category
(j | F) is connected; in particular, it is inhabited.

(ii) = (i). The hypothesis says that the comma category (j | F) is inhabited for
all objects j in J; it remains to be shown that each (j | F) is connected. Suppose
we have morphisms j < Fiand j < Fi’ in J. Since T is a filtered category,
there exist an object i” in Z and morphisms i — i” and i’ — i”; thus, we have
j<Fi<Fi"and j < Fi' < Fi",so (j | F) is indeed connected. [ |

Lemma 0.2.9. Let J be a x-filtered diagram. If J is also k-small, then there
exist an object j in J and an idempotent morphism e : j — j such that the
subcategory of J generated by e is cofinal in J .

Proof. Sinceid : J — J is a k-small diagram in .7, there must exist an object
JinJ and acocone 4 :1id = Aj. Lete = A, : j — j. Since 4 is a cocone, we
must have e = ece,i.e. e : j — j is idempotent.

Let 7 be the subcategory of J generated by e and let j' be any object in J .
We must show that the comma category (j’ | ) is connected. It is inhabited:
Aj Jj' — jis an objectin (j' | T). Moreover, given any morphism f : j' — j
in J, we must have Aj, = /lj of =eo f,s0(j' | I)isindeed connected. Thus,
1 is a cofinal subcategory of J. [ |

Lemma o.2.10. Let k be a regular cardinal and let (Jl | i € I) be a set of
k-filtered categories.

() The product J = [],; J; is a k-filtered category.
(ii) Each projection n; : J — J, is a cofinal functor.
Proof. (i). We may construct cones over xk-small diagrams in J componentwise.

(ii). Similarly, one can show that the comma categories ( Jil ni) are connected
forall j,in J; and all i in [. [ |

Theorem 0.2.11. Let k be a regular cardinal in a universe U. If J is a U-small
k-filtered category, then there exist a U-small x-directed poset 1 and a cofinal
functor P : 1T — J.

Proof. See Theorem 1.5 and Remark 1.21 in [LPAC]. ]
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Theorem 0.2.12. Let U be a universe. The following are equivalent for a cat-
egory C:

(i) C has colimits for U-small X,-filtered diagrams.
(ii) C has colimits for U-small N,-directed diagrams.
(iii) C has colimits for a-chains for all infinite ordinals a in U.
Proof. (i) < (ii). This is implied by theorem 0.2.11.
(i) = (iii). Immediate.
(iii) = (ii). See Corollary 1.7 in [LPAC]. Il

Theorem 0.2.13. Let U be a universe, let Set be the category of U-sets, and let
k be any regular cardinal in U. Given a U-small category J, the following are
equivalent:

(i) J is a x-filtered category.

(ii) The functor li_r)ny . [J,Set] — Set preserves limits for all k-small dia-
grams.

Proof. The claim (i) = (ii) is very well known, and the converse is an exercise
in using the Yoneda lemma and manipulating limits and colimits for diagrams of
representable functors; see Satz 5.2 in [Gabriel and Ulmer, 1971]. Il

Definition 0.2.14. Let k¥ and A be regular cardinals in a universe U and let Set
be the category of U-sets.

* A (k, A)-compact object in a locally U-small category C is an object A
such that the representable functor C(A, —) : C — Set preserves colimits
for all A-small x-filtered diagrams.

* Let U’ be a universe with U' C U. A (x, U’)-compact object in a locally
U-small category is an object that is (k, A)-compact for all regular cardinals
AinU’".

Though the above definition is stated using a universe U, the following lemma
shows there is in fact no dependence on U.

14
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Lemma 0.2.15. Let A be an object in a locally U-small category C. The follow-
ing are equivalent:

(i) Aisa (x,A)-compact object in C.

(ii) For all A-small x-filtered diagrams B : J — C, ife : B > AC isa
colimiting cocone, then for any morphism f : A — C, there exist an
objectiin J and a morphism f' : A — Biin C such that f =€, f'; and
moreover if f =g, o f" for some morphism f" : A — Bj in C, then there
exists an object k and a pair of arrows g 1 i = k, h : i — kin J such that
Bgo f' =Bho f".

Proof. Use the explicit description of h_n)l C(A, B) as a filtered colimit of sets;
see Definition 1.1 in [LPAC], or Proposition 5.1.3 in [Borceux, 1994b]. ]

Corollary 0.2.16. Let B : J — C be a A-small k-filtered diagram, and let
A B = AC be a colimiting cocone in C. If C is a (k, A)-compact object in C,
then C is a retract of some vertex of B, i.e. there exists an object i in J such that
A; © Bi = C is a split epimorphism. [ ]

Lemma 0.2.17. Let A be an object in a category C.

(i) If A is a (k, A)-compact object in C and A" is any regular cardinal < A,
then A is (k, A'")-compact as well.

(ii) If A is (x, A)-compact and u is any regular cardinal > «, then A is also
(u, A)-compact.

Proof. Obvious. ¢

Lemma 0.2.18. Let k and 4 be regular cardinals in a universe U. If B: D — C
is a x-small diagram of (k, A)-compact objects in a locally U-small category,
then the colimit li_r)nD B, if it exists, is also a (k, A)-compact object in C.

Proof. Use theorem 0.2.13 and the fact that C(—, C) : C°® — Set* maps colimits
in C to limits in Set™. [ |

Corollary 0.2.19. A retract of a (x, A)-compact object is also a (k, A)-compact
object.

15
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Proof. Supposer : A - Bands : B — A are morphisms in C such that
reos =1dg. Then e = s o r is an idempotent morphism and the diagram below

id

A
A A —/— B

is a (split) coequaliser diagram in C, so B is (kx, 4)-compact if A is. [ |

Proposition 0.2.20. Let U be a pre-universe and let Set be the category of
U-sets. For any U-set A, the following are equivalent:

(i) A has cardinality less than k.

(ii) The representable functor Set(A,—) : Set — Set preserves colimits for
all U-small x-filtered diagrams.

(iii) The representable functor Set(A,—) : Set — Set preserves colimits for
all U-small x-directed diagrams.

Proof. The claim (i) = (ii) follows from theorem 0.2.13, and (ii) = (iii) is obvi-
ous. To see (iii) = (i), we may use corollary 0.2.16 and the fact that every set is
the x-directed union of its subsets of cardinality < «. [ |

Corollary 0.2.21. A U-set X is (x, U)-compact if and only if | X| < k. [ |

Definition 0.2.22. Let k be a regular cardinal in a universe U. A k-accessible
U-category is a locally U-small category C satisfying the following conditions:

* C has colimits for all U-small x-filtered diagrams.

* There exists a U-set G whose element are (k, U)-compact objects in C such
that, for each object B in C, there exists a U-small k-filtered diagram in C
whose vertices are in G and whose colimit is B.

We write KY(C) for the full subcategory of C spanned by the (k, U)-compact
objects.

Example 0.2.23. The category of U-sets is a k-accessible U-category for any
regular cardinal x in U.

Theorem 0.2.24. Let C be a locally U-small category and let xk be a regular
cardinal in U. There exist a locally U-small category Indy(C) and a functor
y : C = Indy(C) with the following properties:

16



0.2. Accessibility and ind-completions

(i) The objects of Indy(C) are U-small x-filtered diagrams B : D — C, and
y sends an object C in C to the corresponding trivial diagram 1 — C with
value C.

(ii) The functor y : C — Indy(C) is fully faithful, injective on objects, pre-
serves all limits that exist in C, and preserves all x-small colimits that
exist in C.

(iii) Indy(C) has colimits for all U-small k-filtered diagrams.

(iv) For every object C in C, the object yC is (k, U)-compact in Indy(C), and
for each U-small x-filtered diagram B : D — C, there is a canonical
colimiting cocone y B = AB in Indj(C).

(v) If D is a category with colimits for all U-small k-filtered diagrams, then
for each functor F : C — D, there exists a functor F : IndF, u(C) = D that
preserves colimits for all U-small k-filtered diagrams in Indy;(C) such that
yF = F, and given any functor G : Ind~ u(C) = D whatsoever, the induced
map Nat(F, G) - Nat(F, yG) is a bijection.

The category Indy(C) is called the free (x, U)-ind-completion of C, or the cat-
egory of (x, U)-ind-objects in C.

Proof. If B: D — Cand B’ : D' — C are two U-small x-filtered diagrams, then
properties (ii) and (iii) together imply that

Hom(B’, B) 2 lim lim C(B’, B)
—D' —D

and so, taking the RHS as the definition of the LHS, we need only find a suitable
notion of composition to make Indy;(C) into a locally U-small category. How-
ever, we observe that, if N : C — [C?, Set] is the Yoneda embedding, then

Hom(lim NB’,lim NB) ~lim_lim C(B', B)
—, Y —D —D' —D

and, assuming property (v), the Yoneda embedding N : C — [CP, Set] must
extend along y to a functor N : Ind¥ u(C) — [C?, Set] that preserves colimits
for U-small x-filtered diagram, so, in consideration of properties (i) and (iv), we
may as well define the composition in Indy;(C) so that N becomes fully faithful.
This completes the definition of Indy;(C) as a category.

It remains to be shown that Indy;(C) actually has properties (ii), (iii), (iv), and
(v); see Corollary 6.4.14 in [Borceux, 1994a] and Theorem 2.26 in [LPAC]. Note
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that the fact that y preserves colimits for xk-small diagrams essentially follows
from theorem 0.2.13. ]

Proposition 0.2.25. Let B be a U-small category and let k be a regular cardinal
in U.

(i) Indy(B) is a k-accessible U-category.

(ii) Every (x,U)-compact object in Indy(B) is a retract of an object of the form
Yy B, where y : B — Indy(B) is the canonical embedding.

(iii) KE (Indfj(B)) is an essentially U-small category.

Proof. (i). This claim more-or-less follows from the properties of Indy(B) ex-
plained in the previous theorem.

(ii). Use corollary 0.2.19.

(iii). Since B is U-small and Indy;(B) is locally U-small, claim (ii) implies that
K/ (Indj,(B)) must be essentially U-small. ]

Proposition 0.2.26. Let C be a k-accessible U-category and let C be an object
in C.

(i) The comma category (KE(C )1 C ) is an essentially U-small k-filtered cat-
egory.

(i) If P€ : (KE(C) 1 C ) — C is the canonical diagram, then the tautological
cocone'” P = AC is a colimiting cocone in C.

Proof. See Proposition 2.1.5 in [Makkai and Paré, 1989] or Proposition 2.8 in
[LPAC]. O

Corollary 0.2.27. Let C be a k-accessible U-category. For any U-small k-filtered
diagram D, li_n)lD : [D, C] = C preserves componentwise limits for k-small dia-
grams.

Proof. The claim is certainly true when C = [B?, Set], by theorem 0.2.13. In
general, choose a fully faithful functor R : C — [B®P, Set] that preserves limits
for all k-small diagrams and colimits for all U-small k-filtered diagrams; then R

See definition A.5.7.
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reflects limits for k-small diagrams and colimits for U-small x-filtered diagrams,
so we may deduce the claim from the corresponding fact for [B°?, Set]. Note that
such a functor exists: propositions 0.2.26 and A.5.25 imply we may take B to be
K[KJ(C ) and R to be the induced Yoneda representation. [ |

Definition 0.2.28. Let x be a regular cardinal in a universe U. A (x, U)-access-
ible functor is a functor F : C — D such that

* Cis a k-accessible U-category, and
» F preserves all colimits for U-small x-filtered diagrams.

We write AccY(C, D) for the full subcategory of the functor category [C, D]
spanned by the (k, U)-accessible functors. An accessible functor is a functor
that is (x, U)-accessible functor for some regular cardinal x in some universe U.

Theorem 0.2.29 (Classification of accessible categories). Let k be a regular
cardinal in a universe U and let C be a locally U-small category. The following
are equivalent:

(i) C is a k-accessible U-category.

(ii) The inclusion KY(C) < C extends along K (C) — Indj(KY(C)) 10 a
(x, U)-accessible functor Ind%(KE(C)) — C that is fully faithful and es-
sentially surjective on objects.

(iii) There exist a U-small category B and a functor Indy(B) — C that is fully
Jaithful and essentially surjective on objects.

Proof. See Theorem 2.26 in [LPAC], or Theorem 5.3.5 in [Borceux, 1994b].
]

Corollary 0.2.30. If C is a k-accessible U-category and D is any category, then:

(i) The restriction AccY(C, D) — [KE(C), D] is fully faithful and surjective
on objects.

(i) In particular, if D is also locally U-small, then AccY(C, D) is equivalent
to a locally U-small category.

(iii) If D has colimits for all U-small k-filtered diagrams, then the inclusion
AccY(C, D) < [C, D] has a left adjoint. [ ]
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Proposition 0.2.31. Let C be a k-accessible U-category and let D be a locally
U-small category. Given an adjunction F 4 G : D — C, if G is fully faith-
ful and preserves colimits for all U-small x-filtered diagrams, then D is also a
k-accessible U-category.

Proof. Under our hypotheses, given any U-small x-filtered diagram A : J — D,
we may take F h_r)n G A as its colimit in D. Our hypotheses also imply that F
sends (x, U)-compact objects in C to (k, U)-compact objects in D; thus if G is a
U-small set of objects that generates C under U-small x-filtered colimits, then
{FX | X € G} isaU-small set of objects that generates D in the same sense. [l

Definition 0.2.32. Let x and 4 be regular cardinals and let %.(X) denote the set
of all k-small subsets of a set X. We say « is sharply less than A if

e Kk < A,and

* for all A-small sets X, there exists a A-small cofinal subposet of the poset
P(X).

We define k¥ < A to mean that « is sharply less than A.

Example 0.2.33. Let k be a regular cardinal and let «* be its cardinal successor.
Then k < k*: every k*-small set can be mapped bijectively onto an initial seg-
ment « of k (but possibly all of k), and it is clear that the subposet

{BIp<a} € Ala)

is a k-small cofinal subposet of P (a): given any x-small subset X C a, we

must have sup X < a, and X C sup X by definition.

Theorem 0.2.34. Let k and A be regular cardinals in a universe U, and suppose
k < A. The following are equivalent:

(i) k<A

(ii) For any U-small k-directed poset X and any A-small subsetY C X, there
exists a A-small k-directed subposet X' C X withY C X'.

(iii) Any k-accessible U-category is also a A-accessible U-category.

Proof. See Theorem 2.11 in [LPAC]. ]
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0.2. Accessibility and ind-completions

Proposition 0.2.35.
(i) The binary relation < is transitive.

(i) If « < A, then k < (2<’1)+, where 2<% = sup {2* | u is a cardinal < A}
and 2" = | P (u)|, and also k <1 (24)*.

(iii) For any set K of regular cardinals, there exists a regular cardinal A such
that k < Aforall k in K.

Proof. (i). See Proposition 2.3.2 in [Makkai and Paré, 1989], or theorem 0.2.34.

(ii). See Proposition 2.3.5 in [Makkai and Paré, 1989], or Example 2.13(5) in
[LPAC], or Proposition 5.4.7 in [Borceux, 1994b].

(iii). This follows from claim (ii). ]

Definition 0.2.36. Let k be a regular cardinal in a universe U. A locally «-
presentable U-category is a k-accessible U-category that is also U-cocomplete.
A locally presentable U-category is one that is a locally x-presentable U-cat-
egory for some regular cardinal « in U, and we often say ‘locally finitely present-
able’ instead of ‘locally ¥,-presentable’.

Example 0.2.37. The category of U-sets is a locally x-presentable U-category
for any regular cardinal x in U.

Lemma 0.2.38. Let C be a locally k-presentable U-category.

(i) Forany regular cardinal Ain'U, if k < A, then C is a locally A-presentable
U-category.

(ii) With A as above, if F : C — D is a (k,U)-accessible functor, then it is
also a (4, U)-accessible functor.

(iii) If U* is any universe with U € U*, and C is a locally k-presentable
U*-category, then C must be a preorder.

Proof. (i). See the remark after Theorem 1.20 in [LPAC], or Propositions 5.3.2
and 5.2.3 in [Borceux, 1994b].

(ii). A A-filtered diagram is certainly x-filtered, so if F preserves colimits for all
U-small k-filtered diagrams in C, it must also preserve colimits for all U-small
A-filtered diagrams.
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(iii). This is a corollary of theorem 0.1.10. [ |

Corollary 0.2.39. A category C is a locally presentable U-category for at most
one universe U, provided C is not a preorder.

Proof. Use proposition 0.1.36 together with the above lemma. [ |

Theorem o0.2.40 (Classification of locally presentable categories). Let k be a
regular cardinal in a universe U, let Set be the category of U-sets, and let C be
a locally U-small category. The following are equivalent:

(i) Cis alocally x-presentable U-category.

(ii) There exist a U-small category B that has colimits for k-small diagrams
and a functor Indy(B) — C that is fully faithful and essentially surjective
on objects.

(iii) The restricted Yoneda embedding C — [K[(C)*,Set] is fully faithful,
(x, U)-accessible, and has a left adjoint.

(iv) There exist a U-small category A and a fully faithful (x,U)-accessible
functor R : C — [A, Set] such that A has limits for all k-small diagrams,
R has a left adjoint, and R is essentially surjective onto the full subcat-
egory of functors A — Set that preserve limits for all k-small diagrams.

(v) There exist a U-small category A and a fully faithful functor C — [A, Set]
that preserves colimits for small k-filtered diagrams and has a left adjoint.

(vi) C is a k-accessible U-category and is U-complete.

Proof. See Proposition 1.27, Corollary 1.28, Theorem 1.46, and Corollary 2.47
in [LPAC], or Theorems 5.2.7 and 5.5.8 in [Borceux, 1994b]. ]

REMARK 0.2.41. If C is equivalent to Ind;;(B) for some U-small category B that
has colimits for all k-small diagrams, then B must be equivalent to KY(C) by
proposition 0.2.25. In other words, every locally x-presentable U-category is, up
to equivalence, the free (x, U)-ind-completion of an essentially unique U-small
k-cocomplete category.
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Example 0.2.42. Obviously, for any U-small category A, the functor category
[A, Set] is locally finitely presentable. More generally, one may show that for
any k-ary algebraic theory T, possibly many-sorted, the category of T-algebras
in Uis alocally k-presentable U-category. The above theorem can also be used to
show that Cat, the category of U-small categories, is a locally finitely presentable
U-small category.

Proposition 0.2.43. If C is an accessible U-category and D is any U-small cat-
egory, then the functor category [D, C] is also an accessible U-category.

Proof. See Theorem 2.39 in [LPAC]. ]

Proposition 0.2.44. If C is a locally k-presentable U-category and D is any
U-small category, then the functor category D, C] is also a locally k-presentable
U-category.

Proof. This can be proven using the classification theorem by noting that the
2-functor [D, —] preserves reflective subcategories, but see also Corollary 1.54
in [LPAC]. [

It is commonplace to say ‘A-presentable object’ instead of ‘A-compact ob-
ject’, especially in algebraic contexts. The following propositions justify the al-
ternative terminology.

Proposition 0.2.45. Let C be a x-accessible U-category. If A is a regular car-
dinal in U and x < A, then the following are equivalent for an object C in C:

(i) Cis a (4,U)-compact object in C.

(ii) There exists a A-small k-filtered diagram A : J — C such that each Aj is
a (x,U)-compact object in C and C = li_r)n‘7 A.

(iii) There exists a A-small x-directed diagram A : J — C such that each Aj
is a (x, U)-compact object in C and C is a retract of li_n)lj A.

Proof. (i) & (ii). See Proposition 2.3.11 in [Makkai and Paré, 1989].
(i) & (iii). See Remark 2.15 in [LPAC]. Il

Proposition 0.2.46. Let C be a locally k-presentable U-category, and let A be
a regular cardinal in U with A > k. If H is a U-small full subcategory of C such
that
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e every (x, U)-compact object in C is isomorphic to an object in H, and
e H is closed in C under colimits for A-small diagrams,

then every (A, U)-compact object in C is isomorphic to an object in H. In partic-
ular, KE(C) is the smallest replete full subcategory of C containing KY(C) and
closed in C under colimits for A-small diagrams.

Proof. Let C be any (4, U)-compact object in C. Clearly, the comma category
(H ] C) is a U-small A-filtered category. Let G = H N KE(C). One can show
that (G | C) is a cofinal subcategory in (H | C), and the classification theorem
(0.2.40) plus proposition A.5.25 implies that the tautological cocone on the dia-
gram (G| C) — C is colimiting, so the tautological cocone on the diagram
(H] C) — C is also colimiting. Now, by corollary 0.2.16, C is a retract of
an object in H, and hence C must be isomorphic to an object in H, because H is
closed under coequalisers.

For the final claim, note that KE(C ) is certainly a replete full subcategory of
C and contained in any replete full subcategory containing KY(C) and closed in
C under colimits for A-small diagrams, so we just have to show that KE(C) is
also closed in C under colimits for A-small diagrams; for this, we simply appeal
to lemma 0.2.18. H

Proposition 0.2.47. Let C be a locally U-small category and let D be a k-small
category in U.

(i) If A is a regular cardinal > «, C has colimits for U-small A-filtered dia-
grams, and A : D — C is componentwise (A, U)-compact, then A is a
(4, U)-compact object in D, C].

(ii) If C is a A-accessible U-category and has products for k-small families
of objects, then every (A, U)-compact object in D, C] is componentwise
(4, U)-compact.

Proof. (i). First, note that the Mac Lane subdivision category™ D¥ is also x-small,
so [D, C](A, B) is computed as the limit of a k-small diagram of hom-sets. More
precisely, using end notation,

[ID,C](A,B)%/ C(Ad, Bd)

d:D

See definition A.6.7.
See §A.6.
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0.2. Accessibility and ind-completions

and so if k < A and A is componentwise (4, U)-compact, then [D, C](A, —) pre-
serves colimits for U-small A-filtered diagrams, hence A is itself (4, U)-compact.

(ii). Now, suppose A is a (4, U)-compact object in [D, C]. Let d be an object in
D, let d* : [D,C] — C be evaluation at d, and let d, : C — [D, C] be the right
adjoint, which is explicitly given by

(d,C)(d")=D(d',dymC
where M is defined by following adjunction:
Set(X,C(C,C")) = C(C,XMnC")

The unitn, : A — d,d* A is constructed using the universal property of m in the
obvious way, and the counit e : d*d,C — C is the projection D(d,d)mC — C
corresponding to id, € D(d,d). Since C is a A-accessible U-category, there
exist a U-small A-filtered diagram B : J — C consisting of (4, U)-compact
objects in C and a colimiting cocone @ : B = Ad* A, and since each D(d’, d)
has cardinality < «, the cocone d,a@ : d,B = Ad.,d*A is also colimiting, by
corollary 0.2.27. Lemma 0.2.15 then implies 7, : A — d,d* A factors through
d.a;:d/(Bj)— d,d"Aforsome jin J, say

for some o : A — d,Bj. But then, by the triangle identity,
idAd =‘€Ad°d*l’]A =£Adod*d*ajod*6=ajogBjod*G

and so «; : Bj — Ad is a split epimorphism, hence Ad is a (4, U)-compact
object, by corollary 0.2.19. [ |

REMARK 0.2.48. The claim in the above proposition can fail if ¥ > A. For ex-
ample, we could take C = Set, with D being the set w considered as a discrete
category; then the terminal object in [D, Set] is componentwise finite, but is not
itself an ¥,-compact object in Set.

Lemma 0.2.49. Let k and A be regular cardinals in a universe U, with k < A.

(i) If Disalocally A-presentable U-category, C is a locally U-small category,
and G : D — C is a (A, U)-accessible functor that preserves limits for all
U-small diagrams in C, then, for any (x,U)-compact object C in C, the
comma category (C | G) has an initial object.
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(ii) IfCisalocally x-presentable U-category, D is a locally U-small category,
and F : C — D is a functor that preserves colimits for all U-small dia-
grams in C, then, for any object D in D, the comma category (F | D) has
a terminal object.

Proof. (i). Let F be the full subcategory of (C | G) spanned by those (D, g)
where D is a (4, U)-compact object in D. G preserves colimits for all U-small
A-filtered diagrams, so, by lemma 0.2.15, 7 must be a weakly initial family in
(C | G). Proposition 0.2.25 implies F is an essentially U-small category, and
since D has limits for all U-small diagrams and G preserves them, (C | G) is
also U-complete. Thus, the inclusion 7 < (C | G) has a limit, and it can be
shown that this is an initial object in (C | G).!

(ii). Let G be the full subcategory of (F | D) spanned by those (C, f) where
C is a (x, U)-compact object in C; note that proposition 0.2.25 implies G is an
essentially U-small category. Since C has colimits for all U-small diagrams and
F preserves them, (F | D) is also U-cocomplete.® Let (C, f)be a colimit for the
inclusion G < (F | D). It is not hard to check that (C, f) is a weakly terminal
object in (F | D), so the formal dual of Freyd’s initial object lemma!’! gives
us a terminal object in (F | D); explicitly, it may be constructed as the joint
coequaliser of all the endomorphisms of (C, f). [ |

Theorem 0.2.50 (Accessible adjoint functor theorem). Let k and A be regu-
lar cardinals in a universe U, with k < A, let C be a locally k-presentable
U-category, and let D be a locally A-presentable U-category.

Given a functor F : C — D, the following are equivalent:

(i) F has a right adjoint G : D — C, and G is a (A, U)-accessible functor.

(ii) F preserves colimits for all U-small diagrams and sends (x, U)-compact
objects in C to (A, U)-compact objects in D.

(iii) F has a right adjoint and sends (x, U)-compact objects in C to (4, U)-com-
pact objects in D.

See Theorem 1 in [CWM, Ch. X, §2].
See the Lemma in [CWM, Ch. V, §6].
See Theorem 1 in [CWM, Ch. V, §6].
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On the other hand, given a functor G : D — C, the following are equivalent:

(iv) G has a left adjoint F : C — D, and F sends (x,U)-compact objects in C
to (A, U)-compact objects in D.

(v) G is a (4, U)-accessible functor and preserves limits for all U-small dia-
grams.

(vi) G is a (4, U)-accessible functor and there exist a functor F : KE(C )—> D
and hom-set bijections

C(C,GD) = D(F,C, D)
natural in D for each (x,U)-compact object C in C, where D varies in D.

Proof. We will need to refer back to the details of the proof of this theorem later,
so here is a sketch of the constructions involved.

(i) = (ii). If F is aleft adjoint, then F certainly preserves colimits for all U-small
diagrams. Given a (x, U)-compact object C in C and a U-small A-filtered diagram
B : J — D, observe that

D(Fc,hm B) ~ C(C,Glim B> ~ c(c,hm GB)
—J —J —J
~lim C(C,GB)=lim C(FC,B)
—J —J
and thus FC is indeed a (4, U)-compact object in D.

(ii) = (iii). It is enough to show that, for each object D in D, the comma category
(F | D) has a terminal object (GD,€,);"* but this was done in the previous
lemma.

(iii) = (i). Given a (x, U)-compact object C in C and a U-small A-filtered dia-
gram B : J — D, observe that

C<C,Glim B) gD(Fc,hm B> ~ lim C(FC, B)
—>J —>J —>J

~ lim C(C,GB)EC(C,lim GB)
—J —J

See Theorem 2 in [CWM, Ch. IV, §1].
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because FC is a (4, U)-compact object in D; but theorem 0.2.40 says the restric-
ted Yoneda embedding C — [KE(C )F, Set] is fully faithful, so this is enough to
conclude that G preserves colimits for U-small A-filtered diagrams.

(iv) = (v). If G is aright adjoint, then G certainly preserves limits for all U-small
diagrams; the rest of this implication is just (iii) = (i).

(v) = (vi). It is enough to show that, for each (x, U)-compact object C in C, the
comma category (C | G) has an initial object (FOC, nc); but this was done in
the previous lemma. It is clear how to make F, into a functor KE(C ) = D.

(vi) = (iv). We use theorems 0.2.24 and 0.2.40 to extend Fj, : KE(C) — D along
the inclusion KE(C) < C to get (k, U)-accessible functor F : C — D. We then
observe that, for any U-small x-filtered diagram A : | — C of (x, U)-compact
objects in C,

¢(lim A,GD) = lim C(A,GD) = lim C(F,A, D)
—>1 <« <«
= C(lim FA, D) = C(Flim A,D)
—y p—|

is a series of bijections natural in D, where D varies in D; but C is a locally
k-presentable U-category, so this is enough to show that F is a left adjoint of G.
The remainder of the claim is a corollary of (i) = (ii). [ |

Corollary 0.2.51. Let C and D be locally presentable U-categories. If a functor
G : D — C has a left adjoint, then there exists a regular cardinal u in U such
that G is a (u, U)-accessible functor.

Proof. Suppose C is a locally k-presentable U-category, D is alocally A-present-
able U-category, and F : C — D is a left adjoint for G. Since KY(C) is an essen-
tially U-small category, recalling lemma 0.2.17, there certainly exists a regular
cardinal g in U such that 4 > A and F sends (x, U)-compact objects in C to
(u, U)-compact objects in D. The above theorem, plus lemma 0.2.38, implies G
is an (u, U)-accessible functor. [ |

Accessible constructions
Prerequisites. §§0.1, 0.2, A.5
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Definition 0.3.1. Let U be a universe and let F : C — D be a functor. The
U-rank of F is the smallest regular cardinal « in U such that F preserves colimits
for U-small k-filtered diagrams, provided any such cardinal exists.

REeMARK 0.3.2. The class of regular cardinals is well-ordered, so the definition
above makes sense. Of course, every (k, U)-accessible functor has U-rank < k.

Definition 0.3.3. Let U be a universe and let C be a locally U-small category.
The compactness U-rank of an object A in C is the U-rank of the hom-functor
C(A,—-) : C — Set, where Set is the category of U-sets.

REMARK 0.3.4. Lemma 0.2.18 implies that, for each object A in an accessible
U-category, there exists a regular cardinal 4 in U such that A is (4, U)-compact;
in particular, every object in an accessible U-category has a compactness U-rank.

Definition 0.3.5. Let x and A be regular cardinals in a universe U. A (x, A)-compactly
generated U-category is an essentially U-small category C that satisfies the fol-
lowing conditions:

* C has colimits for all A-small x-filtered diagrams.

* Every objectin C is a colimit for some A-small x-filtered diagram of (kx', A)-compact
objects in C.

We write K#(C) for the full subcategory of C spanned by the (k, A)-compact
objects.

REMARK 0.3.6. Lemma 0.2.9 implies an essentially U-small category is (x, k¥ )-compactly
generated if and only if it is Cauchy-complete, i.e. if and only if all idempotent
endomorphisms in C are split.

Proposition 0.3.7. Let C be a k-accessible U-category.

(i) KY(C) is a (k, k)-compactly generated U-category, and every object in
KE(C) is (x, K)-compact.

(ii) If Ais a regular cardinal in U and x < A, then KE(C) is a (k, A)-compactly
generated U-category, and the (k, A)-compact objects in KE(C) are pre-
cisely the (x,U)-compact objects in C.

Proof. (i). This follows from lemma 0.2.17, corollary 0.2.19, and remark 0.3.6.

(ii). Combine corollary 0.2.16, lemma 0.2.18, and proposition 0.2.45. [ |
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Proposition 0.3.8. Let x and A be regular cardinals in a universe U, let A and
B be U-small categories, and let F : A — B be a fully faithful functor. Assume
the following hypotheses:

o x < A

o A is a Cauchy-complete category and B has colimits for A-small k-filtered
diagrams.

e Each FA is a (k, A)-compact object in B, and each object in B is a colimit
Jor a A-small k-filtered diagram of objects in the image of F.

Then:

(i) Every (x, A)-compact object in B is isomorphic to an object in the image
of F : A - B.

(ii) There exists a functor U : B — Indy(A) equipped with a natural bijection
of the form below,

Ind(A)(A,UB) = B(FA, B)
and it is unique up to unique isomorphism.

(iii) Moreover, the functor U : B — Indy(A) is fully faithful and essentially
surjective onto the full subcategory of (A, U)-compact objects in Indy(A).

(iv) F : A — B is a dense functor.

(v) If x < A, then the (A, U)-accessible functor U : Indfj([B) — Ind(A)
induced by U : B — Indy(A) is fully faithful and essentially surjective on
objects.

Proof. (i). Let B be an object in B. By hypothesis, there is a A-small k-filtered
diagram Y : J — B such that each Y is in the image of F and B = li_r)nj Y.
Thus, if B is a (k, A)-compact object in B, then B must be a retract of some Y j
(by corollary 0.2.16). But A is Cauchy-complete and F' : A — B is fully faithful,
so B must be isomorphic to some object in the image of F.

(ii). The assumptions imply each functor B(F—, B) : A°®® — Set is a colimit
for a A-small k-filtered diagram of functors of the form A(—, A") for various A’
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in A. Hence, for each object B in B, there exist an object U B in Indy(A) and
bijections
Ind(A)(A,UB) = B(FA, B)

that are natural in A. Since the canonical embedding A — Ind(A) is dense, we
thus obtain a functor U : B — Indy;(A) with the required property.

(iii). Itis clear that U is a fully faithful functor that preserves colimits for A-small
k-filtered diagrams. We may then apply proposition 0.2.45 to deduce that every
(4, U)-compact object in Indj(A) is isomorphic to one in the image of U.

(iv). This follows from claim (iii) and the fact that the canonical embedding
A — Ind(A) is dense.

(v). If & < 4, then theorem 0.2.34 says Ind;(A) is a A-accessible category, so
we may apply the classification theorem (0.2.29) to deduce that U : Indfj(B) -
Indj;(A) is fully faithful and essentially surjective on objects. [ |

Corollary 0.3.9 (Classification of compactly generated categories). Let x and A
be regular cardinals in a universe U. If either k = A or k < A, then the following
are equivalent for a Cauchy-complete category C:

(i) Cis a (x, A)-compactly generated U-category.
(ii) Indé(C) is a k-accessible U-category.
(iii) C is equivalent to KE(D) for some k-accessible U-category D.
Proof. (i) = (ii). See proposition 0.3.8.
(ii) = (iii). Apply proposition 0.2.25.
(iii) = (i). See proposition 0.3.7. [ |

Definition 0.3.10. Let x and A be regular cardinals in auniverse U. A (x, 4)-compactly
defined functor is a functor F : C — D with the following properties:

* Cisa(x, A)-compactly generated U-category.

e F : C — Dpreserves colimits for A-small x-filtered diagrams of (kx, A)-compact
objects in C.
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Lemma o.3.11. Let C be a (k, A)-compactly generated U-category, let D be a
locally U-small category, and let Set be the category of U-sets. If F : C — D is
a (x, A)-compactly defined functor, then the natural maps

D(FC,D) — [Ki(C)Op, Set] (C(—,C),D(F-, D))
fe (e foFo)

are bijections.

Proof. Choose a A-small k-filtered diagram X : J — C such that each vertex is
(x, A)-compact in C and C = li_r)n‘7 X. We then have a natural bijection

C(A,C) = li_n)lj C(A, X)
as A varies in KX(C), so
[Kﬁ(c)op’ Set] (C(_’ C)’ D(_’ D)) = l(glj [Ki(c)op’ Set] (C(_7 X)’ D(F_’ D))
and by applying the Yoneda lemma, we have
lim  [Ki(C)*. Set|(C(~. X), D(F~, D)) = lim _D(FX, D)

but F : C — D preserves colimits for A-small x-filtered diagrams of (k, A)-compact
objects in C, so:

lim D(FX.D)=~ D(lim FX,D> ~ D(FC, D)
«—J —>J

We may therefore deduce that the indicated maps are bijections. [ |

Proposition 0.3.12. Let C and D be (x, A)-compactly generated U-categories.
If F : C - D is a (k, A)-compactly defined functor, then the induced functor
Ind;,(F) : Ind{;(C) — Ind{,(D) is («, U)-accessible.

Proof. Let A = KX(C), let y. : C — Ind{,(C) and y5, : D — Ind;(D) be
the canonical embeddings and let F = Ind’1 y(F). Theorems 0.2.24 and A.5.15
imply F : Ind} o0 — Ind! u(D) is (the functor part of) a pointwise left Kan
extensionof y,F : C — Indﬁ y(D)alongy. : C — Ind/ 4(C). By proposition 0.3.8,
Indé(C) and Ind} u(D) are k-accessible U-categories, and to verify that Fisa
(xc, U)-accessible functor, it suffices to show that F is (the functor part of) a
pointwise left Kan extension of y, F | , along yc| "
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Since yp, : D — Indfj(D) preserves colimits for A-small diagrams, the com-
posite y,F : C — Indé(D) is also a (x, A)-compactly defined functor, and so
ypF is (the functor part of) a pointwise left Kan extension of y,F 4 along the
inclusion A < C (by lemma 0.3.11). We may therefore apply theorem A.5.20 to
deduce that F is indeed (the functor part of) a pointwise left Kan extension of

ypF|, along r¢|,. H

Definition 0.3.13. Let ¥ be a regular cardinal in a universe U. A strongly
(x, U)-accessible functor is a functor F : C — D with the following proper-
ties:

* Both C and D are k-accessible U-categories.
» F preserves colimits for U-small k-filtered diagrams.
» F sends (x, U)-compact objects in C to (x, U)-compact objects in D.

Example 0.3.14. Given any functor F : A — B, if .A and B are small cat-
egories, then the induced functor Indj(F) : Indy(A) — Indj(B) is strongly
(x, U)-accessible, by corollaries 0.2.16 and 0.2.19.

Proposition 0.3.15 (Products of accessible categories). Let k be a regular car-
dinalin a universe U. If(Ci | i € I) is a k-small family of k-accessible U-categories,
then:

(i) The product C =[], C, is also a k-accessible U-category.

iel

(i) Moreover, the projection functors C — C, are strongly (kx,U)-accessible
functors.

Proof. 1t is clear that C has colimits for U-small x-filtered diagrams: indeed,
they can be computed componentwise. Theorem 0.2.13 implies that an object
in C is (x, U)-compact as soon as its components are (k, U)-compact objects in
their respective categories. Recalling lemma 0.2.10, it follows that C is generated
under U-small x-filtered colimits by a U-small family of (x, U)-compact objects,
as required of a k-accessible U-category. [ |

Lemma 0.3.16. Let k be a regular cardinal in a universe U, let U* be a uni-
verse with U C U™, let C be an accessible U-category, let D be an accesible
U*-category, and let F : C — D be a (x,U)-accessible functor.
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(i) There is a regular cardinal A in U* such that F sends (x, U)-compact ob-
jects in C to (A, U)-compact objects in D.

(ii) Moreover, if u is a regular cardinal in U* such that k < y and A < p, then
F sends (u,U)-compact objects in C to (u, U")-compact objects in D.

Proof. (i). Such aregular cardinal exists by remark 0.3.4 and proposition 0.2.25.

(ii). If p is not in U, then the claim is trivial; otherwise, proposition 0.2.45 and
lemma 0.2.18 imply that F sends (¢, U)-compact objects in C to (1, U")-compact
objects in D, as required. [ |

Corollary 0.3.17. Let C and D be accessible U-categories. If F : C - Disa
(x, U)-accessible functor, then:

(i) There exists a regular cardinal AinU such that F is strongly (4, U)-accessible.

(ii) Moreover, if u is a regular cardinal in U and A < u, then F is also strongly
(u, U)-accessible.

Proof. Combine lemma 0.3.16, theorem 0.2.34, and proposition 0.2.35. [ |

Lemma 0.3.18. Let J be a k-filtered category. If A is a k-small category, then
the functor category [A, J] is also a k-filtered category.

Proof. There is a natural bijection between diagrams D — [A, J ] and diagrams
Dx A — J;butif D is x-small, then so is D X A. Thus, every k-small diagram
in [A, J] has a cocone, as required. [ |

Lemma 0.3.19. Let J be a x-filtered category, let A : T — [J be a x-small
diagram, let *J be the cocone category (A | A), and let P : /] — J be the
projection functor.

(i) The cocone category A/ is also a k-filtered category.
(i) P:4J — Jis a cofinal functor.”!

Proof. (i). Let D be a x-small category. There exists a x-small category D
equipped with a functor L : T — D and a natural bijection between diagrams
X :D - 47 and diagrams X : D — J such that XL = A, and moreover

[9]1 See definition A.5.31.
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this construction is natural in D. Thus, every x-small diagram in 4.7 admits a
cocone, as required.

(ii). We must show that the comma category (b | P) is connected for all objects
bin J. Since J is filtered, there must exist an object ¢, a cocone A = Ac, and
a morphism b — c in J; thus, (b ] P) is inhabited. Moreover, any diagram in
[Z, J] of the form shown below on the left can be completed to one of the form
shown below on the right,

SN AN

Ac Ad > Ae ¢
\ /’ \ 0 /’
|
|
Ab Ab
so we may conclude that (b | P) is indeed connected. [ |

Lemma o0.3.20. Let k be a regular cardinal in a universe U, let X : 1 — C
be a x-small diagram, let Y : [J — C be a U-small x-filtered diagram, and let
€ : Y = AB be a colimiting cocone in C. If each Xi is a (x, U)-compact object
in C, then every cocone X = AB must factor through €; : Y j — B for some j
inJ.

Proof. Let ¢ : X = AB be a cocone, and regard it as a morphism in the
functor category [Z,C]. By proposition 0.2.47, X is a (x, U)-compact object
in [Z,C]; but Ae : AY = AAB is a colimiting cocone in [Z, C], so we may
apply lemma 0.2.15. [ |

Lemma 0.3.21. Let x be a regular cardinal in a universe U and let F : C — &£
and G : D — & be functors that send (k, U)-compact objects to (x,U)-compact
objects. Given an object (C, D, e) in the comma category (F | G), if C is a
(x, U)-compact object in C and D is a (k, U)-compact object in D, then (C, D, e)
is a (k,U)-compact object in (F | G).

Proof. Let B=(F | G)and let ¢ : FP = GQ be the canonical natural trans-
formation. Then, given any two objects B and B’ in B3, we have the following
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pullback diagram,

B(B,B') —— D(QB,QB’)

! l

C(PB,PB') — &FPB,GOB)

where the map C(PB, PB’') — & FPB,GQB’) is induced by the functor F :
C — & and the morphism ¢y, : FPB' — GQB’, and the map D(QB,QB’) —
E(FPB,GQOB’) is induced by the functor G : D — & and the morphism ¢ :
FPB — GQOB. Thus, if PB and OB are (kx, U)-compact objects, then so are
FPB and GOB, and therefore we may use theorem 0.2.13 deduce that B is a
(x, U)-compact object in B. [ |

Theorem 0.3.22 (Accessibility of comma categories). Let k be a regular car-
dinal in a universe Uand let F : C - Eand G : D — &€ be (x,U)-accessible
functors.

(i) The comma category (F | G) has colimits for U-small k-filtered diagrams,
created by the projection functor (F | G) - C X D.

(ii) If F and G are strongly (x, U)-accessible functors, then (F | G) is a k-ac-
cessible U-category, and the projection functors P : (F | G) — C and
O : (F | G) = D are strongly (x,U)-accessible.

Proof. See Theorem 2.43 in [LPAC]. ]

Corollary 0.3.23. If C is a k-accessible U-category and A is a (k, U)-compact
object in C, then:

e The slice category /C is a k-accessible U-category, and the projection
functor A/C — C is a strongly (x, U)-accessible functor.

® The slice category C,, is a k-accessible U-category, and the projection
functor C,, — C is a strongly (x, U)-accessible functor. [ ]

Corollary 0.3.24. If C is a k-accessible U-category, then so is the functor cat-
egory [2, C], and moreover the (x, U)-compact objects in [2, C] are precisely the
componentwise (x,U)-compact objects.

Proof. The functor category [2, C] is isomorphic to the comma category (C | C),
and id : C — C is certainly a strongly (x, U)-accessible functor. [ |
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Corollary 0.3.25. If C is a (k, A)-compactly generated U-category, then so is
[2,C].

Proof. Combine lemma 0.3.21 and corollaries 0.3.9 and 0.3.24. [ ]

Lemma 0.3.26. Let x and A be regular cardinals in a universe U, with k < A,
let £ be a locally U-small category with colimits for U-small k-filtered diagrams,
let X : 1T — EandY : J — & be U-small A-filtered diagrams that are compon-
entwise (A, U)-compact, let C = li_r)nIX and D = h_r)n Y,andletc, : Xi - C
andd; : Y j — D be the components of the respective colimiting cocones.

(i) Given any object iy in T and any morphism e : C — D, there exist an
object j, in J and a morphism f, : Xi, = Y j, such that the following
diagram commutes:

. Cip

|
Sol le
v

(ii) Given any commutative diagram of the above form, if e : C — D is an
isomorphism in &, then there exist chains I : k - T and J : k — J and
a factorisation of the form below,

Xi, C’ C
fol le, le
Y j, D’ D

where 1(0) = iy, J(0) = j,, C' = lim L XI(w), D' = lim V(@)
e’ : C' - D'isanisomorphism, and the morphisms C' — C and D' — D
are the ones induced by the evident cocones.

Proof. (i). Since Xi is (4,U)-compactand Y : J — &£ is a U-small A-filtered
diagram, such a factorisation of e o ¢; must exist, by lemma 0.2.15.

(ii). We will construct I, J, and e’ by transfinite induction on «.
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38

e Given j_ and f,, choose a morphism i
o o

woatl - lg = I4yp in T and a morph-

ismg,:Yj, = Xi,,, in £ such that the diagram below commutes:

C:
a—a+] . fa+1
PR (e

A7 _
fal ///g" T‘? |
Yj, — D

Ja

o Xi
Xi, -

Suchi,_,,, and g, exist because f, : Xi, — Y j, defines a (4, U)-compact
object in the slice category *«/€ (by lemma 0.3.21) and there is an evident
U-small A-filtered diagram /X : /T — Xis/g with colimit defined by
¢; + Xi, » C (by lemma 0.3.19).

1

Given i, ., and g,, choose a morphism j,_ ., : j, = J,. in J and a
morphism f, ., : Xi,,; = Yj,., in £ such that the diagram below com-

a+
mutes:
. Yja—>a+l . di(t+l
Yj, -5 Y., —% D
/?I
gal - e
// fo{+l
Xi
a+1 Cigy1 C

Given a limit ordinal # < k and i, for all ordinals @ < f, choose an object
i in T and a cocone from the chain defined by (ia | a < ﬁ) to i,.

Given i, for a limit ordinal # < x and j, for all ordinals @ < f, choose
an object Jpin J, a cocone from the chain defined by ( Ja | a<p ) and a
morphism fj; : Xi; — Y j, such that the following diagram commutes for
all ordinals a < f:

Yoo, 4
Yj, SN Yjg 5D
~
gal |fﬂ Te
[
Xigy X Xig cy C

Such data exist because the chains X’ and Y’ defined by (X Iy | a < ﬂ)
and (Y Ja | a < ﬁ) are (4, U)-compact objects in the category [f, €] (by
proposition 0.2.47) and there is an evident U-small A-filtered diagram in
Y'/18, €] with colimit AD (by lemma 0.3.19).
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Now take I : k = T and J : k¥ — J to be the chains defined by I(a) = i, and
J(@) =j,. LetC' = hm Xi,and D' = 11_1’1)1 - Y j,. The above construction
yields commutative dlagrams of the form below for all ordinals @ < f < k,

. Klamp Yiap
Xi, — Xi, Yj, — Y,
N
Y]a an(—»ﬁ Yjﬁ Xla+] X’a+l—>ﬁ+l Xlﬂ+1

so there are induced morphisms f : C' - D" and g : D’ — C'; moreover, since

8o fy=Xiy gpand f 108, =Y j, i1 Wehave go f =id. and fog =1id,.
Thus, we have the required isomorphisme : C' — D'. [ |

Theorem 0.3.27 (Accessibility of iso-comma categories). Let k be a regular
cardinal in a universe U, let C, D, and & be categories with colimits for U-small
k-filtered diagrams, and let F : C — £ and G : D — & be be functors of U-rank
<Kk.

(i) The iso-comma category (F 2 G) has colimits for U-small k-filtered dia-
grams, created by the projection functor (F 1 G) — C X D.

(ii) Assuming F and G are strongly A-accessible functors, given an object
(C,D,e)in(F1G),ifCisa(A,U)-compact objectin C and D is a (A, U)-compact
object in D, then (C, D, e) is a (A, U)-compact object in (F 2 G).

(iii) If F and G are strongly (A, U)-accessible functors and k < A, then (F 2 G)
is a A-accessible U-category, and the projection functors P : (F1G) - C
and Q : (F 1 G) — D are strongly (4, U)-accessible.

Proof. (i). This is a straightforward consequence of the hypothesis that both
F:C— Eand G : D — & preserve colimits for U-small x-filtered diagrams.

(ii). Since the iso-comma category (F 2 G) is a full subcategory of the comma
category (F | G), the claim is an immediate corollary of lemma 0.3.21.

(iii). Let B = (F 1G). First, we must show that there is a U-small set of
(4, U)-compact objects in B that generate B under colimits for U-small A-filtered
colimits. Let (C, D, e) be an object in B. Since C and D are (4, U)-accessible
categories, we may choose U-small skeletons 7 and .J of the comma categories
(KJ(C) 1 C) and (KY(D) | D) and obtain U-small A-filtered diagrams X : T —
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CandY :J — D that are componentwise (4, U)-compact and have C = hm X
and D = l1mg Y (by proposition 0.2.26 and theorem 0.2.34). Let K be full
subcategory of the iso-comma category (FX 2 GY) spanned by those objects
(i, j, f) such that the following diagram commutes,

where ¢; : Xi - Candd; : Yj — D are the components of the respective
colimiting cocones. Let P’ : K — T and Q' : £ — J be the projection
functors, and let Z : £ — B be the evident diagram with PZ = FXP' and
QZ = GYQ'. Itis clear that £ is a U-small category, and we claim Z : £ —» B
is A-filtered diagram with (C, D, e) as its colimit.

First, we verify that (C, D, e) is a colimit for the diagram Z : £ — B. Let
i be any object in T and consider the comma category (i | P’). Lemma 0.3.26
implies it is inhabited. Suppose we have two objects in (i | P’), i.e. two objects
(ig»Jo» o) and (i1, jy, f,) in K and two morphisms A : i — igand hy : i — i
in Z. Since T is a filtered category, there exist an object i’ in 7 and morphisms
hy : iy — i' and h| : i} — i’ such that hy e hy = hj o h;. Similarly, J is
a filtered category, so there exist an object j, in J and morphisms j, — j,
and j, — j,. By considering a suitable diagram of shape 2/J in the category
(GY1oGY1)/g % & (using the fact that f, : FXi, —» GYj, and f, : FXi, - GY,
are isomorphisms in £) and applying lemmas 0.3.19 and 0.3.26, we see that there
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is a commutative diagram in £ of the form shown below,

FXi, Feig
N‘
Fecjr

Jo FXi' —~ 5 FC

. |
GY j,
~ ~
~
d GYK, "~ Gdj,

GYj, -

and recalling lemma 0.2.18, we may assume that f' : FXi’ — GYj' is an
isomorphism in €. Thus, the comma category (i | P')is connected, and therefore
P’ : K — T is acofinal functor. The symmetric argument shows that Q' : £ —
J is also a cofinal functor, and since F : C - £and G : D — & preserve colimits
for U-small A-filtered diagrams, we may deduce that the canonical cocone from
Z to (C, D, e) in B is a colimiting cocone.

It remains to be shown that K is a U-small A-filtered category. Indeed, sup-
pose K : A — K is a A-small diagram. Since 7 is a A-filtered category, there
is an object i, in T with a cocone P'K = Ai,, and by considering a suitable
A-filtered diagram in the category GO'K/[A, £], we obtain an object j, in J and a
morphism f,, : FXi, - GY j, such that the diagram below commutes,

Fe,
FXi, —% FC

A
as well as a cocone from K to (X ig: Y joo fo) in the comma category (F | G)
that is compatible with the colimiting cocone GY = AGD. Combining lemmas
0.2.18 and 0.3.26, we then obtain a cocone under P in £, as required. This
shows that every object in B is a colimit for a U-small A-filtered diagram of
componentwise (4, U)-compact objects in B, and since C and D are A-accessible
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U-categories, proposition 0.2.25 implies the full subcategory of B spanned by
such componentwise (4, U)-compact objects is essentially U-small.

Finally, observe that every (4, U)-compact object in B is a retract of a com-
ponentwise (4, U)-compact object (because the set of such objects generate B
under colimits for U-small A-filtered diagrams), and thus we may apply corol-
lary 0.2.19 to deduce that every (4, U)-compact object in B is itself component-
wise (4, U)-compact. Thus the projection functors P : B - Cand Q : B - D
are strongly (4, U)-accessible. [ ]

Definition 0.3.28. Let k be a regular cardinal in a universe U. A x-accessible
U-subcategory of a k-accessible U-category C is a subcategory B C C such that
B is a k-accessible U-category and the inclusion B < C is a (x, U)-accessible
functor.

Proposition 0.3.29. Let C be a k-accessible U-category and let B be a replete
and full k-accessible U-subcategory of C.

() If A is a (x,U)-compact object in C and A is in B, then A is also a
(x, U)-compact object in C.

(ii) If the inclusion B < C is strongly (x,U)-accessible, then KE(B) = BN
KY(0).

Proof. (i). This is clear, since hom-sets and colimits for U-small x-filtered dia-
grams in B are computed as in C.

(ii). Given claim (i), it suffices to show that every (x, U)-compact object in B is
also (x, U)-compact in C, but this is precisely the hypothesis that the inclusion
B < C is strongly (k, U)-accessible. [ ]

Proposition 0.3.30. Let x be a regular cardinal in a universe U, let C and €
be categories with colimits for U-small k-filtered diagrams, let D be a replete
and full subcategory of € that is closed under colimits for U-small k-filtered
diagrams, let F : C — & be a functor of U-rank < k, and let B be the preimage
of D under F, so that we have the following strict pullback diagram:

B—— D

L]
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0.3. Accessible constructions

(i) B is a replete and full subcategory of D and is closed under colimits for
U-small x-filtered diagrams in D.

(i) If F : C — & and the inclusion D < & are strongly (A, U)-accessible
functors and k < A, then B is a A-accessible U-subcategory of C and the
inclusion B < C is also strongly (A, U)-accessible.

Proof. (i). This is a straightforward exercise.

(ii). Consider the iso-comma category (F' 2 D) and the induced comparison func-
tor K : B — (F1D). Itis clear that B is fully faithful; but since D is a re-
plete subcategory of C, for every object (C, D, e) in (F 2 D), there is a canonical
isomorphism KC — (C, D, e), namely the one corresponding to the following
commutative diagram in &:

FC 4 FC

al e

FC—E)D

Thus, K : B — (F 1 D) is (half of) an equivalence of categories. Theorem 0.3.27
says the projection P : (F D) — C is a strongly (4, U)-accessible functor, so
we may deduce that the same is true for the inclusion B < C. [ |

Proposition 0.3.31. Let k be a regular cardinal in a universe U, let F : C - D
be a strongly (x, U)-accessible functor, and let D' be the full subcategory of D
spanned by the image of F.

(i) Every object in D' is a colimit for some U-small x-filtered diagram con-
sisting of objects in D' that are (x, U)-compact as objects in D.

(ii) Every (x,U)-compact object in D' is also (x,U)-compact as an object in
D.

(iii) If D' is closed under colimits for U-small k-filtered diagrams in D, then
D' is a k-accessible U-subcategory of D.

Proof. (i). Let D be any object in D’. By definition, there is an object C in C
such that D = FC, and since C is a k-accessible U-category, there is a U-small
k-filtered diagram X : J — C such that each X is a (kx, U)-compact object in
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Cand C = h_r)n X. Since F : C — D is a strongly (x, U)-accessible functor,
each F X is a (x, U)-compact object in D and we have D = li_n)lJ FX.

(ii). Moreover, if D is a (k, U)-compact object in D', then D must be a retract of
F X j for some object j in J, and so D is also (kx, U)-compact as an object in D.

(iii). Any objectin D’ thatis (x, U)-compact as an object in D must be (k, U)-compact
as an object in D', because D’ is a full subcategory of D that is closed under
colimits for U-small x-filtered diagrams. [ |

Proposition 0.3.32. Let B be a U-small category and let D be a k-small poset.
If D is well-founded, then:

(i) The (x,U)-accessible functor
Ind*([D, B]) > [D,Ind*(B)]

obtained by extending the canonical embedding [D, B] — [[D, IndK(B)] is
fully faithful and essentially surjective on objects.

(ii) The evaluation functors [ID, IndK([IEB)] — Indy(B) are strongly (x, U)-accessible
functors.

Proof. LetY : D — Indj(B) be a diagram, let y : B — Ind(B) be the canon-
ical embedding, and consider the following pullback diagram,

J —— [D,Ind(B)]

/| |

[D.B] —5—> D, Indy(B)]

/Y

where the functor [D, Indy;(B)] P [D, Ind{(B)] is the projection. The objects
of the category J are diagrams D — B (regarded as diagrams D — Ind;;(B))
equipped with a morphism X — Y in [ID,Indfj([B)], so J is a U-small cat-
egory. Recalling corollaries 0.2.16 and 0.2.19 and proposition 0.2.47, to prove
the claims, it suffices to show that . is a k-filtered category and that the tauto-
logical cocone is a colimiting cocone.

Let X : T — J be a k-small diagram. We can then build an object X in J

equipped with a cocone under X by well-founded induction over D:
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* Given X (d’) and the cocone components for all d’ < d in D, by consider-
ing an appropriate diagram in Ind;(B) and using lemma 0.3.20, we may
choose an object X(d) in B equipped with morphisms X (d') — X (d) for
all d’ < d, morphisms X (i)(d) — X(d) for all i in Z, and a morphism
X(d) = Y(d), all these making the appropriate diagrams commute.

Thus 7 is indeed a x-filtered category. To complete the proof, we must check
that the tautological cocone to Y is a colimiting cocone in [ID, Indfj([EB)]. Let
d be an object in D and consider the comma category (y | Yd). There is an
evident functor P, : J — (r | Yd) induced by J — [D,Indg(B)] - and P,
is a cofinal functor: indeed, by modifying the construction above (at the stage
where X (d) is chosen) in the cases T = @ and I = disc 2, one may verify that
the comma category ((B, 9l Pd) is connected for each object (B, g)in (y | Y d).
Thus, the tautological cocone under the canonical diagram J — [[D, Indl’“J(B)]
is a colimiting cocone, as required. [ |

Corollary 0.3.33. Let k be a regular cardinal in a universe U and let D be a
k-small well-founded poset.

(i) If C is a x-accessible U-category, then so is [D, C], and the evaluation
functors [D, C] — C are strongly (kx,U)-accessible.

(ii) If B is a U-small category with colimits (resp. limits) of shape D, then
Ind};(B) has colimits (resp. limits) of shape D.

Proof. (i). The classification theorem for accessible categories (theorem 0.2.29)
says C is equivalent to Ind*(B) for some small category B, so we may apply
proposition 0.3.32.

(ii). Recalling proposition 0.1.12, this follows from claim (i) and the fact that
Indj;(—) is pseudofunctorial (hence, preserves adjunctions). [ |

Corollary 0.3.34. Let k be a regular cardinal in a universe U and let B be a
U-small Cauchy-complete category. The following are equivalent:

(i) Indy(B) has colimits for U-small R-filtered diagrams.
(ii) B has colimits for k-small X,-filtered diagrams.

(iii) B has colimits for a-chains for all ordinals a of cardinality < k.
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Proof. (i) = (ii). Use lemma 0.2.18 and proposition 0.2.25.
(ii) = (iii). Immediate.

(iii) = (i). By corollary 0.3.33, Indy;(B) has colimits for a-chains for all ordinals
a of cardinality < « if B has them; but since a-chains for ordinals a of cardin-
ality > « are x-filtered, it then follows that Indy,(B) has colimits for all U-small
chains. We may then apply theorem 0.2.12 to deduce that Indj;(B) has colimits
for U-small ¥,-filtered diagrams. [ |

Theorem 0.3.35 (The category of algebras for an accessible monad). Let C be a
locally x-presentable U-category, let T = (T, n, u) be a monad on C, and let cT
be the category of algebras for T. If T : C — C is a (x,U)-accessible functor,
then:

(i) The forgetful functor U : CT — C creates colimits for U-small x-filtered
diagrams and creates limits for all U-small diagrams.

(ii) CTis a locally k-presentable U-category.

Proof. (i). This is well-known: cf. Propositions 4.3.1 and 4.3.2 in [Borceux,
1994b].

(ii). See Theorem 2.78 and the following remark in [LPAC], or Theorem 5.5.9
in [Borceux, 1994b]. ]

Lemma 0.3.36. Let C be alocally x-presentable U-category and let T = (T, n, u)
be amonad on C. If the forgetful functor U : C' — C is strongly (x, U)-accessible,
then so is the functor T : C — C.

Proof. The accessible adjoint functor theorem (0.2.50) says the free T-algebra
functor F : C — C7 is strongly (x, U)-accessible if the forgetful functor U :
CT > Cis (x,U)-accessible; but T = UF, so T is strongly (x, U)-accessible
when U is. [ |

Theorem 0.3.37 (The category of algebras for a strongly accessible monad).
Let C be a locally A-presentable U-category, let T = (T, n, u) be a monad on C
where T : C — C has U-rank k, and let CT be the category of algebras for T. If
T : C — Cis a strongly (A, U)-accessible functor and x < A, then:
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(i) Given a coequaliser diagram in CT of the form below,
(A’ a) s (Ba ﬂ) E— (C’ y)
if A and B are (4,U)-compact objects in C, then so is C.

(ii) Given a A-small family ((A,.,ai) |i € I) of T-algebras, if each A, is a
(4, U)-compact objectin C, then so is the underlying object of the T-algebra
coproduct Y, (A4, a.).

(iii) The forgetful functor U : CT — C is strongly (A, U)-accessible.

Proof. (i). By referring to the explicit construction of coequalisers in CT given
in the proof of Proposition 4.3.6 in [Borceux, 1994b] and applying lemma 0.2.18,
we see that C is indeed a (4, U)-compact object in C when A and B are, provided
T : C — C has U-rank k and is strongly (4, U)-accessible.

(ii). Let F : C = CT be aleft adjoint for U : CT — C. In the proof of Proposition
4.3.4 in [Borceux, 1994b], we find that the T-algebra coproduct Z A, al.)
may be computed by a coequaliser diagram of the following form:

et

F(Zie] TAi) _— F(Ziel Ai) — Y (Ai’ai)

Since T : C — C is strongly (4, U)-accessible, the underlying objects of the
T-algebras F (Y., TA;) and F(Y,,_; A;) are (4, U)-compact objects in C. Thus,
by claim (i), the underlying object of ). _, (Ai, ai) must also be a (4, U)-compact
object in C.

(iii). It is shown in the proof of Theorem 5.5.9 in [Borceux, 1994b] that the full
subcategory F of CT spanned by the image of KE(C yunder F : C — CTisadense
subcategory. Let G be the smallest replete full subcategory of CT that is closed
under colimits for A-small diagrams in C and that contains 7. Observe that claims
(i) and (ii) imply that the underlying object of every T-algebra that is in G must be
a (4, U)-compact object in C. To show that the forgetful functor U : CT — C is
strongly (4, U)-accessible, it is enough to verify that every (4, U)-compact object
is in G.

Itis not hard to see that the comma category (G | (A, a)) is then an essentially
U-small A-filtered category for any T-algebra (A, @), and moreover, it can be
shown that the tautological cocone for the canonical diagram (G | (A4, @)) = CT
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is a colimiting cocone. Thus, if (A, @) is a (4, U)-compact object in CT, it must
be a retract of an object in G. But G is closed under retracts, so (A, «) is indeed

inGC. |
Definition 0.3.38. Let C be any category.

* A pointed endofunctor on C is a functor J : C — C equipped with a
natural transformation 1 : id, = J.

* An algebra for a pointed endofunctor (J,1) on C is an object A in C
equipped with a morphisma : JA — A suchthata o1, =1d,.

* A homomorphism of algebras for a pointed endofunctor (J, 1) on C, say
f (A a) - (B, p), is a morphism f : A — B making the following
diagram commute:

JA -5 B

b

We write CY* for the category of algebras for a pointed endofunctor (J, 1) on C.

The following result on the existence of free algebras for a pointed endofunc-
tor is a special case of a general construction due to Kelly [1980].

Theorem 0.3.39 (Free algebras for a pointed endofunctor). Let x be a regular
cardinal, let C be a category with pushouts and colimits for chains of length
< k, and let (J,1) be a pointed endofunctor on C such that J : C — C preserves
colimits for k-chains.

(i) The forgetful functor U : CV"" — C has a left adjoint, say F : C — CY".

(ii) Let Abe aregular cardinalin auniverse U. If J : C — C sends (4, U)-compact
objects to (A, U)-compact objects and k < A, then the functorUF : C — C
has the same property.

Proof. Let X be an object in C. We now define a chain X, : «k +2 — C by
transfinite induction:

e Let X, = X, let X; = J X, let g, = id,, and let X, : X, — X, be

lXO'
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* Giveng, : JX, - X, foranordinal @ < «, define X, by the following
coequaliser diagram in C:

an"J’Xa ot
E—— a+

JX, — S IJX — Xop
an“’JX,,

Then, forall &’ < a+2, et X,/ 15 = Gyiq ©Lx,,, © Xyroqs1; DOtE that the
diagram below commutes:

JXa—>a+1
JX, —> JX

a+1

Al e

a+l X

a+2
at+l-a+2 +

Given a limit ordinal § < «k and g, for all ordinals & < p, define X, =
li_r)n < X, andtake X, ' X; — X, tobe the component of the colimiting

cocone; then define X, to be the colimit of the following diagram,

JX, — JX, JX, J X,
TR
X, — X, X5 X
and let g5 : JX; — Xz and X5 5., @ X; — X, be the respect-
ive components of the colimiting cocone; note that the following diagram
commutes,
X, — X, X, X,
'“l l“l '“l [
JX, — JX, JX, J X,
TR |
X, — X, X5

Xy — Xpp
so we have X, ;. = dp °ix,

Our hypothesis is that J preserves colimits for x-chains, so the canonical
comparison lim
—

. JX, — JX, is an isomorphism, as is X
all ordinals a < f

1. However, for
< Kk, we have

Xa+l—>ﬁ+l °qy, =4qg° JXa_>ﬂ

49



0. FOUNDATIONS

so there is a unique morphism y, : J X, — X, such that

Yx° JXa—»K = Xa+l—>K °q,

for all ordinals @ < k. Moreover, we have

and {X,

Yx° ZXK ° Xa—»i( =7Tx-e JXa—n( ° lXa = Xa’+1—>l( °qy ° lXa = Xa—»K

a—K

|a < x} is a jointly epimorphic family, so yx o 1y = idy , ie.

(XK, yX) is a (J,1)-algebra.

It remains to be shown that (X oV x) is a free (J, 1)-algebra generated by X.
Letny = X

let (D, o) be any (J,1)-algebra, and let f : X — D be any

0—k>

morphism in C. We construct a cocone f, : X, = AD by transfinite induction:

50

* Let f, = f,let f, =6 Jf,, and note that 6 o J f, = f, ° .

* Given f,: X, » Dand f,,, : X,,;, = Dsuchthat f,  ,oq, =6°Jf,

let f,., : X,s» = D be the unique morphism satisfying the following
equation:
Jar2°Gasr =0°J for

Note that such a morphism exists because the diagrams below commute,

X,

JX, JIX,
qal Ja, JX, —2 s Jp =—— JD

Xa+l ﬂ) JXa+1 JlX”l lJlD

Jif,

fml m JIX, — JJD 5

D—>JD anl l]&

A
X ’ JX(H-I I fari JD o D
D

i.e. because the equation below holds,
(5 ° JfoH—l) ° (an ° lJXa) = (5 ° Jfa+1) ° (an ° JlXa)
and g, : J X,y > X,,, is the coequaliser of Jq, o 1,5 and Jq, o Jiy .

Given a limit ordinal § < «, we define f; : X; — D be the unique
morphism such that f;° X, , = f, for all ordinals a < #; we may do this
because the following equation holds:

fa+1°Xa—>a+1 :fa+1°qa°lXﬂ+l :5°Jfa°lXi+l :5°ID°fa:fa
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Furthermore,

(6odfs)edXoy=8°dfy= for1°4,

so there exists a unique morphism fj,, : X, — D such that f;,, cq; =
6oJfpand fy,) 0 X, 5, = f, forall ordinals a < .

Now observe that, for all ordinals a < «,

odfoodX, =62Jf,
:fa+1°qa
= Jfe o Xop1on ° e
=freorxeJ Xy

and {JXa_,K | a < K} is a jointly epimorphic family, so 6o J f, = f ey, i.e. f,
is a (J, 1)-algebra homomorphism (X,,7y) — (D,5). Finally, notice that, for

any homomorphism f : (XK, yX) — (D, 6) such that f o5, = f,, then,

Sod(foXo)=FeorxedXe o= (FoXepion) s

hence we must have f = f,, by transfinite induction.

The above argument shows that the comma category (X | U) has an initial
object, and it is well known that U has a left adjoint if and only if each comma
category (X | U) has an initial object, so this completes the proof of claim (i).
For claim (ii), we simply observe that KE(C ) is closed under colimits for A-small
diagrams in C (by lemma 0.2.18), so the above construction can be carried out
entirely in KE(C ). [ |

Theorem 0.3.40 (The category of algebras for a accessible pointed endofunctor).
Let C be a x-accessible U-category, let J : C — C be a (x,U)-accessible functor,
let 1 : id, = J be a natural transformation, and let CY be the category of
algebras for the pointed endofunctor (J ,1).

(i) The forgetful functor U : CY — C creates colimits for U-small k-filtered
diagrams; and if C is U-complete, then U : CY) — C also creates limits
for all U-small diagrams.

(ii) €Y is an accessible U-category.

(iii) If C has pushouts and colimits for chains of length < k, then U : CY) — C
is a monadic functor.
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Proof. (i). This is well-known: cf. Propositions 4.3.1 and 4.3.2 in [Borceux,
1994b].

(ii). We may construct CY+ using inserters and equifiers, as in the proof of
Theorem 2.78 in [LPAC].

(iii). Since x-chains are U-small k-filtered diagrams, the hypotheses of the-
orem 0.3.39 are satisfied, and so the forgetful functor U : CY*) — C has a left
adjoint. It is not hard to check that the other hypotheses of Beck’s monadicity
theorem are satisfied, so U is indeed a monadic functor. ]

Theorem 0.3.41 (The category of algebras for a strongly accessible pointed en-
dofunctor). Let C be a locally A-presentable U-category, let J : C — C be a
functor of U-rank < «, let 1 : id, = J be a natural transformation, let Y be
the category of algebras for the pointed endofunctor (J,1), and let T = (T, n, u)
be the induced monad on C. If J : C — C is a strongly (4, U)-accessible functor
and k < A, then:

(i) The functor T : C — C has U-rank < k and is strongly (1, U)-accessible.
(i) Y™ is a locally k-presentable U-category.
(iii) The forgetful functor U : CYY — C is a strongly (4, U)-accessible functor.

Proof. (i). We know that the forgetful functor U : CY*) — C creates colimits
for U-small x-filtered diagrams when J : C = C has U-rank < x,s0T : C = C
must also have U-rank < k. Moreover, theorem 0.3.39 implies T : C — C is
strongly (4, U)-accessible if J : C — C is.

(ii). Apply theorem 0.3.35.

(iii). Apply theorem 0.3.37. [ ]

Change of universe

Prerequisites. §§0.1, 0.2, A.1, A.5.

Having introduced universes into our ontology, it becomes necessary to ask
whether an object with some universal property retains that property when we
enlarge the universe. Though it sounds inconceivable, there do exist examples of
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badly-behaved constructions that are not stable under change-of-universe; for ex-
ample, Waterhouse [1975] defined a functor F : CRing — Set™, where CRing
is the category of commutative rings in a universe U and Set™ is the category
of U*-sets for some universe U* with U € U™, such that the value of F at any
given commutative ring in U does not depend on U, and yet the value of the fpqc
sheaf associated with F at the field Q depends on the size of U.

Definition 0.4.1. Let x be a regular cardinal in a universe U, and let U" be a
universe with U C U™. A (x, U, U")-accessible extension is a (k, U)-accessible
functor i : C = C* such that

» Cis a k-accessible U-category,
e C*is a k-accessible U"-category,
* i sends (x, U)-compact objects in C to (x, U*)-compact objects in C*, and

« the functor KY(C) — KU'(C*) so induced by i is fully faithful and essen-
tially surjective on objects.

REMARK 0.4.2. Let B be a U-small category in which idempotents split. Then the
(k, U)-accessible functor Indj(B) — Indy,(B) obtained by extending the em-
bedding y* : B — Indy.(B) along y : B — Indj(B) is a (k, U, U")-accessible
extension, by proposition 0.2.25. The classification theorem (0.2.29) implies all
examples of (x, U, U")-accessible extensions are essentially of this form.

Proposition 0.4.3. Let i : C — C* be a (x, U, U")-accessible extension.

(i) Cisalocally k-presentable U-category if and only if C* is a locally k-pre-
sentable U*-category.

(ii) The functori: C — C* is fully faithful.

(iii) If B : J — C is any diagram (not necessarily U-small) and C has a limit
for B, then i preserves this limit.

Proof. (i). If C is a locally x-presentable U-category, then KY(C) has colimits
for all xk-small diagrams, so K}(ﬁ(C *) also has colimits for all k-small diagrams.
The classification theorem (0.2.29) then implies C* is a locally x-presentable
U"-category. Reversing this argument proves the converse.
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(ii). Let A : I - Cand B : J — C be two U-small x-filtered diagrams of
(x, U)-compact objects in C. Then,

C(lim A, lim B) =~ limlim C(A, B)  limlim C*(iA, i B)
Ty
~ C* <lim iA,lim iB) ~ C* (ilimA,ilimB)
1 J

because i is (k, U)-accessible and is fully faithful on the subcategory KS(C ), and
therefore i : C — C7 itself is fully faithful. Note that this hinges crucially on
theorem 0.1.31.

(iii). Let B : J — C be any diagram. We observe that, for any (x, U)-compact
object C in C,

ct (iC, ilim B) o C<C, lim B) because i is fully faithful
— —
J J
= l(ln C(C,B) by definition of limit
J
= l(iLnC+(iC, iB) because i is fully faithful
J

but we know the restricted Yoneda embedding C* — [K(C)*,Set™] is fully
faithful, so this is enough to conclude that il(iLnJ Bis the limitof iBin C*. |

REMARK 0.4.4. Similar methods show that any fully faithful functor C — C* sat-
isfying the four bulleted conditions in the definition above is necessarily (x, U)-
accessible.

Lemma 0.4.5. Let U and U* be universes, with U € U*, and let k be a regular
cardinal in U. Suppose:

e C and D are locally k-presentable U-categories.
o C* and D" are locally x-presentable U -categories.
ei:C—Chtandj: D — D are (x,U,U")-accessible extensions.
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Given a strictly commutative diagram of the form below,

D — 5 D

| 12

C—Z)C+

where G is (x, U)-accessible, G* is (x, U%)-accessible, if both have left adjoints,
then the diagram satisfies the left Beck—Chevalley condition.

Proof. Let C be a (k,U)-compact object in C. Inspecting the proof of the-
orem 0.2.50, we see that the functor (C | G) — (iC | G*) induced by j pre-
serves initial objects. Lemma A.1.10 says the component at C of the left Beck—
Chevalley natural transformation F*i = jF is an isomorphism; but C is gen-
erated by KE(C) and the functors F, F™,i,j all preserve colimits for U-small
k-filtered diagrams, so in fact F*i = j F is a natural isomorphism. [ |

Proposition 0.4.6. Ifi : C — C* is a (x, U, U")-accessible extension and C
is a locally k-presentable U-category, then i preserves colimits for all U-small
diagrams in C.

Proof. Itis well-known that a functor preserves colimits for all U-small diagrams
if and only if it preserves coequalisers for all parallel pairs and coproducts for
all U-small families, but coproducts for U-small families can be constructed in

a uniform way using coproducts for x-small families and colimits for U-small
k-filtered diagrams. It is therefore enough to show that i : C — C* preserves all
colimits for k-small diagrams, since i is already (k, U)-accessible.

Let D be a k-small category. Recalling proposition 0.1.12, our problem amounts

to showing that the diagram

c —- ¢t

s [

[D,C] —— [D,C*]

satisfies the left Beck—Chevalley condition. It is clear that i, is fully faithful.
Colimits for U-small diagrams in [D, C] and in [D, C*] are computed compon-
entwise, so A and i, are certainly (x, U)-accessible, and A" is («, U")-accessible.
Using proposition 0.2.47, we see that i is also a (k, U, U")-accessible extension,
so we apply the lemma above to conclude that the left Beck—Chevalley condition
is satisfied. [ |
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Theorem 0.4.7 (Stability of accessible adjoint functors). Let U and U* be uni-
verses, with U € U™, and let x and A be regular cardinals in U, with k < A.
Suppose:

e Cis a locally k-presentable U-category.
® D is a locally A-presentable U-category.
e C* is a locally k-presentable U"-category.
e D% is alocally A-presentable U*-category.

Leti: C —» C* be a (x,U,U")-accessible extension and let j : D — D" be a
fully faithful functor.

(i) Given a strictly commutative diagram of the form below,

D5 D

| e

C—I)C+

where G is (A, U)-accessible and G is (A, U%)-accessible, if both have

left adjoints and j is a (A, U, U")-accessible extension, then the diagram
satisfies the left Beck—Chevalley condition.

(ii) Given a strictly commutative diagram of the form below,

c —— c*

r| |

D#)D-f_

if both F and F* have right adjoints, then the diagram satisfies the right
Beck—Chevalley condition.

Proof. (i). The proof is essentially the same as lemma 0.4.5, though we have to
use proposition 0.4.6 to ensure that j preserves colimits for all U-small x-filtered
diagrams in C.

(ii). Let D be any object in D. Inspecting the proof of theorem 0.2.50, we
see that our hypotheses, plus the fact that i preserves colimits for all U-small dia-
grams in C, imply that the functor (F | D) — (F* | jD) induced by i preserves
terminal objects. Thus, lemma A.1.10 implies that the diagram satisfies the right
Beck—Chevalley condition. [ |
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Theorem 0.4.8. Leti : C — C* be a (x, U, U")-accessible extension and let C
be a locally k-presentable U-category.

(i) If A is a regular cardinal in U and x < A, theni : C — C* is also a
(A, U, U")-accessible extension.

(ii) If u is the cardinality of U, then i : C — C% factors through the inclu-
sion KE+(C+) S C* as functor C — KE+(C+) that is (fully faithful and)
essentially surjective on objects.

(iii) The (u, U*)-accessible functor Indy,(C) — C* induced by i : C — C* is
fully faithful and essentially surjective on objects.

Proof. (i). Since i : C — C* is a (k, U)-accessible functor, it is certainly also
(4, U)-accessible, by lemma 0.2.38. It is therefore enough to show that i restricts
to a functor KS(C) - KE+(C+) that is (fully faithful and) essentially surjective
on objects.

Proposition 0.2.46 says KE(C) is the smallest replete full subcategory of C
that contains KE(C ) and is closed in C under colimits for A-small diagrams, there-
fore the replete closure of the image of KE(C) must be the smallest replete full
subcategory of C* that contains KY'(C*) and is closed in C* under colimits for
A-small diagrams, since i is fully faithful and preserves colimits for all U-small
diagrams. This proves the claim.

(ii). Since every object in C is (4, U)-compact for some regular cardinal 4 < p,
claim (i) implies that the image of i : C — C% is contained in KE+(C). To
show i is essentially surjective onto KLJ+ (C), we simply have to observe that the
inaccessibility of u (proposition 0.1.36) and proposition 0.2.46 imply that, for
C’ any (u, U")-compact object in C*, there exists a regular cardinal A < u such
that C’ is also a (4, U")-compact object, which reduces the question to claim (i).

(iii). This is an immediate corollary of claim (ii) and the classification theorem
(0.2.29) applied to C*, considered as a (u, U")-accessible category. [ |

REMARK 0.4.9. Although the fact i : C — C™ that preserves limits and colimits
for all U-small diagrams in C is a formal consequence of the theorem above (via
e.g. corollary A.5.30), it is not clear whether the theorem can be proved without
already knowing this.
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Corollary 0.4.10. If B is a U-small category and has colimits for all x-small
diagrams, and u is the cardinality of U, then the canonical (u, U")-accessible
functor Ind{‘J+ (Indfj(B)) — Indy, (B) is fully faithful and essentially surjective
on objects. [ ]

Proposition 0.4.11. Let U and U* be universes, with U € U*, and let x and A
be regular cardinals in U. Suppose:

e Cis a locally k-presentable U-category.
® D is a locally A-presentable U-category.
e C* is a locally k-presentable U*-category.
e D" is a locally A-presentable U*-category.

Let F: A — Cand G : A - D be functors, leti : C - C* be a (x,U,U")-ac-
cessible extension, and let j : D — D% be a (4, U, U"%)-accessible extension.
Consider the following (not necessarily commutative) diagram:

A—Ssp Lt

H+

(i) If H is a pointwise right Kan extension of G along F, then jH is a point-
wise right Kan extension of jG along F, and if H* is a pointwise right Kan
extension of jH along i, then H* is also a pointwise right Kan extension
of jG along iF.

(ii) Assuming A is U-small, if H is a pointwise left Kan extension of G along
F, then jH is a pointwise left Kan extension of jG along F, and if H" is
a pointwise left Kan extension of j H along i, then H* is also a pointwise
left Kan extension of jG along i F.

Proof. Use theorem A.5.20 and the fact that i and j preserve limits for all dia-
grams and colimits for U-small diagrams. [ ]
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0.5. Small object arguments

Small object arguments

Prerequisites. §§0.1, 0.2, 0.3, 0.4, A.3, A.5.

The small object argument is a recurring construction in homotopical alge-
bra, originally due to Quillen [1967, Ch. II, §3] but refined by many authors
since—notably by Garner [2009]. Roughly speaking, the small object argument
shows that, under certain hypotheses, starting from a small set Z of morphisms in
a cocomplete category C, one can define the notions of ‘relative Z-cell complex’
and ‘I-fibration’ so that every morphism in C factors as a relative 7-cell complex
followed by an I-fibration.

In this section, we will study the small object argument with a view toward
questions of stability under change-of-universe.

Definition 0.5.1. Let C be a category, and let 7 be a subset of mor C. A present-
ation for a relative Z-cell complex in C consists of the following data:

* An ordinal @. (We say the presentation is indexed over «.)

* A colimit-preserving functor X, : [a] — C, where [«] is the well-ordered
set {0, ..., a} considered as a preorder category.

* For each ordinal f < «, a (possibly empty) indexing set Tj; and for each
element j of Tﬂ, a commutative diagram of the form below,

U, —2 5 x
p.j p

eﬁ,/l lx fptl

Vi =57 Xpni

where e; ; : Uy ; — Vj; is a morphism in T.

These data are moreover required to satisfy the following condition:

* For each ordinal # < y, the coproducts HjeT,, S, and ]_[jeT,j Dy ; exist in
C, and the induced diagram

Up
HjeTﬂ Uﬁ,j - Xﬂ

Wjer, eﬂ,/l lXﬁ—»ﬁH

HJ'ET,; Vﬂ,j vg Xﬁ+1

is a pushout square in C.
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The presentation is said to be U-small (resp. x-small for a regular cardinal «) if
a is an ordinal in U (resp. |a| < x) and the disjoint union | | p<a 1p isin U (resp.
has cardinality less than «). A sequential presentation is one where each T is
a singleton, in which case we suppress the index j in € Ug s and Vg -

A relative 7-cell complexin C is amorphism f : X — Y in C for which there
exists a presentation as above with f equal to X, — X ,. Given an initial object
0 in C, an I-cell complex in C is an object Y for which the unique morphism
0 — Y is arelative I-cell complex.

REMARK 0.5.2. For any object X in C and any subset 7 C mor C, the morphism
id : X — X is a relative Z-cell complex in C (with the obvious presentation
indexed over 0). More generally, every isomorphism in C is a relative Z-cell
complex, with a presentation indexed over 1 (and 7, = @&); but in order to get a
sequential presentation, one must assume that there is an isomorphism in 7.

Proposition 0.5.3. Let C be a category, let T be a subset of morC, let k be a
regular cardinal, and let celly . C be the set of relative 1-cell complexes in C that
admit a x-small presentation.

(i) Every morphism in 1 is also in celly, C.
(ii) For each object X in C, the morphismid : X — X is in cell;, C.
(iii) If f: X > Y and g:Y — Z are both incell;, C, then sois g f.

(iv) Let a be an ordinal and let X, : @« — C be a colimit-preserving functor.
If |a| < x and A is a colimiting cocone from X, to Y and, for f <y < a,
the morphism X;_,, : X, — X, is in celly, C, then each component A, :
Xy = Yisalsoincelly, C.

(v) Given a pushout diagram of the form below in C,

Z 225X

i I

if g is in celly, C and C has colimits for all x-small diagrams, then f is
also in celly, C.
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Proof. (i). Given any morphisme : U — V in 7, we have the following pushout
diagram:
id

U—U
Vv — V

id

Thuse: U — Visincell, C.
(ii). See remark 0.5.2.

(iii). It is clear that appending any x-small presentation for g to any x-small
presentation for f yields a k-small presentation of g o f.

(iv). The case a = 0 falls under claim (ii). If « = y + 1, then the component
Ay : X, > Y must be an isomorphism, and thus /lﬂ = Ay ° X, is alsoin cell; C;
and if « is a positive limit ordinal, since every terminal segment of « is cofinal in
a, it is clear that concatenating x-small presentations for X forf<y<a

y—=y+1
yields a x-small presentation for 4, : X, — Y.

(v). Fix a k-small presentation of g : Z — W. By the pushout pasting lemma,
given a commutative diagram of the form below,

Up

HjeTﬂ Uﬂ,j Zﬁ Xﬂ

jer, eﬂ.jl lzﬂ—ml lXﬁﬂm

Wier, Yoy =5 Zps — Xpu
if both squares are pushout diagrams, then the outer rectangle is a pushout dia-
gram as well. Since pushout along z : Z — X is the left adjoint of the evident
functor z* : X/Cc — “/c, it preserves all colimits, and thus we obtain a k-small
presentationof f : X — Y. |

Definition 0.5.4. Let C be a category and let T be a subset of mor C. An I-in-
jective morphism in C is a morphism that has the right lifting property with
respect to every morphism in Z.!"”) An Z-cofibration in C is a morphism that
has the left lifting property with respect to every Z-injective morphism.

Equivalently, it is a morphism f : X — Y in C that is an Z-injective object in the slice category
Cry.
/Y
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Proposition 0.5.5. Let C be a category, let T be a subset of mor C, and let
cell; C, inj’ C, and cof; C be the set of relative 1-cell complexes, I-injections,
and I-cofibrations in C, respectively.

(i) We have T C cell; C C cof; C.

(i) A morphism is in inj’ C if and only if it has the right lifting property with
respect to every L-cofibration.

(iii) In particular, a morphism is in inj’ C if and only if it has the right lifting
property with respect to every relative 1-cell complex.

Proof. (i). Follows immediately from the definition of ‘relative Z-cell complex’
and proposition A.3.17.

(ii) and (iii). See proposition A.3.3. [ |

Some authors define ‘relative Z-cell complex’ so that every such morphism
admits a sequential presentation. The following lemma and its corollary show
that there is no loss of generality in doing so.

Lemma 0.5.6. Let k be a regular cardinal, let C be a category with colimits for
all k-small diagrams, and let a be an ordinal of cardinality less than k. For each
ordinal f < a, let ey Uﬂ - Vﬂ be a morphism in C, and for each ordinal f < a,

let
o (1% )u( 1 v)
r<B p<y<a

be a coproduct in C with coproduct insertions u,, ; : U, — Cy (for p <y < a)
andv,,:V, > Cy(fory < p).

Given ordinals < f' < a, there is a unique morphism Cﬂ - Cﬂ, such that,
for{ < p < < p <" the following diagrams commute:

V. Ve p C U ugt g C U urn g C
¢ B ¢’ B ¢ B
| | |
idl I eg’l I idl I
v Vv v
Ifg U—) C ’ V/ U—) C ’ U ” u—) C ’
¢.p! <N ¢!
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This yields a functor C, : [a] — C, and it preserves colimits. Moreover, the
diagrams below are pushout squares for all ordinals f < a:

U, —2 5 ¢
p p

o]

I/ﬁ Up g1 CYﬂ+1

Proof. This is a straightforward exercise. See Proposition 10.2.7 in [Hirschhorn,
2003]. [

Corollary 0.5.7. Let k be a regular cardinal, let C be a category with colimits
Jor k-small diagrams, and let T be a subset of mor C. If f : X — Y is a relative
I-cell complex in C that admits a k-small presentation, and either

e X =Y and f =1idy, or
o f is an isomorphism and 1 contains an isomorphism, or
e f is not an isomorphism,

then f also admits a x-small sequential presentation.

Proof. We have already commented on the first two cases in remark 0.5.2. The
third case is proven by transfinite induction, where in the induction step we may
assume that f is presented by just one pushout diagram:

HjeT Uj - X

HjET ejJ« lf

HjeTVj — Y

By decomposing the morphism HjeT e, [I.es U = HjeT V, as in the earlier

jer 7
lemma and applying the pushout pasting lemma, we obtain a sequential present-
ation of f, which is k-small precisely if |T'| < k. [ |

Definition 0.5.8. Let U be a universe, let C be a category, let T be a subset of
mor C, and let cell;y; C be the set of relative Z-cell complexes in C that have
a U-small presentation. We say (Z, C) is admissible for the U-small object
argument when the following conditions are satisfied:
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* Tis aU-set.
* C be alocally U-small category with colimits for all U-small diagrams.

* There is aregular cardinal k in U such that, for every morphisme : U — V'
in 7, every ordinal « in U, and every functor X, : « — C, if |a| > «, and
the morphism X, : X; — X isin cell;y C for all ordinals # <y < a,

c(u.X,) - c(U.lim _ x,)

then the canonical comparison map lim
—> —> f<a

p<a
is a bijection.

The sequential U-rank of 7 in C is the least cardinal x with the above property.

REMARK 0.5.9. Notice that, if |a| > «, then a is a xk-directed preorder. Thus, for
any locally presentable U-category C and any U-subset 7 C mor C whatsoever,
(1, C) is admissible for the U-small object argument.

Definition o0.5.10. Let U be a universe. A U-cofibrantly generated factor-
isation system on a category C on is a weak factorisation system on C that is
cofibrantly generated by some U-subset of mor C.

Lemma o.5.11. Let C be a x-accessible U-category, let A be a (x,U)-compact
object in C, and let B be a (A, U)-compact object in C. If the hom-set C(A, A")
is p-small for all (x,U)-compact objects A’ in C and k < A, then the hom-set
C(A, B) has cardinality < max {A, u}.

Proof. By proposition 0.2.45, there is a A-small x-filtered diagram Y : J — C
with each vertex (x, U)-compactin C and B = h_r)nj Y. Since Ais a (k, U)-compact
object in C, we have

C(A, B) = h_r)nj C(A)Y)

and the RHS is a set of cardinality < max {4, u} by lemma 0.2.18. [ |
Theorem o.5.12 (Quillen’s small object argument). Let U be a universe, let C

be a locally U-small category with colimits for all U-small diagrams, and let T
be a U-subset of mor C.

(i) There exist a functor M : [2,C] — C and two natural transformations
i :dom = M, p: M = codom such that, for all morphisms f : X - Y
in C, the morphismi, : X — M(f)isincell;y C, and we have f = p,oi .
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(ii) If (I, C) is moreover admissible for the U-small object argument, then we
may choose M, i, and p so that, for all morphisms f : X — Y in C, the
morphismp, : M(f) = Y in inj’ C.

(iii) In particular, if (1, C) is admissible for the U-small object argument, then
(cofl C,inj’ C ) is a U-cofibrantly generated factorisation system on C and
extends to a functorial weak factorisation system.

Proof. (i). Let k be any regular cardinal, and let « be the least ordinal of cardin-
11" For each morphism f : X — Y in C, we construct by transfin-
ite recursion a colimit-preserving functor M,(f) : [a] — C and a cocone
Pro - M(f) — Y satisfying the following conditions:

° Mo(f)=X»Pf;0=P-

* For each ordinal f < a, if T;(f) is the set of all commutative diagrams in
C of the form below,

ality «.

Uy, —— My(f)

eml lpf:ﬂ

I/ﬂaj g Y

where e; ;1 Uy ; = V;;isin I, then Ty(f) is a U-set (because T is a U-set
and C is a locally U-small category), and we have a pushout square of the
following form,

Up
Wier,ip Ups — M)
Wjeryir eﬂvll lXﬁ~ﬁ+1
HjeTﬁ(f) Vi 2, Mg, (f)
where u; : [] jer,n Upj = My(f) is the evident morphism induced by

the universal property of coproducts. Observe that there is then a unique
morphism p,.;., : My, (f) — Y such that

Prpr1° My_pii(f) = py
and Pripr1°0p; = Up;

for all j in Ty(f), where 05, : V;, — M, (f) is the evident component
of 0y : Wyeryin Yoy = My (-

[11] In particular, we could take x = 0, but then the factorisation so obtained is trivial.
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* For limit ordinals y < a0, M, (f) = li_r)nﬂ< My(f),andp, : M (f) = Y is
Y
defined by the universal property of X, .

It is not hard to see that the functor M,(f) : [a] — C so defined is itself functorial
in f; in particular, defining M (f) = M, (f), i; = My_,(f), Py = Py, WE
obtain a functor M : [2,C] — C with two natural transformations i : M = dom
and p : M = codom; by construction, we have f = p,ei,,andi, : X - M(f)
isin cell;y C.

(ii). Now, take k to be a regular cardinal as in definition 0.5.8. We wish to show
that the morphism p , constructed above has the right lifting property with respect
to all morphisms in Z. Consider a lifting problem of the form below,

U —— M(f)

l 2

V —— Y

where e : U — V isin I. Since T is admissible, there must exist an ordinal
f < a and a morphism u' : U — M (f) such thatu = My (f) o u’. We then
obtain the following commutative diagram:

U —5 My(f)

|

V—/Y

Since this is one of the diagrams in the set 7T, 3(f), it must embed in a commutative
diagram of the form below,

U —C My(f) —— M,(f)

17

V—)Mﬂ+1(f) pf?a

V > Y
and thus we have the required lift V' — M (f).
(iii). Finally, apply proposition 0.5.5 and theorem A.3.35. [ |
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Corollary 0.5.13. With other notation in the theorem, a morphismg : Z - W
is in cof; C if and only if there exists a commutative diagram of the following
formin C,

Z s w
g |
W

w

I\

id

where i : Z — W' isincell;yC.

Proof. (i). If g : Z — W is in cof; C, then g has the left lifting property with
respect to p, : M(g) — W, and so there exists a commutative diagram of the
required form. Conversely, suppose we have g = pei,i = jog,andidy, = poj
for some i : Z — W'incell;;C and some j : W — W' in C. Then g is a
retract of i,

AN Z

T

w 2w Lsw
\_/

but proposition 0.5.5 says i is in cof; C, so by proposition A.3.17, g is also in
cof; C. [ |

Corollary 0.5.14. Let k be a regular cardinal in a universe U, let C be a loc-
ally k-presentable U-category, and let T be a U-small subset of mor C. If the
morphisms that are in 1 are (x,U)-compact as objects in [2, C], then there exist
a (x,U)-accessible functor M : [2,C] — C and two natural transformations
i :dom = M and p : M = codom such that, for all objects f in [2,C]:

.f=pf°if'

o i, isincell;yC.
° TRy 4
pyisininj” C.

Moreover, if A is a regular cardinal in U such that every hom-set of KY(C)
is A-small, T is A-small, and k < A, then M : [2,C] — C is also strongly
(4, U)-accessible.
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Proof. As observed in remark 0.5.9, under these hypotheses, (Z, C) is admiss-
ible for the U-small object argument and the sequential U-rank of T is < k. By
tracing the construction of the functor M in theorem o0.5.12, we see that M pre-
serves colimits for k-filtered U-small diagrams, so we are done. Similarly, ap-
plying proposition 0.2.47 and lemmas 0.2.18 and 0.5.11 shows that M is strongly
(4, U)-accessible. [ |

Corollary 0.5.15. Let k be a regular cardinal in a universe U, let C be a loc-
ally x-presentable U-category, and let T be a U-small subset of mor C. If the
morphisms that are in T are (k, U)-compact as objects in [2, C], then there exists
a (k,U)-accessible functor L : [2,C] — [2, C] such that cof; C is the closure of
the full subcategory of [2, C] spanned by the image of L under the splitting of
idempotent endomorphisms.

Proof. Take L to be the functor that sends a morphism in C (considered as an
object in [2, C]) to the left half of its (cellLK C, ian C )—factorisation, and then

apply theorem A.3.35. [ |

Lemma 0.5.16. Let C be a full subcategory of a category C*, let T be a subset
of mor C, and let k be a regular cardinal. If C is closed in C* under colimits for
all x-small diagrams, then cell;, C = cell;, . C* nmor C.

Proof. Obvious. ¢

Theorem o0.5.17 (Stability of cofibrantly generated factorisation systems). Let
U and U™ be universes, with U € U*. Suppose:

e C is a locally U-small and U-cocomplete category.

o C* is a locally U*-small and U*-cocomplete category.

e The inclusion C < C™ preserves colimits for all U-small diagrams.
® 1 is a U-subset of mor C.

e (1,C) is admissible for the U-small object argument, and (L, R) is the
functorial factorisation system on C constructed by Quillen’s small object
argument argument.

e (I,C") is admissible for the U*-small object argument, and (L*, R") is
the functorial factorisation system on C* constructed by Quillen’s small
object argument argument.
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Under these hypotheses, if the sequential U-rank of T in C is equal to the sequen-
tial U*-rank of T in C*, then:

(i) For each morphism f : X — Y in C, we have a commutative diagram of
the following form in C™,

M™*(f)
Lty RYS
/'
X - Y
Lf\ /Rf
M(f)

and the isomorphism M*(f) — M (f) is moreover canonical and natural

in f.
(ii) We have cell;y C C cell;y C* C cell; . C*.
(iii) (cof; C*,inj’ C*) is an extension of (cof; C,inj* C).

Proof. (i). This can be seen by examining the explicit construction in the proof
of theorem 0.5.12.

(ii). This is implied by the lemma.

(iii). Since (cofI C,inj' C ) and (cofZ C*,inj* C +) are both cofibrantly generated
by Z, by proposition A.3.25, we have inj* C C inj’ C* and so cof; C 2 cof, C* N
mor C. It remains to be shown that cof; C C cof; C*, but this is implied by
corollary 0.5.13 applied to claim (ii). [ |

REMARK 0.5.18. Let k be aregular cardinal in U, let B be a U-small category with
colimits for all k-small diagrams, let C = Indy(/3), and let C t = Ind;;, (5B). Then
C is a locally x-presentable U-category, the inclusion C < C* is an accessible
(x, U, U") extension, and any U-subset T C mor C whatsoever will satisfy the
hypotheses of the theorem.

Proposition 0.5.19. Let F 4 U : D — C be an adjunction of categories, let
ICmorC,andletJ ={Ff|f €1}

(i) F sends relative 1-cell complexes in C to relative [J -cell complexes in D.

(ii) U sends [J -injective morphisms in D to 1-injective morphisms in C.
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(iii) F sends I-cofibrations in C to J-cofibrations in D.

Proof. (i). This is a corollary of the fact that F preserves all colimits.

(ii). As in the proof of proposition A.3.26, a morphism f : X — Y in D has
the right lifting property with respect to all morphisms in J if and only if U f :
UX — UY has the right lifting property with respect to all morphisms in 7.

(iii). Similarly, a morphism g : Z — W in C has the left lifting property with
respect to all morphisms of the form U f : UX — UY where f : X — Y isa
J -injective morphism f : X — Y inDifandonlyif Fg : FZ — FW isa
J -cofibration in D; but we know that U sends .J -injective morphisms in D to
T-injective morphisms in C, so F must send Z-cofibrations in C to J -cofibrations
in D. [ |

Proposition 0.5.20. Let U be a universe, let Set be the category of U-sets, let
B be a U-small category, let C = [B?, Set], and let T be the subset of mor C
consisting of all monomorphisms e : U — V in C where V is a quotient of a
representable presheaf.

(i) (CofZ C,inj’ C ) is a U-cofibrantly generated weak factorisation system.
(ii) cellyy C is precisely the class of all monomorphisms in C.
(iii) cof; C = cell; C.

Proof. (i). Since B is small and C is well-powered and well-copowered, the
full subcategory of [2,C] spanned by I is essentially U-small. We know that
C is locally finitely presentable, thus, taking a U-set of representatives of the
isomorphism classes in 7, and recalling remark 0.5.9, Quillen’s small object ar-
gument (theorem 0.5.12) implies (cofI C,inj’ C ) is indeed a U-cofibrantly gen-
erated weak factorisation system.

(ii). It is clear that the class of injective maps is closed under pushout and
transfinite composition in Set, so the same must be true of monomorphisms in
C, since colimits in C are computed componentwise. Thus every morphism in
cell; C is a monomorphism.

Conversely, suppose f : X — Y is a monomorphism. Fix an ordinal «
and a bijection y, : « — [] peop s ¥ (B), and write B for the object in B such
that y, € Y(Bﬂ). We will construct a U-small presentation for f by transfinite
recursion on a.
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* To begin, put X, = X and f, = f.

* For each ordinal § < a, the Yoneda lemma implies there is a unique
morphism a; : ﬁBﬂ — Y in C such that aﬁ<id3ﬂ> = yp;let b, V; > Y be
the image of a;, and let e, : Uy — Vjand u, : Uy — V) be defined by the
pullback square shown below:

Up
Uy — X,

Since f sisa monomorphism, e 5 must also be a monomorphism and hence
is in Z. There is then a commutative diagram in C of the following form,

Up
Uﬁ ? Xﬁ

AN

I/ﬂ vp Xﬂ+l

U/; Y

where f5,, @ Xz, — Y istheunionof f; : X; - Y and 0, : V; - Y
considered as subobjects of Y'; note that the inner square of the diagram is
then a pushout square.

* Finally, for limit ordinals y < a, we take f, : X, — Y to be the union

Uﬁ<y fﬁ'

This completes the presentation of f : X — Y as arelative 7-cell complex in C,
and it is clearly U-small.

(iii). Corollary 0.5.13 implies that each morphism in cof; C is a retract of some
morphism in cell;y; C, but the class of monomorphisms is closed under retracts,
so in this case we must have cof; C = cell;; C. Since cell;;C C cell; C C
cof; C, we also deduce that cell;; C = cell; C. [ |

We now turn our attention to Garner’s small object argument.
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Lemma 0.5.21. Let x be a regular cardinal in a universe U, let C be a locally
U-small category, let F : A — C be a functor, and let G : C — C be (the
functor part of) a pointwise left Kan extension of F along itself. If each FA is a
(x, U)-compact object in C, then:

(i) G : C — C preserves colimits for U-small k-filtered diagrams.

(ii) In addition, if C is a k-accessible U-category, A is a regular cardinal in U
such that every hom-set of KY(C) is A-small, A is a A-small category, and
k < A, then G : C — C is strongly (4, U)-accessible.

Proof. (i). Theorem A.5.15 says there is a natural bijection of the form below:
C(GXa C) = [AOP, Set](C(F_’ X)9 C(F_9 C))

Since colimits are computed componentwise in [.A, Set], the hypothesis im-
plies C(F,—) : C — [A°P, Set] preserves colimits for U-small x-filtered dia-
grams. By the Yoneda lemma, the functors C(—, C) : C°* — Set jointly reflect
limits, so it follows that G : C — C preserves colimits for U-small x-filtered
diagrams.

(ii). Now suppose X is a (4, U)-compact object in C. Lemma 0.5.11 then says
each hom-set C(F A, X) is A-small, and since A is a A-small category, this shows
that the comma category (F | X) is also A-small. Thus, GX is a colimit for a
A-small diagram of (x, U)-compact objects in C, and so we may use lemma 0.2.18
to deduce that it is a (4, U)-compact object in C. [ |

Proposition 0.5.22. Let C be a category with pushouts and let U : T — [2,C]
be a functor. Suppose a pointwise left Kan extension of U along itself exists.

(i) RLP(U) isisomorphic as a category over [2, C] to the category of algebras
for a pointed endofunctor (J ,1) on [2,C].

(ii) Moreover, if (the functor part of) the pointwise left Kan extension of U
along itself is a (x, U)-accessible functor (resp. strongly (x, U)-accessible
functor), then so is J.

Proof. Let G : [2,C] — [2,C] be (the functor part of) a pointwise left Kan
extension of U along itself and let « : U = GU be the unit. Then there is
a unique natural transformation € : G = id, such that eU « a = id, . Let
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f : X = Y be amorphism in C. By theorem A.5.15, there is a natural bijection
of the form below:

[2,CIGf,g) = [I,Set]([2,CI(U—, /),[2,C1(U-,g))

It is not hard to see that a coherent choice ® of right liftings for f with respect
toU : 1 — [2,C] s the same thing as a natural transformation [2, C](U—, f) =
[2,C](U—,idy ) making the following diagram commute for all objects e in Z,

[2,C](Ue,idy)

/a
—~
—~
>
—~
—~

[2.Cl(We, f) —5— [2.C](Ue, f)

where the map [2, C] (Ue, idX) — [2,C](Ue, f)is the one induced by the morph-
ism (idx, f ) :1dy — fin [2,C]. We may therefore identity choices ® with
morphisms / : dy(Gf) — X in C making the diagram below commute:

() Gfl id lf

Now, define functors J, K : [2,C] — [2,C] so the square in the following
diagram is a natural pushout square in C:

. dy(ey) X
RN
° Mf
Y‘
do(ey) Y

We then have a natural transformation 1 : id[z’c] = J where = (idX, Kf ) and
the universal property of pushouts yields a natural bijection between morphisms
[ :dy(Gf) — X making the diagram (*) commute and morphisms I Mf->X
such that [« Kf = id, and Jf = f o1, i.e. coalgebra structures on f for the
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pointed endofunctor (J,1). The naturality of these identifications then ensures
that RLP(U) is indeed isomorphic to [2,C]Y*" as categories over [2,C]. This
proves claim (i).

For claim (ii), simply observe that pushouts preserve all colimits, so J :
[2,C] = [2,C]is (kx,U)-accessible if G : [2,C] — [2,C] is, and lemmas 0.2.18
and 0.3.21 imply J is strongly (x, U)-accessible if G is. [ ]

Proposition 0.5.23. Let C be a locally x-presentable U-category, let 1 be a
U-small category, andletU : 1T — [2,C] be afunctor. IfeachUeis a (k,U)-compact
object in [2, C), then:

(i) The forgetful functor RLP(U) — (2, C] is (x, U)-accessible and monadic.

(ii) In addition, if A is a regular cardinal in U such that each hom-set in KE(C )
is A-small, T is a A-small category, and k < A, then the forgetful functor
RLP(U) — [2,C] is strongly (4, U)-accessible.

Proof. Use theorems 0.3.40 and 0.3.41, lemma 0.5.21, and proposition 0.5.22.

Theorem 0.5.24 (Garner’s small object argument). Let C be a locally present-
able U-category, let T be a U-small category, and let U : T — [2,C] be a
functor.

(i) There exists a free algebraic factorisation system (L, R) on C cofibrantly
generated by U : 1T — [2,C].

(i) (L,R) is (part of) an algebraically free natural weak factorisation system
on C cofibrantly generated by U : T — [2,C].

(iii) In particular, if 1 is discrete, then there exists a functorial weak factorisa-
tion system on C cofibrantly generated by the image of ob1 — mor C.

Proof. (i). See Theorem 4.4 in [Garner, 2009].
(ii). See Theorem 5.4 in [Garner, 2009].
(iii). This is proposition A.3.49. ]
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Lemma o0.5.25. Let C be a category and let T be a subset of morC. If k is a
regular cardinal in a universe U such that the domains of morphisms in 1 are
(x,U)-compact in C, then the class of 1-injective objects in C is closed under
colimits for U-small x-filtered diagrams in C.

Proof. Let D be a U-small k-filtered category and let X : D — C be a diagram
such that each Xd is an I-injective object in C. Suppose X is a colimit for X in
C with colimiting cocone 4 : X = AX. Letg : Z — W bein I, and consider
the induced hom-set map g* : C(W,X) — C(Z, X); we must show that it is
surjective. Since Z is a (k, U)-compact object in C, the canonical comparison
lim C(Z,X) - C(Z,X) is a bijection, and so every morphism Z — X factors
through 4, : Xd — X for some d in D. By hypothesis Xd is Z-injective, so we
obtain an extension of Z — Xd along g : Z — W, and hence, an extension of
Z — X along g. Thus X is also I-injective. [

Lemma 0.5.26. Let C be a category and let g : Z — W be a morphism in
C. A morphism f : X — Y has the left lifting property with respect to g if
and only if f is injective as an object in [2, C] with respect to the singleton set
{(g,idy,) : g = idy, }. H

Corollary 0.5.27. Let C be a category and let T be a subset of mor C. If the
domains and codomains of morphisms in I are (x, U)-compact in C, then inj* C
is closed under colimits for U-small x-filtered diagrams in [2, C].

Proof. Apply proposition 0.2.47 and the two lemmas above. [ ]

Proposition 0.5.28. Let C be a locally presentable U-category, let (L, R) be a
Junctorial weak factorisation system on C, and let A : id; oy = R be the natural
transformation whose component at an object f in [2,C] corresponds to the
following commutative square in C:

Let R be the full subcategory of |2, C] spanned by the morphisms in C that are
in the right class of the induced weak factorisation system.

(i) R isalso the full subcategory of [2, C| spanned by the image of the forgetful
functor [2, CI®Y = [2, C], where [2, C]®Y is the category of algebras for
the pointed endofunctor (R, A).

75



0. FOUNDATIONS

(i) If R : [2,C] = [2,C] is an accessible functor, then [2, CI®? is a locally
presentable U-category, and the forgetful functor [2,CI®? — [2,C] is
monadic.

(iii) If R : [2,C] — [2,C] is strongly (z, U)-accessible and has U-rank k < r,
and R is closed under colimits for U-small z-filtered diagrams in [2,C],
then R is a n-accessible U-subcategory of (2, C].

Proof. (i). This is proposition A.3.37.
(ii). Apply theorem 0.3.40.

(iii). By theorem 0.3.41, [2,C]®? is a locally z-presentable U-category, and
the forgetful functor [2, C]®* — [2, C] is moreover strongly (z, U)-accessible.
Thus, we may apply proposition 0.3.31 to claim (i) and deduce that R is a 7-accessible
U-subcategory. [ |

Proposition 0.5.29. Let C be a locally presentable U-category, and let T be a
U-subset of mor C. Then inj’ C, considered as a full subcategory of [2,C), is an
accessible U-subcategory.

Proof. Combine corollary 0.5.14 and proposition 0.5.28. [ |

Lemma 0.5.30. Let C be a k-accessible U-category and let R be a k-accessible
full subcategory of [2,C). If g : Z — W is a morphism in C and Z and W are
(x, U)-compact objects in C, then:

(i) Given a morphism f : X — Y in C that is in R, any morphism g — f
in [2, C] admits a factorisation of the form g — f' — f where f' is in
KY(R).

(ii) The morphism g : Z — W has the left lifting property with respect to R
if and only if it has the left lifting property with respect to KY(R).

Proof. (i). Proposition 0.2.47 says that g is a (k, U)-compact object in [2, C]; but
every objectin R is the colimit of a U-small x-filtered diagram of (x, U)-compact
objects in R, and the inclusion R < [2, C]is (x, U)-accessible, so any morphism
g — f must factor through some (k, U)-compact object in R.

(ii). If g has the left lifting property with respect to R, then it certainly has the left
lifting property with respect to KY(R). Conversely, by factorising morphisms
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g — f asinclaim (i), we see that g has the left lifting property with respect to
R as soon as it has the left lifting property with respect to KY(R). [ |

Lemma 0.5.31. Let C be a category, let g : Z — W be a morphism in C, and
suppose we have a pushout diagram in C of the form below:

zZ—5 s w

| i

WJ+>WUZW
0

Lete: W U? W — W be the unique morphism such that e  j, = e o j, = idy,.
The following are equivalent for a morphism f : X — Y in C:

(i) f : X — Y isright orthogonalto g : Z — W.

(ii) f : X — Y has the right lifting property with respectto g : Z — W and
e WU W - W.

Proof. LetR = {g}* andlet £L =*R.

(i) = (ii). By proposition A.3.17, j, : W = WU* W andid : W — W arein L;
so by proposition A.3.18, e : W U? W — W is also in L. But proposition A.3.3
says that R = £* and £+ C £Y soif f : X — Y is right orthogonal to
g:Z — W,then f : X — Y indeed has the right lifting property with respect
tog: Z—->Wande: WU’ W - W.

(i) = (i). Suppose f : X — Y has the right lifting property with respect to
g:Z > Wande: WU?W — W. Consider a lifting problem in C of the
form below:

By hypothesis, there is at least one 2 : W — X in C such that ho g = z and
f eh = w. Suppose k : W — X is another. Then there is a unique morphism
| : WU?W — X suchthat! o Jo = hand [~ j = k, and by construction,
f ol =w-oe,so there is at least one morphism m : W — X such that mee =1
(and f e m = w). But that implies m = h = k, so f : X — Y is indeed right
orthogonaltog : W — Z. [ ]
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Theorem 0.5.32. Let U be a universe, let C be a locally U-small category with
colimits for all U-small diagrams, and let ;J be a U-subset of mor C.

(i) There is a U-subset T C mor C such that I@ = J*.

(ii) If (I, C) is admissible for the U-small object argument, then (cofI c,J l)
is a U-cofibrantly generated orthogonal factorisation system on C.

Proof. (i). Apply lemma 0.5.31.

(ii). This is a special case of Quillen’s small object argument (theorem 0.5.12).

Corollary 0.5.33. Let U be a universe, let C be a locally presentable U-category,
let J be a U-subset of mor C, and let D is the full subcategory of C spanned by
those objects X such that the unique morphism X — 1 is right orthogonal to J .

(i) D is a reflective subcategory of C.

(ii) D is a locally presentable U-category and the inclusion D < C is an
accessible functor.

(iii) If x is a regular cardinal in U such that C is a locally x-presentable
U-category and every morphism in J has (x,U)-compact domain and
codomain, then D is also a locally k-presentable U-category and the in-
clusion D < C is a (k, U)-accessible functor.

Proof. (i). We must show that the inclusion C & D admits a left adjoint, so it
suffices to verify the following: for every object X in C, the functor

C(X,-):D — Set

is representable in D. Let R = J* and £ = *R. By theorem 0.5.12, there exists
a morphism 77, : X — X such that X isin D and 5, : X — X isin £; but if D
in an objectin Dand g : Z — W isin L, then

C(g,D):C(W,D)— C(Z,D)
is a bijection, so we deduce that X represents C(X, —) : D — Set.

(ii) and (iii). By corollary 0.5.14, the endofunctor X +— X is (k, U)-accessible, so
D is isomorphic to the category of algebras for a monad on C whose underlying
endofunctor is (k, U)-accessible. We may then apply theorem 0.3.35. [ |
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Theorem 0.5.34. Let U be a universe, let Set be the category of U-sets, let A be
a U-small category, let k be a regular cardinal in U, let K be a U-set of cocones
under k-small diagrams in A, and let C be the full subcategory of [ A, Set]
spanned by those M : A°® — Set that send the cocones that are in K to limiting
cones in Set.

(i) C is a reflective subcategory of [ AP, Set].
(ii) C is a locally k-presentable U-category.

(ili) For each object a in A, the functor C — Set defined by M — Ma is
representable, say by Fa, and the resulting functor F : A — C sends
cocones that are in K to colimiting cocones.

Proof. (i) and (ii). For each cocone k : A = Aathatisin K, let f, : h_r)n h, = h,
be the induced morphism in [.A4°, Set]. The Yoneda lemma then implies that a
functor M : A°® — Set sends the cocone k : A = Aa to a limiting cone in Set
if and only if the induced map

LA, Set] (f,, M) : LA, Set](f,, M) — LA, Set] (1im fiy, M )

is a bijection, and by lemma A.3.2, this happens if and only if the unique morph-
ism M — 1 is right orthogonal with respect to f : lim h, — h,. Moreover, each
A is a k-small diagram, so by proposition 0.2.46, h_n)l h, is a (x, U)-compact ob-
jectin [AP, Set]. Thus we may apply corollary 0.5.33.

(iii). By the Yoneda lemma, we may take Fa to be the reflection of £, in C. Let
k : A = Aabe a cocone thatis in K and let M be any object in C. Then,

C(Fa,M)=2Ma=lmMA=1lmC(FA, M)
— —

so Fk : FA = AFaisindeed a colimiting cocone in C. [ |
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1.1

(1]

B

SIMPLICIAL SETS

Simplicial sets, like simplicial complexes, are combinatorial models for spaces
built up by gluing standard n-simplices together; unlike simplicial complexes,
an n-simplex in a simplicial set need not be uniquely determined by its vertices.
It is for this reason that simplicial sets were once known by the unwieldy name
‘complete semi-simplicial (c.s.s.) complex’.

In the 1960s, it was discovered that one can mimic the definitions and con-
structions of classical homotopy theory by combinatorial means using simplicial
sets, and that the resulting theory is moreover equivalent to the classical theory
in a natural, functorial way. More recently, it has been shown that the homotopy

(1]

theory of simplicial sets is universal in a precise sense,' " so it seems fitting that

we begin here.

Basics

Definition 1.1.1. The simplex category is the category A whose objects are the
positive finite ordinals and whose morphisms are the monotone maps. We use
the geometer’s convention: [n] denotes the ordinal {0, 1, ... ,n}.

Definition 1.1.2. A simplicial object in a category C is a functor A® — C,
and a morphism of simplicial objects in C is a natural transformation of such
functors. The category of simplicial objects in C is the functor category [A°P, C]
and is denoted by sC.

See [Dugger, 2001a].
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Definition 1.1.3. The coface maps in A are the morphisms & : [n — 1] — [n],
where &' is the unique injective monotone map that misses i; and the codegen-
eracy maps in A are the morphisms ¢’ : [n+ 1] — [n], where ¢/, is the unique
surjective monotone map with aﬁ,(i) = aﬁ,(i +1)=i.

Theorem 1.1.4 (Cosimplicial identities). The following equations hold in A:

5l edl =5, o0 f0<i<j<n
of;oale:o;oaﬂ: fO0<i<j<n
oltles =50l if0<i<j<n
5 oot =l 08 fo<i<j<n
ol o8 =id if0<i<n
oo s =id f0<i<n

Equivalently, the following diagrams commute:

n—1] —2— [n]

yl lwqﬁWOSiSan

[n] — [n+1]

n+1] —Z—s [n]
Gml l"j for0<i<j<n

[n] —— [n—1]

(] ——s [n+1]
Ujl lgm for0<i<j<n

[n—1] T> [n]

[n] —%— [n—1]
Wl lw forO<i<j<n

[n+ 1] T> [n]

n—1] —2— [n]

5:‘1 & lgm fOl’O < i <n

[n] ——— [n—1]
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Moreover, every morphism [n] — [m] in A is uniquely a composite of the form

J Jm— [ i
5”: O eee o6km k oakn O oo oanl

where k < min {n, m}, and

OSin_kS"'Silsn

O S jm—k

A

w<j <m

The category A is uniquely characterised by these properties.
Proof. See [May, 1967, §2], [GZ, Ch. II, §2], or [Weibel, 1994, §8.1]. |

Definition 1.1.5. Let A be a simplicial object in a category C. A face operator
for A is a morphism of the form A(éﬁl) : A([n]) = A([n — 1]), and a degeneracy
operator for A is a morphism of the form A(af,) : A([n]) = A([n+ 1]). For
brevity, we will usually write A, instead of A([n]), d" instead of A(5}), and s/
instead of A(o}).

Corollary 1.1.6 (Simplicial identities). The face and degeneracy operators of a
simplicial object satisfy the formal duals of the equations in theorem 1.1.4. |

Corollary 1.1.7. A simplicial object A is uniquely determined by the sequence
of objects Ay, A,, A,, ... together with the face and degeneracy operators. Con-
versely, any sequence of objects equipped with face and degeneracy operators
satisfying the simplicial identities defined a simplicial object. [ ]

Observe that there is an identity-on-objects automorphism (=) : A — A
that sends coface maps 5; :[n—1] = [n] to 5,’:” : [n — 1] - [n] and codegener-
acymaps ¢’ : [n] = [n+1]toe”" " : [n] > [n+ 1] foralln > 0and 0 < i < n.
This in turn induces an automorphism on the category of simplicial objects.

Definition 1.1.8. The opposite of a simplicial object A in a category C is the
simplicial object A°? obtained by composing X : A®® - C with (—)? : A - A.

REMARK 1.1.9. Although (—)® : A — A acts as the identity on objects, the
functor (—)? is not isomorphic to id,. More generally, a simplicial object A may
be isomorphic to its opposite AP, but the functor (—)°P : sC — sC is usually not
isomorphic to id : sC — sC.

Definition 1.1.10. A simplicial set is a simplicial object in Set, and the category
of simplicial sets is denoted by sSet.
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Lemma 1.1.11.
(i) Limits (resp. colimits) in sSet are constructed degreewise: a cone (resp.
cocone) in sSet over a diagram is limiting (resp. colimiting) if and only if
it is so in every degree.

(i) A morphism of sSet is monic (resp. epic) if and only if it is degreewise
injective (resp. surjective).

Proof. These are standard facts about functor categories. O

Definition 1.1.12. The standard n-simplex in sSet, denoted by A", is the repre-
sentable presheaf A(—, [n]).

Theorem 1.1.13. Let A® : A — sSet be the functor [n] — A

(i) For any simplicial set X, the map sSet(A', X) — X, defined by f —
(id[n]) is a bijection and is moreover natural in [n] and X.

(ii) sSet has limits and colimits for all small diagrams, every epimorphism is
effective, and for all morphisms f : X — Y in sSet, the pullback functor
S sSet , — sSet,y preserves colimits.

(iii) A® : A — sSet is a dense functor, i.e. for any simplicial set X, the tau-
tological cocone'™ from the canonical diagram (A® | X) — sSet to X is
colimiting.

(iv) Let &€ be a locally small category with colimits for all small diagrams. If
F : sSet — & is a functor that preserves small colimits, then it is left
adjoint to the functor € — sSet defined by E — E(FA°, E).

(v) With & as above, the functor F — FA® from the category of colimit-
preserving functors sSet — & to the category of all functors A — & is
fully faithful and essentially surjective on objects.

Proof. Claim (i) is just the Yoneda lemma, claim (ii) follows from the lemma
above, and claims (iii)—(v) are just facts about dense functors, pointwise left Kan
extensions, weighted colimits: see proposition A.5.25, theorem A.5.15, and pro-
position A.6.15. [ |

See definition A.5.7.
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1.1. Basics

Definition 1.1.14. Let X be a simplicial set. An n-simplex of X is an element
of X,; a vertex is a o-simplex, and an edge is a 1-simplex. This is justified by
statement (i) in the above theorem. Given an edge f of X, the source of f is
the vertex d,(f), and the target of f is the vertex d,(f); we write f : x — y to
mean d,(f) = x and d,(f) = y.

Definition 1.1.15. A degenerate n-simplex of a simplicial set X is an n-simplex
a for which there exist an (n — 1)-simplex f and 0 < i < n such that 5,(f) = a.
A non-degenerate n-simplex of X is an n-simplex that is not degenerate.

REMARK 1.1.16. An n-simplex of X can be non-degenerate even when the corres-
ponding morphism A" — X is not a monomorphism! Similarly, it is possible for
all the proper faces of a non-degenerate simplex to be degenerate.

Definition 1.1.17. A finite simplicial set is a simplicial set that has only finitely
many non-degenerate simplices.

Proposition 1.1.18. Let X be a simplicial set. The following are equivalent:

(i) X is a finite simplicial set.

(ii) X is an R,-compact object in sSet."”!

(iii) X is in the smallest full subcategory of sSet that contains the standard
simplices and is closed in sSet under (isomorphisms and) colimits for finite
diagrams.

Proof. (i) = (ii). A morphism f : X — Y is determined uniquely by the images
of the non-degenerate simplices of X, and the faces of any particular simplex can
only satisfy finitely many equations, so if X is a finite simplicial set and Y is a
colimit for a small filtered diagram of simplicial sets, then f must factor through
one of the components of the colimiting cocone. It is straightforward to check
that the factorisation of f is unique up to the appropriate equivalence relation,
and we may then deduce that X is an N -compact object.

(ii) = (iii). Let K be the indicated full subcategory of sSet, and consider the
comma category (K | X). Let P : (K| X) — sSet be the projection, and let
A1 P = AX be the tautological cocone.'¥ It is not hard to check that A is a

See definition 0.2.14.
See definition A.5.7.
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colimiting cocone. Since K has colimits for finite diagrams, (X | X) is filtered;
and it is clear that K is essentially small, so we deduce that X is a retract of
an object in K if X is ¥ ,-compact. Noting that K is closed under retracts, we
conclude that X is in & if it is & -compact.

(iii) = (i). Now, let £’ be the full subcategory of sSet spanned by the finite
simplicial sets. It is easy to see that K’ is closed in sSet under (isomorphisms
and) finite colimits, and the standard simplices are all in ', so we must have
K C K', as required. [ ]

Definition 1.1.19. The standard n-simplex in Top, denoted by |A"|, is the to-
pological space

|A"| = {(xo,...,xn) e [0, 11! |x0+ e x, = 1}

where [0, 1] is the closed unit interval with the standard metric. The functor
|A®] : A — Top sends [n] to |A’| and is defined on morphisms by linearly
interpolating the obvious map of vertices.

Corollary 1.1.20. There exists an adjunction
|—] 4S: Top — sSet

extending the functor |A®| : A — Top defined above, and this adjunction is
unique up to unique isomorphism. Explicitly, we may take

S(Y), = Top(|A"],Y)

with the evident face and degeneracy operators induced by the coface and code-
generacy maps in A. [ |

Definition 1.1.21. The geometric realisation of a simplicial set X is the topo-
logical space | X |, and the singular set of a topological space Y is the simplicial
set S(Y).

REMARK 1.1.22. The geometric realisation | X | is stable under universe enlarge-
ment, by theorem A.5.20.

Theorem 1.1.23. Let CGHaus be the category of compactly generated Haus-
dorff spaces™ and continuous maps.

See definition A.2.26.
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(i) The topological standard n-simplex |A"| is a compact Hausdorff space.

(ii) For any simplicial set X, the geometric realisation |X| is a compactly
generated Hausdorff space.

(iii) The previously-constructed adjunction |—| 4 S : Top — sSet restricts
to an adjunction between CGHaus and sSet, and moreover the functor
|—| : sSet — CGHaus preserves finite limits and reflects isomorphisms.

Proof. Claim (i) is a standard fact, while claims (ii) and (iii) are proven in [GZ,
Ch. III, §3]. O

1.2 Nerves, skeletons, and coskeletons
Prerequisites. §§1.1, A.2.

Definition 1.2.1. The nerve of a small category C is the simplicial set N(C)
defined by the following formula,

N(C), = Fun([n], C)
where [n] here denotes the preorder category {0 — --- — n}.
Proposition 1.2.2. Let N : Cat — sSet be the nerve functor.
(i) N : Cat — sSet has a left adjoint 7, : sSet — Cat such that t,A" = [n].

(ii) The functor N is fully faithful and exhibits Cat as a reflective subcategory
of sSet.

(iii) N(=)°? and N((—)?) are isomorphic as functors Cat — sSet.
(iv) N : Cat — sSet is a cartesian closed functor.
(v) The functor t, preserves finite products.

Proof. (i). Apply theorem 1.1.13.

(ii). A functor is entirely determined by its action on objects, arrows, and com-
posable strings of arrows, so N is fully faithful.
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(iii). It is clear that there is a canonical isomorphism N(C)°? and N(C®P) for all
small categories C, and it is straightforward to verify naturality.

(iv). N preserves binary products, so we have the following natural bijections:

sSet (A", N([C, D])) = Fun([n], [C, D])
=~ Fun([n] X C, D)
=~ sSet(N([n] x C),N(D))
=~ sSet(N([n]) X N(C),N(D))
= sSet(N([n]), [N(C), N(D)])
=~ sSet(A", [N(C), N(D)])

Thus, by the Yoneda lemma, the canonical morphism N([C, D]) — [N(C), N(D)]
is an isomorphism.

(v). It is clear that 7, preserves terminal objects. Let X and Y be simplicial sets.
We wish to show that the canonical morphism 7;(X XY) — 7, X X 7;Y is an
isomorphism; but since 7, is a left adjoint and both sSet and Cat are cartesian
closed, it is enough to check the claim for Y = A", because sSet is generated
under colimits by {A" | n € N}. We have the following natural bijections:

Fun(z,(X X A"),C) = sSet(X x A",N(C))
=~ sSet (X, N(C)¥)
=~ sSet(X, N([[n], C]))
=~ Fun(7, X, [[n], C])
=~ Fun(7,; X X [n],C)
= Fun(rlX x T, A, C)

The claim follows by the Yoneda lemma. [ ]

Definition 1.2.3. The fundamental category of a simplicial set X is the small
category 7, X.

REMARK 1.2.4. Given a simplicial set X, the fundamental category 7, X admits
the following presentation by generators and relations: the objects are the ver-
tices of X, and the arrows are generated by the edges of X, modulo the relation
dy(a) » dy(a@) = d,(a) for all 2-simplices a in X. This shows that 7, X is stable
under universe enlargement.
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Definition 1.2.5. An inner horn is a simplicial subset of the form A} C A",
where n > 2 and 0 < k < n, where A] is the union of the faces of A" that include
the k-th vertex. (See also definition 1.3.24.)

Lemma 1.2.6. If A} < A" is an inner horn inclusion, then its image under
7, : sSet — Cat is an isomorphism.

Proof. By the Yoneda lemma and proposition 1.2.2, it suffices to verify that the
induced maps
sSet(A",N(C)) — sSet (A}, N(C))

are bijections for all small categories C. The claim is clear for n = 2: this is
simply the assertion that for any morphisms f : x — yand g : y = zin C, there
is unique commutative diagram in C of the form below:

y

N

X V4

More generally, we observe that a morphism A" — N(C) is the same thing as
a composable sequence of morphisms in C of length n, so the claim for n > 2
follows by an inductive argument. [ |

Proposition 1.2.7. Let disc : Set — sSet be the functor defined by the formula
(discY), =Y
with id, for all the face and degeneracy maps.
(i) disc : Set — sSet has a left adjoint n, : sSet — Set such that ryA" = 1.

(ii) The functor disc is fully faithful and exhibits Set as a reflective subcategory
of sSet.

(iii) The functor n, preserves products.
(iv) disc : Set — sSet is a cartesian closed functor.

Proof. (i). We could apply theorem 1.1.13, but it is also fairly straightforward to
check that this explicit construction works: for each simplicial set X, we define
7, X by the coequaliser diagram in Set shown below,
dO
X, ;};
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and for each morphism f : X — Y in sSet, we define 7, f to be the unique
morphism making the evident diagram commute.

(ii). It is clear that disc is fully faithful.

(iii). By remark A.5.35, AP is a sifted category, and 7, & li_r)nAep, SO we may
apply theorem A.5.36.

(iv). Use proposition A.2.13. [ ]

Definition 1.2.8. The set of connected components of a simplicial set X is the
set 7, X, and a discrete simplicial set is one that is isomorphic to disc Y for some
setY.

1 1.2.9. We will usually not distinguish between Y and disc Y notationally.
Proposition 1.2.10. Let N : Grpd — sSet be the functor defined by the formula
N(G), = Fun(I[n], G)

where 1[n] here denotes the groupoid obtained by freely inverting the arrows in
the preorder category [n].

(i) For any groupoid G, the nerve N(G) is the same (up to isomorphism)
whether computed for G as a groupoid or G as a category.

(i) N : Grpd — sSet has a left adjoint r, : sSet — Grpd such that 7| A" =
1[n].

(iii) The functor N is fully faithful and exhibits Grpd as a reflective subcat-
egory of sSet.

(iv) N : Grpd — sSet is a cartesian closed functor.
(v) The functor &, preserves finite products.
Proof. (i). By the universal property of I[x], there is a natural bijection
Fun(I[#], G) = Fun([n], G)
for all groupoids G, so the two nerve constructions do indeed agree.

(ii) and (iii). These are proven in exactly the same way as in proposition 1.2.2.

(iv) and (v). These are proven in exactly the same way as in proposition 1.2.7.
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Definition 1.2.11. The fundamental groupoid of a simplicial set X is the small
groupoid 7, X.

REMARK 1.2.12. Given a simplicial set X, the fundamental groupoid 7, X admits
a presentation of the same kind as the fundamental category 7, X, and in fact 7; X
is isomorphic to the groupoid obtained by freely inverting the arrows in 7, X:

Fun(z,X,G) = sSet(X,N(G)) = Fun(7,X,G)
This shows that 7, X is stable under universe enlargement.

Definition 1.2.13. Let n be a natural number, and let A_, be the full subcategory
of A spanned by the objects [0], ..., [#]. An n-truncated simplicial set is a func-
tor A_,°? — Set, and we write sSet_, for the category of n-truncated simplicial
sets. The brutal n-truncation of a simplicial set X is the n-truncated simplicial
set X, defined by the evident reduct:

X, ([m]) = X([m])

Proposition 1.2.14. Let n be a natural number, and let j : A_, — A be the
inclusion.

() The functor j* : sSet — sSet_, has a left adjoint Lan; : sSet, — sSet.
(ii) The unitid = j* Lan, is a natural isomorphism.
(iii) Lan Ix sSet_, — sSet is a fully faithful functor.
(") The functor j* : sSet — sSet_, has a right adjoint Ran ; - sSet_, — sSet.
(ii") The counit j* Ran; = id is a natural isomorphism.
(iii") Ran, : sSet_, — sSet is a fully faithful functor.
Proof. (i) and (i"). Use theorem A.5.15.

(ii) and (ii"). The inclusion j : A_, — A s fully faithful, so the unitid = j* Lan,
and the counit j* Ran; = id are natural isomorphisms, by corollary a.5.19.

(iii) and (iii"). Use proposition A.1.3. [ |
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Definition 1.2.15. For each natural number n, with notation as above, let sk, :
sSet — sSet be the composite Lan ; J*, and let cosk, : sSet — sSet be the
composite Ran; j*.

* The n-skeleton of a simplicial set X is the simplicial set sk, (X).
* The n-coskeleton of a simplicial set is the simplicial set cosk, (X).

* An n-skeletal simplicial set is one that is isomorphic to the n-skeleton of
some simplicial set.

* An n-coskeletal simplicial set is one that is isomorphic to the n-coskeleton
of some simplicial set.

REMARK 1.2.16. In the special case n = 0, Lan ; may be identified with the func-
tor disc : Set — sSet defined in proposition 1.2.7. Thus, o-skeletal simpli-
cial sets are precisely the discrete simplicial sets. On the other hand, given a
set X, Ran; X can be identified with the simplicial set whose m-simplices are
(m + 1)-tuples of elements of X, with face and degeneracy maps induced by the
appropriate projections.

Proposition 1.2.17. Let n be a natural number.

(i) The full subcategory of n-skeletal simplicial sets is a coreflective subcat-
egory of sSet, with coreflector sk,,.

(ii) sk, is the underlying endofunctor of an idempotent comonad on sSet.

(iii) A simplicial set X is n-skeletal if and only if the counit sk, (X) = X is an
isomorphism.

(iv) If m > n, then any n-skeletal simplicial set is also m-skeletal.

(i") The full subcategory of n-coskeletal simplicial sets is a reflective subcat-
egory of sSet, with reflector cosk,,.

(ii") cosk, is the underlying endofunctor of an idempotent monad on sSet.

(iii") A simplicial set X is n-coskeletal if and only if the unit X — cosk,(X) is
an isomorphism.

(iv") If m > n, then any n-coskeletal simplicial set is also m-coskeletal.

02
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Proof. All straightforward from the definitions. ¢
Proposition 1.2.18. Let n be a natural number, and let X be a simplicial set.
(i) We have the following adjunction:

sk, - cosk, : sSet — sSet

(ii) The counit sk,(X) — X is a monomorphism, and X is n-skeletal if and
only if all m-simplices of X are degenerate for m > n.

(iii) X is n-coskeletal if and only if, for all natural numbers m, the map
X,, = sSet(A", X) — sSet sk, (A"), X)
induced by the counit sk,(A") — A" is a bijection.

Proof. (i). Immediate from the definition of sk, and cosk,,.

(ii). The most straightforward way of seeing this is to construct sk, (X) explicitly
as the smallest simplicial subset of X containing all of its n-simplices.

(iii). Apply the Yoneda lemma in conjunction with claim (i). [ |

Corollary 1.2.19. For any small category C, the nerve N(C) is a 2-coskeletal
simplicial set.

Proof. By definition, an m-simplex of N(C) is just a functor [m] — C, but the
property of being a functor can be detected by only inspecting the vertices, edges,
and 2-cells; thus, the claim follows as an application of proposition 1.2.18. [l

Proposition 1.2.20. The following full subcategories are exponential ideals of
sSet:

(i) Discrete simplicial sets.
(i) Simplicial sets isomorphic to the nerve of some category.
(iii) Simplicial sets isomorphic to the nerve of some groupoid.

(iv) n-coskeletal simplicial sets for some natural number n.
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Proof. Apply proposition A.2.13 to propositions 1.2.7, 1.2.2, 1.2.10, and 1.2.17.

Definition 1.2.21. The boundary of A" is the simplicial subset A" C A" gener-
ated by the images of 6°, ...,6" : A" — A",

REMARK 1.2.22. The boundary 0A" may be identified with sk, _; A".

Proposition 1.2.23 (Relative skeletal filtration). Let f : X — Y be a mono-
morphism in sSet. There exist simplicial sets YO, YV Y® | and a chain of
monomorphisms

(D

X =y i Yy _i i@

yoO 2 yo 5 ..

such that the following conditions are satisfied:

® There is a colimiting cocone from the above chain to Y where the compon-
entY D 5 Yisf: X Y.

e For each natural number n, there is a pushout diagram of the form below,

I,00N —— [ 0N

| !

Y(n— 1) — R Y(n)
1

where 1, C'Y, is the set of non-degenerate n-simplices of Y that are not in
the image of f : X = Y, I, © 0A" & I, © A is induced by the boundary
inclusion 0N < A", and I, © A" — Y™ is the tautological morphism
induced by the inclusion I, < Y.

In particular, if Y is a finite simplicial set, then there is a natural number d such
that i’ : YD = Y™ is an isomorphism for all n > d.

Proof. We may assume without loss of generality that f : X — Y is the inclu-
sion of a simplicial subset of Y. Let Y™ be the union of X and the image of
counit sk,(Y) — Y, i.e. the smallest simplicial subset of Y containing X and
all the n-simplices of Y, and let i® : YV — Y® be the inclusion. Then I,
is precisely the set of n-simplices of Y™ that are not in Y™V, so we have the
desired pushout diagram for each n. It is clear that the inclusions YD o ¥
define the required colimiting cocone. [ |
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1.3

1.3. Intrinsic homotopy

In the language of § 0.5, what we have shown is that every monomorphism in
sSet is a relative Z-cell complex, where T = {dA" & A" | n > 0}. Since the class
of monomorphisms is closed under retracts, the following definition is justified:

Definition 1.2.24. A cofibration of simplicial sets is a monomorphism in sSet.

REMARK 1.2.25. Cofibrations of simplicial sets have a homotopy extension prop-
erty, albeit one that is weaker than what one might expect from the homotopy
theory of topological spaces: see theorem 1.3.25.

Intrinsic homotopy

Prerequisites. §§1.2, 3.1, A.4.

Definition 1.3.1. Let f, f; : X — Y be a parallel pair of morphisms in sSet.
An intrinsic homotopy «a : f, = f| is an edge of the exponential object [ X, Y]
such thatd,(a) = f,, and d(a) = f,. (Note the subscripts!) We say f,, and f, are
intrisically homotopic if there is a zigzag of intrinsic homotopies connecting f,,
and f, and we write f, ~ f, in this case.

REMARK 1.3.2. By the Yoneda lemma,
[X,Y], =sSet(A',[X,Y]) = sSet(A' X X,Y)

so an intrinsic homotopy « : f,, = f is essentially the same thing as a morphism
&:A XX - Ysuchthat@o (' xidy) = f and @ » (6° X idy) = f; (where
we have suppressed the canonical isomorphism X = A” x X), just as in classical
homotopy theory. Also,

sSet(A' x X,Y) = sSet(X, [A,Y])

so intrinsic homotopies a : f, = f, correspond to morphisms & : X — [Al, Y]
such that [51, Y] o = f,and [50, Y] o @ = f, (where we have suppressed the
canonical isomorphism [AO, Y] =Y).

REMARK 1.3.3. The notion of intrinsic homotopy is not well behaved for general
simplicial sets Y. For example, the existence of an intrinsic homotopy f, = f|
does not guarantee the existence of an “inverse” intrinsic homotopy f, = f,,
and even if we have intrinsic homotopies f, = f, and f|, = f,, there need not
be an intrinsic homotopy f, = f>.
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1 1.3.4. Let £, f, : X = Y be a parallel pair of morphisms and leta : f, =
f, be an intrinsic homotopy.

* Given amorphism g : W — X, the intrinsic homotopy ag : f,cg = f,°g
is the image of a under the induced morphism [g, Y] : [X, Y] — [W, X].

* Given amorphism g : Y — Z, the intrinsic homotopy ga : go f, = g° f
is the image of a under the induced morphism [ X, g] : [X, Y] — [X, Z].

Lemma 1.3.5. The relation of intrinsic homotopy is a congruence on sSet, i.e.
given morphisms f, f, : X - Y and gy,8, : Y — Z,if f, ~ f, and g, ~ g,
then gy o fo ~ & ° f1- |

Definition 1.3.6. The intrinsic homotopy category of simplicial sets is the
category Ho, sSet obtained by taking the quotient of sSet with respect to the
congruence of intrinsic homotopy.

REMARK 1.3.7. A parallel pair f,, f, : X — Y insSet are intrinsically homotopic
if and only if they are in the same connected component of [ X, Y]. In particular,
we have a bijection of the form below,

Ho, sSet(X,Y) = 7,[ X, Y]

and it is natural as X and Y vary in sSet.
REmARK 1.3.8. The set 7,[ X, Y] can be very far from what one expects geomet-

rically. For instance, 7, [OAZ, aAZ] contains only two elements, while the set of
homotopy classes of continuous endomaps of the circle is countably infinite!

Lemma 1.3.9. Let f, f, : X — Y be a parallel pair of morphisms in sSet.
Given an intrinsic homotopy « : f, = f,, for each simplicial set Z, there is an
induced intrinsic homotopy [a, Z ] : [fo, Z] > [fl, Z].

Proof. Let@ : A' x X — Y be the morphism corresponding to « : f, = f,.
Then we have a morphism [&, Z] : [Y, Z] — [Al X X, Z]. Proposition a.2.11
says there is a natural isomorphism

[A'x X, Z] = [A, [X, Z]|

so [&, Z] corresponds to an intrinsic homotopy [a, Z] between two morphisms
of type [Y, Z] — [X, Z]; it is not hard to check that it is an intrinsic homotopy

of type [fO,Z] > [fl,Z]. [ |
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Lemma 1.3.10. Let X be a simplicial set, let D be a small category, let f,, f, :
X — N(D) be a parallel pair of morphisms, and let F,, F| : 1,.X — D be
their left adjoint transposes. Then there is a natural bijection between intrinsic
homotopies f, = f, and natural transformations F, = F,.

Proof. Propositions 1.2.2 and A.2.13 give a natural isomorphism [X, N(D)]

[

N( [TlX , [D] ), and the claim is an immediate consequence.

Corollary 1.3.11. If F 4 G : C — D is an adjunction of small categories, then
the induced morphisms in Hoy sSet are mutually inverse. [ ]

Definition 1.3.12. Let f : X — Y be a morphism in sSet.

* An intrinsic homotopy left inverse for f is a morphism g : ¥ — X such
that g o f and idy are intrinsically homotopic.

* An intrinsic homotopy right inverse for f is a morphismg : ¥ —» X
such that f o g and id, are intrinsically homotopic.

Definition 1.3.13. An intrinsic homotopy equivalence in sSet is a pair (f, g)
where g (resp. f) is both an intrinsic homotopy left inverse and an intrinsic ho-
motopy right inverse for f (resp. g).

REMARK 1.3.14. The pair (08 , 5?) is an intrinsic homotopy equivalence between
the standard simplices A’ and A'. Multiplying by id,, we deduce that X and
A x X are naturally isomorphic in Ho , sSet.

Proposition 1.3.15. Let y : sSet — Ho, sSet be the functor that sends each
morphism to its intrinsic homotopy class. For any functor F : sSet — C, the
following are equivalent:

(i) For all simplicial sets X, F((S(l) X idX) : F(AO X X) — F(A1 X X) is an
isomorphism in C.

(ii) For all simplicial sets X, F(él1 X idX) : F(AO X X) - F(A1 X X) is an
isomorphism in C.

(iii) For all simplicial sets X, F(ag X idx) : F(A1 X X) — F(AO X X) is an
isomorphism in C.

(iv) Forall parallel pairs f,, f, : X — Y insSet, if f, ~ f,, then F f, = F f,.

97



I. SIMPLICIAL SETS

(v) F :sSet — C factors through y : sSet — Ho, sSet.
Moreover, the factorisation is unique if it exists.

Proof. (i) < (iii), (ii) & (iii). Lete € {0, 1}. The simplicial identity 08 °6] =id
implies that F (68 X id x) is an isomorphism in C if and only if F (58 x1d x) is
an isomorphism in C.

(iii) = (iv). It suffices to show that F f, = F f, whenever there is an intrinsic
homotopy @ : f, = f,, where f,, f; : X — Y are an arbitrary parallel pair of
morphisms in sSet. Let @ : A' X X — Y be the morphism corresponding to
a: f, = f,. Since F (08 X idX) is an isomorphism, the uniqueness of inverses
implies F(8) xidy) = F (8| X idy); so, suppressing the canonical isomorph-
ism A’ x X = X, we obtain the required equation:

Ffy=FaoF(5 xidy) = Fao F(6) xidy) = Ff,

(iv) © (v). This is the universal property of the quotient by the congruence of
intrinsic homotopy.

(v) = (iii). Since 0'8 Xidy : Al x X — A’ x X is (half of) an intrinsic homotopy
equivalence, y (08 x1id X) is an isomorphism in Ho, sSet. Hence, if the functor
F : sSet — C factors through y : sSet — Ho, sSet, F (68 X idX) must be an
isomorphism in C. H

Corollary 1.3.16. The functor x, : sSet — Set factors through y : sSet —
Ho, sSet.

Proof. By proposition 1.2.7, m, : sSet — Set preserves finite products; but
moA' = mg A = 1, s0 my(0y Xidy ) : 7y (A X X) — 7y(A” X X) is a bijection
for any simplicial set X. [ |

Definition 1.3.17. A contractible simplicial set is a simplicial set that is iso-
morphic to A’ in Ho , sSet.

Example 1.3.18. It is not hard to verify that each A" is a contractible simplicial
set: indeed, we may apply corollary 1.3.11.
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1.3. Intrinsic homotopy

Definition 1.3.19. Let X be a simplicial set.

* A forward contracting homotopy for X consists of a set X_, and maps
r:X,—=> X_,s: X, = Xy, and A" : X, - X,,, satisfying these
identities:

1_ 1
rod, =rod,

res=id
déohozsw
dioh’=id
d*ten"=h""odr if0<i<n
d'tleh"=id
Rl o s = st o " if0<i<n

1
hn+1 ° hn — SZI] ° hn

* A backward contracting homotopy for X consists of a set X_, and maps
r:X,—=> X_,s: X = Xy, and A" : X, - X,,, satisfying these
identities:

1_ 1
rod;, =rod,

res=id
dy o h’ =id
dioh’=sor
di*' o h"=id
diflon" =h""od] if0<i<n
hn+l o I :SSH o h"
o st = st o " if0<i<n

Proposition 1.3.20. Let X be a simplicial set.

e Given a forward contracting homotopy for X, sayr : X, = X_|, s :
X, = Xpandh" : X, - X

n

+1» there are unique morphisms 7 : X —
disc X_, and § : disc X_; = X defined in degree o by r and s respectively,
and we have F ° § = idyg y_ and an intrinsic homotopy idy = 3o F;
moreover, the canonical map nyX — X_, is a bijection.
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e Given a backward contracting homotopy for X, sayr : X, — X_,, s :
X_ | = Xpand h" : X, - X,.,,, there are unique morphisms ¥ : X —
disc X_, and § : disc X_; = X defined in degree o by r and s respectively,
and we have 7 ° § = idy y  and an intrinsic homotopy § o F = idy;
moreover, the canonical map nyX — X_, is a bijection.

Proof. The two claims are formally dual; we will prove the first version.
Observe that the definition implies that we have the following absolute co-
equaliser diagram:

dl

1

1
I

hO

Thus, as remarked in the proof of proposition 1.2.7, 7, X = X_,. As always,
there is a unique morphism § : disc X_; — X whose degree o component is
s : X_; = X,, and the above observation ensures that there also exists a unique
morphism 7 : X — disc X_; whose degree o componentisr: X, = X_,.

Clearly, 7 o § = idg x_; we must show that § 7 ~ idy. Let zr o [n] = [1]
denote the map in A defined below:

) 0 ifj<i
/)=
1 ifj>i

It is not hard to see that A([a],[1]) = {x,
have the following identities:

0<Li<n+ 1}, and moreover we

Xodl =1l ifo<i<j<n+l
Xl o8, =0 if0<i<j<n+2
Ao 0w =X if0<i<j<n

xaooh =yt ifo<i<j<n+1

We construct by recursion a sequence of maps H, : X, X A([n],[1]) = X,:

* Forall x in X

Ho(x’ )(é) =X
Hy(x, x5) = s(r(x))
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1.3. Intrinsic homotopy

* Foreach xin X, :

H,i(x 107) = x
Hoo (% 2050) = W (45 (0)
H,,, <x, )(,{H) = sZ(Hn(d;:Ill(x), }(,ﬁ)) for0<j<n

It is straightforward to check that these equations hold,
1 _ 1 1 _ 1 0 _ 0
dyoH, = H°d, doH =H,-d, speHy=H, o5,
so we assume for induction that these identities hold for some n > O:

dfeH,=H,_, odf for0<k<n0<i<k
sKe H = H,, os for0<k<n0<i<k

Then, for0 <i<n+1,
di* (H, (x. 2017)) = di™ (x)
= H,(d""' (), ;') = H,(d' (), 2,77 2 81,4,
and, for 0 <i < n,

a7 (o (e 2) = 0 (0 a2 0)
= 1 (4g210)) = W (a5 00)

+

= H,(d""'(x), z) = H,(d]"(x), 1}/ = 8.,,)
while, fori = n + 1:

it (How (% 1001)) = dii (B (d171(0) )
— dn+l(x) — Hn<dn+l(X), X:_H) - Hn(dn+1(X), X::ll 05:-:_-11)

n+1 n+1 n+l

Similarly, for 0 < j < n,

4 (Mo (x5 ) ) = @it (s (# (@0 ) ))
= H,(d}1}00. 20 ) H, (4100 il 20111 )
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d,’,‘“(HnH(x, ,{H)) _ d;;“(sg(H (d;;j}(x), ¥ ))) H (d::ll(x), ;(,{)

= s (Hya (@2(@00). 204 ) ) = 5123 (B (d2(477 ). 20, ))
= Hn<d:z1+1(x)7 /%Jl) = Hn<d7rzl+1(x)’ /Yrjz 5::+1>

and for 0 < i < n, we have:

9 (0 (x200)) = (. 0.12))
e CHCACAERZS)  ER AN CACAHOVS A
= 52 (s (40 ). 20 08,) ) = H, (477001, 260 )
On the other hand, for 0 <i < n,
st (H,(x, 20")) = 5700 = Hyp (5700, 2087) = Hot (5700, 20 e 01)
and for 0 <i <n,
s (H, (% 23)) = si (A" ()

= h"(s;7'(dp(0))) = B"(d5] (s7(0)))
= H,, (/) 2p41) = Hopy (570, 21 2 07)

while for i = n, we have:
s(Ha(x. 7)) = sy(H,(d;7) (53)). 1))
- Hn+1 (SZ(X), Inn.'.l) = Hn+1 (SZ(X)’ )(rrzl ° Grrll)

Finally, for0 <i <nand 0 < j < n:

S:’<Hn (x, Zﬁ)) = s?(sfl:}(Hn_1<d,7(x), Zﬁ-l)))
=i (Hu (020 ) ) ) = st (A (o7 (@500) o0 ))
_ sZ(H (d::ll( ?(x))’}(r{_l o gjl_]>> = Hn+1<sf’(x)’ a0 e GL)

We therefore have a morphism H : X X A' - X such that H o (idy X 8)) =
§efand H o (idX X 6}) = id,. By remark 1.3.2, this is the required intrinsic
homotopy. [ ]
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1.3. Intrinsic homotopy

Corollary 1.3.21. A simplicial set X is contractible if the unique morphism X —
A admits a forward or backward contracting homotopy. [ ]

Definition 1.3.22. Let f : X — Y and g : Z — W be morphisms in sSet.

* f has the forward homotopy lifting property with respect to g if, for
every commutative diagram of the following form,

Z
7 —> X

| b

given intrinsic homotopies @ : w, = w; and f : z, = z; such that
ag = fp, there exist a morphism A, : W — X and an intrinsic homotopy
y:hy= hysuchthat feh, =w,,hjcg=2z, fy=a,andyg = p.

* f has the backward homotopy lifting property with respect to g if, for
every commutative diagram of the following form,

ZLX

| b

given intrinsic homotopies @ : w, = w; and f : z, = z; such that
ao idg =1d 7o p, there exist a morphism A, : W — X and an intrinsic
homotopy y : hy = h, such that f o hy = w,, hyo g = z,, fy = a, and
rg=p.

* f has the intrinsic homotopy lifting property with respect to g if f has
both the forward and backward homotopy lifting properties with respect
to g.

* f has the forward (resp. backward, intrinsic) homotopy lifting prop-
erty with respect to the object W if f has the forward (resp. backward,
intrinsic) homotopy lifting property with respect to the unique morphism
0—-w.

* g hasthe forward (resp. backward, intrinsic) homotopy extension prop-
erty with respect to f if f has the forward (resp. backward, intrinsic) ho-
motopy lifting property with respect to g.
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* g hasthe forward (resp. backward, intrinsic) homotopy extension prop-
erty with respect to the object X if g has the forward (resp. backward, in-
trinsic) homotopy extension property with respect to the unique morphism
X — 1.

Proposition 1.3.23. Let f : X — Y and g : Z — W be morphisms in sSet,
and suppose we have a commutative diagram

(W, X] [g.X]
~ \)

Lg, f) — [£,X]

| e

w.f]

where the square in the lower right is a pullback square. The following are equi-
valent:

(i) f has the forward homotopy lifting property with respect to g.

(i) The morphism q : [W,X]| — L(g, f) has the right lifting property with
respect to the horn inclusion A(l) < Al

(iii) Suppose we have a commutative diagram

AXZ —— A'XZ

idA(l)Xgl l

AgX W —— V(g)

Al x W

where the square in the upper left is a pushout square. Then the morphism
j 1 Vo(g) = A'XW has the left lifting property with respectto f : X — Y.

Symmetrically, the following are equivalent:
(i") f has the backward homotopy lifting property with respect to g.

(ii") The morphism q : (W, X] — L(g, f) has the right lifting property with
respect to the horn inclusion Ai o Al
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1.3. Intrinsic homotopy

(iii") Suppose we have a commutative diagram

AXZ——> ANXZ

Al x W

where the square in the upper left is a pushout square. Then the morphism
j 1 Vi(g) = A'XW has the left lifting property with respectto f : X — Y.

Proof. This is a special case of proposition 5.5.1: use remark 1.3.2 and the ex-
ponential adjunction. [ |

Definition 1.3.24. A horn is a simplicial subset of the form A} C A", where A}
is the union of the images of 6°,...,65 1, 651 ... 6" : A" — A" in sSet. In
other words, A} is the union of all the faces of A" that include the k-th vertex.

Theorem 1.3.25. Let p : X — Y be a morphism in sSet. The following are
equivalent:

(i) p: X — Y has the right lifting property with respect to the horn inclusions
A, < A (foralln > 1and 0 < k < n).

(i) p: X — Y has the intrinsic homotopy lifting property with respect to the
boundary inclusions 0A" < A" (for alln > 0).

(iii) p: X — Y has the intrinsic homotopy lifting property with respect to any
monomorphism in sSet.

Proof. Combine propositions 1.3.23 and A.3.17 with either Theorem 2.1 in [GZ,
Ch. IV] or Proposition 4.2 in [GJ, Ch. I]. [l

RemaRrk. The analogous theorem for cubical sets was announced as Theorem 2
in [Kan, 1955].

REMARK 1.3.26. Let B" be the closed unit ball in the euclidean space R", let
0B" be its boundary, and let I be the closed unit interval [0, 1]. It is not hard
to see that the inclusion B" X {0} < B" X [ is isomorphic to the inclusion
B"x {0} U0dB" X I < B" x I. Thus, a continuous map p : X — Y has the
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homotopy lifting property with respect to all B" if and only if it has the homotopy
lifting property with respect to all boundary inclusions 0 B" < B".

Unfortunately, sSet does not have the analogous property. Indeed, for any
simplicial set X, the unique morphism X — 1 has the intrinsic homotopy lifting
property with respect to the n-simplices A”, but it need not have the intrinsic right
lifting property with respect to all boundary inclusions A" & A",

Lemma 1.3.27. Let p: X — Y be a morphism in sSet.

() If p: X — Y has the right lifting property with respect to the boundary
inclusion 0N’ < A, then p, : X, — Y, is surjective.

(i) If p : X — Y has the right lifting property with respect to the boundary
inclusions 0N < A’ and dA! & A, then p © X — Y has the intrinsic
homotopy lifting property with respect to A, and myp : 7,X — Y is a
bijection.

Proof. (i). Let y be a vertex of Y. Then the right lifting propertyof p: X — Y
with respect to the boundary inclusion dA” < A yields a vertex x of X such that
Do(x) =y, as required.

(ii). By proposition 1.3.23, p : X — Y has the intrinsic homotopy lifting property
with respect to A’ if and only if it has the right lifting property with respect to
the horn inclusions Aj & A' and A} & A'. Since A' is 1-skeletal, we may apply
propositions 1.2.23 and A.3.17 to deduce that p : X — Y does indeed have the
aforementioned right lifting properties.

It remains to be shown that 7, : 7pX — 7#,Y is a bijection. We already
know that z,p : m,X — x,Y is a surjection, so it suffices to show that it is also
injective. Let x, and x, be vertices of X such that y, = p(x,) and y; = p(x,)
are in the same connected component. We proceed by induction on the length of
the shortest path (i.e. zigzag of edges) in Y connecting y, and y,.

If y, and y, are connected by an edge of Y, then we may use the right lifting
property of p : X — Y with respect to the boundary inclusion A" < A! to find
an edge of X connecting x, and x,. Otherwise, we use the intrinsic homotopy
lifting property of p : X — Y with respect to A to reduce to the case where y,
and y, are connected by a strictly shorter path. [ |

Definition 1.3.28. An anodyne extension of simplicial sets is a member of the
smallest class A C sSet satisfying the following conditions:
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* Every horn inclusion A} & A'is in A.

* A is closed under pushouts, i.e. given a pushout diagram in sSet of the
form below,
7' —— 7
g/l lg
W' — W
ifg': Z' > W'isin A, thensoisg: Z - W.

* A is closed under (finite and) transfinite composition, i.e. given an ordinal
a and a colimit-preserving functor X : « — sSet such that the morphisms
X(B) — X(y) are in A, the induced morphism X(0) — li_r)nﬁ< X(p) is
also in A.

* A is closed under retracts, i.e. given a commutative diagram in sSet of the
form below,

A V4 A

w s w s W

ifg: Z > Wisin A, thensoisg’ : Z' - W',

Lemma 1.3.29. Let f : X - Y and g : Z — W be monomorphisms in sSet.
Suppose the square in the diagram below is a pushout square in sSet:

idyXg

XXZ —— X xW

e | |

YXZ —— (XXW)U*2 (Y x Z)
T~o_ [l

fxidy,

idyxg YXW

(i) The morphism f [Qg : X X W)U (Y X Z) = Y X W is a mono-
morphism.

(ii) Ifatleastoneof f : X — Y org : Z — W is an anodyne extension, then
sois fIdg : X XWHUX? (Y XZ) > Y xXW.
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Proof. (i). Using the fact that limits and colimits in sSet can be calculated de-
greewise, this reduces to a well-known fact about Set.

(ii). See Proposition 2.2 in [GZ], or Corollary 4.6 in [GJ, Ch. I]. ]

Definition 1.3.30. Let L be any simplicial set, let K be a simplicial subset of
L, and let f,,, f; : L — Y be a parallel pair of morphisms in sSet. An intrinsic
homotopy f, = f, relative to K is an intrinsic homotopy « : f, = f, such
that the image of @ under morphism [L, Y] — [K, Y] (induced by the inclusion
K < L)is a degenerate edge. (In particular, the restrictions of f, and f, along
K < L must be equal.) We write z; (Y, y) for the set of morphisms L — Y
whose restriction along K < Lisy : K — Y, modulo the equivalence relation
generated by intrinsic homotopy relative to K.

REMARK 1.3.31. For fixed L and K, the assignment (Y,y) = m ) (Y,y) is
clearly the object part of a functor X/sSet — Set. Indeed, we may construct
it as follows: given y : K — Y, form the following pullback square in sSet,

[L,Y], — [L.Y]

L]

AN — 5 [K,Y]

where the morphism [L, Y] — [K, Y] is induced by the inclusion K < L and
the morphism A - [K,Y] corresponds to y (considered as a vertex of [K, Y]);
then z; (Y, y) can be identified with r,[L, Y],.

Definition 1.3.32. Let L be any simplicial set and let K be a simplicial subset
of L. The relative cylinder on (L, K) is the simplicial set C(L, K) defined by
the following pushout diagram,

KxA — [LxA

l I

K — C(L,K)

where K x A! — K is the projection and K X A' & L x Al is induced by the
inclusion K < L.
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REMARK 1.3.33. Let j,, j, : L = C(L, K) be the morphisms obtained by com-
posing with ¢ : L X A' - C(L, K) the two morphisms L — L x Al induced
by the two vertex inclusions A — Al. There is a natural bijection between the
set of intrinsic homotopies f, = f; relative to K and the set of morphisms
h:C(L,K)— Y suchthathej,= f,and hej, = f|.

Definition 1.3.34. Let f : X — Y be a morphism in sSet. With other notation
as above, we say that f has the homotopical right lifting property with respect
to K < L if, for each commutative diagram the form below,

0
s X

f

h(—:N

— Y
y

there exist a morphism x : L — X and a homotopy @ : y = f o x relative to
K, or equivalently, morphisms x : L — X and h : C(L, K) — Y making the
following diagram commute:

K——> L -——-—- > X
[ ljl lf
L — C(L,K) ——-3 Y

Proposition 1.3.35. Let f : X — Y be a morphism in sSet and let A be the
class of pairs (L, K) such that f has the homotopical right lifting property with
respectto K < L.
(i) A is closed under coproducts for small families.
(ii) A is closed under pushout.
(iii) A is closed under retracts.

Proof. See Lemma 3.4 in [Dugger and Isaksen, 2004]. O]
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Kan complexes

Prerequisites. §§1.3, 3.1, 3.7, A.4.

We have seen in the previous section that the notion of intrinsic homotopy
is not well behaved for general simplicial sets. To remedy this, we shall (tem-
porarily) restrict our attention to Kan complexes. These are simplicial sets with
the so-called “extension property”, and they are named in honour of Kan [1955],
who first observed the importance of the aforementioned property.

Definition 1.4.1. A Kan fibration is a morphism f : X — Y in sSet that has
the right lifting property with respect to the horn inclusions A} < A", where
n>1and 0 < k < n. A Kan complex is a simplicial set X such that the unique
morphism X — 1 is a Kan fibration.

REMARK 1.4.2. In other words, a Kan complex is a simplicial set X satisfying
the Kan condition: every horn @’ : A} — X has a filler, i.e. a morphism
a : A" - X (equivalently, an n-simplex of X') such that a’ is the restriction
along the inclusion A} < A".

Proposition 1.4.3. Let X be a simplicial set. The following are equivalent:
(i) X is a Kan complex.

(ii) X has the intrinsic homotopy extension property with respect to the bound-
ary inclusions 0A" < A,

(iii) X has the intrinsic homotopy extension property with respect to any mono-
morphism in sSet.

Proof. This is a special case of theorem 1.3.25. [ |

Lemma 1.4.4. If X is a Kan complex, then the fundamental category v, X is a
groupoid, and the unitny : X — N(TIX ) is an epimorphism.

Proof. Let x, y, and z be vertices in X, and let f : x - yand g : y — z be
edges in X.°! Then the pair (f, g) defines a horn A7 — X, and so by the Kan
condition, there exists a 2-simplex « of X such that d,(a) = f and dy(a) = g.
By remark remark 1.2.4, the composite g « f defined in 7, X must correspond
to the edge d,(a). Since the arrows in 7, X are generated by the edges of X, we

Recall definition 1.1.14.

110
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conclude by induction that n, : X — N(’L’lX ) is a surjection on vertices and
edges.

Similarly, given an edge f : x — Yy, the Kan condition ensures that there
exist two 2-simplices f and y such that

dy(a) = f dy () =id,
dy(a) = f dy(a)=id,

where id, : x — x is the edge 54(x), and id,, : y — y is the edge s,(y). Together
with the argument in the previous paragraph, this shows that 7, X is a groupoid.

Finally, to show that n, : X — N(TlX ) is a surjection on n-simplices for
n > 2, we simply observe that an n-simplex of N(TIX ) is just a string of n
composable edges of X, so we may appeal to the Kan condition again to obtain
the corresponding n-simplex of X. [ |

Corollary 1.4.5. If X is a Kan complex, then the unitny : X — N(ﬂ'lX) is an
epimorphism.

Proof. Since 7, X is already a groupoid, the canonical functor 7, X — 7, X must
be an isomorphism. (See remark 1.2.12.) [ |

Proposition 1.4.6. Let X be a Kan complex and let ayy, a; : x, = x, be edges in
X. The following are equivalent:

(i) ay = ay in the fundamental groupoid r, X.

(ii) There exists a 2-simplex o of X such that d,(c) = so(xl), d,(c) =a,, and
d,(0) = «.

(iii) There exists an edge f : a, — a, in the exponential object [Al,X ] such
that [6', X|(B) = s,(x,) and [6°, X|(B) = 5,(x,).

Proof. (i) « (ii). See Proposition 1.2.3.9 in [HTT].
(i) < (iii). See paragraph 5.2 in [GZ]. O]
Proposition 1.4.7. Let T and 1’ be the following subsets of mor sSet:

I={0N" < A'|n>0}
I'={A; > X|n>1,0<k<n}
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(i) There exist a pair of functorial factorisation systems on sSet, one indu-
cing a weak factorisation system cofibrantly generated by 1, and the other
inducing a weak factorisation system cofibrantly generated by T'.

(ii) A morphism is 1'-injective if and only if it is a Kan fibration, and every
1'-cofibration is a monomorphism (but not vice versa).

(iii) A morphism is a I-cofibration if and only if it is a monomorphism, and
every L-injective morphism is a Kan fibration (but not vice versa).

Proof. (i). Since sSet is a locally finitely presentable category, we may apply
Quillen’s small object argument (theorem 0.5.12).

(ii). The definition of ‘Kan fibration’ is exactly the definition of ‘ZI-injective
morphism’; on the other hand, the class of monomorphisms is closed under push-
out, transfinite composition, and retracts in Set, so the same is true for sSet, and
thus, by corollary 0.5.13, every I-cofibration must be a monomorphism.

(iii). To prove that inj* C 2 injl, C, it is enough to check that T C cof;, C.

Since every morphism in 7 is a monomorphism, it will suffice to show that
cell;, C contains all monomorphisms; but this is an immediate corollary of pro-
position 1.2.23. [ |

Corollary 1.4.8. Leti : Z — W be a morphism in sSet. The following are
equivalent:

(i) i : Z - W is an anodyne extension.
(ii) i : Z — W has the left lifting property with respect to any Kan fibration.
(iii) i : Z — W is a retract of a relative 1'-cell complex.
Proof. (i) = (ii). Apply proposition A.3.17.
(ii) = (iii). This is a special case of corollary 0.5.13.

(iii) = (i). By definition, the class of anodyne extensions is closed under pushout,
transfinite composition, and retracts. [ |

Definition 1.4.9. A trivial Kan fibration is a morphism in sSet that has the
right lifting property with respect to the boundary inclusions dA" < A", where
n > 0.
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REMARK 1.4.10. Proposition 1.4.7 implies that a trivial Kan fibration is the same
thing as as morphism in sSet that has the right lifting property with respect to
any monomorphism. In particular, trivial Kan fibrations are Kan fibrations.

Proposition 1.4.11. If p : X — Y is a trivial Kan fibration, thenp : X — Y is
fibrewise contractible, i.e. there exist a morphism s : Y — X and an intrinsic
homotopy a : idy = s o p satisfying the following conditions:

® pos=id,.
e as is the trivial homotopy s = s.
® pa is the trivial homotopy p = p.

Moreover, given a monomorphism i : Y' — Y and any morphism s’ : Y' - Y
such that p o s'" = i’, the morphism s : Y — X given above may be chosen so
that soi =s'.

Proof. Since i : Y' — Y is a monomorphism, the right lifting property of p :
X — Y yields a morphism s : Y — X such that pes =id, and s i = 5'. We
then obtain a commutative diagram of the form below,

idy,s0
X Y x ey

((j()’jl)l lp

where C(X,Y) is the relative cylinder, X uY X is the pushoutof s : ¥ — X
along itself, the morphisms j,, j, : X — C(X,Y) are defined as in remark 1.3.33,
and r : C(X,Y) — X is defined by the following commutative diagram:

sxid
Y x A 22 x x Al

S

Y — C(X,Y)

s ~a
It is not hard to see that (j,, j,) : X u¥ X = C(X,Y) is a monomorphism, so

there must exist 4 : C(X,Y) — Y making the evident triangles commute. The
corresponding intrinsic homotopy idy = s ¢ p is then the desired a. [ |
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Proposition 1.4.12. Let K be the full subcategory of sSet spanned by the finite
simplicial sets.

(i) The class of monomorphisms that are in K is the smallest class containing
the boundary inclusions 0A" < A' that is closed under composition and
pushouts.

(ii) The class of anodyne extensions that are in K is the smallest class con-
taining the horn inclusions A; < A’ that is closed under composition,
pushouts, and retracts.

Proof. (i). This is a corollary of proposition 1.2.23.

(ii). Corollary 1.4.8 says that every anodyne extension in sSet is a retract of a re-
lative 7’-cell complex, where 1’ is the set of all horn inclusions. More precisely,
if g : Z — W is an anodyne extension, then there is a commutative diagram in
sSet of the form below,

where i : Z — W' is arelative I'-cell complex. Suppose W is a finite simpli-
cial set. Proposition 1.1.18 says that finite simplicial sets are N,-compact objects
in sSet, so by considering a sequential presentation for i : Z — W', we see
that g : Z — W is a retract of some relative 7'-cell complex that admits an
N,-small presentation. In particular, if Z is a finite simplicial set, then so is W'
(by lemma 0.2.18). Hence, the class of anodyne extensions in K is the smallest
class containing 7’ that is closed under composition, pushouts, and retracts. [l

Proposition 1.4.13. Let f : X — Y be a morphism in sSet and, for each
n-simplex a : A" = Y, let f, : X, = A" be defined by the pullback diagram in
sSet shown below:

S

—_—

%
~

Xa
/|
A}’l

~

—_—
a
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1.4. Kan complexes

(i) f : X = Y is a Kan fibration if and only if each f, : X, — A' is a Kan
fibration.

(ii) f : X — Y is a trivial Kan fibration if and only if each f, : X, = A'isa
trivial Kan fibration.

Proof. This is a straightforward exercise. O

Corollary 1.4.14.
(i) Let (X ; | iel ) be a small family of simplicial sets. The coproduct [[,.; X,
is a Kan complex if and only if each X, is a Kan complex.

(ii) Let (fi X, =Y, | i € I) be a small family of morphisms of simplicial
sets. The coproduct [1,.; f; : Il.c; Xi = L, Y; is a Kan fibration if
and only if each f, : X, — Y, is a Kan fibration.

(iii) Let (f,. X, =Y, | i € I) be a small family of morphisms of simplicial
sets. The coproduct [ ., f; : I,c; X; = L., Y; is a trivial Kan fibration
if and only if each f; : X, = Y, is a trivial Kan fibration.

1

Proof. Given the previous proposition and the fact that coproducts in sSet are
disjoint and stable under pullback, it suffices to observe that any A" — [],., Y
must factor through one of the coproduct insertions Y; — [, .. |

Proposition 1.4.15. Let i : Z — W be a cofibration in sSet and letp : X - Y
be a Kan fibration. Suppose we have a commutative diagram

(W, X] [i,X]
~ \)

L@, p) — [£,X]

| e

[(W.p]

where the square in the lower right is a pullback square.

(i) The unique morphism q : [W, X| — L(i, p) making the diagram commute
is a Kan fibration.

(i) Ifi : Z - W is an anodyne extension, then q : [W,X] — L(i,p) is a
trivial Kan fibration.
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(iii) If p : Z — W is a trivial Kan fibration, then so is q : [W, X] — L(i, p).

Proof. This is a special case of proposition 5.5.1: use lemma 1.3.29 and the ex-
ponential adjunction. [ |

Corollary 1.4.16.
(i) If p: X = Y is a Kan fibration (resp. trivial Kan fibration), then for all
simplicial sets W, the morphism [W,p] : [W,X] — [W,Y] is also a
Kan fibration (resp. trivial Kan fibration).

(i) Ifi: Z — W is a monomorphism (resp. anodyne extension) of simplicial
sets and X is a Kan complex, then the morphism [i, X | : [W,X]| - [Z, X]
is a Kan fibration (resp. trivial Kan fibration).

(iii) If W is any simplicial set and X is a Kan complex, then [W, X] is also a
Kan complex.

Proof. (i). Take Z = @; noting that the canonical morphism @ — W is a
cofibration, and that [@, p] : [@, X] — [@, Y]is anisomorphism, the proposition
above then implies [W, p] : [W, X] — [W,Y]is a Kan fibration (resp. trivial
Kan fibration).

(ii). Take Y = 1; since [W,1] — [Z, 1] is an isomorphism, the proposition
above implies [i, X] : [W,X] — [Z, X] is a Kan fibration (resp. trivial Kan
fibration).

(iii). Noting that [@, X] is a terminal object in sSet, we apply claim (ii) to the
case Z = @ to obtain the desired conclusion. [ ]

Proposition 1.4.17. For any simplicial set X and any Kan complex Y, the rela-
tion ~ on sSet(X,Y) defined by

fo ~ f| if and only if there exists an intrinsic homotopy f, = f,

is an equivalence relation.

Proof. The relation » is certainly reflexive whether or not Y is a Kan complex.
By corollary 1.4.16, the exponential object [ X, Y] is a Kan complex; so recalling
lemma 1.4.4, the transitivity of +» may be deduced from the fact that the unit
NMxyy - X, Y] — N(r1 [X, Y]) is an epimorphism, and the symmetry of
corresponds to the fact that 7,[ X, Y] is a groupoid. [ |
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Proposition 1.4.18. Let X and Y be Kan complexes. Ifi : X — Y is an anodyne
extension, then there exist a morphismr : Y — X and an intrisic homotopy
a : idy = i o r satisfying the the following conditions:

e roi=1idy.
® ai is the trivial homotopy i = i.

Proof. By hypothesis, the unique morphism X — 1 is a Kan fibration, so corol-
lary 1.4.8 implies there is a morphism r : Y — X such that r o i = id,. We then
obtain the following commutative diagram,

X —= [ALY]

"J( l(POsP1>

(idy ,ior)

where p,, p; : [Al, Y] — Y are the morphisms induced by the coface morph-
isms 63,58 : A — Al (respectively) and ¢ : Y — [Al,Y] is induced by the
codegeneracy morphism o) : A' — A’. Supressing a canonical isomorphism
[OAI,Y] ~ Y XY, we see that corollary 1.4.16 implies {p,, p,) : [Al, Y] > YXY
is a Kan fibration. Thus, there exists a morphism 4 : Y — [Al, Y] making the
evident triangles commute, and the corresponding intrinsic homotopy id, = ier
is then the desired «. [ |

We will now define the homotopy groups of a Kan complex.
Definition 1.4.19. Let n be a positive integer and let X be a Kan complex.

* The based n-loop fibration on X is the Kan fibration Q"(X) — X defined
by the following pullback diagram in sSet,

QX)) — [A, X]

l l

X — 5 [0A", X]

where [A", X] — [0A", X] is the Kan fibration induced by the boundary
inclusion 0A" & A’ and X — [0A", X] is the morphism induced by 0A" —
i\
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* Let x be a vertex of X. The based n-loop space of (X, x) is the Kan
complex Q"(X, x) defined by the following pullback diagram in sSet,

Q'X,x) — Q'(X)

l |

AN X

where A’ — X is the morphism corresponding to the vertex x. The n-th
homotopy group of (X, x) is defined by z,(X, x) = 7,Q"(X, x).

REMARK 1.4.20. In other words, 7, (X, x) is the set of morphisms A" — X whose
restriction along A" < A" factors through the morphism A’ — X corresponding
to x, modulo the equivalence relation that identifies two morphisms A" — X if
they are intrinsically homotopic relative to dA".

Proposition 1.4.21. Let n be a positive integer.

(i) The assignment (X,x) — n,(X,x) extends to a functor r, : Y/Kan —
Grp, and n,(X, x) is abelian for n > 1.

(ii) The functor r, : Y/Kan — Grp preserves finite products and colimits for
small filtered diagrams.

(iii) Let (X, x) and (Y,y) be pointed Kan complexes. If f,, f; : (X,x) —
(Y, y) are a parallel pair of morphisms for which there exists an intrinsic
homotopy f, = f, relative to x (considered as a subcomplex of X ), then

ﬂnfO = ”nfl'

Proof. (i). See Lemma 7.1 and Theorem 7.2 in [GJ, Ch. I]. Functoriality is
straightforward.

(ii). It is not hard to check that the functor Q" : X/Kan — sSet preserves all lim-
its and colimits for small filtered diagrams, and =, : sSet — Set preserves finite
products and all colimits by proposition 1.2.7, so «,, : Y/Kan — Set preserves
finite products and colimits for small filtered diagrams. But the forgetful functor
Grp — Set creates finite products and colimits for small filtered diagrams, so
the claim follows.

(iii). Use paragraph 1.3.4 and remark 1.4.20. ]
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Definition 1.4.22. The homotopy category of Kan complexes is the full sub-
category H C Ho, sSet spanned by the Kan complexes.

Proposition 1.4.23. Let Kan be the full subcategory of sSet spanned by the
Kan complexes and let ® : Kan — H be the functor that sends each morphism
to its intrinsic homotopy class. For any functor F : Kan — C, the following are
equivalent:

(i) For all Kan complexes X, F[SO,X] : F[AI,X] - F[AO, X] is an iso-
morphism in C.

(ii) For all Kan complexes X, F[él,X] : F[AI,X] - F[AO, X] is an iso-
morphism in C.

(iii) For all simplicial sets X, F[O’S,X] : F[AI,X] - F[AO,X] is an iso-
morphism in C.

(iv) Forall parallel pairs f,, f, : X — Y inKan, if f, ~ f,, then F f, = F f,.
(v) F :Kan — C factors through = : Kan — H.
Moreover, the factorisation is unique if it exists.

Proof. The proof is similar to that of proposition 1.3.15. (Use corollary 1.4.16 to
deduce that [A] X ] is a Kan complex if X is.) O

Proposition 1.4.24. Let w : Kan — H be the functor that sends a morphism of
Kan complexes to its intrinsic homotopy class.

(i) The functor m is full, surjective on objects, and preserves finite products
and finite coproducts.

(i) Kan is closed under products for all small families in sSet, and H has
products for finite families.

(iii) Kan and H are cartesian closed categories, and ® : Kan — H is a
cartesian closed functor.

(iv) A morphism f : X — Y in Kan admits an intrinsic homotopy inverse if
andonly if n f : ®X — ®Y is an isomorphism in H.
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Proof. (i). The construction of H as zy[Kan] ensures that 7 is indeed a functor.

(ii). Itis clear from the construction of 7, Z as a coequaliser that y, : Z, —» 7, Z
is a surjection; thus 7t is a full functor. It is obviously surjective on objects,
and it preserves finite products and finite coproducts because 7, preserves finite
products.

(iii). By proposition A.3.17, the class of Kan fibrations is closed under products
for small families, so Kan is as well. By claim (ii), H inherits finite products
from Kan.

(iv). By proposition 1.4.15, [Y, K] is a Kan complex whenever K is, which com-
bined with claim (iii) implies Kan is cartesian closed. Proposition a.2.11 says
we have natural isomorphisms [X X Y, K] = [X,[Y, K]], so it follows that we
have natural bijections

molX XY, K] = my[X,[Y,K]]

for all X, Y, and K in Kan, and this descends along 7 to make H cartesian
closed.

(v). The definition says f : X — Y is a weak homotopy equivalence if and
only if z,[f, K] : n,[Y, K] — 7y[ X, K] is a bijection for all Kan complexes K;
but this is natural in K, so the Yoneda lemma implies this happens if and only if
nf : ®X — wY is an isomorphism in H. [ |

Definition 1.4.25. Let n be an integer, n > —2. An n-connected morphism of
Kan complexes is a morphism f : X — Y in sSet, where X and Y are Kan
complexes, such that the following conditions are satisfied:

e Ifn>—1,then n,f : 7, X — =,Y is a surjection.

e Ifn>0,thenx,f : 7,X — =x,Y is a bijection and, for all vertices x of X,
the homomorphism r, f : 7,(X, x) = 7, (Y, f(x)) is a surjection.

e Ifn > 1, then forall 1 < m < n and all vertices x of X, the homo-

morphism =, f : n,(X,x) = x,(Y, f(x)) is an isomorphism, and =, f :
(X, x) = &, (Y, f(x)) is a surjection.

An oo-connected morphism of Kan complexes is one that is n-connected for all
n>-=2.
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Proposition 1.4.26. The class of oo-connected morphisms of Kan complexes has
the 2-out-of-3 and 2-out-of-6 properties."”

Proof. This is a straightforward check (using lemma a.4.14). ‘

Theorem 1.4.27. Let p : X — Y be a Kan fibration. If X and Y are Kan
complexes, then the following are equivalent:

(i) p: X = Y is atrivial Kan fibration.
(i) p: X — Y is an co-connected morphism of Kan complexes.

Proof. (i) = (ii). Lemma 1.3.27 says n,f : nyX — n,Y is a bijection. Fix
a positive integer n and a vertex x of X. Then proposition 1.4.11 implies that
there exist a morphism s : ¥ — X such that p o s = id, and an intrinsic ho-
motopy « : idy = s o p relative to x (considered as a subcomplex of X), so we
may apply proposition 1.4.21 to deduce that z,p : 7,(X,x) = #,(Y, p(x)) is an
isomorphism.

(ii) = (i). See Theorem 7.10 in [GJ, Ch. I]. O

Corollary 1.4.28. Let X and Y be Kan complexes. If f, f, : X — Y are
intrinsically homotopic, then for all positive integers n and all vertices x, there
exists a commutative diagram of the form below:

”nf()

T (X, x) — 7,(Y, f(x))

| |

ﬂn(X, X) T ﬂn(Y, fl(x))

Proof. We may assume without loss of generality that there is an intrinsic ho-
motopy «a : f, = f,;. Leth: X — [Al, Y] be the corresponding morphism. It is
clear that the coface morphisms &; : A’ — A' are isomorphic to the horn inclu-
sions A; & A' (where k =0if e = 1 and k = 1 if e = 0), so by corollary 1.4.16,
the morphisms [5e, X ] : [Al, Y] - [AO, Y] are trivial Kan fibrations. Thus, we

See definition A.4.13.
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have the following commutative diagram,

(X, x) —Ls 1 (Y, £o(x))

H T”np()

7, (X, x) — z,([A, Y], h(x))

H l”npl

7, (X, %) ——— 7,(Y. f,(x))

where py, p; : [Al, Y] — Y are the morphisms induced by 5L 58 A 5 Al
(respectively). But theorem 1.4.27 implies that ,p, and 7, p; are isomorphisms,
so we are done. [ |

The homotopy groups of a Kan complex are a complete homotopy invari-
ant. More precisely, we have the following analogue of a theorem of Whitehead
[1949]:

Theorem 1.4.29 (Whitehead). Let X and Y be Kan complexes. For any morph-
ism f : X =Y, the following are equivalent:

(i) f : X — Y admits an intrinsic homotopy inverse.
(ii) f : X — Y is an co-connected morphism of Kan complexes.

(iii) f : X — Y admits a factorisation of the form q » j, where j is an anodyne
extension and q is a trivial Kan fibration.

Proof. (i) = (ii). By corollary 1.3.16, 7, f : 7,X — =,Y is a bijection, and
using corollary 1.4.28, it is not hard to see that z,, f : 7,(X,x) = 7,(Y, f(x)) is
an isomorphism for all positive integers » and all vertices x of X.

(ii) = (iii). Proposition 1.4.7 says we may factor f as p o j, where j is an ano-
dyne extension and p is a Kan fibration; note that the domain of p is automat-
ically a Kan complex. By proposition 1.4.18, anodyne extensions of Kan com-
plexes admit homotopy inverses, so i is an co-connected morphism of Kan com-
plexes; hence, applying proposition 1.4.26, we may deduce that p is co-connected
morphism if (and only if) f : X — Y is co-connected. But theorem 1.4.27 says
p is co-connected if and only if it is a trivial Kan fibration, so we are done.
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(iii) = (i). Propositions 1.4.11 and 1.4.18 say that both p and i admits intrinsic
homotopy inverses, so the same is true for f = poi. [ |

Corollary 1.4.30. Leti : X — Y be a monomorphism. If X and Y are Kan
complexes, then the following are equivalent:

(i) i : X = Y is an anodyne extension.
(ii) i : X = Y is an co-connected morphism of Kan complexes.
Proof. (i) = (ii). Apply theorem 1.4.29.

(ii) = (i). If i is an co-connected morphism of Kan complexes, then i admits a
factorisation of the form ¢q o j, where j is an anodyne extension and q is a trivial
Kan fibration. The right lifting property of ¢ implies there is a morphism 4 such
that peh = 1d, and hei = j; in particular, i is a retract of j. Thus, i is an anodyne
extension. [ |

Theorem 1.4.31. Let Kan be the category of Kan complexes. Then Kan is a
category of fibrant objects, where

® the weak equivalences are the co-connected morphisms,

e the fibrations are the Kan fibrations, and

e the trivial fibrations are the trivial Kan fibrations.
Moreover, this makes Kan a saturated homotopical category.

Proof. First, note that theorem 1.4.27 and Whitehead’s theorem (1.4.29) imply
that the fibrations that are weak equivalences are precisely the trivial Kan fibra-
tions. Thus, we may apply proposition A.3.17 to deduce that axioms B and C
are satisfied. Axiom E is satisfied by definition. Axiom A is proposition 1.4.26;
moreover, Kan is a saturated homotopical category, by proposition 1.4.24 and
lemma 3.1.8. Finally, using corollary 1.4.16, it is not hard to see that [Al, X ] is
(the object part of) a path object for X (provided X is a Kan complex), so axiom
D is also satisfied. [ |
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Proposition 1.4.32. Let p: X - Y and p' : X' = Y’ be Kan fibrations. Given
a pullback diagram in sSet of the form below,

X’L)X

v K

Y/T>Y

ifg :Y' — Y is an co-connected morphism of Kan complexes, then so is f :
X' - X.

Proof. In view of theorem 1.4.31, this is a special case of proposition 3.7.15. |l

Lemma 1.4.33. Leti : Z — W be a monomorphism of simplicial sets and let
f : X = Y be a morphism of Kan complexes. Consider the following commut-
ative diagram in sSet,

(W, X] [i,X]
~ \)

LG, f) — [Z,X]

[ e

w.f1

where the square in the lower right is a pullback square.

() If f : X = Y is an co-connected morphism of Kan complexes, then so is
q:[W,X]— L3, f).

(i) Ifi: Z — W isananodyne extension of simplicial sets, thenq : [W, X] —
L(i, f) is an co-connected morphism of Kan complexes.

Proof. Since X and Y are Kan complexes, proposition 1.4.15 (plus proposi-
tion A.3.17) implies that every object in the commutative diagram is a Kan com-
plex and that [i, X] : [W,X] = [Z,X]and [i,Y] : [W,Y] = [Z,Y] are Kan
fibrations.

(i). Suppose f : X — Y is an oo-connected morphism of Kan complexes. Re-
calling paragraph 1.3.4, we see that theorem 1.4.27 and Whitehead’s theorem
(1.4.20) imply that [W, f1: [W, X] » [W,Y]and [Z, f] : [Z,X] — [Z,Y]
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are also oo-connected. Proposition 1.4.32 then says that the morphism L(i, f) —
[W,Y] is also co-connected, so we may use the 2-out-of-3 property (proposi-
tion 1.4.26) to deduce that ¢ : [W, X] — L(i, f) is indeed oco-connected.

(ii). Suppose i : Z — W is an anodyne extension of simplicial sets. Then
proposition 1.4.15 says [i, X] : [W,X] - [Z,X] and [i,Y] : [W,Y] —
[Z,Y] are trivial Kan fibrations, and proposition A.3.17 says that the morph-
ism L(i, f) — [Z, X] is also a trivial Kan fibration. Thus, theorem 1.4.27 and
proposition 1.4.26 imply that g : [W, X] — L(i, f) is indeed co-connected. W

Lemma 1.4.34. Let f : X — Y be a morphism be a morphism in sSet, let L be
a simplicial set, and let K C L and J C K be simplicial subsets. If Y is a Kan
complex and f : X — Y has the homotopical right lifting property with respect
tobothJ - K and K < L, then f : X — Y also has the homotopical right
lifting property with respect to J < L.

Proof. See Lemma 3.4 in [Dugger and Isaksen, 2004]. ]

Theorem 1.4.35. Let f : X — Y be a morphism of Kan complexes. The fol-
lowing are equivalent:

(i) f: X — Y is an co-connected morphism of Kan complexes.

(ii) f : X — Y has the homotopical right lifting property with respect to all
monomorphisms between finite simplicial sets.

(iii) f : X — Y has the homotopical right lifting property with respect to all
boundary inclusions 0A" & A'.

Proof. See Proposition 4.1 in [Dugger and Isaksen, 2004]. O

The Kan—Quillen model structure

Prerequisites. §§1.3, 1.4, 3.7, 4.1, 5.2, A.3.

In [1967], Quillen constructed an axiomatic framework for doing homotopy
theory in abstract categories, which he called ‘closed model categories’, and
showed that sSet can be endowed with a model structure such that the result-
ing homotopy theory is equivalent in a strong sense to the homotopy theory of
topological spaces.
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The following characterisation of weak homotopy equivalences appears in
[Quillen, 1967, Ch. 11, §3]; we follow Joyal and Tierney [2008] in taking it as
our definition. Recalling that z, : sSet — Set from proposition 1.2.7 is the
functor sending a simplicial set X to the set x, of its connected components,

Definition 1.5.1. A weak homotopy equivalence of simplicial sets is a morph-
ism f : W — Z such that, for every Kan complex K, the induced map

molf. K] : nplZ, K] = 7y[W, K]
is a bijection of sets.

Lemma 1.5.2. sSet, with the class of weak homotopy equivalences, is a saturated
homotopical category. In particular, the class of weak homotopy equivalences
of simplicial sets has the 2-out-of-3 property and is closed under retracts.

Proof. Apply lemma 3.1.8. H

Lemma 1.5.3. Let f,,, f; : X — Y be morphisms in sSet. Assuming f, ~ f,,
fo is a weak homotopy equivalence if and only if f, is a weak equivalence.

Proof. If fy ~ fy, then [fo, K| ~ [f. K] (by lemma 1.3.9), so =y [f,, K| =
Ty [ fi. K ] (by corollary 1.3.16), and therefore one is a bijection if and only if the
other is. [ |

Proposition 1.5.4 (Formal Whitehead theorem).
(i) If a morphism in sSet admits an intrinsic homotopy left inverse and an
intrinsic homotopy right inverse, then it is a weak homotopy equivalence.

(ii) A morphism in Kan is a weak homotopy equivalence if and only if it admits
an intrinsic homotopy inverse.

Proof. (i). If f : X — Y admits an intrinsic homotopy left inverse (resp. an
intrinsic homotopy right inverse), then z,[ f, K] : 7y [Y, K] — 7,[X, K] is in-
jective (resp. surjective) for all simplicial sets K. In particular, f : X — Y is
a weak homotopy equivalence as soon as it has both an intrinsic homotopy left
inverse and an intrinsic homotopy right inverse.

(ii). Let f : X — Y be a weak homotopy equivalence of Kan complexes.
The definition says f : X — Y is a weak homotopy equivalence if and only
if mylf,K] : my[Y,K] = my[X, K] is a bijection for all Kan complexes K,
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so (recalling remark 1.3.7) we may obtain an intrinsic homotopy left inverse for
f X — Y bytaking K = X,say g : Y — X. By naturality, the following
diagram commutes:

molf,Y]
Y, Y] —— my[X, Y]

ﬂo[Y,g]l lﬂo[Y»g]

mlY, X] ——= 7,[X, X]

molf . X]
ﬂo[Y,f]l lﬂo[X,f]
Y, Y] —> X,Y
7[()[ 9 ] ﬂo[f,Y] 7[0[ ’ ]

Thus, by chasing the homotopy class of id,, we deduce that g : ¥ — X is also
an intrinsic homotopy right inverse for f : X — Y, as required. [ |

Corollary 1.5.5. Let F : sSet — C be a functor. If F sends weak homotopy
equivalences to isomorphisms in C, then for any parallel pair f,, f, : X = Y in
sSet, f, ~ f, implies F f, ~ F f,.

Proof. Apply propositions 1.3.15 and 1.5.4 to remark 1.3.14. [ ]
Lemma 1.5.6. Anodyne extensions are weak homotopy equivalences.

Proof. Ifi : X — Y is an anodyne extension, then [i, K] : [Y, K] — [X, K] is
a trivial Kan fibration for all Kan complexes K, by corollary 1.4.16. Applying
lemma 1.3.277, we then deduce that i : X — Y is a weak homotopy equivalence.

Proposition 1.5.7. There exist a functor R : sSet — sSet and a natural trans-
formation i : idg, = R satisfying the following condition:

e For all simplicial sets X, RX is a Kan complex and iy : X — RX is an
anodyne extension.

Moreover, any such functor R preserves and reflects weak homotopy equival-
ences.

Proof. Such (R, i) can be constructed using Quillen’s small object argument
(theorem 0.5.12); see also proposition 4.1.24. Given any such (R, i), consider
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the following commutative diagram in sSet:

X —*5 RX

1l

Y —— RY
ly

Using proposition 1.5.12 and the 2-out-of-3 property of weak homotopy equival-
ences, we see that f : X — Y is a weak homotopy equivalence if and only if
Rf : RX — RY is a weak homotopy equivalence. [ |

Definition 1.5.8. A weakly contractible simplicial set is a simplicial set X for
which the unique morphism X — A” in sSet is a weak homotopy equivalence.

REMARK 1.5.9. Proposition 1.5.4 implies that every contractible simplicial set is
also weakly contractible.

Proposition 1.5.10. Let X be a Kan complex. The following are equivalent:
(i) X is contractible (as a simplicial set).
(ii) X is weakly contractible (as a simplicial set).
(iii) X — A is a trivial Kan fibration.
Proof. (i) = (ii). Apply proposition 1.5.4.
(ii) = (iii). Use theorem 1.4.27.
(iii) = (i). This is a special case of proposition 1.4.11. [ |

REMARK 1.5.11. Not all weak homotopy equivalences admit an intrinsic homo-
topy inverse. For instance, if X is the nerve of the following category,

then every morphism A’ — X is an anodyne extension (because the class of ano-
dyne extensions is closed under pushout and transfinite composition), but none
of them admit an intrinsic homotopy right inverse. In particular, X is weakly
contractible but not contractible.
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Proposition 1.5.12.
(i) A Kan fibration p : X — Y is trivial if and only if it is a weak homotopy
equivalence.

(ii)) A monomorphismi : Z — W is an anodyne extension if and only if it is
a weak homotopy equivalence.

Proof. (i). See Proposition 3.4.1 in [Joyal and Tierney, 2008].

(ii). See Lemma 7 in [Quillen, 1967, Ch. II, § 3] or Proposition 3.4.2 in [Joyal
and Tierney, 2008]. ]

Theorem 1.5.13. sSet, regarded as a sSet-enriched category via its cartesian
closed structure, is a simplicial®™ strongly (NO, Nl)-combinatorial model cat-
egory where

e the cofibrations are the monomorphisms in sSet,

e the fibrations are the Kan fibrations, and

® the weak equivalences are the weak homotopy equivalences.
This is the Kan—Quillen model structure on simplicial sets.

Proof. 1t is clear that there exist countable sets of generating cofibrations and
generating trivial cofibrations whose domains and codomains are finite simpli-
cial sets, and it is not hard to see that there are only finitely many morphisms
between any two finite simplicial sets. Thus it suffices to verify that sSet is a
simplicial model category.

We know sSet has limits and colimits for all small diagrams and is a cartesian
closed category, so it satisfies axioms CM1 and SMO. Using the definition of
weak homotopy equivalence given above, lemma 1.5.2 implies axiom CM2 is
satisfied. Proposition 1.4.7 plus theorem 4.1.12 then shows that the announced
cofibrations, fibrations, and weak equivalences do indeed constitute a model
structure on sSet. Finally, we note that proposition 1.4.15 is precisely the condi-
tion required by axiom SM7. [ ]

Proposition 1.5.14. Let W be the full subcategory of [2,sSet] spanned by the
weak homotopy equivalences. Then W is closed under colimits for small filtered
diagrams in [2, sSet].

See definition 2.4.1.
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Proof. Since sSet is a strongly (NO, N, )—combinatorial model category, we may
apply corollary 5.2.16. [ |

Corollary 1.5.15. Let A be the full subcategory of [2, sSet] spanned by the ano-
dyne extensions. Then A is closed under colimits for small filtered diagrams in
[2,sSet].

Proof. Theorem 0.2.13 implies that the full subcategory of [2, sSet] spanned by
the monomorphisms is closed under colimits for small filtered diagrams, so the
claim is a consequence of propositions 1.5.12 and 1.5.14. [ |

Proposition 1.5.16. Let (fl. X, =Y, | i € I) be a small family of morphisms
of simplicial sets. The following are equivalent:

(i) Each f, : X; = Y, is a weak homotopy equivalence.

(ii) The coproduct 1., f; : l,c; X: = L, Y is a weak homotopy equival-
ence.

Proof. Proposition 1.4.7 says we can factor each f; : X, — Y, as an anodyne
extension followed by a Kan fibration, and since the class of anodyne extensions
is closed under coproducts, by lemma 1.5.2 and proposition 1.5.12, it suffices to
prove the claim in the special case where each f; : X, — Y, is a Kan fibration;
but this was shown by corollary 1.4.14. [ |

Proposition 1.5.17. Let f : W — Z be a weak homotopy equivalence of sim-
plicial sets and let X be any simplicial set.

(i) The morphism fXidy : W XX — Z XX is a weak homotopy equivalence.

(ii) If X is a Kan complex, then [, X] : [Z, X] — [W, X] is a weak homo-
topy equivalence.

(iii) If W and Z are Kan complexes, then [ X, f]: [ X, W] — [X, Z]isaweak
homotopy equivalence.

Proof. (i). We must show that, for all Kan complexes K, the induced map
mo|f Xidy, K] 1 m[Z x X, K] — mo[W x X, K]
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is a bijection. However, we have a commutative diagram

o [idyx % f K]

7l Z x X, K] 22 2 [W x X, K]

-| |2

molZ,[X, K]] m mo[W,[X, K]]
and (by corollary 1.4.16) [ X, K] is a Kan complex, so z,[ f, [ X, K]] is a bijection;
hence, 7, [ fxidy, K ] is indeed a bijection for all Kan complexes K.

(ii). If X is a Kan complex, then corollary 1.4.16 says that [—, X] is a right
Quillen functor; but every simplicial set is cofibrant, so Ken Brown’s lemma
(4.3.6) implies [—, X] preserves weak homotopy equivalences.

(iii). Similarly, for any simplicial set X, [ X, —] is a right Quillen functor, and
so Ken Brown’s lemma implies [ X, —] preserves weak homotopy equivalences
between Kan complexes. [ |

Theorem 1.5.18. sSet” is a category of fibrant objects, where
e the weak equivalences are the weak homotopy equivalences,
e the fibrations are the monomorphisms in sSet, and
e the trivial fibrations are anodyne extensions.

Proof. Recall that proposition 1.5.4 says the anodyne extensions are precisely the
monomorphisms (in sSet) that are weak homotopy equivalences. Thus, we may
apply proposition A.3.17 to deduce that axioms B and C are satisfied. It is easy
to verify axiom E. Axiom A is lemma 1.5.2. Finally, using proposition 1.5.17, it
is not hard to see that A' x X (in sSet) is (the object part of) a path object for X
(in sSet °?), so axiom D is also satisfied. [ ]

Lemma 1.5.19. Given a commutative diagram in sSet of the form below,
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ifig : Xy = Yyandi, : X, = Y, are monomorphisms, f : X, - X, and
g 1 Y, = Y, are anodyne extensions, and h : T, — T, is a weak homotopy
equivalence, then the induced morphism

T,u* Y, - T, UM Y,
is a weak homotopy equivalence.
Proof. In view of theorem 1.5.18, this is (the formal dual of) lemma 3.7.29. |l

Proposition 1.5.20.
(i) Equipping Set with the discrete model structure,” the adjunction

7, - disc : Set — sSet

is a Quillen adjunction."""
(ii) For everymap f : X — Y, the morphism disc f : disc X — discY isa
Kan fibration.

(iii) The functor n, : sSet — Set sends weak homotopy equivalences to bijec-
tions.

Proof. (i). Since every map is a cofibration in the discrete model structure on
Set, it is enough (by proposition 4.3.2) to show that z, : sSet — Set sends
anodyne extensions in sSet to bijections; and by proposition 1.4.12, it suffices to
show that the maps 7yA; — 7,A" induced by the horn inclusions A} & A". But
this is an immediate consequence of the fact that each A} and A" is connected.

(ii). Every map is a fibration in the discrete model structure on Set, and disc :
Set — sSet is a right Quillen functor, so each disc f : disc X — disc Y isindeed
a Kan fibration.

(iii). Every simplicial set is cofibrant, so this is a consequence of Ken Brown’s
lemma (4.3.6). [ |

See example 4.1.5.
See definition 4.3.1.
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Proposition 1.5.21. Let W be a subcategory of sSet that satisfies these condi-
tions:

e Every identity morphism in sSet is in W.

e W has the 2-out-of-3 property in sSet.

e For every simplicial set X, the projection py : X X A' — X isin W.
Then:

(i) Given a parallel pair f,, f, : X = Y in sSet and an intrinsic homotopy
a: fo = f\, the morphism f is in W if and only if f, is in W.

(ii) If W has the special 2-out-of-4 property, then every trivial Kan fibration
isin W.

(iii) If W is closed under retracts or has the 2-out-of-6 property in sSet, then
every trivial Kan fibration is in W.

Proof. (i). This follows from remark 1.3.2.

(ii). This is a special case of proposition 5.4.34.

(iii). Apply lemma a.4.17. [ |
Lemma 1.5.22. Let W be a subcategory of sSet that satisfies these conditions:

(a) The class of monomorphisms that are in W is closed under pushout, com-
position, and retracts.

(b) W has the 2-out-of-3 property in sSet, and for all finite simplicial sets X,
the morphismid : X — X isin W.

(c) For all natural numbers n, the unique morphism X' — A0 is in W.
Then every horn inclusion A} < A'is in W.

Proof. We proceed by induction on n. For n = 1, observe that conditions (a)
and (b) together imply that every isomorphism of finite simplicial sets is in W,
and so we may use the 2-out-of-3 property to deduce that the horn inclusions
Ay A'and A} & A arein W.
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Now, suppose that the horn inclusions A}’ < A" are in W for all m < n.
It is not hard to see that the horn A} can be constructed by adjoining m copies
of A™ along various horn inclusions (for 0 < m < n), so conditions (a) and (b)
imply that the /-th vertex A’ — A} is in W. Condition (c) says that the unique
morphism A" — A’ is in W, so we can then use the 2-out-of-3 property to deduce
that the horn inclusion A} < A" isin W. [ |

Proposition 1.5.23. Let W be a subcategory of sSet that satisfies these condi-
tions:

(a) The class of monomorphisms that are in W is closed under pushout, transfin-
ite composition, and retracts.

(b) W has the 2-out-of-3 property in sSet, and for all simplicial sets X, the
morphismid : X — X isin W.

(c) For all natural numbers n, the unique morphism A* — A is in W.
Then every weak homotopy equivalence is in W.

Proof. Lemma 1.5.22 says that the horn inclusions are in W, so condition (a)
implies that all anodyne extensions are in W. Notice that, if p : X — Y isatrivial
Kan fibration, then there is a morphism s : Y — X such that po s = id,, and
by proposition 1.5.12, s : ¥ — X is an anodyne extension. Hence, condition (b)
implies that all trivial Kan fibrations are in W as well. But every weak homotopy
equivalence factors as an anodyne extension followed by a trivial Kan fibration
(by proposition 1.5.12), so every weak homotopy equivalence is in W. [ |

Corollary 1.5.24. The subcategory of weak homotopy equivalences in sSet is
the smallest subcategory satisfying the conditions in the proposition.

Proof. Proposition 1.5.12 says that the class of monomorphisms that are weak
homotopy equivalences is precisely the class of anodyne extensions, which has
the required closure properties by definition. Thus, the class of weak homotopy
equivalences satisfies condition (a), and the remaining conditions are easily veri-
fied. [ |

Corollary 1.5.25. Let M be a derivable category. If F : sSet — M is a functor
that preserves cofibrations and colimits for small diagrams, then the following
are equivalent:
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(i) F : sSet — M preserves trivial cofibrations.
(ii) F :sSet — M preserves weak equivalences.

(iii) For each natural number n, the morphism F(A") — F (AO) is a weak equi-
valence in M.

Proof. (i) = (ii). This is Ken Brown’s lemma (4.3.6).

(ii) = (iii). The unique morphism A" — A” is a weak homotopy equivalence, so
its image under F : sSet — M must be a weak equivalence in M.

(iii) = (i). Let W be the subcategory of sSet consisting of those morphisms that
are sent to weak equivalences by F : sSet — M. Since monomorphisms are
sent to cofibrations in sSet, proposition a.3.17 implies that the class of mono-
morphisms that are in W is closed under pushout, transfinite composition, and
retracts. Axiom CM2 (for M) and lemma A.4.14 imply that W has the 2-out-of-3
property, and it is clear that every isomorphism in sSet is also in W. Thus, the
conditions of proposition 1.5.23 are satisfied. [ |

Proposition 1.5.26. Let H be the homotopy category of Kan complexes.

(i) For each simplicial set X, the functor my[X,—] : Kan — Set factors
through 1t : Kan — H as a representable functor on H.

(ii) The functor m : Kan — H extends to a functor  : sSet — H that sends
weak homotopy equivalences to isomorphisms, and this extension is unique
up to unique isomorphism.

Proof. (i). Given i : X — RX as in proposition 1.5.7, the maps 7,[i, K] :
my[RX, K] — my[ X, K] are bijections (natural in K), so we may as well assume
X is a Kan complex. Proposition 1.4.23 and remark 1.3.7 then imply that the
functor zy[ X, —] : Kan — Set factors through t : Kan — H and the resulting
functor H — Set is isomorphic to H(st X, —).

(ii). Formally, what we seek is a functor F : sSet — H such that, for all Kan
complexes Y and K,
H(FY,nK) = n,[Y, K]

and, for all weak homotopy equivalences f : X — Y in sSet, the induced
hom-set map H(F f,nK) : H(FY,nK) — H(FX,nK) is a bijection for all
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Kan complexes K. Clearly, for any such F and any simplicial set X, there must
be bijections
H(FX,nK) = n)[X, K]

that are natural in K, but by claim (i), this is representable as a functor H — Set
for each X, so we can certainly construct such a functor F, and it is unique up
to unique isomorphism.

(iii). This is a special case of proposition 5.5.16; but see also proposition 1.7.16.

Corollary 1.5.27. The inclusion H < Ho sSet admits a left adjoint. [ |

REMARK 1.5.28. Fixing a fibrant replacement functor R : sSet — sSet as in
proposition 1.5.7, we have the following explicit construction of Ho sSet (i.e. the
localisation of sSet with respect to weak homotopy equivalences):

* The objects are simplicial sets.
* For any two simplicial sets X and Y, HosSet(X,Y) = zn)[RX, RY].
* Composition and identity morphisms are constructed as in H.

* The localising functor y : sSet — HosSet inverting weak homotopy
equivalences is the one sending f : X — Y to the homotopy class of
Rf : RX — RY.

The homotopy category of simplicial sets is the category Ho sSet. Of course,
it is equivalent to H.

Definition 1.5.29. Two simplicial sets have the same weak homotopy type if
they are isomorphic in Ho sSet.

REMARK 1.5.30. Freyd [1970] proved that H is not a concrete category, i.e. that
there does not exist a faithful functor H — Set; in particular, H cannot be an
accessible category. Nonetheless, the notion of weak homotopy type is stable
under universe enlargement in the following sense:

(i) The property of being a weak homotopy equivalence is universe-independ-
ent: indeed, it is clear that the property of being a trivial Kan fibration
is universe-independent, so we may apply remark 0.5.18 to the (trivial
cofibration, Kan fibration) factorisation system to test whether or not a
morphism is a weak homotopy equivalence in a universe-independent way.
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1.6. Bisimplicial sets and cosimplicial simplicial sets

(ii) Moreover, the property of being a Kan complex is universe-independent,
and 7, : sSet — Set is a left adjoint between locally presentable categor-
ies, so the hom-set H(K, L) depends only on the choice of Kan complexes
K and L and does not depend on the choice of universe. Similarly, whether
or not K and L have the same homotopy type is universe-independent.

(iii) Thus, for any two simplicial sets X and Y, the hom-set HosSet(X,Y) is
well-defined up to natural bijection independently of the choice of uni-
verse, and whether or not X and Y have the same weak homotopy type is
also universe-indepdent.

Bisimplicial sets and cosimplicial simplicial sets

Prerequisites. §§1.1, 1.3, 1.5, 4.3, 4.6, 5.2, A.5, A.6.

Definition 1.6.1. A bisimplicial set is a simplicial object in sSet, i.e. a functor
A°? — sSet, and a morphism of bisimplicial sets is a natural transformation of
such functors. We write ssSet for the category of bisimplicial sets.

Definition 1.6.2. Let X, be a bisimplicial set and let n be a natural number. The
n-th column of X, is the simplicial set (X, ),, and the m-th row of X, is the
simplicial set (X ,)

m*

Definition 1.6.3. A Reedy weak homotopy equivalence of bisimplicial sets is
a morphism in ssSet that is a weak homotopy equivalence in each column, i.e.
fo 1 X, = Y, such that each f, : X, = Y, is a weak homotopy equivalence of
simplicial sets.

Theorem 1.6.4. ssSet is a combinatorial model category where

e the cofibrations are the monomorphisms in ssSet,

e the fibrations are the Reedy fibrations, and

o the weak equivalences are the Reedy weak homotopy equivalences.
This is the Reedy model structure on bisimplicial sets.
Proof. Given theorem 4.6.15, it suffices to verify the following:

(i) The Reedy model structure is cofibrantly generated.
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(ii) The Reedy cofibrations are precisely the monomorphisms in ssSet.
For this, see Theorems 15.7.6 and 15.8.7 in [Hirschhorn, 2003]. Il

Corollary 1.6.5. The Reedy model structure on ssSet is the injective model struc-
ture on the functor category [A?, sSet]. [ |

Definition 1.6.6. The realisation of a bisimplicial set X, is the simplicial set
|X .| defined by the following coend in sSet:

[n]:A
= / A'x X,

Lemma 1.6.7. Let X, be a bisimplicial set. There is a canonical comparison

| X

morphism
| X

— lim X,
—
AP
and it is natural in X ,.

Proof. The unique natural transformation A®* = A1 induces a natural morphism

[n]:A [n]:A
/ A'x X, — / 1xX,

and it is not hard to verify that there is a natural isomorphism

[n]:A
/ I xX,=limX,
—
A

so we are done. [ |
Lemma 1.6.8. Let X, be a bisimplicial set.
(i) There is an isomorphism

|X.

=~ diag X

where diag X is the simplicial set defined by (diag X), = (Xn)n, and this
isomorphism is natural in X,.

(ii) In particular, there is a canonical morphism

XO - |Xo

and this is natural in X ,.
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Proof. The Yoneda lemma for coends (proposition A.6.18) yields natural bijec-
tions of the form below:

[n]:A
/ A(m], [nD) X (X)) = (X)) m

Thus, [X,| = diag X. [ |

Corollary 1.6.9.

() If X, is a bisimplicial set whose columns are discrete,''"! then the realisa-
X

tion

is naturally isomorphic to the simplicial set (X .)0.

(ii) If X, is a bisimplicial set whose rows are discrete, then the realisation |X .

is naturally isomorphic to the simplicial set (XO) . [ ]

Theorem 1.6.10.
(i) The functor |—| : ssSet — sSet has left and right adjoints.

(ii) |—| sends Reedy weak homotopy equivalences in ssSet to weak homotopy
equivalences in sSet.

(iii) Equipping ssSet with the Reedy model structure and sSet with the Kan—
Quillen model structure, |—| : ssSet — sSet is a left Quillen functor.

Proof. (i). Using the isomorphism ssSet = [A°® x A°? Set] and lemma 1.6.8,
we may identify |—| as the functor 6 induced by the diagonal embedding 6 :
A - A X A, and corollary A.5.17 says 6™ has left and right adjoints.

(ii). See Theorem 15.11.11 in [Hirschhorn, 2003], or Proposition 1.7 in [GJ,
Ch. IV].

(iii). From claims (i) and (ii) it follows that |—| is a left Quillen functor; altern-
atively, see Proposition 3.6 in [GJ, Ch. VII]. O]

Corollary 1.6.11. If X, is a bisimplicial set such that every face and degeneracy

operator is a weak homotopy equivalence, then the canonical morphism X, —
X

is a weak homotopy equivalence.

Recall definition 1.2.8.
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Proof. Let T, be the bisimplicial set defined by T, = X|), so that the rows of T,
are discrete simplicial sets. Then there is a unique morphism 7, — X, whose
component in degree o is id : X, = X, and the hypothesis (plus the 2-out-
of-3 property) implies that it is a weak homotopy equivalence. We then apply
corollary 1.6.9 and theorem 1.6.10. [ |

The following result is useful for constructing subdivision functors.

Proposition 1.6.12. Let D* : A — sSet be a diagram, let p* : D* = A°
be a natural transformation, let E : sSet — sSet be the functor defined by
E(X), =sSet(D",X), and letiy : X — E(X) be the natural morphism defined
by (iX)n = sSet(p", X) (where we have identified sSet(A", X)) with X, via the
Yoneda lemma).

(i) Given a parallel pair f, f, : X = Y of morphisms in sSet, if f, ~ f,,
then E(fo) ~ E(fl) as well.

(ii) If each D" is a contractible simplicial set, then i : 1d, = E is a natural
weak homotopy equivalence.

Proof. (i). We may assume (by induction) that we have an intrinsic homotopy
fo= fi:leth: A'XX — Y be any morphism such that h (6} Xidy ) = f, and
ho (5? X idX) = f, (suppressing comparison isomorphisms). Since p* : D* =
A* is a natural transformation, the following diagram commutes:

o 0 0
D’ —— A

1 1
o] s

D! 2 A

2] [
D’ —— A
P
Thus, E (Al) has an edge connecting the vertices 611 op’: D" — A' and 5(1) op’:
D° — Al. It is not hard to see that E : sSet — sSet preserves products, so by
considering E(h) : E(A') x E(X) — E(Y), we see that there is an intrinsic
homotopy E ( fo) > E ( fi ) , as required.

(ii). The following is a generalisation of the proof of Proposition 2.3.19 in [Cis-
inski, 2006].
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Consider the following commutative diagram in Set,

sSet(A", X) —— sSet(A" X A", X)) «—— sSet(A", X)
() H sSet(idAnXp'”)l lsSet(p’",X)
sSet(A", X) —— sSet(A' X D", X) «—— sSet(D", X)

where the horizontal arrows are induced by the evident projections. The diagram
is natural in » and m, so defines a commutative diagram in ssSet, which (by
the Yoneda lemma) in the n-th column can be identified with the commutative
diagram in sSet shown below,

disc X, — [N X] e——— X

H o [

disc X, — E([A", X]) «— E(X)

and in the m-th row can be identified with the following commutative diagram

in sSet:
X — [A", X] «—— disc X,

H | [ascti

X — [D", X] «—— disc E(X),,

Since A" (resp. D™) is contractible by corollary 1.3.11 (resp. by hypothesis) and
the functor [—, X] : sSet — sSet preserves intrinsic homotopy equivalences, the
horizontal arrows in the left half of (%) define row-wise weak homotopy equival-
ences of bisimplicial sets. Similarly, since E : sSet — sSet respects intrinsic
homotopy, the horizontal arrows in the right half of (x) are column-wise weak
homotopy equivalences of bisimplicial sets.

Now, apply the realisation functor |[—| : ssSet — sSet to the diagram in ssSet
defined by (). By lemma 1.6.8, we obtain a commutative diagram in sSet of the

form below,
X Y X
X zZ E(X)

and by theorem 1.6.10, every horizontal arrow in the above diagram is a weak
homotopy equivalence. We may then use the 2-out-of-3 property of weak homo-
topy equivalences to deduce that iy, : X — E(X) is a weak homotopy equival-
ence. H
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Definition 1.6.13. A cosimplicial simplicial set is a cosimplicial object in sSet,
i.e. a functor A — sSet, and a morphism of cosimplicial simplicial sets is a
natural transformation of such functors. We write csSet for the category of
cosimplicial simplicial sets.

Definition 1.6.14. Let X* be a cosimplicial simplicial set and let » be a natural
number. The n-th column of X* is the simplicial set (X"),, and the n-th row of
X* is the cosimplicial set (X°),.

Definition 1.6.15. A Reedy weak homotopy equivalence of cosimplicial sim-
plicial sets is a morphism in csSet that is a weak homotopy equivalence of sim-
plicial sets in each column, i.e. a morphism f°* : X* — Y*° such that each
f" X" - Y"is a weak homotopy equivalence.

Lemma 1.6.16. Let X* be a cosimplicial simplicial set. The limit lim X* in

sSet can be computed as the equaliser of the coface operators 8°,6' : X° — X ..
Proof. This is a straightforward exercise. O

Definition 1.6.17. The maximal augmentation of a cosimplicial simplicial set
X* is the limit l(iilA X°.

Theorem 1.6.18. csSet is a combinatorial model category where

e the cofibrations are the monomorphisms in csSet that induce isomorph-
isms of maximal augmentations,

e the fibrations are the Reedy fibrations, and
® the weak equivalences are the Reedy weak homotopy equivalences.
This is the Reedy model structure on cosimplicial simplicial sets.
Proof. Given theorem 4.6.15, it suffices to verify the following:
(i) The Reedy model structure is cofibrantly generated.
(ii) The Reedy cofibrations are precisely the announced ones.
For this, see Theorems 15.7.6 and 15.9.9 in [Hirschhorn, 2003]. ]

Corollary 1.6.19. The standard simplex functor A®* : A — sSet is a Reedy-
cofibrant cosimplicial simplicial set.
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Proof. The maximal augmentation of A® is empty, so by theorem 1.6.18, A® is
Reedy-cofibrant. H

Definition 1.6.20. The totalisation of a cosimplicial simplicial set X* is the
simplicial set Tot X* defined by the following end in sSet:

Tot X* =/ [A", X"]
[n]:A

Lemma 1.6.21. Let X°* be a cosimplicial simplicial set. There is a canonical
comparison morphism
lim X* — Tot X*
b
A
and it is natural in X°.

Proof. The unique natural transformation A®* = A1 induces a natural morphism

/ [1, X"] - [A", X"]
[n1:A [nl:A

and it is not hard to verify that there is a natural isomorphism

[n]:A
/ IXX"~2limX"*
Y

so we are done. [ |

Lemma 1.6.22. Let Y* be a cosimplicial simplicial set. There is a bijection

sSet(X, TotY*) = / Set(X,,,(Y™),,)
[m]:A

for each simplicial set X, and this bijection is natural in X and Y.

Proof. Using remark a.6.5, the interchange law for ends (theorem a.6.17), and
Yoneda lemma for ends (proposition A.6.18), we obtain the following natural
bijections:

sSet<X,/ [A",Y"]> E/ sSet(X,[A", Y"])
[n]:A [n]:A

E/ sSet(X X A", Y")
[n]:A
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2

/ / Set(X,, x A([m], [n]),(Y"),,)
[n]:A J [m]:A

~ / / Set (X,,, Set (A([ml, [n]), (Y"),,))
[n]:A J [m]:A

~ / Set< Set (A([m], [n]),(Y"),, )>
[m]:A [n]A

= / Set(X,,,(Y"™),,) [

Lemma 1.6.23. Let Y* be a cosimplicial simplicial set. If the coface and code-
generacy operators of Y * are isomorphisms (of simplicial sets), then

TotY* = Y?
naturally in Y°.

Proof. Recalling remark A.6.5,
(TotY*), = / Set (A%, (Y"™),)
[m]:A

and since the coface and codegeneracy operators of Y* are isomorphisms, we
may as well replace (Y™),, with (Y°),,; but then the Yoneda lemma for ends
(proposition A.6.18) gives a natural bijection

[ set(s, (1)) = (r),

so we are done. [ |

Lemma 1.6.24. Let Y*° be a cosimplicial simplicial set. If each Y" is discrete as
a simplicial set, then TotY * is also discrete.

Proof. Recalling remark A.6.5, it suffices to verify that the sets
H, = Set (A%, (Y™),,)
[m]:A

do not depend on # (in the evident sense). Since each Y™ is discrete, we may as
well replace (Y™),, with (Y™),; but

/ Set (A, (Y™)) = lim Set (4, (Y"))
[m]:A

[m]:A
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and AP is sifted (by remark A.5.35), so theorem a.5.36 implies that the diagonal
functor A : A — A X A is coinitial, thus:

H, = lim Set (A, (Y"),)
[m]:A
=~ lim lim Set (A%, (Y'),)

— —
[11:A [m]:A

~ 1: . n !

= l(lnSet( lim A, (Y )0>
[/]:A [m]:A°P

Hence, by proposition 1.2.7,

~ 11 i
H,= l(in(y )o
UL:A
and this is natural in n, so Tot Y* is indeed discrete. [ |

Lemma 1.6.25. Let X, be a bisimplicial set and let Y be a simplicial set. Then
there is a canonical isomorphism

[Ix.

Y] = Tot [X,,Y]
and it is natural in X, and Y .

Proof. By proposition A.6.11, we have the following natural isomorphisms:

[n]:A
Y] = [/ A"xXn,Yl

:/M [A"% X,.Y]
= [ &[]

= Tot [X,.Y] u

[IX.

Theorem 1.6.26.
(i) The functor Tot : csSet — sSet has a left adjoint.

(ii) For each simplicial set X and each cosimplicial simplicial set Y*, the ca-
nonical comparison morphism Tot[X,Y*] — [ X, Tot Y *] is an isomorph-
ism.
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(iii) Equipping csSet with the Reedy model structure and sSet with the Kan—
Quillen model structure, Tot : csSet — sSet is a right Quillen functor.

Proof. (i). It is straightforward to check that the functor sending a simplicial
set X to the cosimplicial simplicial set A®* X X is a left adjoint for Tot; see also
proposition A.6.15.

(ii). By proposition A.6.11, we have the following natural isomorphisms:

[X,TotY*] = lX, / [A”,Y”]]
[n]:A

= / [X, [A% Y]]
[n]:A

- / [, [X, Y]]
[n]:A
=Tot[X,Y"*]

(iii). See Theorem 18.6.7 in [Hirschhorn, 2003]. ]

Subdivision and extension

Prerequisites. §§1.1, 1.2, 1.3, 1.4, 1.5, 1.6.

9 1.7.1. Let P" be the partially ordered set of non-empty subsets of [n] and,
for each monotone map f : [n] — [m], let f, : P" — P™ be the map induced
by taking images. Taking nerves, this defines a functor N(P*) : A — sSet.
Note that there is a natural surjective monotone map max : P" — [n], each
with a canonical (but not natural!) splitting, so we get a natural transformation
N(max) : N(P°®) = A*® whose components are split epimorphisms.

Definition 1.7.2. The extension of a simplicial set X is the simplicial set Ex(X)
defined by the formula below:

Ex(X), = sSet(N(P"), X)

The canonical embedding is the morphism iy, : X — Ex(X) induced by
N(max) : N(P*) = A®; note that i, is a monomorphism in sSet.
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ReEMARK 1.7.3. Every simplex of N(P") is uniquely determined by its vertices
and P" has only finitely many elements, so N(P") is a finite simplicial set. In
particular, each Ex(X), is a finite weighted limit of the diagram X : A°’ — Set.

1 1.7.4. Let Sd : sSet — sSet be (the functor part of) a left Kan extension of
N(max) : A — sSet along A® : A — sSet. Using the formulas of theorem a.5.15,
we see there is a natural bijection of the form below:

sSet(Sd(X),Y) = sSet(X,Ex(Y))
In other words, we have the following adjunction:
Sd 4 Ex : sSet — sSet

Definition 1.7.5. The subdivision of a simplicial set X is the simplicial set
Sd(X) defined above. The last vertex projection is the left adjoint transpose
Ay : Sd(X) = X of the canonical embedding i, : X — Ex(X).

Lemma 1.7.6. Let X be a simplicial set. For each morphism z : A} — Ex(X),
there exists a morphism w : X — Ex(Ex(X)) making the diagram below com-

mute.
A} —X 5 Ex(X)
[ J{iEx(X)
A" —-—> Ex(Ex(X))
Proof. See Lemma 3.2 in [Kan, 1957], or Lemma 4.7 in [GJ, Ch. III]. Il

Lemma 1.7.7. The functor Ex : sSet — sSet preserves Kan fibrations. In
particular, if X is a Kan complex, then so is Ex(X).

Proof. See Lemma 3.4 in [Kan, 1957], or Lemma 4.5 in [GJ, Ch. III], or Corol-
lary 2.1.27 in [Cisinski, 2006]. |

Lemma 1.7.8. For any simplicial set X, the canonical embedding i, : X —
Ex(X) is bijective on vertices.

Proof. It is clear that max : P° — [0] is an isomorphism of partially ordered
sets; thus i, : X — Ex(X) is bijective on vertices. [ |

Lemma 1.7.9. For any simplicial set X, the canonical embedding i, : X —
Ex(X) is a weak homotopy equivalence.
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Proof. By corollary 1.3.11, each Sd(A") is contractible, so the claim is a special
case of proposition 1.6.12. [ |

Corollary 1.7.10. The functor Ex : sSet — sSet preserves trivial Kan fibra-
tions.

Proof. Combine proposition 1.5.12 with lemmas 1.7.7 and 1.7.9. [ |

Corollary 1.7.11. We have the following Quillen equivalence:
Sd - Ex : sSet — sSet

Proof. LLemma 1.7.7 and corollary 1.7.10 say Ex : sSet — sSet is a right Quillen
functor, so (by proposition 4.3.2) the indicated adjunction is indeed a Quillen
adjunction. Consider the derived adjunction:

LSd 4 REx : HosSet — HosSet

By proposition 1.5.12 and lemma 1.7.9, Ex : sSet — sSet is a homotopical
functor, so HoEx : HosSet — HosSet is well defined and isomorphic to both
id and REx. Hence, LSd is also isomorphic to id, and (recalling lemma 1.5.2)
we may apply theorem 4.3.13 to deduce that we have a Quillen equivalence. [l

Proposition 1.7.12.
(i) There is a unique natural isomorphism SA(A®) = SA((A®)P).

(ii) There is a unique natural isomorphism Sd(—) = Sd((—)P).
(iii) For each simplicial set X, there is a diagram of the form below,
X «—— Sd(X) —— X
where the arrows are weak homotopy equivalences that are natural in X.
(iv) There is a Quillen equivalence of the following form:

(—)P 4 (—)°? : sSet — sSet

(v) The induced automorphism Ho (—)°? : HosSet — Ho sSet is isomorphic
to idHo sSet*
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Proof. (i). It is not hard to see that there is a unique isomorphism A" = (A")°P,
namely the one that sends the k-th vertex to the (n — k)-th vertex. These iso-
morphisms are not natural, in the sense that they are incompatible with the
coface and codegeneracy maps; nonetheless, these isomorphisms enable us to
identify each Sd((A")°?) with N(P") as objects. In turn, we may identify each
Sd((s,)*) = Sd((A"")P) - Sd((A")°P) with the morphism &, : N(P"') —
N(P"), and similarly for the codegeneracy maps. It is then clear that there is a
unique natural isomorphism Sd(A®) = SA((A*)P).

(ii). Since (—) : sSet — sSet and Sd : sSet — sSet both preserve colim-
its, theorem 1.1.13 implies that there is a unique natural isomorphism Sd(—) =
Sd((—)°P) extending the (unique) natural isomorphism Sd(A*®) = Sd((A*®)P) dis-
cussed above.

(iii). Given the (unique) natural isomorphism Sd(—) = Sd((—)), it suffices
to give a natural weak homotopy equivalence Sd = idg,. But lemma 1.7.9
says that i : id,, = Ex is a natural weak homotopy equivalence, so by co-
rollary 1.7.11, its left adjoint transpose is a natural weak homotopy equivalence
r: Sd = 1dg,, as desired.

sSe

(iv). Since (—)°? : sSet — sSet is an automorphism, we have an adjunction of
the required form. It is clear that (—)°? preserves monomorphisms, anodyne ex-
tensions, Kan fibrations, and trivial Kan fibrations, so the adjunction is a Quillen
adjunction. We may also deduce that (—)°? preserves weak homotopy equival-
ences, and hence that the Quillen equivalence condition is satisfied.

(v). We have a zigzag of natural weak homotopy equivalences connecting id g,
to (—)°P, and it immediately follows that idy;, (e iS isomorphic to Ho (—)". Il

9 1.7.13. For each simplicial set X, we define Ex*(X) to be the colimit of
the diagram below:

X 25 Bx(X) =29 Ex2(X) 2% Ex(X) ——> -

The above defines a functor Ex® : sSet — sSet and a natural transformation
i :1dge = Ex®.

Theorem 1.7.14.
(i) For all simplicial sets X, the morphism i§ : X — Ex®(X) is an anodyne
extension and bijective on vertices.
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(ii) For all simplicial sets X, the simplicial set ExX*(X) is a Kan complex.

(iii) The functor Ex® : sSet — sSet preserves Kan fibrations, trivial Kan
fibrations, and finite limits.

Proof. (i). Recalling proposition 1.5.12 and lemma 1.7.9, we see that the canon-
ical embedding i, : X — Ex(X) is an anodyne extension for all simplicial sets
X ; but proposition A.3.17 implies that the class of anodyne extensions is closed
under transfinite composition, and i : X — Ex®(X) is a transfinite composite
of these canonical embeddings, so i is also an anodyne extension. A similar ar-
gument using lemma 1.7.8 shows that i : X — Ex®(X) is bijective on vertices.

(ii). Since horns are finite simplicial sets, any horn A} — Ex*(X) must factor
as A} — Ex"(X) — Ex®(X) for some m. We then apply lemma 1.7.6 to deduce
that Ex*(X) is a Kan complex.

(iii). Similar reasoning applied to lemma 1.7.7 (resp. corollary 1.7.10) shows that
Ex® : sSet — sSet preserves Kan fibrations (resp. trivial Kan fibrations). On
the other hand, since Ex : sSet — sSet preserves finite limits and Ex® is a
filtered colimit of iterations of Ex, corollary 0.2.27 implies Ex® also preserves
finite limits. [ |

REMARK 1.7.15. Neither z, : sSet — Set nor Ex* : sSet — sSet preserve in-
finite products. Indeed, let X the simplicial set defined in remark 1.5.11. We
know X is weakly contractible, so the unique morphism Ex*(X) — A’ must
be a trivial Kan fibration (by theorem 1.4.27). However, for any infinite set I,
the simplicial set X' is not connected, i.e. 7y (X ") is not a singleton. Nonethe-
less, Ex®(X)! — A is a trivial Kan fibration (because the class of trivial Kan
fibrations is closed under products); so the canonical morphism Ex® ( X! ) -
Ex®(X)! cannot be a weak homotopy equivalence, let alone an isomorphism!

Proposition 1.7.16. There exist a functor R : sSet — sSet and a natural trans-
formation i : idg, = R satisfying the following conditions:

e For all simplicial sets X, RX is a Kan complex and i, : X — RX is an
anodyne extension.

® R :sSet — sSet preserves Kan fibrations and trivial Kan fibrations.

® R :sSet — sSet preserves finite limits.
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Moreover, any such functor R preserves and reflects weak homotopy equival-
ences.

Proof. By theorem 1.7.14, we may take (R, i) to be (Ex™,i®). Given any such
(R, i), consider the following commutative diagram in sSet:

X -5 RX

1l

Y —— RY
ly

Using proposition 1.5.12 and the 2-out-of-3 property of weak homotopy equival-
ences, we see that f : X — Y is a weak homotopy equivalence if and only if
Rf : RX — RY is a weak homotopy equivalence. [ |

REMARK 1.7.17. We may construct a different functor satisfying the conditions
of the above proposition by using an appropriate geometric realisation functor:
see Proposition 2.4 and Proposition 10.10 in [GJ, Ch. I].

Theorem 1.7.18. The Kan—Quillen model structure on sSet is proper.

Proof. Since every simplicial set is cofibrant, we may apply proposition 5.1.9 to
deduce that sSet is a left proper model category. On the other hand, by propos-
ition 1.7.16, the right properness of sSet can be reduced to the right properness
of Kan, which was established by proposition 1.4.32. [ ]

Proposition 1.7.19. Let p : X — Y be a Kan fibration. The following are
equivalent:

(i) The morphism p : X — Y is a trivial Kan fibration.

(ii) For every n-simplex a : A" — Y and any pullback diagram in sSet of the
form below,
X, — X

Jo )

A T) Y
the simplicial set X, is weakly contractible.

(iii) For every vertex y of Y, the fibre of p : X — Y over y is a contractible
Kan complex.
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Proof. (i) < (ii). Recalling lemma 1.5.2 and proposition 1.5.12, this is just pro-
position 1.4.13.

(ii) = (iii). The class of Kan fibrations is closed under pullback (by proposi-
tion A.3.17), so the fibre of a Kan fibration over a vertex of the base is indeed a
Kan complex. Thus, we may apply proposition 1.5.10.

(iii) = (ii). Fix an n-simplex a : A" — Y, a pullback diagram as above, and a
vertex y of Y that is contained in @. We then have the following pullback square
in sSet,

X, — X,

i

A — 5 A

where p, : X, — A"is a Kan fibration. Since A” and A" are both contractible, the
2-out-of-3 property implies that every morphism A’ — A is a weak homotopy
equivalence; thus, by theorem 1.7.18, the top horizontal arrow in the diagram
above is also a weak homotopy equivalence. Hence, X, is a weakly contractible
simplicial set. H

Bar and cobar complexes
Prerequisites. §§1.1, 1.3, 1.6, 4.5, A.5, A.6.

Definition 1.8.1. Let C be a small category.
The bar complex for a diagram F : C — Set weighted by G : C*® — Set is
the simplicial set B, (G, C, F), where

B,(G.C.F)= [] (Ge,xC(c,y.c,) X = X C(cpe;) X Fey)

(co,...,c,,)

with (cO, ooy cn) ranging over (n + 1)-tuples of objects in C, face maps defined
by the following formulae,

dy (Vs fs s S1%) = (3 s oo s f2 F (1) (X))
A (Y, fur oo s S1:%) = (0 frasovos figr © fisees J12X)
d::(y,fn,...,fl,X) = (G(fn)(y)9fn—1""’fl’x)
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and degeneracy maps defined as below:

(0 Fy oo F15%) = (5 Sy 101 %)
ST (Vs frr oo J10%) = (95 fr oo Frn 14y fin oo f12X)
sﬁ(y,f ,...,fl,x) = (y,idcn,fn,...,fl,x)

The cobar complex for a diagram F : C — Set weighted by G : C — Set
is the cosimplicial set C*(G, C, F), where

C'(G,C,F)= H [Gcn X C(c,s€yy) X o0 X C(cl,co),Fco]

with (cO, ey cn) ranging over (n + 1)-tuples of objects in C, coface maps defined
by the following formulae,

HOTRE (O A o VAT T C A )

......

-------

and codegeneracy maps defined as below:

O-r?(x)(co,...,cn) = ((ya fn’ ’fl) = xco,co,...,cn (y’ fna ’fl’idco)>
O-Zl(x)(co,...,cn) = ((y’ fn’ ’fl) = x...,c,-,q-,...(.y’ fn’ ’fi+l’idc[’ fi’ ’fl>)
O-rr:(x)(co,...,cn) = ((ys fn’ EER fl) = xco,...,cn,cn (y9 idcn’ fn’ R fl))

RemaRrk 1.8.2. It is clear that B, (G, C, F) is covariantly functorial in both F and
G, while C*(G, C, F) is contravariantly functorial in G and covariantly functorial
in F. One may also verify that there are bijections

Set(B,(G,C, F),X) = C"(G,C™,Set(F, X))

that are natural in n, F, G, and X: this is one sense in which the bar complex
and cobar complex are formally dual.

REeMARK 1.8.3. There is another duality principle for bar complexes, namely the
following natural isomorphism:

B.(G,C, F)*® = B, (F,C®,G)

Unfortunately, there is no such statement for cobar complexes.
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REeEMARK 1.8.4. The nerve N(C) of a small category C is isomorphic to the bar
complex B,(Al,C, Al), so there is a canonical morphism B, (G, C, F) — N(C)
for any F : C — Set and any G : C°? — Set.

REMARK 1.8.5. More generally, the bar complex B, (G, C, F) is isomorphic to the
nerve of the following category G(G, C, F):

* The objects are tuples (y, ¢, x), where c is an object in C, x is an element
of Fc, and y is an element of Gc.

* The morphisms (y, ¢, x) = (¥', ¢’, x") are morphisms f : ¢ = ¢’ in C such
that F(f)(x) = x" and G(f)(y') = y.

* Composition and identities are inherited from C.

In particular, given a functor U : C — D, B,(Al,C,U*A‘) may be identified
with the nerve of the comma category (d | U), and B,(U*#,,C, A1) with the
nerve of the comma category (U | d).

Definition 1.8.6. Let C be a small category and let M be a locally small category.

* A bar complex for a diagram F : C — M weighted by G : C®® — Set is
a simplicial object B, (G, C, F) in M with bijections

M(B,(G,C,F),M) = C'(G,C®, M(F, M))
that are natural in both n» and M.

* A cobar complex for a diagram F : C — M weighted by G : C — Set is
a cosimplicial object C*(G, C, F) in M with bijections

MWM,C"(G,C,F)) =2C'(G,C,M(M, F))
that are natural in both n» and M.

ReMARK 1.8.7. Of course, this definition agrees with the previous one (up to iso-
morphism) in the special case M = Set, and it is clear that a cobar complex in
M for adiagram F : C - M weighted by G : C — Set becomes a bar complex
in M for F? : C? — M weighted by the same G : C — Set, and vice
versa.
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RemMARK 1.8.8. By general considerations about the representability of limits, we
see that bar complexes exist for all small diagrams and weights if M has co-
products for small families of objects, while cobar complexes exist for all small
diagrams and weights if M has products for small families of objects.

Lemma 1.8.9. Let C be a small category. For each diagram F : C — Set and
each weight G : C — Set, we have a bijection

[C,Set](G, F) = l(i%n C*(G,C, F)

that is natural in both F and G.

Proof. Itisnothard to see that the (non-full) subcategory {[0] = [1]} is coinitial
in A, so it suffices to show that there is an equaliser diagram of the following
form,

50
[C,Set](G, F) —— C%G,C, F) _ C'(G,C, F)
51

However, if we take the map [C, Set](G, F) — C%G, C, F) to be the one send-
ing a natural transformation « : G = F to its underlying family of maps
(ac :Ge - Fc | c €ob C), then it is clear that the diagram is indeed an equal-

iser. |

Proposition 1.8.10. Let C be a small category and let M be a locally small
category.

e I[fB,(G,C, F) is a bar complex in M, then the colimit li_r)nAnp B,(G,C, F)
exists in M if and only if the weighted colimit G % F exists in M, and
the two are isomorphic:

G *. F li_z)?B,(G, C.F)

e [fC*(G,C, F) is a cobar complex in M, then the limit LiLnA C*(G,C,F)
exists in M if and only if the weighted limit {G, F* exists in M, and the
two are isomorphic:

C ~ 1
{G,F) =1(%nB,(G,C,F)
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Proof. The two claims are formally dual; we will prove the first version.
Let M be any object in M. Using lemma A.5.12, proposition A.5.13, and
lemma 1.8.9, we obtain the following natural bijections:

(G, M(F,M)}¢”" = [C, Set](G, M(F, M))

~ i ° op
_1(%1C (G,C®, M(F, M))
= L%lM(B,(G, C,F),M)

It follows by the Yoneda lemma that G * F = li_r)nAop B.(G,C, F). [ |
Lemma 1.8.11. Let C be a small category.

(i) For each natural number n and each weight G : C — Set, the functor
C"(G,C,-) : [C,Set] — Set preserves limits, weighted limits, and ends.

(ii) For each natural number n and each diagram F : C — Set, the functor
C"(—,C, F) : [C,Set]? — Set sends colimits to limits, weighted colimits
to weighted limits, and coends to ends.

Proof. Obvious. ¢

Proposition 1.8.12. Let C be a small category and let M be a locally small
category. If M has coproducts for small families of objects, then:

(i) For each natural number n and each weight G : C*® — Set, the functor
B,(G,C,—) : [C,M] = M preserves colimits, weighted colimits, and
coends.

(ii) For each natural number n and each diagram F : C — M, the functor
B,(—. C,F) : [C,Set] = M preserves colimits, weighted colimits, and
coends.

Dually, if M has products for small families of objects, then:

(i) For each natural number n and each weight G : C — Set, the functor
C"(G,C,-) : [C,Set] — Set preserves limits, weighted limits, and ends.

(ii) For each natural number n and each diagram F : C — Set, the functor
C'"(—,C, F) : [C,Set]? — Set sends colimits to limits, weighted colimits
to weighted limits, and coends to ends.



1.8. Bar and cobar complexes

Proof. We may use the Yoneda lemma to reduce the claims to the case in the
previous lemma. H

Lemma 1.8.13. Let C be a small category.

o Let F : C — Set be a diagram and let G : C*® — Set be a weight. For all
sets X, we have bijections

B,(GXxX,C,F)~XxB,(G,C,F)~B,(G,C,X XF)
that are natural in X, F, and G.

o Let F : C — Set be a diagram and let G : C — Set be a weight. For all
sets X, we have bijections

C'"(XxG,C,F)~[X,C'(G,C, F)]=2=C(G,C,[X,F)
that are natural in X, F, and G.
Proof. Obvious. ¢

Proposition 1.8.14. Let C be a small category and let M be a locally small
category. If M has coproducts for small families of objects, then:

(i) Let F : C - M be a diagram, let G : C°® — Set be a weight and let M
be any object in M. We then have bijections

M(B,(G,C,F),M) g/ Set(B,(#,,C, £°), M(Gc' ® Fe, M))

(c’,¢):CPxC

that are natural in n, F, G, and M.

(ii) If M is cotensored, then for each natural number n and each weight G :
C® — Set, the functor B,(G,C,—-) : [C,M] — M has a right ad-
Jjoint, namely the functor that sends an object M to the diagram ¢ —
B,(G,C®, k)M M.

(iii) For each natural number n and each diagram F : C — M, the functor
B,(—. C, F) : [C,Set] = M has a right adjoint, namely the functor that
sends an object M to the weight ¢ — C" (ﬁc, C°, M(F, M)).
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Dually, if M has products for small families of objects, then:

(i") Let F : C - M be a diagram, let G : C — Set be a weight, and let M be
an object in M. We then have bijections

M(M,C"G,C, F)) = / Set (B, (.. C, £°), M(M,Gc' th Fc))
(c’,c):CPxC

that are natural in n, F, G, and M.

(ii") If M is tensored, then for each natural number n and each weight G : C —
Set, the functor C"(G,C, —) : [C, M] — M has a left adjoint, namely the
functor that sends an object M to the diagram ¢ — B, (G, C*®, ﬁc) O M.

(iii") For each natural number n and each diagram F : C — M, the functor
C'"(—,C,F) : [C,Set]? > M has a left adjoint, namely the functor that
sends an object M to the weight ¢ — C"(ﬁc, C, M(M, F)).

Proof. The two sets of claims are formally dual; we will prove the first version.

(i). Using the interchange law for ends (theorem a.6.17), the Yoneda lemma for
ends (proposition A.6.18), and proposition 1.8.12, we obtain the following natural
bijections:

/ Set (B, (f.. C. i), M(Ge' © Fe, M))

(c’,c):CPxC

~ / C"(h,,C, Set (K, M(Ge’ © Fe, M)))

(c’,c):CPxC

g/ /C"(ﬁc/,C"p,Set(ﬁc,M(Gc’@Fc,M)))
c¢:CJeC

g/ C”<ﬁc,,C°P,/ Set(ﬁC,M(Gc'@Fc,M))>
c¢':C c:C

/ C"(h,,C®, M(Gc' © F, M))

2

11

I.C
/ C"(Ge' X b, C®, M(F, M))
c":C

c¢:C
c(/ Ge' X ), C, M(F, M)>

~ C"(G,C", M(F, M))
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~ M(B,(G,C,F),M)

(ii). Similarly, we have the following natural bijections:
M(B,(G,C,F),M) = C"(G,C®, M(F, M))

gC”(G,COP,/ Set(ﬁc,M(Fc,M))>
c:C

2

/ C"(G,C,Set (A, M(Fc,M)))
c:.C

2

/ Set(B,(G,C, i), M(Fc, M))
c:C

14

/ M(Fe,B,(G,C, ) M)
c:C
Now apply remark A.6.5.

(iii). Along the same lines:
M(B,(G,C, F),M) = C"(G,C®, M(F, M))
= C"(/c;C Ge X h,, CO",M(F,M)>
= / C"(Ge % h,,C®, M(F, M))
e:C
= / C"(Ge X h,,C®, M(F, M))
e:C
g/ Set(Gc,C"(,,C®, M(F, M)))
:C
Note that in the last step we are appealing to lemma 1.8.13. [ |
REeEMARK 1.8.15. The above proposition shows that bar complexes are a certain

kind of weighted colimit, while cobar complexes are a certain kind of weighted
limit.
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Definition 1.8.16. Let C be a small category, let A be any category and let M
be a locally small category.

* Given © : A X M — M, a bar complex for a diagram F : C - M
weighted by G : C? — A is a simplicial object B,(G, C, F) equipped
with bijections

M(B,(G,C,F),M) g/ Set(B,(#,,C, i), M(Gc' ® Fe, M))

(c’,c):CPxC

that are natural in both n» and M.

e Given h : A® X M — M, a cobar complex for a diagram F : C - M
weighted by G : C — A is a cosimplicial object C*(G, C, F) equipped
with bijections

M(M,C"G,C, F)) = / Set (B, (.. C, £°), M(M,Gc' th Fc))

()
(c’,c):CPxC

that are natural in both n and M.

REMARK 1.8.17. Although the definition given here is stated using an end, one can
also state a version that only uses products. Thus these generalised bar (resp. co-
bar) complexes exist in a locally small category M as soon as M has coproducts
(resp. products) for small families of objects.

RemMARK 1.8.18. In the case where A = M = sSet, we will almost always take
AOM = AXMand Ah M = [A, M]. With this choice, the formulae of
definition 1.8.1 (understood appropriately) can be applied verbatim.

Proposition 1.8.19. Let C be a small category, let A be any category, and let
M be a locally small category.

e Given® : AXM > M, aweight G : C® - A, and a diagram F : C —
M, if B,(G,C, F) is a bar complex in M, then

c:C
/ Gc O Fc ~21limB,(G,C, F)
=

where the LHS coend exists in M if and only if the RHS colimit exists in
M.
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1.8. Bar and cobar complexes

o Giventh : AP X M — M, aweight G : C - A, and a diagram F : C —
M, if C*(G,C, F) is a cobar complex in M, then

/ Gem Fe 21limB,(G,C, F)
c:C (A_

where the LHS end exists in M if and only if the RHS limit exists in M.

Proof. The two claims are formally dual; we will prove the first version.
Let M be an object in M. Then,

lim M(B,(G,C, F), M) glim/ Set(B, (#,,C, £°), M(Gc' ® Fc, M))

A (A_ (¢!,c):CPxC

g/ Set(lim B, (A C, i), M(Ge' © Fe, M)
(¢ cycorxe A

where in the last step we have used proposition a.6.11. By proposition 1.8.10,

limB, (£, C, A°) = C(c,c")

c
Aop

and the interchange law for ends (theorem a.6.17) implies

/ Set(C(c¢’, ¢), M(Gc' ® Fe, M))
(

¢’ ,c):CPxC

= / / Set(C(c’, c), M(Gc' © Fc, M))
c:CJc'C
but by the Yoneda lemma for ends (proposition A.6.18),
/ Set(C(c’,c), M(Gc' © Fe,M)) = M(Gc ®© Fe, M)
c:C
so we deduce that

lim M(B,(G,C, F),M) = / M(Ge © Fe, M)
(A— c:.C

naturally in M. Hence,

c:C
/ Gc O Fc ~21limB,(G,C, F)
Ao

where the LHS exists in M if and only if the RHS exists in M. [ |
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Lemma 1.8.20. Let U : C — D be a functor between small categories. There is
a natural transformation C*(—,D, —) = C*(=U, C, —U) such that the following
diagram of cosimplicial sets commutes for all weights G : D — Set and all
diagrams F : D — Set,

disc [D, Set](G, F) ——— C*(G, D, F)
l !
disc [C, Set](GU, FU) — C*(GU,C, FU)

where the horizontal arrows are the maximal augmentations.''”!

Proof. By definition,
Cc'(G.D,F)= [] [Gd,xD(d,.d, ) x xD(d.dy). Fdy
(dgs-...d,,)

C'GU.C,FU)= [] [GUc,xC(c, e, )% X C(ey.cy). FUc]

so the maps U : C(c,c¢") » D(Uc,Uc") induce a morphism of cobar complexes
with the required properties. [ |

Proposition 1.8.21. Let U : C — D be a functor between small categories and
let M be a locally small category.

e let®: AXM — M be given and assume M has products for small
families of objects. There is a natural transformation

B,(-U,C,-U) = B,(-,D,-)

of functors [D?, A] X [D, M] = ¢cM, and when M is cocomplete, the
following diagram in M commutes for all weights G : D — A and all
diagrams F : D - M,

lim B,(GU,C,FU) —— [““GUc® FUc
—>A%P

l l

lim B,(G,D,F) ——— [“"Gd o Fd
_)A(yp =

[13]

where the horizontal arrows are the canonical isomorphisms' ' and the

right vertical arrow is the canonical comparison morphism.

Recall definition 1.6.17 and lemma 1.8.9.
See proposition 1.8.19.
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o Letth: AP X M — M be given and assume M has coproducts for small
families of objects. There is a natural transformation

C*(-,D,-)=>C*(-U,C,-U)

of functors [D, A]’X[D, M] - e¢M, and when M is complete, the follow-
ing diagram in M commutes for all weights G : D — A and all diagrams
F:D-> M,

[, Gd h Fd —=—— lim C*(G,D, F)
: «—A

l l

/-o: GUch FUc —— lim C*(GU,C, FU)
e = T A

where the horizontal arrows are the canonical isomorphisms and the left
vertical arrow is the canonical comparison morphism.

Proof. The two claims are formally dual; we will prove the first version.
Recalling proposition 1.8.14, it not hard to see that

B,(U*ﬁd,,o:,U*ﬁd)g/ DUc',d")xB, (k. C, ) xD(d,Uc)
(c’,c):CPxC

and thus, applying the interchange law (theorem A.6.17) and the Yoneda lemma
for coends (proposition A.6.18):

M(B,(GU,C,FU),M)

g/ Set(B,(U*h;,C,U*A"), M(Gd' © Fd, M))

(d".d):DxD
Similarly,

c:C
M(/ GUc@FUc,M>

g/ Set(U*hy *xc U*A', M(Gd' © Fd, M))
(

d’ . d):DPXD
so it suffices to verify that there is a natural commutative diagram of the form
below in Set:

. * *rd = * * rd
h_r)nAopB,(U by CUR) —— U*hy *c U*h

l l

lim B, (f;,D,h") ———— hy *p A
—> AP =
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In particular, it is enough to prove the original claim in the special case where
A = M = Set and © = X; but this can in turn be reduced to lemma 1.8.20 by
considering the Yoneda embedding Set? — [Set, Set], so we are done. [ |

Lemma 1.8.22. Let U : C — D be a functor between small categories, let
F : D — Set be a diagram, and let G : D* — Set be a weight. Then we have
the following pullback diagram in sSet,

B.(G+U,C,FoU) —— B,(G,D, F)

l l

B.(Al,C,Al) —— B,(Al,D, Al)

where the vertical arrows are induced by the unique natural transformations
F = Al and G = Al and the horizontal arrows are the canonical comparison
morphisms of proposition 1.8. 21.

Proof. This is a straightforward exercise. O

Corollary 1.8.23. Let U : C — D be a functor between small categories, let
F : D — sSet be a diagram, and let G : D°® — sSet be a weight. Then we have
the following pullback diagram in sSet,

B(G-U,C,F-U) —— B(G,D, F)

! |

B(Al,C, A1) —— B(Al1,D, Al)

where the vertical arrows are induced by the unique natural transformations
F = Al and G = Al and the horizontal arrows are the canonical comparison
morphisms of proposition 1.8. 21.

Proof. By lemma 1.6.8, it suffices to verify that the corresponding diagram of bar
complexes is a pullback square in sSet, but that follows by applying lemma 1.8.22
degreewise. [ |

Theorem 1.8.24. Let C and D be two small categories, let A and M be two
locally small categories, andlet @ : AX A - A, O : AXM = M, M :
AP XM - M, and M : M® x M — A be functors. Suppose A has

coproducts for small families of objects, that there are bijections

MAOM,N)= A(ALM(M,N)) = M(M,AMN)
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that are natural in A, M, and N, and that there are isomorphisms

A®RB)OM=AOG(BOM)
A®BMNM=AMBMHNM)

that are natural in A, B, and M.

o let F : C —» M be adiagram, let G : D® — A be a weight, and let
H : C®? XD — A be afunctor. If M has coproducts for small families of
objects, then there is an isomorphism

B, (B,G.D,H),C,F) =B,(G,D,B,(H,C,F))
that is natural in m, n, F, G, and H.

olet F : C — M beadiagram, let G : D — A be a weight, and let
H : D* X C - A be a functor. If M has products for small families of
objects, then there is an isomorphism

C"(B,(G,D®, H),C, F) = C"(G,D,C"(H,C, F))
that is natural inm, n, F, G, and H.

Proof. The two claims are formally dual; we will prove the first version.
Let M be any object in M and let K : D®® X C®* x D X C — Set be the
functor defined below:

K(d',c',d,c)= AGd" @ H(c',d), M(Fc, M))
Notice that we have the following natural bijections:

Kd',c',d,c) 2 M(Gd' ® H(c',d))®© Fc, M)
= M(Gd' © (H(c',d)©O Fc), M)
~ M(H(c',d)® Fc,Gd" hn M)

Now, using the definition of the generalised bar complex, we obtain the natural
bijections shown below:

M(B,,(B,(G,D,H),C,F),M)

g/ Set(B,(#,.,C, A°), M(B,(G,D,H(c',-)) ® Fc,M))
(c'.0)
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= / Set(B,(#.,C, i), A(B,(G,D, H(c',-)), M(Fc, M)))
(c".0)

g/ Set(Bn(ﬁc,,C,ﬁc),/ Set(Bm(ﬁd,,ID,ﬁd),K(d’,c’,d,c))>
(c’.c) (d’,d)

g/ / Set(B,(#,,C, A°) XB,,(h;, D, £*),K(d',c',d,c))
(c',0) J(d'.d)

On the other hand,

M(B,(G,D,B,(H,C,F)),M)

= / Set(B, (4, D, '), M(Gd’ © B, (H(—,d),C, F),M))
(d".d)

g/ Set(B,(#,,D, "), M(B,,(H(-,d),C, F),Gd' h M))
(d'.d)

g/ Set<Bn(ﬁd,,|D,ﬁd),/ Set(Bm(ﬁc,,C,FLC),K(d’,c’,d,c)))
(d’.d) (c’.0)

z/ / Set(B,(#,,D,A") xB,,(h.,C, £°),K(d',c',d,c))
d’'.d) J(c’.c)

and so, applying the interchange law for ends (theorem A.6.17), we obtain a nat-
ural bijection

M(B,,(B,(G,D,H),C,F),M) = M(B,(G,D,B,(H,C,F)),M)
and the claim follows by the Yoneda lemma. [ |
Definition 1.8.25. Let C be a small category.

* Given O : A XsSet — sSet, the bar construction for a diagram F : C —
sSet weighted by a functor G : C®® — A is the following coend:

[n]:A
B(G,C,F)z/ A'xB,(G,C, F)

In other words, B(G, C, F) is the realisation

B.(G.C, F)|.

e Given i : A% x sSet — sSet, the cobar construction for a diagram
F : C — sSet weighted by a functor G : C — A is the following end:

C(G,C,F) = / [A",B,(G.C, F)|
[n]:A

In other words, C(G, C, F) is the totalisation Tot C*(G, C, F).
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Lemma 1.8.26. Let C be a small category, let F : C — sSet be a diagram, and
let G : C°® — sSet be a weight. We then have bijections

(B(G.C,F)), =B,(G,.C, F,)
that are natural in n.
Proof. Apply lemma 1.6.8 to remark 1.8.18. [ |

Corollary 1.8.27. Let C be a small category, let F : C — Set be a diagram,
and let G : C — Set be weight. Then the bar construction B(disc G, C, disc F)
is isomorphic to the bar complex B, (G, C, F). [ |

Corollary 1.8.28. Let C be a small category, let F : C — sSet be a diagram,
and let G : C — sSet be weight. Then the bar construction B(F,C, G) is
isomorphic to B(G, C, F). [ |

Lemma 1.8.29. Let C be a small category, let F : C — sSet be a diagram, and
let G : C — sSet be a weight. We then have bijections

(C"(G,C,F))mz/ Set (A}, C"(G,,C, F)))
[11:A

that are natural in n, m, F, and G.
Proof. By remark 1.8.18,

C'(G,C, F) = H [Gcn X C(c,s€yy) X o0 X C(cl,co),Fco]

so (by the Yoneda lemma) we have the following natural bijection in degree m:

(C"(G.C.F)),, = [] sSet(A"xGe,xC(c,.c, ;)% xC(ey.cp). Fey)

n—1
Moreover, by remark A.6.5,

sSet (A" X Ge, X C(c,, ¢,_;) X -+ X C(ey,¢), Fey)

n> “n—1

= / Set (A} X Gyc, X C(c,, ¢,_y) X =+ X C(cy, ), Fyep)
[11:A
- / Set (A, Set (Gc, X C(c,nc,y) X - X Cley.cp). Fycy))
[11:A
and the claim follows. [ |
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Lemma 1.8.30. Let C be a small category, let F : C — sSet be a diagram, and
let G : C — sSet be a weight. We then have bijections

sSet(X,C(G,C, F)) = / Set(X,.C"(G,.C, F,))
[n]:A

that are natural in X.

Proof. Lemma 1.6.22 says,

sSet(X,C(G,C, F)) = / Set(X,,.C"(G,C, F),,)
[m]:A

and by lemma 1.8.29,

cm(G,C,F)mg/ Set (A7, C"(G,,C, F,))
[n]:A

so the interchange law for ends (theorem A.6.17) and the Yoneda lemma for ends
(proposition A.6.18), we obtain the following natural bijections:
sSet(X,C(G,C, F)) = /

Set<Xm,/ Set(A”;,cm(Gn,C,Fn))>
[m]:A [n]:A

g/ / Set (X, Set(A?,C"(G,,C, F,)))
[m]:A J [n]:A

g/ / Set(ArZ,Set(Xm,Cm(Gn’C’Fn>))
[m]:A J [n]:A

o[ [ satsmsalx.crcn)
[n]:A J [m]:A

o~ / Set(Xn,Cn(Gn’C’Fn)) -
[n]:A

Lemma 1.8.31. Let C be a small category. For any diagram F : C — sSet, any
weight G : CP — sSet, and any simplicial set Y, there is an isomorphism

[B(G,C, F),Y] = C(G,C”,[F,Y])
and it is natural in F, G, and Y .
Proof. The Yoneda lemma implies it is enough to show that there is a bijection
sSet(X, [B(G,C, F),Y]) = sSet(X,C(G,C®,[F,Y]))
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that is natural in F, G, X, and Y. Now,
sSet(X, [B(G,C, F),Y]) = sSet(X xB(G,C, F),Y)

and by remark A.6.5 and lemma 1.8.26:

sSet(X x B(G,C, F),Y) & / Set(X,, xB,,(G,.C,F,).Y,)
[m]:A

On the other hand, by lemma 1.8.30:

sSet(X,C(G,C*®,[F,Y])) = / Set(X,.C"(G,,C®,[F,Y],))
[n]:A

and by the Yoneda lemma,

[Fc,Y], = sSet(A" X Fe,Y) = / Set (A, X F,c.Y,,)
[m]:A

thus,

Set(X,.C"(G,.C*,[F.,Y1,))

g/ Set(X,,C"(G,,C™,Set(A X F,.Y,)))
[m]:A

but we know that

Set(X,.C"(G,,C™,Set(A, X F,.Y,)))
=~ Set(X,,C"(G,,C®,Set(F,,Set(A:.Y,))))
=~ Set(X,,Set(B,(G,,C, F,),Set(A}.Y,)))
=~ Set (A, Set(X,xB,(G,.C,F,).Y,))

and so, by the Yoneda lemma for ends (proposition A.6.18),
/ Set(X,,C"(G,,C™,Set(A), X F,.Y,)))
[n]:A

- / Set (A, Set(X, X B, (G,.C. F,).Y,))
[n]:A
=~ Set(X,, xB,(G,.C,F,).Y,)

thus an application of the interchange law for ends (theorem a.6.17) completes
the proof. [ ]
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Corollary 1.8.32. Let C be a small category. For any diagram F : C — sSet,
any weight G : C°® — sSet, and any simplicial set Y, there is an isomorphism

sSet(B(G,C, F),Y) = / C"(G,,C™,Set(F,.Y,))

n>*n
[n]:A

and itis natural in F, G, and Y .
Proof. The Yoneda lemma implies

sSet(B(G,C, F),Y) = [B(G,C, F), Y],
and by lemma 1.8.31,

[B(G,C, F), Y], = (C(G,C®,[F.,Y])),

but lemma 1.8.30 implies

(C(G,C®,[F,Y)])), = / c"(G,,C®,[F,Y],)
[m]:A

and using remark A.6.5 and the fact that C’”(Gm, C*P, —) preserves limits, we
obtain:

/ c"(G,.C* [F.,Y],) = / C"(G,,C®, sSet(A" X F,Y))
[m]:A [m]:A
g/ / C"(G,,C®,Set(A" X F,.Y,))
[m]:A J [n]:A

- / / Set (A, C"(G,, C, Set(F,.Y,)))
[m]:A J [n]:A

Applying the interchange law (theorem A.6.17) and the Yoneda lemma for ends
(proposition A.6.18) then yields the required natural bijection. [ ]

Proposition 1.8.33. Let C be a small category and let A be any category.

o Let F : C — sSet be a diagram, let G : C® — A be a weight, and let M
be a simplicial set. Given ©® : A X sSet — sSet, we have bijections

sSet(B(G,«:,F),M)g/ sSet(B,(#,,C, i), [Gc' © Fe, M|)

c
(c’,c):CPxC

that are natural in F, G, and M.
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o Let F : C — sSet be a diagram, let G : C - A be a weight, and let M
be a simplicial set. Given h : A X sSet — sSet, we have bijections

sSet(M,C(G,C, F)) = / sSet(B, (#,,C, ), [M,Gc' th Fc])
(c¢’,c):CPxC

that are natural in F, G, and M.

Proof. We will prove the first claim; the second can be proved in a similar way.
By definition, we have the natural bijection

sSet(B(G,C, F), M) = / sSet (A" x B, (G,C, F), M)
[n]:A
and furthermore, we also have the following:
sSet(A"x B,(G,C, F), M)
~ sSet(B,(G,C, F),[A", M])

= / Set(B, (#.,C, h°),sSet(Gc' © Fe,[A', M]))

(c’,c):CPxC

- / Set (B, (... C. i°).sSet (&', [Gc’ © Fe, M]))

(c’,c):CPxC

- / sSet (disc B, (.. C. i) x A" [Ge' © Fe, M])

(c’,c):CPxC

Thus, applying the interchange law for ends (theorem A.6.17) and corollary 1.6.9,
we obtain

sSet(B(G,C, F), M) = / sSet (B, (4,,C, £°), [Gc' ® Fe, M])

(c’,c):CPxC

as required. [ |
Proposition 1.8.34. Let U : C — D be a functor between small categories.
® There is a natural transformation
B(-U,C,-U) > B(-,D,-)

of functors [DP, sSet] X [D, sSet] — sSet such that the following diagram
in sSet commutes for all weights G : D®® — sSet and all diagrams F :
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D — sSet,

B(GU,C,FU) — [““GUcx FUc

l l

B(G,D,F) ——— [*"Gd x Fd

where the horizontal arrows and the right vertical arrow are the canonical

comparison morphisms. [14]

® There is a natural transformation
C(-,D,-) = C(-U,C,-U)

of functors [D, sSet]? X [D, sSet] — sSet such that the following diagram
in sSet commutes for all weights G : D — sSet and all diagrams F : D —
sSet,

fd:D [Gd, Fd] —— C(G,D, F)

l |

/... [GUc, FUc] — C(GU,C, FU)

where the horizontal arrows and the right vertical arrow are the canonical

comparison morphisms. [15]

Proof. In view of the functoriality of |—| (resp. Tot(—)), this is an immediate
consequence of proposition 1.8.19. [ |

1 1.8.35. Let C be a small category. Extending the notation used previously,
we make the following definitions:

e Given a functor G : C*® — sSet, B(G,C,C) : C°® — sSet is the functor
defined by ¢ — B(G, C, disc £°).

e Given a functor F : C — sSet, B(C,C, F) : C — sSet is the functor
defined by ¢ — B(disc #,,C, F).

e Given a functor G : C — sSet, C(G,C,C) : C°® — sSet is the functor
defined by ¢ — C(G, C, disc £°).

[14] Seelemma 1.6.7.
[15] Seelemma 1.6.21.
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e Given a functor F : C — sSet, C(C,C, F) : C® — sSet is the functor
defined by ¢ —~ C(disc £°,C, F).

Proposition 1.8.36. Let C be a small category.
(i) Foreachweight G : C°® — sSet, we have an adjunction of the form below:

B(G,C,-) 4 [B(G,C,C), -] : sSet — [C, sSet]

(ii) Foreachdiagram F : C — sSet, we have an adjunction of the form below:

B(—,C, F) 4 C(C°,C,[F,—]) : sSet — [C®P, sSet]

(iii) For each simplicial set X, there are isomorphisms
B(X XG,C, F)= X xB(G,C, F) 2 B(G,C, X X F)
that are natural in X, F, and G.
Dually:
(i") For each weight G : C — sSet, we have an adjunction of the form below:

B(G,C®,C®) x (-) 4C(G,C,-) : [C,sSet] — sSet

(ii") Foreachdiagram F : C — sSet, we have an adjunction of the form below:

CC,C,[-, F]) 4C(—,C,F): [C,sSet]” — sSet

(iii") For each simplicial set X, there are isomorphisms
CXxG,CF)=[X,CG,C F)=CG,C[X,F])
that are natural in X, F, and G.

Proof. (i). Let F : C — sSet be a diagram and let Y be a simplicial set. By
remark A.6.5, we have the following natural bijection,

[C,sSet](F,[B(G,C,C),Y]) = / sSet(Fc, [B(G,C,disc £),Y])

c:C

and by definition,

sSet(Fe, [B(G, C, disc ﬁc),Y]) =~ sSet(Fc xB(G,C,disc £),Y)
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so it suffices to show that there is a natural isomorphism of the form below:
c:C
B(G,C, F) = / FcxB(G,C™,disc £°)

Since limits and colimits in sSet can be computed degreewise, by lemma 1.8.26,
this amounts to showing that there are natural bijections

c:C
B,(G,.C,F,) g/ F,cxB,(G,,C® #,)

and (after expanding the definition of B, (Gn, C*P, ﬁc)) this is a straightforward
consequence of the Yoneda lemma for coends (proposition A.6.18).

(ii). Corollary 1.8.28 then implies we have an adjunction of the form below,
B(-,C, F)H[B(C,C, F),—] : sSet —» [C°, sSet]
but lemma 1.8.31 says there is a natural isomorphism
[B(C,C, F),Y] = C(C®,C® [F,Y])
so we are done.
(iii). This is an immediate consequence of lemmas 1.8.13 and 1.8.26.

(i"). Let F : C — sSet be a diagram and let X be a simplicial set. By re-
mark A.6.5, we have the following natural bijection,

[C,sSet](B(G,C®,C®) x X, F) = / ) sSet(B(G,C*®,disc #,) X X, Fc)
and furthermore, by lemma 1.8.26: |
sSet(B(G,C*®,disc f,) X X, Fc) = /[] . Set(B,(G,,C®, ) X X,, F,c)
Now, we have |
Set(B,(G,.C®, k), F,c) = C"(G,,C,Set(h, F,))

and since C"(G,, C, —) preserves limits,

/ C"(G,,C,Set(h,, F,c)) gC”(Gn,o:,/ Set(ﬁc,FnC)> ~C"(G,,C, F,)
c:C c:C
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1.8. Bar and cobar complexes

where in the last step we used the Yoneda lemma for ends (proposition A.6.18).
Thus, by the interchange law for ends (theorem A.6.17),

[C,sSet](B(G,C®,C*) X X, F)

g/ Set(X,,,/ c"(Gn,C,Set(ﬁc,Fnc))>
[n]:A c:C
~ / Set(X,,C"(G,.C. E,))
[n]:A

so lemma 1.8.30 yields the required natural bijection:
[C,sSet](B(G,C®,C?) x X, F) = sSet(X,C(G,C, F))
(ii"). Let G : C — sSet be a weight and let X be a simplicial set. We wish to
construct a natural bijection of the following form:
[C,sSet](G,C(C,C, [X, F])) = sSet(X,C(G,C, F))

To begin, by remark A.6.5,

[C,sSet](G,C(C,C,[X, F])) = / sSet(Gc, C(disc £, C, [ X, F]))

c:C

and by lemma 1.8.30,

sSet(Gc, C(disc A, C,[X, F])) g/ Set(G,c,C"(#,C,[X, F],))
[n]:A

but clearly,
Set(G,c,C"(#,C,[X, F],)) = C"(G,c X £°,C,[X, F],)

and since C ( - C,[X,F ]n) takes colimits to limits, the Yoneda lemma for coends
(proposition A.6.18) implies

/ C"(G,cx h°,C,[X,F],) =C"(G,.C,[X,F],)

c:C

so by using the interchange law for ends (theorem A.6.17):
[C,sSet](G,C(C,C, [X, F]))
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12

/ / C"(G,c X h,C,[X, F],)
[n]:A J c:C

N / C'(G,.C.IX. F1,)
[n]:A
On the other hand, the Yoneda lemma implies [ X, Fc], = sSet(A" X X, Fc), so

C"(G,.C,[X,F],) =C"(G,,C,sSet(A' X X, F))

g/ C"(G,,C,Set(A), X X,,, F,,))

[m]:A

- / Set (A, Set (X,.C"(G,.C. E,)))
[m]:A

and using the interchange law and Yoneda lemma for ends again,

/ C'(G,.C,[X, F,)
[n]:A
N / / Set (A1, Set(X,,C"(G,.C.F,)))
[m]:A J [n]:A
E/ Set(Xm’Cm(Gm’C’Fm))
[m]:A

which completes the proof.

(iii"). It is not hard to see that we have the following natural isomorphisms of
cosimplicial simplicial sets:

C'(XxG,C, F)=[X,C(G,C, F)] =2CG,C,[X, F])

We then apply theorem 1.6.26 to obtain the corresponding natural isomorphisms
of simplicial sets. [ |

Theorem 1.8.37. Let C and D be two small categories.

o Let F : C — sSet be a diagram, let G : D — sSet be a weight, and let
H : C® XD — sSet be a functor. There is then an isomorphism

B(B(G,D,H),C, F)~B(G,D,B(H,C, F))

that is natural in F, G, and H.
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o Let F : C — sSet be a diagram, let G : D — sSet be a weight, and let
H : D x C — sSet be a functor. There is then an isomorphism

CB(G,D*, H),C, F) =~ C(G,D,C(H,C, F))
that is natural in F, G, and H.

Proof. The first claim is a straightforward consequence of theorem 1.8.24 and
lemma 1.8.26. We will now prove the second claim.

To prove the claim, the Yoneda lemma implies it is enough to construct a
bijection

sSet(X,C(B(G,D*, H),C, F)) = sSet(X,C(G,D,C"(H,C, F)))
that is natural in X, F, G, and H. By lemma 1.8.26 and lemma 1.8.30,
sSet(X,C(B(G,D, H),C, F))
= [ Se(x,.C'(8,(G, D" H,).C.F,))
[n]:A
and similarly,
sSet(X,C(G,D,C(H,C, F)))

N / Set(X,,,C"(G,.D.(C(H.C. F)),))
[m]:A

g/ / Set(X,,.C"(G,.D,Set(A?,C"(H,,C,F,))))
[m]:A J [n]:A

where in the last step we used the Yoneda lemma and the fact that C" (Gm, D, —)
preserves limits. Furthermore,

Set(X,,.C"(G,.D,Set(A",C"(H,,C,F,))))
=~ Set (A”, Set(X,,,C"(G,.D,C"(H,,C,F,))))

and by using the interchange law for ends (theorem A.6.17) and the Yoneda
lemma for ends (proposition A.6.18),

/ / Set (A", Set (X, C"(G,.D,C"(H,.C, F,))))
[m]:A J [n]:A
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g/ Set(X,.C'(G,.D.C"(H,.C.F,)))
[n]:A

but (by theorem 1.8.24 again),

c'(G,,D,C"(H,,C,F,)) ~C"(B,(G,., D", H,),C,F,)
so we are done. H
Proposition 1.8.38. Let C be a small category.

e For each diagram F : C — sSet and each functor G : C°® — Set, there
is a morphism B(G,C, F) = G % F, and it is natural in both F and G.

e For each diagram F : C — sSet and each functor G : C — Set, there is
a morphism {G, F}C — C(G,C, F), and it is natural in both F and G.

Proof. By theorem A.6.14 and proposition 1.8.10, we have the following natural

isomorphisms:

[n]:A
/ B,(G,C, F) = Al %, B,(G,C,F) 2 limB,(G,C, F) = G % F
Aop

/ C"(G,C,F) = {Al1,C*(G,C, F)}* ~ limC*(G,C, F) = (G, F}©
[n]:A A
The claim then follows from the existence of a (unique) natural transformation

A* = Al [ |

Definition 1.8.39. Let C be a small category, let M be a locally small category,
and let F : C — M be a diagram.

* The bar resolution of F is the diagram B,(C,C, F) : C — [A°’, M]
defined by the following formula,

¢+~ B,(.,C,F)
where £, : C® — Set is the representable functor C(—, c).

* The cobar resolution of F is the diagram C*(C,C, F) : C - [A, M]
defined by the following formula,

¢~ C*(h°,C,F)

where ¢ : C — Set is the representable functor C(c, —).
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Lemma 1.8.40. Let C be a small category and let F : C — Set be a diagram.

(i) There is an isomorphism

F ~1lim+C*(C,C, F)
Y

and it is natural in F.
(ii) For each weight G : C — Set, there is an isomorphism
{G,C*(C,C, F)}* =~ C*(G,C, F)
and it is natural in both F and G.

(iii) For each object c in C, there exist maps n, : Fc — Co(ﬁc, C,F ) E,
Co(ﬁc, C, F) — Fc,and h,,, : crl (ﬁc, C, F) - C"(ﬁc, C, F) satisfying
these identities:

1 0
51°’1c=51°’7c
g.on, =1d

0 _
hO,c°51 —I1C°£C

hy, e 5;+1 = 5; oh, . f0<i<n

hn,c ° 5:1-11 =id

O-li ° hn+1,c = h’n,c ° O-;i+1 lfo < i <n
hn,c ° hn+l,c = hn,c ° O-rr:i]l

These maps are moreover natural in F, and n, is also natural in c.

Proof. (i). By lemma 1.8.9, there are bijections

[C.Set](4°, F) = limC*(4°,C, F)
A

that are natural in ¢ and F, so the Yoneda lemma implies F = l(iLnA oC*(C,C, F),
naturally in F.

(ii). Applying the Yoneda lemma for ends (proposition a.6.18), we obtain the
following natural bijections:

/C:C [Gc, [C(c,c”) X C(cn,cn_l) X e X C(cl,co),Fco]]
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it /C [C(C,C,,), [GC X C(cn,cn_l) X eee X C(CI’CO>,FCO]]
= [Gcn X C(cn,cn_l) X eee X C(Cl’co),FCO]

Theorem A.6.14 implies that there is a natural isomorphism

{G,C'(C,C,F)}Cg/ [Ge,C*(£°,C, F)|

c:C

and it is now clear that the claim holds.

(iii). Let#,, €., and h, . be the maps defined below:
1) (o) = 0 = FR)@)
e.(x) = x,(id,)
hn,c(x)(co,...,cn) = ((y, fna cees fl) = x(co,...,c,,,c) (idw Y, fn, cees fl))

By construction, we have &, o 77, = id; , and it is not hard to check that the other
identities are satisfied. For naturality of #, in c, observe that, given f : ¢ — ¢’
in C, we have

N (F(F)(X))(e,) = (v = FOEF (X))
=W F(ye f)x)
=(yr F(H(»)x)
=C(#/,C,F)(n.(x) ()

and so 7, o F(f) = C°(#/,C, F) o n,, as required. ]

Proposition 1.8.41. Let C be a small category, let M be a locally small category,
andlet F : C - M be a diagram. If the bar resolution B,(C, C, F) exists, then:

(i) There is an isomorphism

F ~1lim+B,(C,C, F)
A

and it is natural in F.
(ii) For each weight G : C°° — Set, there is an isomorphism
G *-.B,(C,C, F)=B,(G,C, F)

and it is natural in both F and G.
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(iii) For each object c in C, there exist morphismsy, : Fc — Bo(ﬁc, C, F), E,:

B(#,,C,F) — Fc, and b} : B,(4.C,F) - B,,,(4.C, F) satisfying
these identities:

1_ 1
E.od =¢€,0d,

g.on, =1id

déoh(c):sar

n+1 n _ gn—1 n . .
d" eh;=h]" od] if0<i<n
n+1 no__:
dil °oh;=1d

n+1 n _ n+l n . .

h;™ os! =57 oh; if0<i<n
B = it o !

These morphisms are moreover natural in F, and €, is also natural in c.
Dually, if the cobar resolution C*(C, C, F) exists, then:
(i) There is an isomorphism

F ~21lim-C*(C,C, F)
(—
A
and it is natural in F.

(ii) For each weight G : C — Set, there is an isomorphism
{G,C*(C,C, F)}* =2 C*(G,C, F)
and it is natural in both F and G.

(iii) For each object c in C, there exist morphismsn, : Fc — Co ( A, C, F), £,
CO(HC, C, F) — Fc,and h,, : cr! (ﬁc, C, F) - C”(ﬁc, C, F) satisfying
these identities:

5}°’7c:6?°’7c

g,on, =1d
hO,c ° 6? = nc ° gc
hn,c ° 5£,+1 = 6:1 ° hn—l,c lfO S i S n
hn,c ° 61,11-:11 =id
651 ° hn+1,c = hn,c ° O-:H-] lf() S i S h
hn,c ° hn+1,c = hn,c ° O-Z:ll

These morphisms are moreover natural in F, and . is also natural in c.
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Proof. We may use the Yoneda lemma to reduce the claims to the case in the
previous lemma. H

Lemma 1.8.42. Let C be a small category, let F : C — sSet be a diagram, and
let G : C — sSet be a weight. If each Fc is a Kan complex, then C*(G,C, F) is
a Reedy-fibrant cosimplicial simplicial set.

Proof. We must show that, for each natural number #, the matching morphism
C"(G,C, F) - M, (C*(G,C, F)) is a Kan fibration. Consider the matching cat-
egory d ( (1] | A(_) : itis (isomorphic to) the full subcategory of the slice category
[n],, spanned by the non-trivial quotients of [»]. If we make the identification

c"@G.C.Fy = ] [Gen Fe
Cmemsey
where the product is taken over the set of all m-simplices of N(C), then it is not
hard to see that every codegeneracy operator is the evident product projection.
One may then directly verify that

M,(CG.C.Fy= [ [Ge, Fe
Cpy—> €
where now the product is taken over the set of degenerate m-simplices of N(C),
and that the n-matching morphism is again the evident product projection. But
corollary 1.4.16 implies that every product projection in question is a Kan fibra-
tion, so C*(G, C, F) is indeed Reedy-fibrant. [ |

REMARK 1.8.43. The lemma is true in greater generality: see Example 23.8 in
[Shulman, 2009].

Bousfield-Kan limits and colimits

Prerequisites. §§1.5, 1.6, 1.8, 2.4, 3.3, 3.4, 4.3, A.0

There are many definitions of ‘homotopy limit/colimit’, of varying abstract-
ness and complexity. In this section, we will study the theory of Bousfield and
Kan [1972] and compare it with some of the other definitions of ‘homotopy
limit/colimit’.
REMARK 1.9.1. It is important to stress that there is an asymmetry between the
theory of homotopy colimits and the theory of homotopy limits in sSet because
not all simplicial sets are fibrant. As such, it will often be necessary to restrict
our attention to Kan complexes when working with homotopy limits.
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Definition 1.9.2. Let C be a small category.

* The Bousfield-Kan limit of F is defined by the following end in sSet:

limBKF=/ [B(A1,C, £,), Fc]|
(F c:C

* The Bousfield-Kan colimit of F is defined by the following coend in sSet:

c:C
lim®* F = / B(A1,C, k%) x Fc
C

* The reversed Bousfield—-Kan limit of F is defined by the following end
in sSet:

lim*® F = /C [B(4..C,Al), Fe|
C c:

* The reversed Bousfield-Kan colimit of F is defined by the following
coend in sSet:

c:C
lim"® F = / B(A,C®, Al) X Fe
C

REMARK 1.9.3. In other words:

* The Bousfield—Kan limit of F is the simplicially enriched limit of F weighted
by B(A1, C°?, CP).

* The Bousfield—Kan colimit of F is the simplicially enriched colimit of F
weighted by B(A1, C, C).

* The reversed Bousfield—Kan limit of F is the simplicially enriched limit
of F weighted by B(C, C, Al).

* The reversed Bousfield—Kan colimit of F is the simplicially enriched colimit
of F weighted by B(C?,C?, A1).

RemaRrk. There are various definitions of ‘homotopy (co)limit’ in the literature:

* The definition of ‘homotopy limit’ (resp. ‘homotopy colimit’) appearing
in [Bousfield and Kan, 1972, Ch. XI, resp. Ch. XII] is what we call the
‘Bousfield—Kan limit’ (resp. ‘reversed Bousfield—Kan colimit’): but be-
ware that what they call the ‘underlying space of C’ is actually N(C®P).
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* The definition of ‘homotopy limit’ (resp. ‘homotopy colimit’) appearing in
[Hirschhorn, 2003, Ch. 18] is what we call ‘reversed Bousfield—Kan limit’
(resp. ‘reversed Bousfield—Kan colimit’).

Our conventions have been chosen to make both remark 1.9.4 and corollary 1.9.6
true.

REMARK 1.9.4. Let F : C — sSet be a diagram. By remark 1.8.3, we have the
following natural isomorphisms,

im? For = (fim<® 7)™
—cC —cC
limP Fr 2 (1im® F )"
—C —C
and for every simplicial set Y, we have the following natural isomorphisms:
imBX [F,Y] = [thB F, Y]
«—C°p —C
lim® [F,Y] = [lim*® F. Y|
«—Cop —C
These should be regarded as duality principles.

Lemma 1.9.5. Let X be a simplicial set and let C be a small category. Then the
Bousfield—Kan limit of the constant diagram AX : C — sSet is (isomorphic to)
the simplicial set [N(C?), X (naturally in X ).

Proof. By definition,

limBKAXE/ [B(AL,C, £,), X]
(F c:C

and it is not hard to verify that

LC [B(ALC™. A), X] = lim (B(AL C*. €), X

but [—, X ] sends colimits in sSet to limits in sSet, and
li_n)lC(c’, -)=1
c
for all objects ¢’ in C, so by proposition 1.8.36,

limB(A1,C,C) = B(A1,C, Al)
Y

which can be identified with N(C°P), by remark 1.8.4. [ ]
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Corollary 1.9.6. Let X be a simplicial set and let C be a small category. Then
the Bousfield—Kan colimit of the constant diagram AX : C — sSet is (iso-
morphic to) the simplicial set N(C) X X (naturally in X).

Proof. By remark 1.9.4,
[limP AX, ¥ | = im® [AX, Y]
—C «—Cop
and by lemma 1.9.5,
1 BK ~ ~
lim° [AX, Y] = [N(C), [X, Y]] = [N(C) X X, Y]
so an application of the Yoneda lemma yields the claim. [ |
Proposition 1.9.7. Let U : C — D be a functor between small categories.

(i) For each diagram F : D — sSet and each weight G : C — sSet, there is
an isomorphism

C(G,C,FU) = / [B(G,C,discU*#,), Fd]
d:D

and it is natural in both F and G.

(ii) For each diagram F : C — sSet and each weight G : D — sSet, there is
an isomorphism

C(GU,C,F)E/ |Gd,C(discU*h,C, F)]
d:D

and it is natural in both F and G.
Dually:

(i") For each diagram F : D — sSet and each weight G : C°® — sSet, there
is an isomorphism

d:D
B(G,C,FU)E/ B(G,D,discU*A") x Fd

and it is natural in both F and G.
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(ii") For each diagram F : C — sSet and each weight G : D°® — sSet, there
is an isomorphism

d:D
B(GU,C,F)g/ Gd x B(discU*#,,C, F)

and it is natural in both F and G.

Proof. We will prove the first set of claims; the second can be proved in a similar
way.

(i). By lemma 1.8.31,
[B(G,C,discU*h,), Fd| = C(G,C, [discU*f,, Fd|)

and since C(G, C, —) preserves limits (by proposition 1.8.36), it is enough to con-
struct a natural isomorphism of the following form:

FUc =~ / [discD(Uc,d), Fd]
d:D
However, it is clear that

[discD(Uc,d), Fd] 2 D(Uc,d) m Fd

so we may apply the Yoneda lemma for ends (proposition A.6.18) to complete
the proof.

(ii). By proposition 1.8.36,
|Gd,C(discU*A,C, F)] = C(Gd x discU*#’,C, F)

and since C(—, C, F) sends colimits to limits, it is enough to construct a natural
isomorphism of the following form:

d:D
GUc = / Gd x discD(d,Uc)

However, it is clear that
Gd xdiscD(d,Uc) =2 D(d,Uc) © Gd

so we may apply the Yoneda lemma for coends (proposition A.6.18) to complete
the proof. [ ]
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REeEMARK 1.9.8. Thus, we should regard the cobar construction C(G, C, F) (resp.
the bar construction B(G, C, F)) as being the Bousfield—Kan analogue of the sim-
plicially enriched weighted limit { G, F }* (resp. the simplicially enriched colimit
G . F).

Proposition 1.9.9. Let C and D be small categories.

e Given weights G : C — sSet and H : D — sSet and a diagram F :
C x D — sSet,

CG,C,C(H,D, F))2C(GX H,CxD,F)

naturally in F, G, and H, where G[X H : C X D — sSet is the functor
defined by (c,d) — Gc X He.

® Given weights G : C®® — sSet and H : D*® — sSet and a diagram
F :CxD — sSet,

B(G,C,B(H,D,F))2=B(GX H,CxD,F)

naturally in F, G, and H, where GIXH : C* XD — sSet is the functor
defined by (c,d) — Gc X He.

Proof. We will prove the first claim; the second can be proved in a similar way.
By proposition 1.9.7,

C(G,C,C(H,D, F)) = / [B(G.C*,disc £,),C(G, D, Fo)]

c:C

and by propositions 1.8.36 and A.6.11,
[B(G,C,disc £,),C(G, D, Fc)]
= / [B(G,C,disc h,) x B(H,D,disc 4,), F(c,d)|
d:D
but it is easy to see that
B,(G,C*, A,)xB,(H,D®, #,) =B,(GR H,C®? XD, 4, [X k)
so by the interchange law for ends (aA.6.17),
C(G,C,C(H,D,F)) = C(GK H,CxD,F)

as claimed. [ |
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The homotopical significance of Bousfield—Kan limits/colimits (and more
generally, bar/cobar constructions) is best expressed in terms of certain model
structures on [C, sSet].

Definition 1.9.10. Let C be a category and let F, F’' : C — sSet be functors.
A natural weak homotopy equivalence F = F’ is a natural transformation
whose components are weak homotopy equivalences of simplicial sets.

Definition 1.9.11. Let C be a category.

* Aninjective cofibration in [C, sSet] is a natural transformation of functors
C — sSet whose components are monomorphisms.

* An injective trivial cofibration in [C, sSet] is an injective cofibration that
is also a natural weak homotopy equivalence.

* A projective fibration in [C, sSet] is a natural transformation of functors
C — sSet whose components are Kan fibrations.

* A projective trivial fibration in [C, sSet] is a projective fibration that is
also a natural weak homotopy equivalence.

Definition 1.9.12. Let C be a small category.

* An injective fibration in [C, sSet] is a morphism that has the right lifting
property with respect to all injective trivial cofibrations.

* Aninjective trivial fibration in [C, sSet] is a morphism that has the right
lifting property with respect to all injective cofibrations.

* A projective cofibration in [C, sSet] is a morphism with the left lifting
property with respect to all projective trivial fibrations.

* A projective trivial cofibration in [C, sSet] is a morphism with the left
lifting property with respect to all projective fibrations.

Theorem 1.9.13 (Bousfield and Kan). Let C be a small category. The following
data constitute a a cofibrantly generated simplicial model structure on [C, sSet]:

® The weak equivalences are the natural weak homotopy equivalences.

o The fibrations are the projective fibrations, i.e. the componentwise Kan
fibrations.
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e The cofibrations are the projective cofibrations, i.e. the morphisms with the
left lifting property with respect to componentwise trivial Kan fibrations.

This model structure is called the Bousfield—-Kan model structure or the pro-
jective model structure on [C, sSet].

Proof. See the proof of Proposition 8.1 in [Bousfield and Kan, 1972, Ch. XI], or
apply theorem 5.2.7 and proposition 2.4.17. [ ]

Theorem 1.9.14 (Heller). Let C be a small category. The following data con-
stitute a cofibrantly generated simplicial model structure on [C, sSet]:

® The weak equivalences are the natural weak homotopy equivalences.

e The fibrations are the injective cofibrations, i.e. the (componentwise) mono-

morphisms.

e The cofibrations are the injective fibrations, i.e. the morphisms with the
right lifting property with respect to componentwise anodyne extensions.

This model structure is called the Heller model structure or the injective model
structure on [C, sSet].

Proof. See Theorem 4.5 in [Heller, 1988, Ch. II], or apply theorem 8.4.9 and
proposition 2.4.17. [ ]

Proposition 1.9.15. Let U : C — D be a functor between small categories.

e For any functor G : C? — sSet, the bar construction B (G, C,disc U*ﬁ')
is a cofibrant object in the Bousfield—Kan model structure on [D?, sSet],
where U™ : [D, Set] — [C, Set] is the functor induced by composition.

e For any functor F : C — sSet, the bar construction B (disc U*h, C, F )
is a cofibrant object in the Bousfield—Kan model structure on [D, sSet],
where U : [D?, Set] — [CP, Set] is the functor induced by composition.

e For any functor G : C — sSet, the bar construction B (G, C°P, disc U*ﬁ,)
is a cofibrant object in the Bousfield—-Kan model structure on [D, sSet],
where U™ : [D?, Set] — [CP, Set] is the functor induced by composition.

e Forany functor F : C°* — Set, the bar construction B (disc Uh*,C® F )
is a cofibrant object in the Bousfield—Kan model structure on [D?, sSet],
where U™ : [D, Set] — [C, Set] is the functor induced by composition.
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Proof. The four claims are formally dual; we will prove the first version.

LetI={0A"®h; <> N O hy|n>0,d € obD}. Using the Yoneda lemma
and proposition a.3.26, we see that each element of 7 is a projective cofibration;
so by proposition A.3.17, it suffices to prove that B (G, C, disc U*ﬁ’) is a I-cell
complex in the sense of §0.5.

We proceed inductively. As usual, we define sk_,(Y) = @ for all simplicial
sets Y. Suppose we have shown that the (componentwise) (n — 1)-skeleton of
B,(G.C,discU*£*) is an I-cell complex. Let I,(d) C (B(G,C,discU*A?)),
be the subset of non-degenerate n-simplices of B (G, C,discU*A* ) By propos-
ition 1.2.23, there is a canonical pushout diagram in sSet of the form below:

N O 1,(d) © A I,(d)

l l

sk,_;(B(G,C,disc F*A")) —— sk,(B(G,C,disc F*£))

By lemma 1.8.26, an n-simplex of B(G, C, disc U*A") is a tuple

(y, S o ,fl,x) € H Gn(cn) X C(cn_l,cn) X eee X C(co,cl) X ID(d,Uco)
(conty)

where (cg, ..., c,) ranges over (n + 1)-tuples of objects in C, and this n-simplex
is degenerate if and only if at least one f; : ¢;_; = ¢; is an identity morphism
in C. Thus, I, is a coproduct of representable functors D — Set and is a
subfunctor of (B(G,C, disc U*A")),, so we have a pushout diagram of the form
below in [D°P, sSet]:

NI, < ANOT,

l l

sk, (B(G.C,disc F*A%)) — sk, (B(G,C,disc F*A"))

We may now conclude that B (G, C,disc F *ﬁ') is an I-cell complex. [ |
Proposition 1.9.16. Let C be a small category.

e For each functor G : C°° — sSet, there is a natural weak homotopy equi-
valence B(G,C,C) = G, and it is also natural in G.

e For each functor F : C — sSet, there is a natural weak homotopy equi-
valence B(C,C, F) = F, and it is also natural in F.
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® For each functor G : C — sSet, there is a natural weak homotopy equi-
valence B(G,C,C®) = G, and it is also natural in G.

e For each functor F : C°°® — sSet, there is a natural weak homotopy
equivalence B(C®,C®, F) = F, and it is also natural in F.

Proof. The four claims are formally dual; we will prove the first version.
Let K,, L, : C®® — ssSet be the functors defined below:

K, .(c) =G, (c)
L,.(c)=B,(G,C, k)

Observe that, by lemma 1.6.8, we have a natural isomorphism |K.(c)| ~ G(c);
and by lemma 1.8.26, |L.(c)| o~ B(G, C, ﬁc). On the other hand, recalling
proposition 1.7.12 and corollary 1.8.28, we see that proposition 1.8.41 implies
that there is a natural Reedy weak equivalence L,(c) — K,(c). Thus, by the-
orem 1.6.10, the induced natural transformation B(G,C,C) = G is a natural
weak homotopy equivalence, and it is clearly also natural in G. [ |

Corollary 1.9.17. Let C be a small category. For any weight G : C — sSet,
C(G,C, —-) : [C,sSet] — sSet sends natural weak homotopy equivalences between
projective-fibrant diagrams to weak homotopy equivalences of Kan complexes.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.9.19. [ ]

Proposition 1.9.18. Let C be a small category. For any weight G : C — sSet,
there is an adjunction of the form below,

B(G,C,C) x (=) 4C(G,C, —-) : [C,sSet] — sSet

and it is a Quillen adjunction with respect to both the Heller and Bousfield—Kan
model structures on [C, sSet]

Proof. The existence of the adjunction has been shown in proposition 1.8.36, so
by proposition 4.3.2, it suffices to show that

B(G,C,C®) X (—) : sSet — [C, sSet]
is a left Quillen functor with respect to the Heller model structure and that

C(G,C,-) : [C,sSet] — sSet
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is a right Quillen functor with respect to the Bousfield—Kan model structure.

It is clear that the induced natural transformation B(G,C®®,C?) X Z =
B(G, C°,C°)x W is an injective cofibration in [C, sSet] if Z — W is a mono-
morphism in sSet. Moreover, the 2-out-of-3 property and proposition 1.5.17 im-
ply that B(G, C?, C°?)x(—) preserves weak equivalences. Thus B(G, C?, C?)x
(—) is indeed a left Quillen functor with respect to the Heller model structure.

Now, proposition 1.9.7 says that

C(G,C,F) = / [B(G,C™, #,), Fc]
c:C
naturally in both F and G; but by remark 2.1.24,

[C,sSet](B(G,C, C), F) = / [B(G.C™®,4,), Fc|

c:C
and proposition 1.9.15 says B(G, C°P, C°P) is cofibrant in the Bousfield—Kan model
structure on [C, sSet], so by (theorem 1.9.13 and) proposition 2.4.7, C(G, C, —)
is indeed a right Quillen functor with respect to the Bousfield—-Kan model struc-
ture. [ |

Proposition 1.9.19. Let C be a small category.
e For any weight G : C°° — sSet, there is an adjunction of the form below,
B(G,C,-) 4 [B(G,C,C),—] : sSet — [C,sSet]

and it is a Quillen adjunction with respect to both the Bousfield—Kan and
Heller model structures on [C, sSet].

e For any diagram F : C — sSet, there is an adjunction of the form below,
B(—,C, F) 4 C(C®,C®,[F,—]) : sSet — [C°?, sSet]

and it is a Quillen adjunction with respect to both the Bousfield—Kan and
Heller model structures on [C, sSet].

Proof. The two claims are formally dual;'®’ we will prove the first version.
The existence of the adjunction has been shown in proposition 1.8.36, so by
proposition 4.3.2, it suffices to show that
[B(G,C,C),—] : sSet — [C,sSet]

Recall proposition 1.7.12 and corollary 1.8.28.
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is a right Quillen functor with respect to the Bousfield—Kan model structure and
that

B(G,C,—-) : [C,sSet] — sSet

is a left Quillen functor with respect to the Heller model structure.

By corollary 1.4.16, the induced natural transformation [B(G,C, C), X] =
[B(G, C, C),Y]is aprojective fibration (resp. projective trivial fibration) if X —
Y is a Kan fibration (resp. trivial Kan fibration). Thus [B(G, C, C), —] is indeed
a right Quillen functor with respect to the Bousfield—Kan model structure.

On the other hand, the cofibrations in the Heller model structure are the
(componentwise) monomorphisms, lemma 1.8.26 implies that B(G, C, —) pre-
serves cofibrations. To complete the proof, it is enough to show that B(G, C, —)
preserves weak equivalences. Let ¢ : X = Y be a natural weak homotopy
equivalence of diagrams C — sSet. To show that B(G,C, ¢) : B(G,C, X) —
B(G, C,Y) is a weak homotopy equivalence, it is enough to verify that the in-
duced morphism

[B(G,C,9),K]: [B(G,C,Y), K] — [B(G,C, X),K]

is a weak homotopy equivalence for all Kan complexes K. But by lemma 1.8.31,
this is the same as showing that

C(G,C?, [, K] : C(G,C®,[Y,K]) - C(G,C*®,[X,K])

is a weak homotopy equivalence for all Kan complexes K; and corollary 1.4.16
implies that [@, K] is a natural weak homotopy equivalence between projective-
fibrant diagrams, so we may apply corollary 1.9.17. [ |

Corollary 1.9.20. Let C be a small category.

e For any weight G : C® — sSet, B(G,C, —) : [C, sSet] — sSet preserves
weak equivalences.

e For any diagram F : C — sSet, B(—,C, F) : [C?,sSet] — sSet pre-
serves weak equivalences.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.9.19 and the fact that
every object is cofibrant in the Heller model structure. [ ]
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Proposition 1.9.21. Let C be a small category. Then

limB¥ ~ 1imXB
— —
C C

as functors [C,sSet] — sSet, i.e. there is a zigzag of natural weak homotopy
equivalences connecting them.

Proof. By proposition 1.7.12 and corollary 1.9.20, we have the following zigzag
of natural weak homotopy equivalences,

: ~BK _ i BK (__yop
. BK, . BK /_\op . BK,_ yop\»
and by remark 1.9.4, the claim follows. [ |

Proposition 1.9.22. Let C be a small category. For any diagram F : C — sSet,
there is an adjunction of the form below,

C(C,C,[-, F]) 4C(—,C, F): [C,sSet]® — sSet
and moreover:

(i) If F is projective-fibrant, then the adjunction is a Quillen adjunction with
respect to the Bousfield—Kan model structure on [C, sSet].

(ii) If F is injective-fibrant, then the adjunction is a Quillen adjunction with
respect to the Heller model structure on [C, sSet].

Proof. The existence of the adjunction was shown in proposition 1.8.36; it re-
mains to be shown that it is a Quillen adjunction under the appropriate hypo-
theses.

(i). Suppose F is projective-fibrant. Proposition 1.9.7 says that

C(G,C,F) = / [Ge, C(disc £°,C, F)]
c:.C
naturally in both F and G; but by remark 2.1.24,
[C,sSet](G,C(C,C, F)) = / [Ge, C(disc A9, C, F)]

c:C
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and proposition 1.9.18 implies that C(C, C, F) is projective-fibrant if F is, so by
(theorem 1.9.13 and) proposition 2.4.7,

[C,sSet](—, F) : [C,sSet]®® — sSet

is indeed a right Quillen functor with respect to the Bousfield—Kan model struc-
ture.

(ii). Suppose F is injective-fibrant. Proposition 1.9.7 says that
C(G,C,F) = / [B(G,C,disc h,), Fc]
c:C
naturally in both F and G; but by remark 2.1.24,

[C,sSet](B(G,C,C), F) = / [B(G.C™®,4,), Fc|

c:C
and (theorem 1.9.14 plus) proposition 2.4.7 says

[C,sSet](—, F) : [C,sSet]” — sSet

is a right Quillen functor with respect to the Heller model structure; on the other
hand, proposition 1.9.19 says

B(—,C,C) : [C,sSet] — [C,sSet]

is a left Quillen functor with respect to the Heller model structure, so (by propos-
itions 4.3.2 and 4.3.5) C(—, C, F) is indeed a right Quillen functor with respect
to the Heller model structure. [ |

The homotopical universal property of the bar/cobar constructions is tradi-
tionally stated in terms of derived functors.

Definition 1.9.23. Let C be a small category.

* A homotopy limit functor for diagrams C — sSet is a homotopical right
approximation for the functor l(iLnC : [C,sSet] — sSet.

* A homotopy colimit functor for diagrams C — sSet is a homotopical left
approximation for the functor li_r)nC : [C,sSet] — sSet.
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REMARK 1.9.24. Homotopy limit/colimit functors are not well defined up to iso-
morphism, but by remark 3.4.7, they are homotopically unique. By definition,
each homotopy limit functor (resp. homotopy colimit functor) is equipped with a
natural transformation from l(iLnC (resp. to l'i)nc); and for general reasons (cf. pro-
position 4.3.17), the component at an injective-fibrant (resp. projective-cofibrant)
diagram is a weak homotopy equivalence. However, we can do slightly better
with homotopy limit functors.

Since there is no more difficulty in doing so, we will also consider generalised
homotopy limits/colimits:

Definition 1.9.25. Let C be a small category.

* Let G : C — sSet be a weight and let {G,—}* : [C,sSet] — sSet be the
functor defined below,

{G,F}C:/ [Ge, Fc]
c:C

A homotopy G-weighted limit functor is a homotopical right approxim-
ation for {G, —}© : [C, sSet] — sSet.

* Let G : C® — sSet be a weight and let G % (—) : [C, sSet] — sSet be
the functor defined below:

c.C
G*CF=/ Gex Fe

A homotopy G-weighted colimit functor is a homotopical left approx-
imation for G x (=) : [C, sSet] — sSet.

Theorem 1.9.26. Let C be a small category, let G : C — sSet be a weight, and
let R : sSet — sSet be (the functor part of) any functorial fibrant replacement
in sSet.

(i) {G,—1€ : [C,sSet] — sSet sends natural weak homotopy equivalences
between diagrams of the form C(C, C, F) where every Fc is a Kan complex
to weak homotopy equivalences of simplicial sets.

(ii)) C(C,C, R~ —): [C,sSet] — [C,sSet] is (the functor part of) a functorial
right deformation retract for {G,—}°.
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(iii) C(G,C,Ro—) : [C,sSet] — sSet is (the functor part of) a homotopy
G-weighted limit functor.

Proof. (i). Let X,Y : C — Kan be diagrams and let ¢ : C(C,C,X) =
C(C,C,Y) be a natural weak homotopy equivalence. We have the following
commutative diagram,

{G,C(C,C, X)}* —— {B(G,C*,C*),C(C,C, X)}*

l l

{G,C(C,C,Y)}¢* —— {B(G,C*,C),C(C,C,Y)}*

where the horizontal arrows are induced by the natural weak homotopy equi-
valence of proposition 1.9.16 and the vertical arrows are induced by ¢; but by
remark 2.1.24,

{B(G,C™,C*®),-}* = [C,sSet](B(G,C*®, C*), -)

and B(G, C°?, C) is projective-cofibrant by proposition 1.9.15, and since both
C(C,C, X) and C(C, C,Y) are projective-fibrant by proposition 1.9.18, we may
use corollary 1.9.17 to deduce that

{B(G,C*,C™),C(C,C, X)}° - {B(G,C*®,C™),C(C,C,Y)}°

is a weak homotopy equivalence of Kan complexes. On the other hand, the fol-
lowing diagram commutes for all diagrams F : C — sSet,

{G,C(C,C, F)}* ——— {B(G,C*®,C*),C(C,C, F)}*

-| l2

{B(G,C,C®), F}* —— {B(B(G,C*,C*®),C*®,C™), F}©

where the horizontal arrows are induced by the natural weak homotopy equival-
ence B(G,C?,C) = G (from proposition 1.9.16), and the vertical arrows are
the isomorphisms given by proposition 1.9.7. Moreover, by corollary 1.9.20,

B(B(G,C?,C),C?,C?) - B(G,C”,C)
is a natural weak homotopy equivalence, so if F is projective-fibrant, then

{G,C(C,C, F)}* - {B(G,C®,C®),C(C,C, F)}¢
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is a weak homotopy equivalence of Kan complexes; hence, by the 2-out-of-3
property,
{G.C(C.C. X)) - {G.C(C,C.1)}"

is also a weak homotopy equivalence of Kan complexes.

(ii). It remains to be shown that there is a natural weak equivalence idc sget) =
C(C,C,Re—). Let F : C — sSet be a diagram. By (the Yoneda lemma for ends
(proposition A.6.18 and) the arguments above, we have a natural weak homotopy
equivalence

RFc = {disc £, RF}* — {B(disc A°,C*,C*), F}* = C(disc £°,C, RF)

and we have a natural weak homotopy equivalence F¢ — RFc by definition,
so do indeed have a natural weak homotopy equivalence F = C(C,C, F), as
required.

(iii). Thus, by theorem 3.4.11, {G,C(C,C, R » —)}€ : [C,sSet] — sSet is (the
functor part of) a homotopical right approximation for {G, —}%, and by propos-
ition 1.9.7,

C(G,C,R+—-) = {G,C(C,C,Ro—)}"

so we are done. [ |
Theorem 1.9.27. Let C be a small category and let G : C? — sSet be a weight.

(i) G *¢ () : [C,sSet] — sSet sends natural weak homotopy equivalences
between diagrams of the form B(C, C, F) to weak homotopy equivalences
of simplicial sets.

(ii) B(C,C, —-) : [C,sSet] — [C,sSet] is (the functor part of) a functorial left
deformation retract for G *¢ (—).

(iii) B(G,C,—) : [C,sSet] — sSet is (the functor part of) a homotopy G-weighted
colimit functor.

Proof. (i). An analogue of proposition A.6.15 says that we have an adjunction of
the following form:

G *c (=) 1[G, -] : sSet — [C,sSet]
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By corollary 1.4.16, [G,—] : sSet — [C,sSet] is a right Quillen functor with
respect to the Bousfield—Kan model structure, so by proposition 4.3.2, Gx (=) :
[C,sSet] — sSet is a left Quillen functor with respect to the Bousfield—Kan
model structure. But proposition 1.9.15 says diagrams of the form B(C, C, F)
are projective-cofibrant, so the claim is a consequence of Ken Brown’s lemma

(4.3.6).

(ii). It remains to be shown that there is a natural weak equivalence B(C, C, —) =
idc sser)» DUt this was done in proposition 1.9.16.

(iii). Thus, by theorem 3.4.11, G *xB(C, C, —) : [C, sSet] — sSet is (the functor
part of) a homotopical left approximation for G x (—), and by proposition 1.9.7,

B(G,C,-) = G x. B(C,C,-)
so we are done. [ |
The following comparison results are often useful.

Lemma 1.9.28.
® There is a morphism N(A/,)Op — A® in [A, sSet].

® There is a morphism N(A/,) — A®in[A,sSet].

Proof. Apply N : Cat — sSet to the functors (A /[n])(’p — [n] (resp. A ,; = [n])
that send an object a : [m] — [n] in A, to a(0) (resp. a(m)) in [n]. [ ]

Theorem 1.9.29.
(i) There is an adjunction of the form below,

|—| 4 [A®, =] : sSet — [A°P,sSet]

and it is a Quillen adjunction with respect to both the Bousfield—Kan and
Heller model structures on [A°?, sSet].

(ii) There is a conjugate pair of natural transformations
@:|=|=lm v A(-) > [A% -]
where y is induced by the unique natural transformation A®* = Al, and
the derived natural transformations

Ly : L|-| = Liim Ry : RA(-) = R[A®, -]

constitute a conjugate pair of natural isomorphisms.
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(iii) For any projective-cofibrant diagram F : A°® — sSet, the natural morph-
ism g : |F| = li_n}Aop F is a weak homotopy equivalence. In particular,
the realisation functor |—| : [A°P,sSet] — sSet is (the functor part of) a
homotopy colimit functor for diagrams A? — sSet.

Proof. (i). The existence of the adjunction is a special case of theorem B.3.19.
Theorem 1.6.4 says that the Reedy model structure on [A°P, sSet] coincides with
the Heller model structure, so by theorem 1.6.10, the indicated adjunction is a
Quillen adjunction with respect to the Heller model structure.

It remains to be shown that the adjunction in question is a Quillen adjunc-
tion with respect to the Bousfield-Kan model structure; by proposition 4.3.2, it
suffices to show that

[A®,—]: sSet — [A°P, sSet]

is a right Quillen functor (with respect to the Bousfield—Kan model structure);
but this is an immediate consequence of corollary 1.4.16, so we are done.

(ii). Since the standard simplices A" are contractible, the unique natural trans-
formation A® = Al is a natural weak homotopy equivalence. Thus, for any Kan
complex K, the natural morphism y, : AK — [A®, K] is a weak homotopy
equivalence (by proposition 1.5.17). Thus, considering the explicit description
of Ry afforded by theorems 3.3.17 and 4.3.12, we see that Ry is a natural iso-
morphism; but Lg and Ry are conjugate by theorem 3.3.24, so we deduce that
L is also a natural isomorphism.

(iii). Since Lo : L|—-| = Lli_r)nAnp is a natural isomorphism, the natural morph-
ism ¢ : |F| = li_r)nMp F must be a weak homotopy equivalence for every
projective-cofibrant diagram F : A’ — sSet.

We claim that |—| : [A°P,sSet] — sSet and ¢ : || = li_r)nAop constitute
a homotopical left approximation for li_r)nAop : [A°P,sSet] — sSet. Let (Q,p)
be a functorial projective-cofibrant replacement for [A°P, sSet]; such exists, by
Quillen’s small object argument (theorem 0.5.12) and theorem 1.9.13. Then the-

orem 3.4.11 says that <h_r)nAop °Q, 11_1r)nA0p p) homotopical left approximation for
li_r)nAop. But the following diagram commutes,

[pl @0 .
-l —— 10-| = lim -0

lim
(PJ( l o p

Iim =—— lim lim
—>A0P —A0P —SA0p
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and by Ken Brown’s lemma (4.3.6), both arrows in the top row are natural weak
homotopy equivalences, so by proposition 3.2.2, (|—| , (p) is also a homotopical
left approximation for li_n}Aop, as claimed. [ |

Corollary 1.9.30. Given any morphism 0, : N(A/,)Op — A*in [A,sSet]:

(i) There is an induced natural transformation 6, : li_r)nilfp = |—| making the
diagram below commute,

limB® — lim
—>A0P —S5 AP

| H

|-| — lim
— A%

where the horizontal arrows are the counits of the respective homotopical
right Kan extensions.

(ii) For any diagram X, : A°® — sSet, the morphism

6, : lim** X, - |X.
—
AP

is a weak homotopy equivalence.
Dually, given any morphism 0, : N(A/,) — A®in [A,sSet]:
(i) There is an induced natural transformation 6, : li_r)ni?p = |—| making the
diagram below commute,

lim®B
—S AP

| H

|- —— lim
—>A0P

—— lim
— A%

where the horizontal arrows are the counits of the respective homotopical
right Kan extensions.

(ii) For any diagram X, : A? — sSet, the morphism

6, : lim*B X, —» |X,
—
AP

is a weak homotopy equivalence.
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Proof. (i). Each N(A /[n]) and each A" is contractible, by corollary 1.3.11, so
0, : N(A /,)OP — A°® is a natural weak homotopy equivalence. Remark 1.8.4
says that B(A1, A, ) = N(A,,;)®, so proposition 1.9.7 implies that 6§ :
N(A,,)” — A* induces a natural transformation

[n]:A [n]:A
/ B(AI,AOP,ﬁ[n])x(—)n:}/ A" X (=),

i.e. a natural transformation 6, : li_n}ilfp = |—|. Similarly, the unique natural

transformation N(A ,,)® = Al (resp. A* = Al) induces the canonical com-

parison lim® = lim  (resp. |—| = lim _, so we have a commutative diagram
—AP T AP —> A

of the required form.

(ii). This is a corollary of lemma 3.2.5. [ |
Corollary 1.9.31. Let C be a locally small category.

® For each cosimplicial object A® in C and each object B in C, there is a
weak homotopy equivalence

N((A | B)) = C(A®, B)
and it is natural in A® and B.

e For each object A in C and each simplicial object B, in C, there is a weak
homotopy equivalence

N((A | B)) » C(A, B,)
and it is natural in A and B,.

Proof. The two claims are formally dual; we will prove the first version.
By remark 1.8.5 and proposition 1.9.7, we have natural isomorphisms
N(A | B)) = B(A1,A®, A*A") =~ h_r)nBK disc C(A®, B)
AP
and by (lemma 1.9.28 and) corollary 1.9.30, we have a natural weak homotopy

equivalence

li_r)nBK disc C(A°®, B) — |disc C(A°®, B)|
AP
but by corollary 1.6.9,

|disc C(A®, B)| = C(A®, B)

so we are done. [ |
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1.9. Bousfield—Kan limits and colimits

Theorem 1.9.32.
(i) There is an adjunction of the form below,

A® x (=) 1 Tot : [A,sSet] — sSet

and it is a Quillen adjunction with respect to both the Reedy and Heller
model structures on [A, sSet].

(ii) There is a conjugate pair of natural transformations
@:A*X(-)=> A(-) w:l(&nA=>Tot

where y is induced by the unique natural transformation A* = Al, and
the derived natural transformations

Lo : L(A®* X (-)) = LA(-) Ry : Rl(i£1A = RTot
constitute a conjugate pair of natural isomorphisms.

(iii) For any injective-fibrant diagram F : A — sSet, the natural morphism
T/ l(iLnA F = TotF is a weak homotopy equivalence. In particular,
given any Reedy-fibrant replacement functor R : [A,sSet] — [A, sSet],
the composite ToteR : [A, sSet] — sSet is (the functor part of) a homotopy
limit functor for diagrams A — sSet.

Proof. (i). The existence of the adjunction is a special case of theorem B.3.18,
and it is a Quillen adjunction with respect to the Reedy model structure by the-
orem 1.6.26.

It remains to be shown that the adjunction in question is a Quillen adjunction
with respect to the injective model structure; by proposition 4.3.2, it suffices to
show that

A® X (=) : sSet — [AP, sSet]

is a left Quillen functor (with respect to the injective model structure). Clearly,
each A" X (—) preserves monomorphisms, and by proposition 1.5.17, it also pre-
serves weak homotopy equivalences; thus, A®* X (—) sends monomorphisms to
injective cofibrations and (by proposition 1.5.12) anodyne extensions to injective
trivial cofibrations, as required.

(ii). Since the standard simplices A" are contractible, the unique natural trans-
formation A* = Al is a natural weak homotopy equivalence. Thus, for any
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simplicial set X, the natural morphism ¢, : A*X X — AX is a weak homotopy
equivalence (by proposition 1.5.17). Thus, considering the explicit description
of L¢ afforded by theorems 3.3.17 and 4.3.12, we see that L is a natural iso-
morphism; but L and Ry are conjugate by theorem 3.3.24, so we deduce that
Ry is also a natural isomorphism.

(iii). Since Ry : Rl(iLnA = RTot is a natural isomorphism, the natural morphism
Yy l(iilA F — Tot F must be a weak homotopy equivalence for every injective-
fibrant diagram F : A — sSet.

Let (R,i) be any functorial Reedy-fibrant replacement for [A, sSet]. We
claim that Tot o R : [A,sSet] — sSet and y o i : l(iLnA = Tot o R constitute
a homotopical right approximation for I}LHA : [A°P,sSet] — sSet. Let (R, f) be
a functorial injective-fibrant replacement for [A, sSet]; such exists, by Quillen’s
small object argument (theorem 0.5.12) and theorem 1.9.14. Then theorem 3.4.11
says that <l(i£1A o R, I}LHA i ) homotopical right approximation for l(iLnA. But the

following diagram commutes,

lim lim lim
—A —A —A

0- lm 2~
vi| | EX

Toto R ——> Toto Ro R «——— lim o R
Tot Ri (wei)R  «—A

and by Ken Brown’s lemma (4.3.6), both arrows in the bottom row are natural
weak homotopy equivalences, so by proposition 3.2.2, (Tote R,y ¢ i) is also a
homotopical right approximation for 1<iLnA, as claimed. [ |

Corollary 1.9.33. Given any morphism 0, : N(A/,)Op — A*in [A,sSet]:

(i) There is an induced natural transformation 0* : Tot = £i£1§K making the
diagram below commute,

lim —— Tot
—A
lim —— 1lim®
—A —A
where the horizontal arrows are the canonical comparisons.
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1.9. Bousfield—Kan limits and colimits

(ii) For any Reedy-fibrant diagram X°* : A — sSet, the morphism
6* : Tot X* — lim®* Xx°
by

is a weak homotopy equivalence.
Dually, given any morphism 0, : N(A/,) — A®in [A,sSet]:

(i) There is an induced natural transformation 60 : Tot = l(iiliB making the
diagram below commute,

lim ——— Tot

«——A

lim — limXB
—A —A

where the horizontal arrows are the canonical comparisons.
(ii) For any Reedy-fibrant diagram X* : A — sSet, the morphism
6* : Tot X* — lim*® X
Y

is a weak homotopy equivalence.

Proof. (i). Each N(A /[,,J) and each A" is contractible, by corollary 1.3.11, so
0, : N(A /,)Op — A°® is a natural weak homotopy equivalence. Remark 1.8.4
says that B(A1, A, ) = N(A,,;)®, so proposition 1.9.7 implies that 6 :
N(A /,) °® — A* induces a natural transformation

[ o] s
[n]:A [n]:A

i.e. a natural transformation 8* : Tot = 1(i£1§K. Similarly, the unique natural

transformation N(A /,)Op = Al (resp. A* = A1) induces the canonical com-

parison lim = 1im®* (resp. lim = Tot, so we have a commutative diagram of
—A A —A

the required form.

(ii). Let X* : A — sSet be a Reedy-fibrant diagram. If X* is injective-fibrant,
then by applying theorem 4.3.12 to propositions 1.9.18 and 4.3.17 and using the
2-out-of-3 property, we may deduce that that #* : Tot X* — l(iiliK X* is a weak
homotopy equivalence. However:

205



I. SIMPLICIAL SETS

* By theorem 1.9.14 and proposition 4.1.24, we may replace an arbitrary X *
with a naturally weakly homotopy equivalent injective-fibrant diagram.

* By proposition 4.6.17, every injective-fibrant diagram is Reedy-fibrant,
and every Reedy-fibrant diagram is projective-fibrant.

* By theorem 1.6.26 (resp. proposition 1.9.18) and Ken Brown’s lemma (4.3.6),
the functor Tot (resp. l(iLniK) sends natural weak homotopy equivalences
between Reedy-fibrant (resp. projective-fibrant) diagrams A — sSet to
weak homotopy equivalences.

Thus, applying the 2-out-of-3 property again, 8* : Tot X* — l(iLniK X* is indeed
a weak homotopy equivalence for all Reedy-fibrant diagrams X°. [ |

The following result is essentially due to Quillen [1973, §1].

Proposition 1.9.34. Let C be a small category and let F : C — sSet be a
diagram.

(i) There is a natural pullback diagram of the form below,

Fe —— limBX F
—>C

|

A —— N(O)

where the bottom horizontal arrow is the morphism corresponding to the
vertex ¢ of N(C) and p : IEQEK F — N(QC) is the morphism induced by
remark 1.8.5 and the unique natural transformation F = Al.

(ii) Assuming Ff : Fc¢' — Fc is a weak homotopy equivalence for every
morphism f : ¢’ — c in C, for any commutative diagram in sSet of the
form below,

X sy 2 imBKF

L

X Y N(C)

u 1%

ifu: X — Y is a weak homotopy equivalence and the two squares are
pullback squares in sSet, then u’ : X' — Y' is also a weak homotopy
equivalence.
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1.9. Bousfield—Kan limits and colimits

Proof. We follow the proof of Lemma 5.7 in [GJ, Ch. IV].

(i). The diagram in question is obtained by applying diag : ssSet — sSet to the
following diagram in ssSet,

Fc — B,(ALC, F)

l l

A’ —— discB,(A1,C, Al)

where the horizontal arrows are defined by the evident coproduct inclusions.
Recalling remark 1.8.18, it is not hard to see that this is a pullback diagram in
ssSet, so the same is true of its image under diag : ssSet — sSet.

(ii). Now suppose Ff : F¢' — Fc is a weak homotopy equivalence for every
morphism f : ¢" — ¢ in C. The pullback functor p* : sSet ) — sSet b« 5
has a right adjoint (by theorem A.2.22), so in particular it preserves trans_ﬁ)iclite
compositions. Thus, in view of proposition 1.5.12, lemma 4.1.10, and proposi-
tion A.3.17, it suffices to prove the claim in the special case where u : X — Y is
a horn inclusion, say A} < A",

Identifying A" with N([n]), by proposition 1.2.2, there is a unique functor
V : [n] — C such that N(V') = v. We then have a commutative diagram in ssSet
of the form below,

B,.(Al,[n], FV) —— B, (A1,C, F)

l l

B.(Al,[n],Al) —> B,(A1,C,Al)

where the horizontal arrows are the canonical comparison morphisms of pro-
position 1.8.21 and the vertical arrows are induced by the unique natural trans-
formation to A1, and by lemma 1.8.22, it is a pullback square in ssSet. Further-
more, there is an evident natural transformation AFV[0] = FV of diagrams
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[n] — sSet, so we have the following diagram,

(A7), X FV[0] ———— (&), x FV[0]

l l

(A})s Xan, BJ(AL [n], FV) —— B (Al,[n], FV)

l |

(AD), > (&),

where both squares are pullback squares in ssSet, and (recalling proposition 1.5.16)
the hypothesis implies that the vertical arrows in the upper square are Reedy weak
homotopy equivalences. Thus, by lemma 1.6.8 and theorem 1.6.10, in the induced
diagram in sSet,

A X FV[0] —— A'X FV][0]

l |

A} X lim®* FV —— 1im®* FV
—>[n —>[n]

both vertical arrows are weak homotopy equivalences; but the top horizontal
arrow is a weak homotopy equivalence by proposition 1.5.17, so the bottom ho-
rizontal arrow must also be a weak homotopy equivalence, by the 2-out-of-3

property. [ ]

Bousfield-Kan extensions

Prerequisites. §§1.5, 1.6, 1.8, 2.4, 3.3, 3.4, 4.3, A.5, A.6.
In this section, we study a homotopy-theoretic version of Kan extensions.

Definition 1.10.1. Let U : C — D be a functor between small categories.

* The left Bousfield-Kan extension of a diagram F : C — sSet along
U : C — D is the diagram Lan* F : D — sSet defined by the following
formula:

(Lanj* F)d =B(U*#,,C, F)
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1.10. Bousfield—Kan extensions

* The right Bousfield-Kan extension of a diagram F : C — sSet along
U : C — D is the diagram Ran}“ F : D — sSet defined by the following
formula:

(Ranp® F)d = C(U*4",C, F)

REMARK 1.10.2. Let C be a small category. If U : C — 1 is the unique functor,
then Lan]f}K (resp. RangK) can be identified with lim®% (resp. lim®X).
—cC —cC

Lemma 1.10.3. Let C and D be small categories and let W : CP X D — sSet
be a functor.

(i) There is an adjunction of the form below:
B(W,C,-) 4 [D,sSet](B(W,C,C),-) : [D,sSet] — [C, sSet]
(ii) There is an adjunction of the form below:
B(W,D, D) % (—) 4 C(W,D, -) : [D,sSet] — [C,sSet]

Proof. Let F : C — sSet and G : D — sSet be diagrams. For convenience, we
write W for the value of W : C°* x D — sSet at (c, d).

(i). By proposition 1.9.7,
c:C
B(W,,C,F) g/ B(W,,C,disc ) X Fc

and thus, by remark A.6.5, proposition A.6.11, and the interchange law for ends
(theorem A.6.17), we have the following natural bijections,

[D,sSet|(B(W,C, F),G) = / / sSet(B(W,,C,disc h°) X Fc,Gd )
d:D Je:C
- / / sSet(Fe. [B(W,.C.disc ). Gd])
= [E;CSS:E(F, [D,sSet](B(W,C,C),G))
where in the last step we have used remark 2.1.24.
(ii). Similarly,

C(W*,D,G) / [B(W,,D,disc ,), Gd|

d:D
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and thus, we have the following natural bijections,

[C,sSet](F,C(W,D,G)) = / / sSet(Fec, [B(W*¢,D®,disc ,),Gd])
c:C Jd:D

~ / / sSet (B(W,D®,disc ;) X Fe,Gd )
d:D Jc.C
~ [D,sSet](B(W,D®, D) x. F,G)

where in the last step we have used the coend formula for simplicially enriched
weighted colimits:

c:C
B(W,D®, D) k. F = / B(W*,D®, D) x Fc [ |

Proposition 1.10.4. Let U : C — D be a functor between small categories.
(i) There is an adjunction of the form below:

Lan®* - [D,sSet|(B(U*D, C,C), ) : [D, sSet] — [C, sSet]

(ii) The adjunction is a Quillen adjunction with respect to the Bousfield—Kan
model structures on [C, sSet] and [D, sSet].

(iii) The adjunction is a Quillen adjunction with respect to the Heller model
structures on |C, sSet] and [D, sSet].

Proof. (i). Apply lemma 1.10.3 with W = D(U —, —).

(ii). By proposition 1.9.15, for each object ¢ in C, B(U*ID, C, disc ﬁ") is a cofi-
brant object in the Bousfield—Kan model structure on [D, sSet]. The Bousfield—
Kan model structure is a simplicial model structure (by theorem 1.9.13), thus
each [D,sSet](B(U*D, C,disc °),—) : [D,sSet] — sSet is a right Quillen
functor with respect to the Bousfield-Kan model structure; but fibrations and
trivial fibrations are componentwise in the Bousfield—-Kan model structure, so
we conclude that [D, sSet](B(U*D, C,C),—) : [D,sSet] — [C,sSet] is a right
Quillen functor. The claim is then a consequence of proposition 4.3.2.

(iii). Proposition 1.9.19 says that each B(U*#,;,C,—) : [C,sSet] — sSet is
a left Quillen functor with respect to the Heller model structure on [C, sSet],
and since cofibrations and trivial cofibrations in the Heller model structure are
componentwise, we conclude that B(U*D, C, —) : [C, sSet] — [D, sSet] is a left
Quillen functor. As before, it follows that we have a Quillen adjunction. [ |

210

TODO: Add a refer-
ence for this.



1.10. Bousfield—Kan extensions

Corollary 1.10.5. Let U : C — D be a functor between small categories. Then
LangK : [C,sSet] — [D, sSet| preserves natural weak homotopy equivalences.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.10.4. [ |
Proposition 1.10.6. Let U : C — D be a functor between small categories.
(i) There is an adjunction of the form below:

B(U*(-),C*®,C*®) 4 Ran;* : [C,sSet] — [D,sSet]

(ii) The adjunction is a Quillen adjunction with respect to the Bousfield—Kan
model structures on [C, sSet] and [D, sSet].

(iii) The adjunction is a Quillen adjunction with respect to the Heller model
structures on [C, sSet] and [D, sSet].

Proof. (i). By lemma 1.10.3 (with W = D(—, U —)), we obtain the following
adjunction:

B(U*D?,C?,C) x (=) 4 C(UD,C, —-) : [C,sSet] — [D, sSet]

The right adjoint is (by definition) Ran®* : [C,sSet] — [D, sSet], and by pro-
position 1.9.7,

B(U*D,C?,C) x (—) 2 B(U*(—),C,C)
so we indeed have an adjunction of the desired form.

(ii). Proposition 1.9.18 says thateach C(U*A?,C, —) : [C, sSet] — sSet is aright
Quillen functor with respect to the Bousfield-Kan model structure on [C, sSet],
and since fibrations and trivial fibrations are componentwise in the Bousfield—
Kan model structure are componentwise, we conclude that C{U*D,C,C) :
[C,sSet] — [D, sSet] is a left Quillen functor. The claim is then a consequence
of proposition 4.3.2.

(iii). Since cofibrations and trivial cofibrations are componentwise in the Heller
model structure, U* : [D, sSet] — [C, sSet] is a left Quillen functor (with respect
to the Heller model structure), and by proposition 1.9.19, so is B(—, C°?,CP) :
[C,sSet] — [C,sSet]. Thus, B{U*(-),C, C) : [D,sSet] — [C,sSet] is a
left Quillen functor (by proposition 4.3.5), and as before, it follows that we have
a Quillen adjunction. [ ]
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Corollary 1.10.7. Let U : C — D be a functor between small categories. Then
RangK : [C,sSet] — [D,sSet] preserves natural weak homotopy equivalences
between projective-fibrant diagrams.

Proof. Apply Ken Brown’s lemma (4.3.6) to proposition 1.10.6. [ ]

The homotopical universal property of Bousfield—Kan extensions is tradi-
tionally stated in terms of derived functors.

Definition 1.10.8. Let U : C — D be a functor between small categories.

* A homotopy left Kan extension functor for diagrams C — sSet along
U : C — D is a homotopical left approximation for the functor Lan;, :
[C,sSet] — [D, sSet].

* A homotopy right Kan extension functor for diagrams C — sSet along
U : C — D is a homotopical right approximation for the functor Ran,; :
[C,sSet] — [D, sSet].

Theorem 1.10.9. Let U : C — D be a functor between small categories.

(i) Lany : [C,sSet] — [D, sSet] sends natural weak homotopy equivalences
between diagrams of the form B(C, C, F) to natural weak homotopy equi-
valences of diagrams D — sSet.

(ii) B(C,C, —) : [C,sSet] — [C,sSet] is (the functor part) of a functorial left
deformation retract for Lany, : [C, sSet] — [D, sSet].

(iii) Laln]?]K : [C,sSet] — [D, sSet] is (the functor part of) a homotopy left Kan
extension functor for diagrams C — sSet along U : C — D.

Proof. (i) and (ii). Recalling theorem A.5.15, this is a straightforward consequence
of theorem 1.9.27.

(iii). Thus, by theorem 3.4.11, Lan,; B(C,C, —) : [C,sSet] — [D,sSet] is (the
functor part of) a homotopical left approximation for Lan,,, and by proposi-
tion 1.9.7,

Lan, B(C,C,-) 2 U*D % B(C,C,-) @ B(U*D, C,—) = Lan}* (-)

so we are done. [ |

212



1.10. Bousfield—Kan extensions

Theorem 1.10.10. Let U : C — D be a functor between small categories and
let R : sSet — sSet be (the functor part of) any functorial fibrant replacement
in sSet.

(i) Rany, : [C,sSet] — [D, sSet] sends natural weak homotopy equivalences
between diagrams of the form C(C, C, F) where every Fc is a Kan complex
to natural weak homotopy equivalences of diagrams D — sSet.

(ii) C(C,C, R —) : [C,sSet] — [C,sSet] is (the functor part) of a functorial
right deformation retract for Ran; : [C, sSet] — [D, sSet].

(iii) RangK(R o —): [C,sSet] — [D,sSet] is (the functor part of) a homotopy
right Kan extension functor for diagrams C — sSet along U : C — D.

Proof. (i)and (ii). Recalling theorem A.5.15, this is a straightforward consequence
of theorem 1.9.26.

(iii). Thus, by theorem 3.4.11, Ran,; C(C,C, R~ —) : [C,sSet] — [D,sSet] is
(the functor part of) a homotopical right approximation for Lan,;, and by pro-
position 1.9.7,

Ran, C(C,C, R0 —) = {U*D*,C(C,C, R —)}°
~ C(U*D*,C,Ro—) = RanP¥(Ro -)

so we are done. [ |

Lemma 1.10.11. Let U : C —» D and V : D — E be functors between small
categories.

(i) There is a natural weak homotopy equivalence
B(U™D,C,C) = discD(U—-,—)
of functors C°®* X D — Set.
(ii) There is a natural weak homotopy equivalence
U*B(V'E,D,D) = discE(VU —, —)
of functors C°® X E — Set.
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(iii) There is a natural weak homotopy equivalence
B(V'E,D,B(U*D,C,C)) = U*B(V*E,D, D)
of functors C°® X E — Set.

Proof. (i). This is a special case of proposition 1.9.16.

(ii). As above, there is a natural weak homotopy equivalence
B(V*E,D,D) = discE(V —, —)

of functors D’ XE — Set,and U™ : [D?, [E, sSet]] — [CP, [E, sSet]] preserves
weak equivalences, so the claim follows.

(iii). We may apply corollary 1.10.5 to obtain a natural weak homotopy equival-
ence of the required form. [ ]

Proposition 1.10.12.
(i) Let C be a small category. There is a natural weak equivalence Lanﬁi =>

ld'[<C,sSet]'

(ii) Let U : C -> D and V : D — [E be functors between small categories.
There is a natural weak equivalence LangK ° LanléK => Lan?}({].

Dually:

(") Let C be a small category. There is a natural weak equivalence id;¢ jgo) =
RanﬂK.
C

(ii") Let U : C - DandV : D — [E be functors between small categories.
There is a natural weak equivalence Ran%] => RanIB,K ° RanngK.

Proof. (i). By definition, Laniﬁ = B(C, C, —), so this is a consequence of pro-
position 1.9.16.

(ii). By definition,
Lany® o Lany* = B(V"E,D,B(U"D, C, -))
and by theorem 1.8.37,
B(V*E,D,B(U*D,C,-)) 2 B(U*B(V*E,D,D),C, -)
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1.10. Bousfield—Kan extensions

so by corollary 1.9.20, to prove the claim, it is enough to produce a natural weak
homotopy equivalence of the following form,

U'B(V*'E,D,D) = disc(VU)*E = discE(VU—, —)
but this was done in lemma 1.10.11. H

9 1.10.13. Henceforth, for any functor U : C — D between small categories,

we write
REXU* : [D, sSet] — [C, sSet]

for the right adjoint of Lanp® : [C, sSet] — [D, sSet] and
L**U* : [D,sSet] - [C,sSet]
for the left adjoint of Ran]?]K : [C,sSet] — [D, sSet].
Proposition 1.10.14. Let U : C — D be a functor between small categories.
® There is an adjunction of the form
LLan, 4 HoU" : Ho [D, sSet] — Ho [C, sSet]
where LLan,, F = Lany® F for all diagrams F : C — sSet.
® There is an adjunction of the form
HoU* 4 RRany, : Ho [C, sSet] — Ho [D, sSet]
where RRan,, F = Ranp® F for all diagrams F : C — Kan.
Proof. Apply theorem 3.3.24 to theorems 1.10.9 and 1.10.10. [ |
Proposition 1.10.15. Let U : C — D be a functor between small categories.
® There exist a conjugate pair of natural transformations
Lan® = Lan,, U* = R U~
that satisfy the following conditions:

- LangKF = Lany F is a natural weak homotopy equivalence for
every projective-cofibrant diagram F : C — sSet, and in particu-
lar, for every diagram of the form F = B(C, C, F') for any diagram
F' : C — sSet.
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- U*G = R®*U*G is a natural weak homotopy equivalence for every
projective-fibrant diagram G : D — sSet.

® There exist a conjugate pair of natural transformations
L**U* = U* Ran, = Ran}®
that satisfy the following conditions:

- LB*U*G = U*G is a natural weak homotopy equivalence for every
(injective-cofibrant) diagram G : D — sSet.

- Ran, F = RangK F is a is natural weak homotopy equivalence for
every injective-fibrant diagram F : C — sSet and also for every dia-
gram of the form F = C(C, C, F') for any projective-fibrant diagram
F' : C — sSet.

Proof. The two claims are formally dual; we will prove the first version.

"I7) there is a natural transformation Lan;* = Lan,, whose

By theorem 1.10.9,
components at diagrams of the form B(C, C, F') are natural weak homotopy
equivalences (of diagrams D — sSet).

On the other hand, it is not hard to see that U* : [D,sSet] — [C,sSet] is
a right Quillen functor with respect to the Bousfield—Kan model structure,!'®!
so by combining lemmas 1.5.2 and 3.1.11, propositions 3.3.10, 3.3.13, and 4.3.2,
and theorem 4.3.12, we see that the components of the natural transformation at
projective-cofibrant diagrams are also natural weak homotopy equivalences.

Finally, we may apply theorem 3.3.24 to deduce that the conjugate natural
transformation U* = RBXU* has the property that its components at projective-
fibrant diagrams D — sSet are natural weak homotopy equivalences (of dia-
grams C — sSet). [ |

In the dual version, use theorem 1.10.10 instead.
In the dual version, use the fact that U* : [D,sSet] — [C,sSet] is a left Quillen functor with
respect to the Heller model structure.
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Lemma 1.10.16. Let U : C - DandV : D — [E be functors between small
categories and let G : D — sSet be a functor. Consider the following diagram
in [E, sSet],

Lan;¥, B(C,C,GU) —> Lany,; B(C,C,GU)

BK
Lan}¥, pGUJ, lLanVU Peu

LanIB,IE GU ————— > Lan,, GU

J{ lLanV &g

Lan)* G Lan, G

where the horizontal arrows are the canonical comparisons of proposition 1.10.15,
Pou : B(C,C,GU) = GU is the natural weak homotopy equivalence of propos-
ition 1.9.16, € : Lany; GU = G is the counit, and Lan}y, GU = Lany* G is the
canonical comparison of proposition 1.8.34.

(i) The diagram commutes and is functorial in G.
(ii) The canonical comparison
Lan}} B(C,C,GU) = Lan,; B(C,C,GU)
and the natural transformation
Lany¥, pgy : Lan)y, B(C,C,GU) = Lanyy, GU
are natural weak homotopy equivalences, and the image in Ho [D, sSet] of
g o Lan, psy : Lan, B(C,C,GU) = G
can be identified with the derived counit LLan,(HoU*)G — G.

(iii) If G : D — sSet is projective-cofibrant, then the canonical comparison
LanEK G = Lan, G is also a natural weak homotopy equivalence, so the
canonical comparison

BK BK
Lan,,;, GU = Lan," G
is a natural weak homotopy equivalence if and only if
Lan, €, o Lan, p;y : Lan,; B(C,C,GU) = Lan, G

is a natural weak homotopy equivalence.
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Proof. (i). The top square commutes by naturality, and the bottom square com-
mutes by proposition 1.8.34 (applied componentwise). Every arrow appearing
in the diagram is natural in G, so the diagram itself is functorial in G.

(ii). The first subclaim was proved in proposition 1.10.15, the second subclaim
is a consequence of corollary 1.10.5, and the third subclaim is an application of
theorem 3.3.24 to theorem 1.10.9.

(iii). We know that LanIB,K G = Lan,, G is a natural weak homotopy equivalence
when G : D — sSet is projective-cofibrant, and the rest of the claim is a simple
application of the 2-out-of-3 property. [ |

Corollary 1.10.17. Let U : C - D and V : D — E be functors between small
categories. For any diagram G : D — sSet, the following are equivalent:

(i) The canonical comparison Lan% GU > LanlB}K G of proposition 1.8.34

is a natural weak homotopy equivalence of diagrams E — sSet.

(ii) The morphism LLan, €; : LLan, LLan,(HoU*)G — LLan, G is an
isomorphism (in Ho [E, sSet]).

Proof. By theorem 1.9.13 and proposition 4.1.17, there is a projective-cofibrant
replacement (G, q) for G; but the following diagram in [E, sSet] commutes,

Langll(] GU — LanlliK G

Lan‘]ilf/ qu lLanBK q

Langll(, GU — LanIB,K G

and the vertical arrows are natural weak homotopy equivalences by corollary 1.10.5,
so the claim is a consequence of lemma 1.10.16 (plus lemmas 1.5.2 and 3.1.11).

Lemma 1.10.18. Let U : C - Dand V : D — [ be functors between small
categories and let G : D — sSet be a diagram. Consider the following diagram
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1.10. Bousfield—Kan extensions

in [E, sSet],

Ran, G Ran}* G

Ran,, r]Gl l

Ran,; GU ——— > Ran}}, GU

. BK -
Ranyy ’Gul lRanVU iGu

Ran,, C(C,C,GU) — Ranllilfj CC,C,alU)

where the horizontal arrows are the canonical comparisons of proposition 1.10.15,
icy : GU = C(C,C, GU) is the natural weak homotopy equivalence of propos-
ition 1.9.16, n; : G = Rany GU is the unit, and RanIB,K G > Ranglf/ GU is the
canonical comparison of proposition 1.8.34.

(i) The diagram commutes and is functorial in G.
(ii) If G : D — sSet is projective-fibrant, then the canonical comparison
Ran}¥, C(C,C,GU) = Ran}¥ C(C,C,GU)
and the natural transformation
Ran}¥ igy : Ranyy, GU = Ran}y, C(C,C,GU)
are natural weak homotopy equivalences, and the image in Ho [D, sSet] of
Rany igy ong : G = Lan,; B(C,C,GU)
can be identified with the derived unit G — RRan,(Ho U")G.

(iii) If G : D — sSet is injective-fibrant, then the canonical comparison
Ran, G = RanlB,K G is also a natural weak homotopy equivalence, so the
canonical comparison

RanlliK G=> RanIB,’[(J GU
is a natural weak homotopy equivalence if and only if
Rany; igy © Rany, 5, : Ran, G = Rany,; C(C,C, GU)

is a natural weak homotopy equivalence.
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Proof. The proof is essentially the same as that of lemma 1.10.16. [ |

Corollary 1.10.19. Let U : C - Dand V : D — E be functors between small
categories. For any diagram G : D — Kan, the following are equivalent:

(i) The canonical comparison RanIE,'K G > Ranglf] GU of proposition 1.8.34
is a natural weak homotopy equivalence of diagrams E — sSet.

(ii) The morphism RRan,, n; : RRan, G — RRan, RRan,(HoU")G is an
isomorphism (in Ho [E, sSet]).

Proof. By theorem 1.9.14 and proposition 4.1.17, there is an injective-fibrant re-
placement ( G,j ) for G; but the following diagram in [E, sSet] commutes,

Langll(] GU — LanIB,K G
Langll(/ qu lLanEK q
BK BK
Lan,;, GU — Lan; G
and since (by corollary 4.3.21) both G and G are projective-fibrant diagrams, the

vertical arrows are natural weak homotopy equivalences by corollary 1.10.5; thus
the claim is a consequence of lemma 1.10.18 (plus lemmas 1.5.2 and 3.1.11). [l

Lemma 1.10.20. Let U : C - D and V : D — E be functors between small
categories. The following are equivalent:

(i) For every diagram G : D — sSet, the canonical comparison (of proposi-
tion 1.8.34)
LanIB,If] GU > LanlliK G

is a natural weak homotopy equivalence of diagrams E — sSet.
(ii) For every diagram G : D — sSet, the morphism
LLan, €, : LLan, LLan,(HoU*)G — LLan, G
is an isomorphism in Ho [E, sSet].
(iii) For every diagram H : E — sSet, the morphism
Nio vy - (HoV*)H — RRany(HoU*)(Ho V*)H

is an isomorphism in Ho [D, sSet].
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Dually, the following are equivalent:

(i") For every diagram G : D — Kan, the canonical comparison (of proposi-
tion 1.8.34)

RanlliK G=> RanIB,If] GU
is a natural weak homotopy equivalence of diagrams E — sSet.
(ii") For every diagram G : D — sSet, the morphism
RRany, 7, : RRan,, G = RRan,, RRan,;(HoU*)G
is an isomorphism in Ho [E, sSet].
(iii") For every diagram H : E — sSet, the morphism
Emovoyn - Llang(HoU)(HoV*)H = (HoV*)H
is an isomorphism in Ho [D, sSet].
Proof. (i) < (ii), (i") © (ii’). See corollaries 1.10.17 and 1.10.19
(ii) © (iii), (ii") « (iii ). This is a special case of proposition A.1.12. [ |
Corollary 1.10.21. Let U : C — D be a functor between small categories and
let G : D — sSet be a projective-cofibrant diagram. If U : C — D is cofinal,

then the following are equivalent:

(i) The canonical comparison li_r)niK GU - li_r)ngK G of proposition 1.8.34 is
a weak homotopy equivalence of simplicial sets.

(ii) The canonical comparison li_r)nBK GU — li_r)nc GU of proposition 1.10.15
is a weak homotopy equivalence of simplicial sets.

(iii) The canonical comparison Llim (HoU™*)G — Llim G is an isomorph-
—cC —D
ism (in Ho sSet).
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Proof. With notation as in lemma 1.10.16, consider the following commutative
diagram in sSet:

lim®* B(C, C,GU) —— lim B(C,C, GU)
—C —C

. BK
h—r>nc pGUl: lLa“VU PGu

imP*GU ——— 5 lim GU
—C —C

~|lim e
l o

lim®* G lim G
—D —D

~

The lemma says that the marked arrows are weak homotopy equivalences of sim-
plicial sets, and the cofinality hypothesis says lim ¢, : lim GU — lim_Gis an
—D —cC —D
isomorphism of simplicial sets. Thus, equivalence of (i) and (ii) is a consequence
of the 2-out-of-3 property, and the equivalence of (i) and (iii) is a special case of
corollary 1.10.17. [ |

Corollary 1.10.22. Let U : C — D be a functor between small categories and
let G : D — sSet be an injective-fibrant diagram. If U : C — D is coinitial,
then the following are equivalent:

(i) The canonical comparison l(iLnEK G- l(iLniK GU of proposition 1.8.34 is
a weak homotopy equivalence of simplicial sets.

(ii) The canonical comparison h_r)n GU - l(iLnEK GU of proposition 1.10.15
is a weak homotopy equivalence of simplicial sets.

(iii) The canonical comparison Rlim_ G — Rlim (Ho U*)G is an isomorph-
<D —cC
ism (in Ho sSet).

Proof. The proof is essentially the same as that of corollary 1.10.21. [ ]
Definition 1.10.23. Let C and D be small categories.

* A homotopy coinitial functor U : C — D is a functor such that, for all
objects d in D, the nerve N((U | d)) is a weakly contractible simplicial
set.

* A homotopy cofinal functor U : C — D is a functor such that, for all
objects d in D, the nerve N((d | U)) is a weakly contractible simplicial
set.
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1.10. Bousfield—Kan extensions

REMARK 1.10.24. By proposition 1.7.12, U : C — D is a homotopy coinitial
functor if and only if U? : C°? — D is a homotopy cofinal functor.

REMARK 1.10.25. Every homotopy coinitial (resp. homotopy cofinal) functor is a
coinitial (resp. cofinal) functor, but the converse is false.

Theorem 1.10.26. Let U : C — D be a functor between small categories. The
following are equivalent:

(i) U : C — D is a homotopy coinitial functor.

(ii) For every diagram G : D — sSet, the canonical comparison morphism

Rlim G — Rlim GU
‘o ©

is an isomorphism in Ho sSet.
(iii) For every diagram G : D — Kan, the canonical comparison morphism

imB¥ G = limP¥ GU
Y <

is a weak homotopy equivalence of simplicial sets.

Proof. (i) & (ii). By lemmas 1.10.20 and lemma 1.10.16 and corollary 1.10.17, it
is equivalent to show that U : C — D is a homotopy coinitial functor if and only
if

Lany AX = AX

is a weak homotopy equivalence for every simplicial set X. By definition,
(Lang“ AX)d =B(U*f,,C,AX)
and by proposition 1.8.36,
B(U*f,,C,AX) =B(U*,;,C® Al) x X
but it is not hard to see that the diagram below commutes,

Ranpf AX ——— AX

B(U*D,C,AD)X X —> Alx X
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where the bottom arrow is the morphism induced by the unique natural trans-
formation B(U*D, C®, A1) — Al, so by proposition 1.5.17, B(U*A?,C, A1)
is a weakly contractible simplicial set if and only if every Ranj* AX = AX is
a natural weak homotopy equivalence. Remark 1.8.5 says,

B(U*#,,C,Al) 2 N((U | d))
so the claim follows.
(ii) = (iii). This is corollary 1.10.17. [ |

Theorem 1.10.27. Let U : C — D be a functor between small categories. The
following are equivalent:

(i) U : C —» D is a homotopy cofinal functor.

(ii) For every diagram G : D — sSet, the canonical comparison morphism

LlimGU — LlimG
< Y

is an isomorphism in Ho sSet.

(iii) For every diagram G : D — sSet, the canonical comparison morphism

limB* GU — limB¥ G
< Y

is a weak homotopy equivalence of simplicial sets.

Proof. (i) & (ii). By lemmas 1.10.20 and 1.10.18 and corollary 1.10.19, it is equi-
valent to show that U : C — D if and only if the canonical comparison

AX = Ran* AX
is a weak homotopy equivalence for every Kan complex X. By definition,
(Rany* AX)d = C(U*A?,C,AX)
and by proposition 1.8.36,
C(U*A?,C,AX) = [B(U*A?,C™, A1), X]
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1.11. Homotopy theory of nerves

but it is not hard to see that the diagram below commutes,

AX —— Ranp* AX

% E

[Al,X] — [B(U'D,C,Al), X]

where the bottom arrow is the morphism induced by the unique natural trans-
formation B(U*D, C?, A1) — A1, so by proposition 1.5.17, AX = RanBK AX
is a weak homotopy equivalence for all Kan complexes X if and only if every
B (U*ﬁd, C*P, Al) is a weakly contractible simplicial set. Remark 1.8.5 says,

B(U*A?,C®, A1) = N((d | U)®) = N((d | U))*®
so (recalling proposition 1.7.12) the claim follows.

(ii) & (iii). This is corollary 1.10.17. [ ]

Homotopy theory of nerves

Prerequisites. §§1.2, 1.3, 1.5, 1.7, 1.9, 3.1, 4.3, 5.1, B.5.

Although nerves of categories are not usually Kan complexes, they still pos-
sesses enough structure to have a good theory of weak homotopy equivalences: a
surprising number of category-theoretic constructions have homotopical mean-
ing when interpreted through the lens of the nerve functor. Most of these ideas
were introduced by Quillen [1973] for the purpose of studying higher algebraic
K-theory.

9 1.11.1. In this section, categories are small unless otherwise stated.

Definition 1.11.2. A weak homotopy equivalence of categories is a functor
f + A — B such that the induced morphism N(f) : N(A) — N(B) is a weak
homotopy equivalence of simplicial sets.

Remark. Weak homotopy equivalences of categories are also called co-equi-
valences, but we should avoid this term as it conflicts with the terminology of
higher category theory.

Lemma 1.11.3. Cat, with the class of weak homotopy equivalences, is a satur-
ated homotopical category. In particular, the class of weak homotopy equival-
ences of categories has the 2-out-of-3 property and is closed under retracts.
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Proof. Apply lemma 3.1.8 to lemma 1.5.2. [ |

REMARK 1.11.4. A functor f : A — B is a weak homotopy equivalence if and
only if f°P : A — B is a weak homotopy equivalence, by propositions 1.2.2
and 1.7.12.

Lemma 1.11.5. Let f : A — B be a functor. Then N(f) : N(A) - N(B) is
right orthogonal to every inner horn inclusion A} < A'.

Proof. Apply lemma a.3.10 and proposition A.3.26 to lemma 1.2.6. [ |
Proposition 1.11.6. Let p : A — B be a functor. The following are equivalent:

(i) The morphism N(p) : N(A) — N(B) has the right lifting property with
respect to the horn inclusion A} < Al and is right orthogonal to the horn
inclusions A, & A' forn > 1and0 < k < n.

(ii) Every morphism in A is p-prone, and p : A — B is a Grothendieck fibra-
tion.

(iii) The functor p : A — B is a Grothendieck fibration and every fibre of p is
a groupoid.

Dually, the following are equivalent:

(i) The morphism N(p) : N(A) — N(B) has the right lifting property with
respect to the horn inclusion A(l) < Al and is right orthogonal to the horn
inclusions A, & A forn > 1and 0 < k < n.

(ii) Every morphism in A is p-supine, and p : A — B is a Grothendieck
opfibration.

(iii) The functor p : A — B is a Grothendieck opfibration and every fibre of p
is a groupoid.

Proof. (i) = (ii). By unfolding definitions, one sees that every morphism in A
is p-prone if and only if N(p) : N(A) — N(B) is right orthogonal to the horn
inclusion Ag < A’; and if every morphism in A is p-prone, then p : A — B is a
Grothendieck fibration if and only if N(p) : N(A) — N(B) has the right lifting
property with respect to A{ o Al

(ii) © (iii). See proposition B.5.32.
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1.11. Homotopy theory of nerves

(ii) = (i). We begin with the following observations:

e Lemma 1.11.5 says N(p) : N(A) — N(B) is right orthogonal to every inner
horn inclusion.

* Since every morphism in A is p-prone, N(p) : N(A) — N(B) is right
orthogonal to the horn inclusion A3 & A%,

e Since p : A — B is a Grothendieck fibration, N(p) : N(A) — N(B) has
the right lifting property with respect to the horn inclusion A} < Al

Thus, it is enough to verify that N(p) is right orthogonal to the horn inclusions
A, < A" for n > 3. This is straightforward for n = 3, and for n > 3, itis a

consequence of proposition 1.2.18 and corollary 1.2.19. [ |

Corollary 1.11.7. For any category A, the nerve N(A) is a Kan complex if and
only if A is a groupoid.

Proof. The unique functor A — 1 is automatically both a Grothendieck fibra-
tion and a Grothendieck opfibration, so the claim is a special case of proposi-
tion 1.11.6. H

REMARK 1.11.8. The above shows that one cannot transfer the Kan—Quillen model
structure along the functor N : Cat — sSet by defining the weak equivalences
and the fibrations to be the morphisms that N sends to weak equivalences and
fibrations in sSet.

Definition 1.11.9. An aspherical category is a category whose nerve is weakly
contractible, i.e. a category A such that the unique functor A — 1 is a weak
homotopy equivalence.

ReEMARK 1.11.10. If A has an initial object (resp. terminal object), then N(A) is
contractible: indeed, then the unique functor A — 1 has a left adjoint (resp. right
adjoint), and by corollary 1.3.11, we deduce that N(A) — N(1) is an intrinsic
homotopy equivalence. In particular, such an A is aspherical.
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Lemma 1.11.11. Let p : A — C be a functor and let P : C — sSet be the
diagram defined by P(c) = N((p | ¢)).

(i) The projections (p | ¢) — A induce a colimiting cocone P = AN(A).

(ii) The canonical comparison morphism!'”’

lim®% P — lim P = N(A)
< <

is a weak homotopy equivalence.

Dually, let ¢ : A — C be a functor and let Q : C — sSet be the diagram
defined by O(c) = N((c | ¢)).

(i") The projections (¢ | q) = A induce a colimiting cocone Q = AN(A).
(ii") The canonical comparison morphism

. KB . ~
cop cor

is a weak homotopy equivalence.

Proof. (i). It is clear that the projections (p | ¢) — A define a cocone, i.e.

(plco) — A

I

(plcl) — A

commutes for every morphism ¢, — ¢;; we must show that the corresponding
cocone P = AN(A) is a colimiting cocone.

By remark 1.8.5, N((f | b)) = B(p*A,, A, Al), and under this identification,
the forgetful functor (p | ¢) — A corresponds to the morphism

B(p*h., A, A1) - B(AL A, Al)

induced by the unique natural transformation p*A, = Al. Proposition 1.8.36
implies that B(—, A, A1) preserves colimiting cocones, so it suffices to show that

[19] See proposition 1.8.38.
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li_n)lB p*h, = Al; and since colimits in [A°P, Set] can be calculated component-
wise, it is enough to verify that li_n}C h¢ = 1 for all objects ¢ in C. But the Yoneda
lemma yields a bijection

[C, Set] (A, AX) = Set(1, X)
that is natural in X, so we are done.

(ii). Let H : A°® x C — sSet be the functor given by H (a, ¢) = disc B(p(a), ¢).
Then P =~ B(H, A, Al), and by theorem 1.8.37 (and proposition 1.9.7),

li_n)lBK P =~ B(A1,C,B(H,A,Al)) 2 B(B(A1,C, H), A, Al)
C

but B(A1,C, H) = N(”(')/C), so (by remark 1.11.10) the unique natural trans-
formation B(A1,C, H) = Al is a natural weak homotopy equivalence; more-
over, the diagram below commutes,

B(Al,C,B(H,A,Al)) — N(A)

-| 2

B(B(A1,C, H),A,Al) — B(A1, A, Al)

so theorem 1.9.27 (plus the 2-out-of-3 property) implies that the horizontal ar-
rows in the diagram are weak homotopy equivalences. In particular, the morph-
ism B(A1,C, P) — N(A) in question is a weak homotopy equivalence. [ |

Lemma 1.11.12. Let p : A — C be a functor and let F : C — Cat be the
diagram defined by F(c¢) = (p | ¢).

(i) There is a natural transformation fitting into the following diagram in Cat,

G(AT,C,F) — A

| & |

C:C

where the left vertical arrow is the canonical projection and the top hori-
zontal arrow is the functor G(A1,C,F) — A defined by (c, (a,u)) — a.

(ii) The induced comparison functor G(A1,C,F) — (p | C) is an isomorph-
ism.
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(iii) The projection d, : (p | C) = A is a weak homotopy equivalence of cat-
egories.

Dually, let q : A — C be afunctor and let E : C°® — Cat be the diagram defined
by E(c) = (c | q).

(i) There is a natural transformation fitting into the following diagram in Cat,

G(E,C,AT) — A

|~ |

C:C

where the left vertical arrow is the canonical projection and the top hori-
zontal arrow is the functor G(E, C, A1) — A defined by ((a,u),c) — a.

(ii) The induced comparison functor G(E,C, A1) — (C | q) is an isomorph-
ism.

(iii) The projection d,, : (C | q) = A is a weak homotopy equivalence of cat-
egories.

Proof. (i). The required natural transformation is the one whose component at
an object ((a, u), ¢) in G(E, C, A1) is the morphism u : pa — ¢ in C.

(ii). By unfolding the definitions, it is easy to see that the induced comparison
functor G(E, C, AT) — (C | g) is bijective on objects and fully faithful.

(iii). The projection d, : (p | C) — A has an evident section s : A — (p | C),
namely the functor defined by a +— (a,pa,id,,), and there is an evident nat-
ural transformation s o d; = id,,c,; so (by applying lemma 1.3.10) N(d,) :
N((p |l C)) — N(A) is half of an intrinsic homotopy equivalence, hence is a
weak homotopy equivalence (by proposition 1.5.4). [ |

Definition 1.11.13.
* A right aspherical functor is a functor f : A — B with the following
property: for all objects b in B, the comma category (f | b) is aspherical.

* A left aspherical functor is a functor g : B — A with the following
property: for all objects a in A, the comma category (a | g) is aspherical.
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REMARK 1.11.14. A right aspherical (resp. left aspherical) functor is the same
thing as a homotopy coinitial (resp. homotopy cofinal) functor: see definition 1.10.23.
In particular, right apsherical (resp. left aspherical) functors are coinitial (resp.
cofinal) functors, but not vice versa.

Lemma 1.11.15.
o Let f : B — B be afunctor and let A be the full subcategory of B spanned
by the image of f. If there is a natural transformation € : f = 1d,, then
the inclusion A < B is right aspherical.

o [fg: A — A be a functor and let B be the full subcategory of A spanned
by the image of g. If there is a natural transformation n : 1d, = g, then
the inclusion B < A is left aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Let c : fa — bbe a morphism in B. By naturality, the following diagram
commutes:

fa < fra -2 fb

b b b

Thus, the morphism A’ — N((A | b)) corresponding to the object ( /b, eb) is
half of an intrinsic homotopy equivalence and hence (by proposition 1.5.4) a
weak homotopy equivalence a fortiori. [ |

Lemma 1.11.16. Let f : A - Band g : B — A be functors and letn : go f =
idy and € : f o g = idy be natural transformations.

o Ifefefn=id, then f : A — B is a right aspherical functor.
o [fgeeng =id,, then g : B — A is a left aspherical functor.

Proof. The two claims are formally dual; we will prove the first version.
Let ¢ : f(a) — b be a morphism in B. By naturality, the following diagram
in B commutes,

f(g(f@)) -5 f(a)

f (g(C))J( lc

f(g) — b
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and since € ;(a) ° f (na) = id(,), we obtain a the diagram in B shown below:

g(c)en,

7@ ") £ oo

I
b e——— b
Thus, the morphism A’ — N((f | b)) corresponding to the object (g(b), €,) is

half of an intrinsic homotopy equivalence and hence (by proposition 1.5.4) a
weak homotopy equivalence a fortiori. [ |

Corollary 1.11.17.
o If f : A — B is afunctor that admits a right adjoint, then f : A — B is
right aspherical.

o [fg : B — A is a functor that admits a left adjoint, then g : B — A is left
aspherical. [ |

Corollary 1.11.18. If f : A — B is a functor that is fully faithful and essentially
surjective on objects, then f : A — B is both left and right aspherical. [ ]

Proposition 1.11.19. Letu : A - B and v : B — C be functors.

o [fveu: A — Cis right aspherical and v : B — C is fully faithful, then
u: A — B is also right aspherical.

o J[fvou: A — Cis left aspherical and v : B — C is fully faithful, then
u: A — Bis also left aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Suppose veu : A — C is right aspherical and v : B — C is fully faithful.
Then, for any object b in B, the comma category (u | b) is naturally isomorphic
to the comma category (veu | v(c)), so (u | b) is an aspherical category. Thus,
u: A — B is indeed right aspherical. [ |

The following result is due to Grothendieck [1983, §40].

Theorem 1.11.20. Consider a commutative triangle of categories and functors:

A - B

N A

C
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e [f, for every object c in C, the functor u, : (plc) — (g c¢) induced by
u: A — B is a weak homotopy equivalence, then the functoru : A - B
itself is a weak homotopy equivalence.

e [f, for every object ¢ in C, the functor ‘u : (¢ | p) = (c | q) induced by
u: A — B is a weak homotopy equivalence, then the functoru : A - B
itself is a weak homotopy equivalence.

Proof. The two claims are formally dual; we will prove the first version, follow-
ing the proof of Théoréeme 2.1.13 in [Cisinski, 2004].

Let P,Q : C — sSet be the diagrams defined by P(c) = N((p | ¢)) and
0O(c) = N((g | ¢)), respectively. Then u : A — B induces a natural transforma-
tion 6 : P = Q with components 6, = N (u, ), and by hypothesis, 0 : P = Qisa
natural weak homotopy equivalence. Lemma 1.11.11 says we have a commutative
diagram of the form below,

limB¥* P —— N(A)
—C
limBX el JN(M)
—C

... BK
lim* 0 —— N(B)

where the horizontal arrows are weak homotopy equivalences; but corollary 1.9.20
implies li_n)liK 0 is also a weak homotopy equivalence, so (using the 2-out-of-3
property) we may deduce thatu : A — B is indeed a weak homotopy equivalence
of categories. [ |

As a corollary, we obtain a famous result of Quillen [1973, §1]:

Corollary 1.11.21 (Quillen’s Theorem A).
® Right aspherical functors are weak homotopy equivalences of categories.

o Left aspherical functors are weak homotopy equivalences of categories.

Proof. The two claims are formally dual; we will prove the first version.
Let f : A — B be a right aspherical functor. Consider the following com-

mutative triangle:
N

B
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Remark 1.11.10 implies that the slice categories B, are aspherical, so the 2-out-
of-3 property (lemma 1.11.3) plus right asphericity implies that the functors f, :
(f 1 b) — B, are weak homotopy equivalences for all objects b in B. Thus, by
theorem 1.11.20, f : A — B itself is a weak homotopy equivalence. [ ]

REMARK 1.11.22. In view of remarks 1.8.5 and 1.11.14, Quillen’s Theorem A is
also a corollary of theorem 1.10.27.

We may now prove a useful result of Thomason [1977, 1979].

Theorem 1.11.23 (Thomason’s homotopy colimit theorem). Let C be a cat-
egory, let F : C — Cat be a diagram, let G(A1,C,F) be the Grothendieck
construction, and let p : G(A1,C,F) — C be the canonical projection.

(i) There is a natural weak homotopy equivalence
F(=)=>@®ml-)
and it is natural in .

(ii) There is a weak homotopy equivalence

: BK
h%)n (N o F) = N(G(AT,C,F))

and it is natural in F.

Dually, let E : C* — Cat be a diagram, let G(E, C, A1) be the Grothendieck
construction and let q : G(E,C, A1) — C be the canonical projection.

(i) There is a natural weak homotopy equivalence
E-)=>1a
and it is natural in E.
(ii) There is a weak homotopy equivalence

- KB
h%)n (N« E) = N(G(E, C, AT))

and it is natural in E.
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Proof. (i). By construction, the fibre p~'{c} is naturally isomorphic to F(c), and
p : G(A1,C,F) — C is a Grothendieck (pre-)opfibration by proposition B.5.37
(and proposition B.5.31), so proposition B.5.23 says that the canonical compar-
ison functor p~'{c} — (p | ¢) has a left adjoint; but corollary 1.11.17 says that
such functors are left aspherical, and hence by Quillen’s Theorem A (corol-
lary 1.11.21), weak homotopy equivalences a fortiori. Thus, we have a natural
weak homotopy equivalence F(—) = (p | —).

(ii). Lemma 1.11.11 says that there exist a canonical isomorphism

limN((p | -)) 2 N(G(AT,C,F))
C

and a canonical weak homotopy equivalence
. BK .
h%)n N((p|-) = h?n)lN((p )]

so the claim is a consequence of the fact that li_n)liK preserves natural weak ho-
motopy equivalences (corollary 1.9.20). [ ]

Corollary 1.11.24. Let C be a category. Then the functor
G(—,C,-) : [C®® Cat] X [C, Cat] — Cat

defined by the Grothendieck construction sends natural weak homotopy equival-
ences to weak homotopy equivalences (in each variable and jointly).

Proof. Let ¢ : E' — [E be a natural weak homotopy equivalence of functors
C® — Cat and let y : F' — [F be a natural weak homotopy equivalence of
functors C — Cat. Clearly,

G(@,C,y) = G(e,C,F) - G(E,C,y)

and since the class of weak homotopy equivalences is closed under composition
(by lemma 1.11.3), so it suffices to prove the claim for each variable separately;
and by duality, it suffices to prove it for just one variable, say the second variable.
But by proposition B.5.40, there is a commutative diagram of the form below,
G(E,C,F') —— G(A1,G(E,C,Al),F)
G([E,C,q/)l lG(AH,G([E,C,M),W)

G(E,C,F) —— G(AT,G(E,C, AT),F)
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so (by the 2-out-of-3 property) the claim is a consequence of corollary 1.9.20
and Thomason’s homotopy colimit theorem (1.11.23). [ |

Definition 1.11.25.
* A right-locally weakly constant functor is a functor p : A — B with the
following property: for every morphism b’ — b in B, the induced functor
(pl b)) — (pl b)is aweak homotopy equivalence.

* A left-locally weakly constant functor is a functor g : A — B with the
following property: for every morphism b — b’ in B, the induced functor
(0" | q) = (bl q) is a weak homotopy equivalence.

Lemma 1.11.26. Let B be a category.

o LetF be a B°®-indexed category (with small fibres). The induced Grothen-
dieck opfibration
p:G(A1,B,F) - B

is a right-locally weakly constant functor if and only if the reindexing func-
tor F(b') — F(b) is a weak homotopy equivalence for every morphism
b' - binB.

® Let E be a B-indexed category (with small fibres). The induced Grothen-
dieck fibration
q:GE,B,AT) - B

is a left-locally weakly constant functor if and only if the reindexing functor
E(b") - E(b) is a weak homotopy equivalence for every morphism b — b’
in B.

Proof. The two claims are formally dual; we will prove the first version.
Consider a morphism a : b’ — b in B. We then have the following diagram
in Cat,
F@') — (pl b))

| = |
F(b) —— (1 b)

where the horizontal arrows are the right adjoint functors of (the formal dual of)
proposition B.5.23 and the vertical arrows are induced by a : b — b and the
component of the natural transformation at an object f’ in F(b") corresponds
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to the p-supine morphism (a, id, f,). Thus, by lemmas 1.3.10 and 1.5.3, corol-
lary 1.11.17, and Quillen’s Theorem A (corollary 1.11.21), F(b") — F(b) is a weak
homotopy equivalence if and only if (p | ') — (p | b) is a weak homotopy equi-
valence. [ |

Definition 1.11.27. A homotopy derived pullback diagram in Cat is a com-
mutative square in Cat whose image under N : Cat — sSet is a derived pullback
diagram in sSet.

Lemma 1.11.28. Let u : A — B be a functor.

o LetF : B — Cat be a diagram. If the reindexing functor F(b') — F(b) is
a weak homotopy equivalence for every morphism b’ — b in B, then the
pullback diagram in Cat of lemma B.5.39

G(AT,A,F cu) —— G(AT1,B,F)

l l

A B

is a homotopy derived pullback diagram.

o Let E: B® — Cat be a diagram. If the reindexing functor E(b") — E(b)
is a weak homotopy equivalence for every morphism b — b' in B, then the
pullback diagram in Cat of lemma B.5.39

G(E o u, A, AT) —— G(E, B, A1)

| l

B

is a homotopy derived pullback diagram.

Proof. The two claims are formally dual; we will prove the first version.
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We have the following commutative cube in sSet,

HmPENoFou ———— N(G(AT, A, F o 1))
—A

- BK

lim® N o F N(G(AT, B, F))
- BK
lim®* A1 N(G(AH,A\_,M))\

... BK

lim® A1 N(G(AT, B, A1))

where the vertical arrows are induced by the unique natural transformation F =
AT, the horizontal arrows are the weak homotopy equivalences of Thomason’s
homotopy colimit theorem (1.11.23), and the diagonal arrows are as in corol-
lary 1.8.23 and lemma B.5.39; note that the projections G(AT1, A, AT) - A and
G(AT,B, AT) — B are isomorphisms. In particular, we have the following pull-
back diagram in sSet,

HmBENoFou —— IimB¥NoF
—>A —B

HImBX Al —— 1im®¥ Al
—A —B

but the right vertical arrow is homotopically quadrable by proposition 1.9.34, so
by by theorem 1.7.18 and proposition 5.1.24, the pullback diagram is a derived
pullback diagram. The claim is then a consequence of proposition 5.1.22. |l

Proposition 1.11.29. Letu : A — B be a functor.
® Suppose we have a pullback diagram in Cat:
AxgF —— F
|l
A—— B

If q : F — B is a right-locally weakly constant Grothendieck opfibration,
then the diagram is also a homotopy derived pullback diagram.
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® Suppose we have a pullback diagram in Cat:

AxgE — E

[

A u

If p: E — B is a left-locally weakly constant Grothendieck fibration, then
the diagram is also a homotopy derived pullback diagram.

Proof. Apply lemmas 5.1.20 and 5.1.21 (plus lemma 1.3.10 and proposition 1.5.4)
to lemma 1.11.28 and theorem B.5.51. [ |

The following is also due to Quillen [1973, §1].

Theorem 1.11.30 (Quillen’s Theorem B).
e Jfp: A — Cis a right-locally weakly constant functor, then for every

object ¢ in C, we have the following homotopy derived pullback square in
Cat,

(ple) — A

[l

C, ——C

where the horizontal arrows are induced by the evident projection functors.

o Ifq: A — Bis a left-locally weakly constant functor, then for every object
c in C, we have the following derived pullback square in sSet,

(clg — A

L)

‘)C —— C
where the horizontal arrows are induced by the evident projection functors.

Proof. The two claims are formally dual; we will prove the first version.
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Consider the following commutative diagram in Cat,

(Ple) —s (pIC) -2 A

! L)

1
| J«

where d;, : (p | C) - Aand d, : [2,C] — C are the domain projections,
dy, : [2,C] = C is the codomain projection, (p | C) — [2,C] is the functor
defined by (a,c,u) = u, "¢ : 1 — C is the functor corresponding to the object
c in C, and every square is a pullback diagram. By lemmas 1.11.12 and 1.11.28,

(ple)y — (pl O

l J«

is a homotopy derived pullback diagram, and by lemma 5.1.20,

C,, —> [2,C] PlC) -2 A
| s |
1 ——C [2,C] — C

are homotopy derived pullback diagrams, so by applying lemma 5.1.21 (twice),
the claim follows. [ |

Lemma 1.11.31. Let C be a category.
o LetF : C — Cat be a functor. If the induced Grothendieck opfibration
p:G(AT,C,F) - C

is a right-locally weakly constant functor, then it is a homotopically quad-
rable morphism in Cat (with respect to weak homotopy equivalences).

o Let E : C°® — Cat be a functor. If the induced Grothendieck fibration
q: G(E,C,AT)

is a left-locally weakly constant functor, then it is a homotopically quad-
rable morphism in Cat (with respect to weak homotopy equivalences).

240



1.11. Homotopy theory of nerves

Proof. The two claims are formally dual; we will prove the first version.
Letu : A - Bandv: B — C be functors. By lemma B.5.39, we have the
following commutative diagram in Cat,

G(AT,A,Fovou) — G(AT,B,F o v) —2> G(AT,C,F)

i £ :

u v

where both squares are pullback squares. Moreover, by lemma 1.11.26, if p :
G(A1,C,F) — Cisright-locally weakly constant, then so are the other vertical
arrows in the above diagram. We wish to show that the functor

i:GATAFovou) » G(AT,B,F o v)

is a weak homotopy equivalence if u : A — B is a weak homotopy equivalence
and p : G(A1,C,F) — C is right-locally weakly constant.

Recalling Thomason’s homotopy colimit theorem (1.11.23), we have a com-
mutative diagram in sSet of the form below,

HmBENoFovou —=— limP¥NoFov —2— limP N F
—>A —B —>C

| | !

N(G(AT,A,F o vou)) ~a° N(G(AT,A,F - v)) ~a° N(G(AT,A,F))

where the vertical arrows are weak homotopy equivalences, and by corollary 1.8.23,
we have a commutative diagram in sSet of form below,

HmBENoFovou — limP¥NoFov —2> lim® N F
—A —B —y

l ! l

N(A) N N(B) — o N(C)

where the two squares are pullback squares, so by proposition 1.9.34, 0 is a weak
homotopy equivalence of simplicial sets if u is a weak homotopy equivalence of
categories; but by the 2-out-of-3 property, i is a weak homotopy equivalence of
simplicial sets if and only if & is a weak homotopy equivalence of categories, so
we are done. [ |
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Proposition 1.11.32.
® Right-locally weakly constant Grothendieck opfibrations are homotopic-
ally quadrable morphisms in Cat (with respect to weak homotopy equi-
valences).

o Left-locally weakly constant Grothendieck fibrations are homotopically
quadrable morphisms in Cat (with respect to weak homotopy equival-
ences).

Proof. Apply lemmas 5.1.20 and 5.1.21 (plus lemma 1.3.10 and proposition 1.5.4)
to lemma 1.11.31 and theorem B.5.51. [ |

Proposition 1.11.33. Consider a pullback diagram in Cat.:

v
—

> = [
B «— T

u

e [fu: A — B is left aspherical and q : F — B is a Grothendieck opfibra-
tion, then v : E — [ is also left aspherical.

o [fu: A — Bisrightaspherical and q : F — B is a Grothendieck fibration,
then v : E — F is also right aspherical.

Proof. The two claims are formally dual; we will prove the first version.
Let f be an object in F and let b = g(f). Observe that we have the following
pullback diagrams in Cat,

(flv) — (blu — B
| | |
E—7>—F A—— B

where the vertical arrows are the evident projections, so by the pullback pasting
lemma,

(flv) — F

-

(blu) — "B
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is also a pullback diagram in Cat. But (recalling remark B.5.45 and lemma B.5.46)
by remark 1.11.10 and lemmas 1.11.26 and B.5.34, g : /F — "B is a right-
locally weakly constant Grothendieck opfibration, so proposition 1.11.32 implies
that (f | v) — //F is a weak homotopy equivalence. Thus, (f | v) is aspherical,
as required. [ |

Definition 1.11.34. The category of simplices of a simplicial set X is the cat-
egory A(X) defined below:

* The objects are simplices of X.

e Forx € X, and x" € X,,, the morphisms x — x’ are the morphisms
@ :[n] - [n’] in A such that X (¢)(x") = x.

* Composition and identities are the obvious ones.

We write 7, : A(X) — A for the evident projection functor that sends an
n-simplex of X to the object [n] in A.

1 1.11.35. For brevity, if A is a small category, then we write A(A) instead
of A(N(A)). This is consistent with the notation of § 4.10. We will also use the
left and right projection functors of definition 4.10.9.

REMARK 1.11.36. Of course, A(X) is (naturally isomorphic to) the comma cat-
egory (A* | X).

Definition 1.11.37. The Quillen subdivision of a simplicial set X is the simpli-
cial set SdQ(X) = N(A(X)).

Lemma 1.11.38. The functor Sd, : sSet — sSet admits a right adjoint, namely
the functor Ex, : sSet — sSet defined by the following formula:

Exo(Y), = sSet (Sd,(4"),Y)

Proof. Let F : A — sSet be the diagram defined by F([n]) = SdQ(A”) and let
P : A(X) — sSet be the diagram defined by P(x) = N (A(X ) /x). Note that if x
is an n-simplex of X, then x, : A(X) — A induces an isomorphism A(X) ™
A ;> but there is a natural isomorphism A ;,; = A(A"), so P = Fr,. On the
other hand, lemma 1.11.11 says that li_r)nA(X) P can be identified with N(A(X)) =
SdQ(X ), so using the formula of theorem a.5.15, we deduce that SdQ(X )= X %,
F (naturally in X). The claim is then an instance of proposition A.6.15. [ |
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Lemma 1.11.39. The functor A(=) : sSet — Cat admits a right adjoint, namely
the functor EXQ(N(—)) : Cat — sSet.

Proof. By proposition 1.2.2, we have an adjunction
7, 1N : Cat — sSet
and by lemma 1.11.38, we also have
Sd, 1 Ex,, : sSet — sSet
so by composition, we have the following adjunction:
7;5d, 7 Ex,(N(-)) : Cat — sSet

We also know that N : Cat — sSet is fully faithful, so by proposition a.1.3, the
counit 7;N = id,, is a natural isomorphism; in particular, 7,Sd, = A(-). Thus
we have an adjunction of the required form. [ |

Lemma 1.11.40. Let X be a simplicial set.

(i) There is a natural isomorphism
~ 1:-KB 1:
Sdy(X) = h_r)n disc X,
AP

where on the RHS we regard X as a diagram A°® — Set.

(ii) Thereis a weak homotopy equivalence Ay : SdQ(X ) = X, and it is natural
in X.

(iii) If X = N(C) for some category C, then A, = N(er) as morphisms
SdQ(N(C)) — N(C). In particular, my : A(N(C)) — C is a weak ho-
motopy equivalence of categories.

Proof. (i). This is straightforward.

(ii). We follow the proof of Lemme 2.1.15 in [Cisinski, 2004].

Let P,Q : A(X) — sSet be the diagrams defined by P(x) = N(A(X ) /x)
and Q(x) = A™™_ Note that if x is an n-simplex of X, then 7, : A(X) — A
induces an isomorphism A(X), — A ,;; but there is a natural isomorphism
A i) = A(A"), so the right projection 7z : A(N(-)) = id,, induces a natural
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transformation 6 : P = Q. Moreover, by remark 1.11.10, each P(x) and Q(x) is
contractible, so 6 : P = Q is a natural weak homotopy equivalence.
Now, by proposition 1.8.38, we have the following commutative diagram:

limB® P — lim

—>A(X) —>A(X)

limB¥ 0l lnm 0

—>AX) —>AX)
limBK —— lim
—>A(X)Q —>A(X)Q

Lemma 1.11.11 says that li_r}nA(X) P can be identified with N(A(X)) = SdQ(X ) and
that the morphism B(A1,A(X), P) — SdQ(X ) is a weak homotopy equivalence.
On the other hand, theorem A.5.15 implies that li_ngA(X) Q can be identified with
X, s00 : P = Q defines a natural morphism 4 : SdQ(X) - X.

We claim that Ay : Sd(X) — X is the desired natural weak homotopy
equivalence. Indeed, corollary 1.9.20 that the left vertical arrow in the diagram
is a weak homotopy equivalence, so to prove the claim, it suffices to show that
B(A1l,A(X),Q) — X is a weak homotopy equivalence. It is not hard to see that

B,ALAX), Q) = [ X, xAy x-xA!xA% =B, (X, A A

naturally in n, where (ko, ,kn) varies over n-tuples of natural numbers. The
morphism B(A1,A(X), Q) — X can then be identified with the realisation of
the morphism B (Al, A(X), Q,) — disc X, in ssSet defined by

(% @+ @1 90) = X (@0 ) ()

which is a degreewise weak homotopy equivalence, by proposition 1.9.16; hence,
B(A1l,A(X),Q) — X is a weak homotopy equivalence, by theorem 1.6.10.

(iii). Let C be a category and let X = N(C). Since a functor is uniquely de-
termined by its action on objects and morphisms, it suffices to show that 4, :
N(A(X)) — X agrees with N(7z) : N(A(N(C))) — N(C) on vertices and edges.
For convenience, we make the following identifications,

(B(ALAX), P)), = [ [ X, x obA
k

(B(A1,A(X), P)), = H X, X AZ(‘) X mor A, |
(kosky)
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(B(ALAX), Q) = | [ X, x ob[]
k

BALAX), Q) = [] X, x A xmor [k
(kooki)

so that a vertex of (B(A1, A(X), P)) is a pair (x, @) where x is a k-simplex of X
and ¢ is a morphism in A with codomain [k], etc.

Let x be a vertex of N(A(X)), i.e. an n-simplex of X. It is the image of
an evident vertex of B(A1, A(X), P), namely (x, id[n]). An n-simplex of X is a
functor [n] — C, and by definition, B(A1, A(X), #) sends (x, id[n]) to (x,n). The
image of (x, n) under the morphism B(A1, A(X), P) — X is x(n), so Ay indeed
agrees with N (7, ) on vertices.

Now let f : x, = x, be an edge of N(A(X)), i.e. amorphism « : [”0] — [nl]

in A such that X(a)(xl) = Xx,. It is the image of the edge (xl, a’idid[n0]> in
B(A1,A(X), P) and by definition, B(A1,A(X),6) sends it to (x,a,id, ). It
can be verified that the image of (xl, a,idno) under B(A1,A(X),P) — X is
X(ﬂ)(xl), where g : [1] — [nl] is the morphism in A defined by f(0) = a(no)
and f(1) = n|, and this is precisely the image of f : x, — x; under zx. Thus A
also agrees with N () on edges. ]

Lemma 1.11.41. For any simplicial set X, there is an anodyne extension iy :
X - EXQ(X), and it is natural in X.

Proof. Let p" = Ay @ Sdo(A") — A, where 4 @ Sd, = idgg, is the nat-
ural weak homotopy equivalence of lemma 1.11.40. It is not hard to check that
A" is naturally isomorphic to N([n]), so we can identify p" : SdQ(A") - A
with N (7 ) : N(AN([n]))) = N([n]). It is then straightforward to verify that
Pl SdQ(A”) — A" is an epimorphism. Thus, noting that each SdQ(A”) is con-
tractible (by corollary 1.3.11), we may apply proposition 1.6.12 to obtain the re-
quired natural anodyne extension i : id, = EX,. |

Theorem 1.11.42.
(i) The functors N : Cat — sSet and A(—) : sSet — Cat constitute a
homotopically mutually inverse pair of homotopical functors.

(ii) We have the following Quillen equivalence:

SdQ — EXQ : sSet — sSet
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(iii) We have an adjunction of the form below,
A(-) 4 Exo(N(-)) : Cat — sSet

and these constitute an adjoint homotopical equivalence of homotopical
categories.

Proof. (i). By definition, N : Cat — sSet preserves and reflects weak homotopy
equivalences, and lemma 1.11.40 says there is a natural weak homotopy equival-
ence A : Sd, = idgg,, so (using the 2-out-of-3 property) A(-) : sSet — Cat
also preserves and reflects weak homotopy equivalences. Moreover, the same
lemma implies that 7 : A(N(—)) = id,, is a natural weak homotopy equival-
ence, so we indeed have a homotopically mutually inverse pair of homotopical
functors.

(ii). First, we must show that the indicated adjunction is a Quillen adjunction,
and by proposition 4.3.2, it suffices to show that Sd,, : sSet — sSet is a left
Quillen functor. We already know that it preserves weak homotopy equivalences,
so we need only verify that it preserves monomorphisms; but it is clear that
A : sSet — Cat and N : Cat — sSet both preserve monomorphisms, so the
same must be true of Sd,, : sSet — sSet.

Now, consider the derived adjunction:

LSdQ — RExQ : HosSet — HosSet

Since every simplicial set is cofibrant, we may take LSd, = Ho Sd,,; and since
Sd, = idgge, we have HoSd, = idy, - Thus, we must also have REx, =
1dyy, ¢set» and (recalling lemma 1.5.2) we may apply theorem 4.3.13 to deduce that
we have a Quillen equivalence.

(iii). Lemma 1.11.41 (and the 2-out-of-3 property) implies that the functor Ex, :
sSet — sSet preserves weak homotopy equivalences, and N : Cat — sSet
preserves weak homotopy equivalences by definition, so the same is true of the
composite EXQ(N(—)) : Cat — sSet. Thus, we have an induced adjoint equival-
ence of categories:

HoA(-) 4 Ho Ex,(N(-)) : Ho Cat — HosSet

Since Cat and sSet are both saturated homotopical categories, it follows that the
unit idg,, = EXQ(N(A(—))) and the counit A(EXQ(N(—))) = id,, are natural
weak homotopy equivalences, as required. [ |
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We can say a little bit more about the (weak) homotopy type of the funda-
mental category of a (reflexive) graph (i.e. a 1-skeletal simplicial set).

Definition 1.11.43. Let n be a positive integer.

* A principal edge of the standard simplex A" is an edge corresponding to
amap [1] — [n] thatsendsOtoiand 1 toi+ 1.

* The spine of the standard simplex A" is the smallest simplicial subset of
A" containing its principal edges.

REMARK 1.11.44. A simplex of N(C) is degenerate if and only if (at least) one of
its principal edges is degenerate. However, a non-degenerate simplex of N(C)
may still have degenerate edges!

Proposition 1.11.45. Let G be a 1-skeletal simplicial set. For each positive
integer k, let X® be the smallest simplicial subset of N(TlG) containing all
k-simplices whose principal edges are in the image of the unitn; : G — N (TIG),
i.e. the k-simplices corresponding to diagrams in t,G of the form below,

xo s xk
where the arrows are either identity morphisms or non-degenerate edges of G.

(i) For each positive integer k, X C X**V and the inclusion X®¥ < X*+D
is an anodyne extension.

(ii) We have N(TIG) = Us1 xX®,
(iii) The unitng : G — N(TIG) is an anodyne extension.

Proof. (i). The definition of X**1 ensures that X** ¢ X**1_ Let a be a non-
degenerate (k + 1)-simplex of X**". Then a corresponds to a diagram in 7,G
of the form below,

81 8k+1
X0 X1 Xy Xp+1

where each g, is a non-degenerate edge of G. Clearly, a face d,(a) is in X® if
and only ifi = O or i = k+ 1. Let V*™! be the smallest simplicial subset of A**!
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containing the 0-th and (k + 1)-th faces. It is not hard to verify that the inclusion
V1 < A¥1is an anodyne extension and that the evident commutative diagram

Vk+1 s X(k)

[

Ak+H! x k+D)

is a pullback square in sSet. Moreover, since G is 1-skeletal, 7,G is freely gen-
erated by the non-degenerate edges of G, so the canonical pushout comparison
morphism A UV X® - X*+D j5 a monomorphism.

Now, let I, ., be the set of all non-degenerate (k + 1)-simplices of X *+D By
amalgamating diagrams of the form (), we obtain a commutative diagram

Ik+1 0) Vk+1 s X(k)

L

Ik+1 ® Ak+1 3 X(k+1)

and as before, (x%) is a pullback square in sSet. Noting that every degenerate
(k + 1)-simplex of X**V is already in X, we deduce that I, ,; @ A**! — x*+D
and X® < X**D are jointly epimorphic; but the canonical pushout comparison
morphism is again a monomorphism, so () is also a pushout square. In partic-
ular, X® < X®*D i5 an anodyne extension.

(ii). Let a be an n-simplex of N(TIG). By factoring the edges of « in terms of
the generators, we can find a positive integer m and an m-simplex # of X™ such
that a occurs as a subsimplex of . In particular, a is an n-simplex of X . Thus,
N(7,G) = U X.

(iii). It is clear that the unit n; : G — N(TIG) is a monomorphism and that
its image is precisely X". It thus suffices to verify that X' & N(z,G) is an
anodyne extension; but the class of anodyne extensions is closed under transfinite
composition, so the claim is a consequence of (i) and (ii). [ |

Lemma 1.11.46. Let G be a 1-skeletal simplicial set and let G' and G" be simpli-
cial subsets of G such that G = G' UG". Then the induced commutative diagram
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in Cat
Tl(G/ n G//) - TIG”

l l

is a pushout diagram where all the arrows are monomorphisms, and the induced
morphism
N(7,G') UN(7,G") - N(7,G)

is an anodyne extension.

Proof. 1tis clear that the evident commutative diagram

Gl n G// ¢ G”

[ l

G — G

is a pushout diagram in sSet, and since 7, : sSet — Cat is a left adjoint (by
definition), the corresponding diagram in Cat is also pushout diagram. More-
over, one may directly verify that 7, sends monomorphisms between 1-skeletal
simplicial sets in sSet to monomorphisms in Cat. It then follows (using the fact
that N : Cat — sSet is a right adjoint) that the induced morphism N(7,G’) U
N(7,G") - N(r,G) is indeed a monomorphism in sSet; thus, by proposi-
tion 1.5.12, it suffices to show that it is a weak homotopy equivalence. But the
following diagram commutes,

G'UG" % N(7,G') UN(7,G")

l

G N(7,G)

ule

and by proposition 1.11.45 (plus the fact that the class of anodyne extensions is
closed under pushout and composition), the horizontal arrows are weak homo-
topy equivalences, so the claim is a consequence of the 2-out-of-3 property.
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2.1

SIMPLICIAL CATEGORIES

Basics

Prerequisites. §§0.2, 1.1, 1.2, A.2, B.2.
In this section, we use the explicit universe convention.

Definition 2.1.1. A simplicial category C, consists of the following data:
* For each natural number n, a category C,.

* For each natural number n and 0 <i < n, afunctord; : C, - C,_, and a
functor s} : C, = C,, .

These functors are moreover required to satisfy the simplicial identities. The
underlying category of C, is the category C,,.

REMARK 2.1.2. In short, a simplicial category is a simplicial object in the meta-
category of all categories. Thus, we may refer to the functors d; and s as face
operators and degeneracy operators, just as in the general case.

Definition 2.1.3. Given two simplicial categories C, and D,, a simplicial func-
tor F, : C, — D, consists of a functor F, : C, — D, for each natural number n,
such that the functors F, are compatible with the face and degeneracy operators
in the obvious sense:

dinFnan—ldin S?Fnan+1S?

Definition 2.1.4. Given two simplicial functors F,, F, : C, — D,, a simplicial
natural transformation ¢, : F, = F, consists of a natural transformation
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@, : F, = F, for each natural number n, such that the natural transformations
@, are compatible with the face and degeneracy operators in the obvious sense:
dzn(pn = (pn—ldin Szr'l(pn = (Pn+lszr'l
Definition 2.1.5. Let U be a universe. A U-small (resp. locally U-small) sim-

plicial category is a simplicial category C, such that each C, is U-small (resp.
locally U-small).

Example 2.1.6. If C is a U-small category, then we have a U-small constant sim-
plicial category C,, where C, = C for all n, with the trivial face and degeneracy
operators.

Definition 2.1.7. The bisimplicial nerve of a simplicial category C, is the bisim-
plicial set N** (C.) defined by the following formula:

(N*(C))m =N(C,),
In other words, the m-simplices of the n-th level of N* (C,) are the composable
strings of morphisms in C,, of length n.

Example 2.1.8. Let C be an ordinary category, and consider the simplicial cat-
egory C, defined by C, = [I[n], C], where I[n] denotes the groupoid obtained
by freely inverting all the arrows in [n]. The bisimplicial nerve N* (C.) is then
(isomorphic to) the classifying diagram of C, in the sense of Rezk [2001].

Proposition 2.1.9. Let U be a universe, let [A°P, Cat] be the category of U-small
simplicial categories, and let ssSet be the category of bisimplicial sets.

(i) [AP, Cat] is a locally finitely presentable U-category.
(i) N* : [A°P, Cat] — ssSet is a fully faithful R -accessible functor.
(iii) N* has a left adjoint.
Proof. (i). This is an instance of proposition 0.2.44.

(ii). That N* : [A°’,Cat] — ssSet is a fully faithful N -accessible functor
essentially follows from the fact that N : Cat — sSet is so: see proposition 1.2.2
and the accessible adjoint functor theorem (0.2.50).

(iii). It is also clear that N** preserves limits for U-small diagrams, so we may
apply the accessible adjoint functor theorem to construct a left adjoint for N*.
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Definition 2.1.10. A simplicially enriched category C consists of the following
data:

* A set of objects, ob C.

A simplicial set of morphisms, mor C.

A pair of simplicial maps dom, codom : mor C — disc ob C.

For each element C of ob C, a vertex id. in mor C such that domid, = C
and codomid. = C.

A simplicial map C*! — mor C, written as (8, a) = foa, where C™*! is the
simplicial set defined by the following pullback diagram:

C¥ —— morC

l [

mor € —— discobC

These are moreover required to satisfy the following condition:

* For each natural number n, the given identities and binary operation induce
a category with ob C for its object-set and (mor C),, for its morphism-set.

As usual, we write C(C, C") for the simplicial subset of mor C consisting of those
simplices a such that dom« = C and codoma = C’.

The underlying category of a simplicial category C is the category C ob-
tained by taking C(C’, C) = C(C’, C),, with the evident identity morphisms and
induced composition. By object or morphism in C, we shall always mean an
object or morphism in the underlying category C.

REMARK 2.1.11. It is clear from the definition that a simplicially enriched category
C induces a simplicial category C,, but not every simplicial category arises in this
fashion: simplicially enriched categories correspond to the simplicial categories
C, where ob C, is a constant simplicial set.

Definition 2.1.12. Given two simplicially enriched categories C — D, a simpli-
cially enriched functor F : C — D consists of amapob F : obC — obDand a
simplicial map mor F : mor C — mor D that respect the structure of simplicially
enriched categories in the obvious sense.
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ReEMARK 2.1.13. There is a natural bijection between simplicially enriched func-
tors C — D and simplicial functors C, — D,, where C, and D, are the simplicial
categories associated with C and D.

Of course, just as in the simplicial case, a simplicially enriched functor F :
C — D has a underlying functor F : C — D between the underlying categories.

Definition 2.1.14. Given two simplicially enriched functors F, F' : C — D,
a simplicially enriched natural transformation ¢ : F = F' consists of a
morphism ¢ : FC — F'C in D for each object C in C, such that the following
diagram commutes for all pairs (C, C'):

D(FC,FC)

V \Q(chpc/)

ace.ch D(FC,F'C)

nk) %ch

D(F'C,F'C)

REMARK 2.1.15. It is not hard to see that any simplicially enriched natural trans-
formation has an underlying natural transformation; but unlike simplicially en-
riched functors, being a simplicially enriched natural transformation merely a
property, rather than an extra structure.

Less obviously, the bijection between simplicially enriched functors and sim-
plicial functors also extends to a bijection between simplicially enriched natural
transformations and simplicial natural transformations. In particular, to check
whether a natural transformation is simplicially enriched, it is enough to check
whether it is levelwise natural.

Definition 2.1.16. Let U be a universe. A U-small simplicially enriched cat-
egory is a simplicially enriched category C such that ob C is a U-set and mor C
is a simplicial U-set. A locally U-small simplicially enriched category is a
simplicially enriched category C such that ob C is a U-class and, for each pair
(C’, C) of elements of ob C, the simplicial set C(C’, C) is a simplicial U-set.

REMARK 2.1.17. Let U be a universe and let sSet be the category of simplicial
U-sets. Then a locally U-small simplicially enriched category is essentially the
same thing as a locally U-small sSet-enriched category, where we regard sSet
as a symmetric monoidal closed category via its cartesian closed structure; and
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under this identification, simplicially enriched functors (resp. natural transform-
ations) are the same thing as sSet-enriched functors (resp. natural transforma-
tions).

Proposition 2.1.18. Let U be a universe and let sSet be the category of simplicial
U-sets. Then sSet admits a simplicial enrichment, with

sSet(X,Y) =[X,Y]
where [ X, Y] denotes the exponential object.
Proof. This is a special case of proposition B.2.5. [ |

Definition 2.1.19. A discrete simplicially enriched category is a simplicially
enriched category C such that mor C is a constant simplicial set.

Proposition 2.1.20. Let U be a universe. If C is a locally U-small category, then
there exists a locally U-small discrete simplicially enriched category C whose
underlying category is C such that, for all simplicially enriched categories D, the
map sending a simplicially enriched functor C — D to its underlying ordinary
functor C — D is a bijection.

Proof. Obvious. ¢

Definition 2.1.21. Let C be a simplicially enriched category and let C be an
object in C. The simplicially enriched slice category C . is defined as follows:

* The objects are morphisms f : X — Cin C.

* The simplicial set of morphisms from f : X - Ctog:Y — C is defined
by the following pullback diagram in sSet,

Crelf.8) — CX.Y)

.

A — C(X,0)

where A’ — C(X, C) is the morphism corresponding to f (considered as
a vertex of C(X, C)).

» Composition and identities are inherited from C.
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REMARK 2.1.22. It is straightforward to check that the above indeed defines a
simplicially enriched category. The morphism C,(f,g) — C(X,Y) is monic,
so we may regard C /C( f, g) as asimplicial subset of C(X, Y); however, note that
it is not a “full” simplicial subset in general: for n > 0, the n-simplices that are
in C,c(f, g) must become degenerate after applying g, : C(X,Y) - C(X,C).

Proposition 2.1.23. Let U be a universe.

(i) If D and & are U-small simplicially enriched categories, then there exist
a U-small simplicially enriched category D X &€ and simplicially enriched
functors p, : DX E = Dand p, : DX E — & such that (pl,pz) induce
a bijection between simplicially enriched functors (F,G) : C - D X &
and pairs (F, G) of simplicially enriched functors, where F : C — D and
G : C — & where C varies over all simplicially enriched categories.

(ii) If Dis a U-small simplicially enriched category and & is a locally U-small
simplicially enriched category, then there exist a locally U-small simpli-
cially enriched category |D, £] and a simplicially enriched functor ev :
[D, £] X D — & such that ev induces a bijection between simplicially en-
riched functors C X D — &€ and simplicially enriched functors C — [D, £],
where C varies over all simplicially enriched categories.

(iii) If D and &€ are both U-small simplicially enriched categories, then [D, &]
is also U-small.

Proof. This is a special case of theorem B.3.7. [ |

REMARK 2.1.24. Let C be an ordinary category and let D be a simplicially en-
riched category. Then all functors C — D are automatically simplicially en-
riched (by proposition 2.1.20), and as in remark A.6.5, we have a isomorphism

[C.DI(F.F)= | D(FC,F'C)
c:C

and this is natural in both F and F’. More generally, see corollary B.3.22.

Proposition 2.1.25. Let U be a universe, let SCat be the category of U-small
simplicially enriched categories, and let [A°P, Cat] be the category of U-small
simplicial categories.

(i) SCat, regarded as a full subcategory of [A°P, Cat), is closed under limits
and colimits for all U-small diagrams.
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(ii) SCat is a cartesian closed category.

(iii) The inclusion SCat < [A°P, Cat] has a left adjoint, and SCat is a locally
finitely presentable U-category.

Proof. (i). The functor [A°?,0b] : [A°P,Cat] — sSet has a left adjoint and
a right adjoint, so it follows that a limit or colimit for diagrams of simplicially
enriched categories, computed as a simplicial category, will have object-space a
discrete simplicial set and thus be isomorphic to a simplicially enriched category.

(ii). This is implied by proposition 2.1.23.

(iii). It is not hard to directly construct a left adjoint for the inclusion SCat <
[A°P, Cat], and once this is done, we may apply the classification theorem for
locally presentable categories (0.2.40) to deduce (from proposition 2.1.9) that
SCat is also locally finitely presentable. Alternatively, one may instead first
show that SCat is locally finitely presentable and then use the accessible adjoint
functor theorem (0.2.50) to construct a left adjoint for the inclusion. {}

Proposition 2.1.26. Let C be a category and let S'*! = (S, £!*1,5!*)) be a
cosimplicial object in the category of comonads on C. If S'°! = (id, id, id), then C
is the underlying ordinary category of a simplicially enriched category C where
the hom-spaces are given by the formula below,

C(A,B) = (C(S"4, B)
with composition in level n induced by the comultiplication 6™ : S = Sl gl

Proof. Let C, be the Kleisli category associated with the comonad S, Clearly,
these fit together to form a simplicial category C, such that ob C, is a constant
simplicial set; so by remark 2.1.11, we have the required simplicially enriched
category C. [ ]

Lemma 2.1.27 (Weak Yoneda lemma). Let U be a universe, let sSet be the
simplicially enriched category of simplicial U-sets, and let C be a locally U-small
simplicially enriched category. For each object A in C and each simplicially
enriched functor F : C — sSet, the map ¢ — @, (id A) is a bijection between
the set of V-enriched natural transformations @ : C(A,—) = F and the set of

vertices of F A.

Proof. This is a special case of lemma B.2.14. [ ]
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Simplicially enriched limits and colimits

Prerequisites. §§2.1, A.5, A.0, B.2, B.3, B.4.

In this section, we use the explicit universe convention.

Definition 2.2.1. Let C be a simplicially enriched category, let X be a simplicial

set, and let C be an object in C.

* A tensor product of X and C in C is pair (X © C, A) where X © C is an

object in C and 4 is a morphism X — C(C, X O C) such that the simpli-
cially enriched natural transformation

CXoC -)=[X,4C )]

induced by the corresponding vertex of [ X, C(C, X © C)] is a simplicially
enriched natural isomorphism. We may also refer to (X © C, 4) as a sim-
plicial copower of A by X.

A cotensor product of X and C in C is a pair (X m C, A) where X h C
is an object in C and 4 is a morphism X — C(X M C, C) such that the
simplicially enriched natural transformation

induced by the corresponding vertex of [ X, C(X m C, C)] is a simplicially
enriched natural isomorphism. We may also refer to (X m C, 1) as a sim-
plicial power of A by X.

REMARK 2.2.2. If C is a locally U-small simplicially enriched category, then the
above definition coincides with the definition of tensor/cotensor product in a
sSet-enriched category, where sSet is the category of simplicial U-sets.

Definition 2.2.3. Let C be a locally U-small simplicially enriched category and
let F: D — C be a diagram in C.

258

* A conical colimit for F in C is an object A and a cocone 4 : F = AA

such that, for all objects B in C, the hom-functor C(—, B) : C*® — sSet
sends A to a limiting cone in sSet.

* A conical limit for F in C is an object B and a cone A : AB = F such

that, for all objects A in C, the hom-functor C(A, —) : C — sSet sends 4
to a limiting cone in sSet.
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REMARK 2.2.4. Every conical colimit (resp. limit) for F in C is a colimit (resp.
limit) for F in the underlying category C, but the converse is not true in general.

REMARK 2.2.5. When D is an ordinary category D, ordinary cocones (resp. cones)
ondiagrams F : D — C are automatically simplicially enriched, and thus conical
colimits (resp. limits) for F are the same thing as Al-weighted colimits (resp.
limits) for F, where A1 denotes the constant functor with value 1 in sSet.

Proposition 2.2.6. Let C be a locally U-small simplicially enriched category and
let F : D — C be adiagram in C. If C has cotensor products with the standard
simplices, then the following are equivalent for any cocone A : F = AA:

(i) A is a conical colimit for F in the simplicially enriched category C.
(ii) Ais a colimit for F in the underlying category C.

Dually, if C has tensor products with the standard simplices, then the following
are equivalent for any cone A : AB = F:

(i") Ais a conical limit for F in the simplicially enriched category C.
(ii") A is a limit for F in the underlying category C.
Proof. (i) = (ii). Immediate.

(ii) = (i). It suffices to show that, for each natural number n, the canonical
comparison map

C<lim F, T)n = lim_C(F,T),
—\—Db —D—
is a bijection; but by the Yoneda lemma,
C(S.T), = sSet(A',C(S,T))
and the definition of A"mM(—) implies there is a natural bijection of the form below,
sSet(A",C(S,T)) = C(S,A'NT)

therefore the functor C(—,T), : C°® — Set is representable. [ |

259



2.3

II. SIMPLICIAL CATEGORIES

Definition 2.2.7. Let U and U* be universes, with U C U™,

e A U-cocomplete simplicially enriched category is a locally U"-small
simplicially enriched category C such that, for all U-small simplicially en-
riched diagrams F : D — C and all U-small weights W : D°? — sSet, C
has a W -weighted colimit for F.

¢ A U-complete simplicially enriched category is a locally U"-small sim-
plicially enriched category C such that, for all U-small simplicially en-
riched diagrams F : D — C and all U-small weights W : D — sSet, C
has a W -weighted limit for F.

Proposition 2.2.8. Let C be a locally U-small simplicially enriched category.

e Cis U-cocomplete if and only if C is simplicially tensored and has conical
colimits for all U-small diagrams.

e C is U-complete if and only if C is simplicially cotensored and conical
limits for all U-small diagrams.

e C is both U-cocomplete and U-complete if and only if C is both simplicially
tensored and cotensored and the underlying category C is U-cocomplete
and U-complete.

Proof. See [777]. ]

Simplicial and cosimplicial objects

Prerequisites. §§1.1, 2.1, 2.2, A.6.

1 2.3.1. Recall that a simplicial object in a category is a diagram of shape
A°P and dually, a cosimplicial object is a diagram of shape A. Let us write
sM for the category of simplicial objects in M, and ¢M for the category of
cosimplicial objects in M.

Proposition 2.3.2. Let M be a locally small category. Let Hom : (sSM)°P X
SM — sSet be the functor defined by

Hom(A, B) = Tot M(A,, B,)

where we regard M(A,, B,) as a cosimplicial simplicial set. Then sM is a
locally small simplicially enriched category with hom-spaces given by Hom.
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Proof. By lemma 1.6.22, we have the following end formula:

Hom(A, B), = / Set (A, M(A,.B,))
[m]:A

Concretely, an element of f of Hom(A, B), is a H[m]: A A([m], [n])-indexed fam-

ily of morphisms f, : A, — B, in M, such that for any two morphisms

@ : [m] — [n],y : [l] = [m]in A, the diagram in M shown below commutes:

fo
A —— B

m m

A

Al > B /
(27

Decomposing an element g of Hom(B, C), the same way, we obtain the following
commutative diagram in M,

Am L Bm i m
w*l w*l lw*
Al Foow Bl Egoy CI

and thus we have an element of Hom(A, C),. This is certainly natural in n, and
this is clearly the required associative composition with identity.
It remains to be shown that there is a natural bijection of the form below:

sSet (A°, Hom(4, B)) = sM(A, B)
Given a morphism f, : A, — B,, we define an element f[n] of Hom(A, B), for
each object [n] in AP as follows: given ¢ : [m] — [n], we set (f [nD, = fan
and naturality of f,, makes the diagram in M shown below commute for every
morphism y : [I] — [m] in A:

(/I
A, —>

w*l
A

Bm

b

1 Bl
(11D gy

Thus, we have a morphism A’ — Hom(A, B). Conversely, given a family of
elements f[—] such that 8*(f[n]) = f[n’] forall 0 : [n’] — [n], we discover

(f1nD), = (fIMDgug,, = (@ (F D), = (FImDyy,
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for all morphisms ¢ : [m] — [n] in A, so we get a morphism f, : A, — B, by
setting f,, = (f [m])id[m]. This establishes the required natural bijection. [ |

Definition 2.3.3. A constant simplicial object in a category M is a simplicial
object in M whose face and degeneracy operators are isomorphisms.

Proposition 2.3.4. Let M be a locally small category. The following are equi-
valent for a simplicial object B, in M:

(i) B, is a constant simplicial object in M.
(ii) For all objects A in M, the simplicial set M(A, B.) is discrete.
(iii) For all simplicial objects A, in M, the simplicial set SM(A, B) is discrete.

Proof. (i) < (ii). Use the fact that the Yoneda embedding M — [MP, Set] is
fully faithful.

(ii) = (iii). Apply lemma 1.6.24.

(iii) = (ii). Let A be any object in M. If we regard A as a constant simplicial
object in the obvious way, then lemma 1.6.23 says there is a natural isomorphism

SM(A, B) = M(A, B,)
so M(A, B,) is indeed discrete. ]

Proposition 2.3.5. Let M be a locally small category and let X be a finite sim-
plicial set.

e [f M has finite colimits, then for any cosimplicial object A® in M, there
exists an object X % A in M equipped with bijections

M(X % A, B) = sSet(X, M(A®, B))
that are natural in B.

o [f M has finite limits, then for any simplicial object B, in M, there exists
an object { X, B} in M equipped with bijections

M(A, {X,B}) = sSet(X, M(A, B,))
that are natural in A.
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Proof. The two claims are formally dual; we will prove the first version.
Applying the Yoneda lemma, we see that A" * A must be (isomorphic to) A".
It is not hard to see that, if X : J — sSet is a diagram such that X j % A exists
for all j in [J, then (h_r)njﬂ Xj) * A must be (isomorphic to) h_r)nj:J(Xj * A)
when the latter exists; thus, the class of simplicial sets X for which X * A exists
must be closed under finite colimits (because M has colimits for finite diagrams).
We may then use proposition 1.1.18 to deduce that X * A exists if X is a finite
simplicial set. [ |

REMARK 2.3.6. The same is true for a general simplicial set X when M has limits
and colimits for all small diagrams: see theorem A.6.14.

Proposition 2.3.7. Let M be a locally small category and let X be a finite sim-
plicial set.

o If M has finite colimits, then for any cosimplicial object A® in M, the
tensor product (X © A)* exists in cM.

o [f M has finite limits, then for any simplicial object B, in M, the cotensor
product (X t B), exists in SM.

Proof. The two claims are formally dual; we will prove the first version.

Itis clear that A" X X is a finite simplicial set for all » > 0 when X is a finite
simplicial set, so the objects (A" X X) % A exist in M (by proposition 2.3.5).
We then define (X © A)*® by taking (X © A)" = (A" X X) x A. Let B® be any
cosimplicial object in M. Using the calculus of ends, we have the following
natural bijections:

CM(X © A, B), = / Set (A, M((A" X X) * A, B™))
[m]:A

by lemma 1.6.22

g/ Set(A’jn,/ Set(A’;’xX,,M(A’,Bm))>
[m]:A [1:A

by definition and remark A.6.5

g/ / Set (A, Set (A} x X,, M(A', B")))
[m]:A J[I]:A

by proposition A.6.11

263



II. SIMPLICIAL CATEGORIES

/ / Set (A", Set (A", x X,, M(A!, B")))
[m]:A J[I]:A

by exponential adjunction (twice)

/ / Set (A, Set (&, x X,, M(A', B")))
[[1:A J[m]:A

by the interchange law (theorem A.6.17)

= / Set (A} x X,, M(A', B'))
[I1:A

by the Yoneda lemma for ends (proposition A.6.18)

On the other hand:
[X,cM(A, B)], = sSet(A" X X, cM(A, B))

by remark A.2.23
g/ Set(A’jnme, Set(A’f,M(A’,B’)))
[m]:A [1:A
by lemma 1.6.22 and remark A.6.5

/ / Set(A), X X,,.Set (A7, M(A', B')))
[m]:A J[I]:A

by proposition A.6.11

/ / Set (A7, Set (A), X X,,, M(A', B')))
[ml:A J[1:A
by exponential adjunction (twice)
/ / Set (A7, Set (A, X X,,, M(A', B')))
1n:A J[ml:A
by the interchange law (theorem a.6.17)
= / Set (A} x X,, M(A', B))
[1:A
by the Yoneda lemma for ends (proposition A.6.18)
Thus, we have isomorphisms
cM(X © A, B) = [X,cM(A, B)]
that are natural in B®. Moreover,

[cM(X © A, B),eM(X ® A,C)] = [eM(X O A, B) X X,cM(A, C)]
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and so a similar calculation may be used to verify simplicial naturality in B*. |l

Proposition 2.3.8. Let M be a locally small category and let X be a finite sim-
plicial set (resp. any simplicial set).

o [f M has finite copowers (resp. small copowers), then for any simplicial
object A, in M, the simplicial object (X © A), defined by

(X0A),=X,0A4,
is (the object part of) a tensor product of X and A, in SM.

e Jf M has finite powers (resp. small powers), then for any cosimplicial ob-
ject B* in M, the cosimplicial object (X m B)® defined by

(XM B)'=X"th B"
is (the object part of) a tensor product of X and B* in ¢ M.

Proof. The two claims are formally dual; we will prove the first version.
Let B, be any simplicial object in M. By the calculus of ends, we have the
following natural bijections:

SM(X © A, B), = / Set(Al,, M(X,,© A,,B,))
[m]:A

by lemma 1.6.22
g/ Set (4", Set(X,,, M(A,,B,)))
[m].?:)y definition
=~ / Set (A" x X,,, M(A,, B,,))
[m]lAby exponential adjunction
On the other hand:

[X,sM(A, B)], = sSet(A' X X,sM(A, B))

by remark A.2.23

=/ Set(A”mme, Set(Al,,,,M(A,,B,))>
[m]:A [1:A

by lemma 1.6.22 and remark A.6.5

265



II. SIMPLICIAL CATEGORIES

- / / Set (&, x X,.Set (&, M(A,. B,)))
[m]:A J[I]:A

by proposition A.6.11

- / / Set (&, Set (&, x X,,. M(4,. B,)))
[m]:A J[I]:A

by exponential adjunction (twice)

- / / Set (A, Set (A, x X, M(A,. B,)))
[[:A J [m]:A

by the interchange law (theorem A.6.17)
= / Set (A} x X,, M(A,, B,))
[11:A
by the Yoneda lemma for ends (proposition A.6.18)
Thus, we have isomorphisms
SM(X © A, B) = [X,sM(A, B)]
that are natural in B,. Moreover,
[SM(X © A, B),sM(X © A,C)] = [SM(X © A, B) X X,sM(A,C)]
so a similar calculation may be used to verify simplicial naturality in B,. [ |
Definition 2.3.9. Let M be a locally small simplicially enriched category.

in M with
a simplicially enriched natural isomorphism of the form below:

* A realisation of a simplicial object A, in M is an object |A,

M(|A,

-) = [A.sSet] (A" M(A,.-))

* A totalisation of a cosimplicial object B* in M is an object |B*| in M
with a simplicially enriched natural isomorphism of the form below:

M(_’ Tot B.) = [A’ SS_et](A.’ M(_a B.))

REMARK 2.3.10. In other words, | A, | is the simplicially enriched weighted colimit
A® %, A,, and Tot B® is the simplicially enriched weighted limit {A®, B*}A".
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REMARK 2.3.11. By remark 2.1.24 and theorems B.3.18 and B.3.19, the above
definitions agree with the ones given in §1.6. In particular, we have simplicially
enriched natural isomorphisms

M([A.]. ) = Tot M(A.. -)
M(—, Tot B*) = Tot M(—, B,)

for a simplicial object A, and a cosimplicial object B* in M, respectively.
Proposition 2.3.12. Let M be a locally small simplicially enriched category.

® Let X be a simplicial set and let A, be a simplicial object in M. If M is
cocomplete and X [-] A, is the simplicial object in M defined below,

(XEA,),=X,0A4,
then there is an isomorphism

|X @ A,

=~ X 0|A,

and it is natural in both X and A,,.

® Let X be a simplicial set and let B* be a cosimplicial object in M. If M
is complete and X [N G* is the cosimplicial object in M defined below,

(X M B*)" = X, m B”
then there is an isomorphism
Tot(X [ B*) = X m Tot B*
and it is natural in both X and B®.

Proof. The two claims are formally dual; we will prove the first version.
Using the calculus of ends, we have the following natural bijections:

.B))

M(X oA,

,B) = sSet(X, M(|A,
by definition

~ sSet<X, /m:A [A”,M(An,B)D

by theorem A.6.14
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E/M]Asset(x &, M(A,. B)])

by proposition A.6.11
= / sSet(X X A", M(A,, B))
[n]:A

by exponential adjunction

/ / Set(X,, x Al,, M(A,,B),,)
[n]:A J [m]:A

by remark A.6.5

/ / Set(X,,, Set(A!,, M(A,.B),))
[n]:A J [m]:A

by exponential adjunction

g/ Set<Xm,/ Set(A';,,,M(An,B)m))
[m]:A [n]:A _

by the interchange law (theorem A.6.17)

o~ / Set(Xm,M(Am’B)m)
[m]:A

by the Yoneda lemma for ends (proposition A.6.18)

= / M(X,, ©A,,B),
[m]:A
by definition
= / sSet (A", M(X,, © A, B))
[m]:A
by the ordinary Yoneda lemma

B)

=~ M(

Applying the Yoneda lemma once more, we deduce that

Corollary 2.3.13. Let M be a locally small simplicially enriched category.

o Let f,,f. : A, = B, be a parallel pair of morphisms in sM. If M is
cocomplete as a simplicially enriched category and there exists a morph-
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ism H : A'[[] A, = B, making the following diagram commute,
AN A, «— A4,

5‘midA.l lf.

A'A, 2 B,

5OEidA'T T 1!
N[TA, «— 4,
o Let f°, f'* : A* — B°® be a parallel pair of morphisms in cM. If M is

complete as a simplicially enriched category and there exists a morphism
H : A* - A'[@ B® making the following diagram commute,

then there is an edge a : | f| = | f'] inM(|A.

b |Bo

B* —=— A°[@ B*

f'T Talmid,,.

A 25 A'm B

f"l léomid g

B —— AN[@B°
then there is an edge a : Tot f = Tot f' in M(Tot A®, Tot B®).
Proof. The Yoneda lemma implies there are natural bijections
M(A' © A, B) = M(A, B), = M(A,A'  B)

so the required edge is obtained by applying realisation (resp. totalisation) to the
displayed diagrams. |

Proposition 2.3.14. Let M be a locally small simplicially enriched category.

o If M is cocomplete and cotensored, then we have the following adjunction
of ordinary categories:

-] AN (=) : M > sM

e If M is complete and tensored, then we have the following adjunction of
ordinary categories:

A*O(-)dTot:eM > M
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Proof. By definition, we have the following natural bijections:
M(|A,|. B) = [A,sSet](A®, M(A,,B)) = [A®, M](A,,A° h B)
M(A, Tot B®*) = [A,sSet](A*, M(A, B®)) = [AP?, M](A*©OA,B*) N

Definition 2.3.15. Let (W, €, 6) be a comonad on a category M. The standard
resolution of an object A in M (with respect to this comonad) is the simplicial
object S(A), defined by the following formulae,

S(A), = W™ A
dll’l = Wn_iSWiA
S;l = Wn_iéWiA

together with the standard augmentation, which is defined to be the unique
morphism (5 A), : S(A), — A in sM given in degree o by the counit €, :
WA — A.

ReEMARK 2.3.16. One does have to verify that the above really does define a sim-
plicial object and a morphism thereof, but this is straightforward.

Definition 2.3.17. Let A, be a simplicial object in a category M.

* A forward contracting homotopy for A, consists of an object A_, in M
and morphisms r : Ay > A_;,s: A_; - Aj,and h" : A, —> A, in M
satisfying these identities:

1 _ 1
rod, —rod0

ros=id
déohozsw
dlon’=id
dten"=h""odr if0<i<n
difleh"=id
hho s = st o pt if0<i<n
hn+1 o h" =Szii o h"

* A backward contracting homotopy for A, consists of an object A_; in
M and morphisms r : Ay - A_|,s: A, > Ayp,and h" : A, —> A, in
M satisfying these identities:

1 _ 1
roed =reod,
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ros=id
dy o h’ =id
dllohozsw

dit' e h" =id

dit e =h"" o d! if0<i<n
hn+1 o W' = SS+1 o h"
o st = st o " if0<i<n

ReMARK 2.3.18. The above definition agrees with definition 1.3.19 in the case
M = Set.

Proposition 2.3.19. Let A, be a simplicial object in a locally small category
M.

e Given a forward contracting homotopy for A,, say r : Ay = A_, s :
A_, = Ay and h" : A, = A,,,, there are unique morphisms 7, : A, —
A_jand3, : A_; = A, insM defined in degree o by r and s respectively,
and we have ¥, 5, =1d, and an edgeid, = 5, °F, in SM(A, A).

e Given a forward contracting homotopy for A,, sayr : A, = A_, s :
A = Ajand h" : A, = A,
A_jand5,: A_, = A, insM defined in degree o by r and s respectively,
and we have 7, 5, =1d, and an edgeid, = 5, o F, in SM(A, A).

there are unique morphisms r, : A, —

Proof. The two claims are formally dual; we will prove the first version.

By adjointness, there is a unique morphism §, : A_; — A, in SM such that
§, = s. Itis clear that there is at most one morphism 7, : A, - A_, in sM.
such that #, = r, and since r o d 11 =ro dé, the simplicial identities imply there is
indeed such a morphism in sM. Similarly, to verify the equation 7, - 5, =1d,_,
it suffices to verify the claim in degree o; but this is just the hypothesis that
res=id, .

Now, let T be any object in M, and consider the simplicial set M(T, A.).
Then we have a natural forward contracting homotopy for each M(T, A,); SO
by proposition 1.3.20, for each morphism f, : T — A, in sM, there is a natural
edge f, = §,°F,° f, in M(T, A.). But Tot : [A, sSet] — sSet is a simplicially
enriched functor (by proposition B.3.16), so this implies there is an edge id, =
§,°F, in SM(A, A), as required. [ ]
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Proposition 2.3.20. Let M and N be locally small categories, let
FAU M-> N

be an adjunction with unit n : id,, = UF and counit e : FU = id,,, and
let A be an object in M. Taking US(A)_, = UA, r = Ug,, s = ny, and
h" = Ny ey we have a forward contracting homotopy for US(A),.

Proof. This is a straightforward exercise in using the triangle identities. ¢

2.4 Simplicial model categories

Prerequisites. §§1.5, 2.1, 4.1, 4.3, 4.7, 4.8.

Definition 2.4.1. Let M be a locally small simplicially enriched category. A

simplicial model structure on M is a model structure on the underlying model

category M that satisfies the following axiom:"

SM7. Ifi : Z — W is acofibrationin M and p : X — Y is a fibration in M,
and the square in the diagram below is a pullback square in sSet,

MW, X) 240
\_\—\N
~~_ R

M(Z’ X) ><M(Z,Y) M(Wa Y) E— M(W, Y)

| e

M(Z, X) M(Z.Y)

M(i.X)

M(Z.p)

then the unique morphism i* F] p, making the diagram commute is a
Kan fibration; moreover, if eitheri : Z - W orp: X — Y is a weak
equivalence, then i* F] p, is a trivial Kan fibration.

A simplicial model category is a locally small simplicially enriched cat-
egory M that is equipped with a simplicial model structure and satisfies the
additional axioms below:

SMO. For each finite simplicial set K and each object X in M, the tensor
product K © X and the cotensor product K M X exist in M.

[1] This presentation is due to Quillen [1967].
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CM1. M has finite limits and finite colimits.

A simplicial derivable category is a locally small simplicially enriched cat-
egory M that is equipped with a simplicial model structure and satisfies the
additional axioms below:

 If W is a cofibrant object in M, then the functor M(W', —) : M — sSet
preserves fibrant objects, fibrations, and trivial fibrations; and if X is a
fibrant object in M, then the functor M(—) : M — sSet sends cofibrant
objects (resp. cofibrations, trivial cofibrations) in M to Kan complexes
(resp. Kan fibrations, trivial Kan fibrations) in sSet.

* The underlying ordinary category M equipped with the given model struc-
ture is a derivable category.

REMARK 2.4.2. Proposition 2.2.6 implies that limits and colimits in a simplicial
model category are automatically conical (i.e. limits and colimits in the simpli-
cially enriched sense).

REMARK 2.4.3. Let M be alocally small simplicially enriched category equipped
whose underlying ordinary category is equipped with a model structure. Then M
is a simplicial model category if and only if M is a simplicial model category.

Proposition 2.4.4. Let M be a locally small simplicially enriched category
whose underlying ordinary category is equipped with a model structure. If M
satisfies axioms SMO and CM 1, then the following are equivalent:

(i) Axiom SM7 is satisfied.

(ii) For all fibrations (resp. trivial fibrations) p: X - Y in M, ifi : Z - W
is a boundary inclusion 0A" < A" and the square in the diagram below is
a pullback square in M,

wWnhX idy,p
T~~~ _ i

~
~

=3
(ZM X)Xy WNY) — WAY

| i
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then the unique morphism i]p making the diagram commute is a fibration
(resp. trivial fibration); and for all fibrationsp : X - Y in M, ifi : Z —
W is a horn inclusion A}, < A', then the morphism i F]p defined as above
is a trivial fibration.

(iii) For all cofibrations (resp. trivial cofibrations) j : X — Y in M, ifi :
Z — W is a boundary inclusion 0A" < A' and the square in the diagram
below is a pushout square in M,

id, o)

00X Z0OY

on l

WoX — WoX)u®* (ZoY)

~

~<_ i@
~

~
~

~
idy O WoY

then the unique morphism i[d j making the diagram commute is a cofibra-

tion (resp. trivial cofibration); and for all cofibrations j : X — Y in M, if

i: Z - Wisahorninclusion A} < A, then the morphism i [3 j defined

as above is a trivial cofibration.

Proof. This is (essentially) a special case of proposition 5.5.1. [ |

Corollary 2.4.5. Let M be simplicial derivable category that has tensors for
finite (resp. all) simplicial sets and colimits for finite (resp. small) diagrams.

() Ifi: Z — W is a monomorphism of finite (resp. arbitrary) simplicial sets
and Y is a a cofibrant object in M, then the morphismi®idy, : ZOQY —
W ©Y is a cofibration.

(i) Ifi: Z — W is an anodyne extension of finite (resp. arbitrary) simplicial
sets and Y is a a cofibrant object in M, then the morphism i © id, :
Z QY — W QY is a trivial cofibration.

(iii) If W is any finite (resp. arbitrary) simplicial set and Y is a cofibrant object
in M, then W @Y is also a cofibrant object in M.

Proof. (i) and (ii). Proposition 2.4.4 implies the claims in the special cases
where i : Z — W is a boundary inclusion or horn inclusion, and by propos-
ition 1.4.12 (resp. corollary 0.5.13) and proposition A.3.17, this is enough to de-
duce the claim for the general case.
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(iii). Take Z = @. |

Corollary 2.4.6. Let M be simplicial derivable category that has cotensors for
finite (resp. all) simplicial sets and limits for finite (resp. small) diagrams.

() Ifi: Z — W is a monomorphism of finite (resp. arbitrary) simplicial sets
and X is a a fibrant object in M, then the morphismimid, : W h X —
Z M X is a fibration.

(i) Ifi: Z — W is an anodyne extension of finite (resp. arbitrary) simplicial
sets and X is a fibrant object in M, then the morphismimidy, : WhX —
Z M X is a trivial cofibration.

(iii) If W is any finite (resp. arbitrary) simplicial set and X is a fibrant object
in M, then W MY is also a fibrant object in M.

Proof. These claims are formally dual to the ones in corollary 2.4.5. [ ]

Proposition 2.4.7. Let M be a locally small simplically enriched category with
an initial object 0 and a terminal object 1 (in the simplicially enriched sense)
and suppose M is equipped with a simplicial model structure.

e If A is a cofibrant object in M, then the functor M(A,—) : M — sSet
preserves weighted limits, fibrant objects, fibrations, and trivial fibrations.

e If B is a fibrant object in M, then the functor M(—, B) : M® — sSet
preserves weighted limits, fibrant objects, fibrations, and trivial fibrations.

In particular, every simplicial model category is a simplicial derivable category.

Proof. The two claims are formally dual; we will prove the first version.
Essentially by definition, the functor M(A,—) : M — sSet preserves any
weighted limits that exist in M. Lemma 4.1.16 says the unique morphism 0 — A
is a cofibration if and only if A is a cofibrant object in M, so we may then apply
axiom SM7 to deduce that M(A, —) preserves fibrant objects, fibrations, and
trivial fibrations.
To conclude, we need only apply remark 2.4.2 and proposition 4.1.17. |

Lemma 2.4.8. Let M be a simplicial derivable category, let M, be the full
subcategory of cofibrant objects in M, and let M; be the full subcategory of
fibrant objects in M.
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e If A is a cofibrant object in M, then M(A, —) : M; — sSet is a homotop-
ical functor.

e If B is a fibrant object in M, then M(—, B) : M_°" — sSet is a homotop-
ical functor.

In particular, M(—, =) : M. X M; — sSet is a homotopical functor.

Proof. By definition, M(A, —) sends trivial fibrations in M to trivial Kan fibra-
tions when A is cofibrant, and M(—, B) sends trivial cofibrations in M to trivial
Kan fibrations when B is fibrant, we may apply lemma 4.1.33. [ |

Theorem 2.4.9. Let M be a simplicial derivable category, let (Mc, Q,P) be
a left Quillen deformation retract of M, and let (Mf, R,i ) be a right Quillen
deformation retract of M.

(1) (MCO" X M;, O X R, (p, i)) is a right deformation retract for the functor
M(=, =) : MP X M — sSet.

(ii) M(=,=) : M X M — sSet has a total right derived functor; further-
more, if (MC, 0, p) and (Mf, R,i ) are functorial deformation retracts,
then M(—, —) also has a homotopical right approximation.

Proof. (i). This is lemma 2.4.8.
(ii). Apply theorems 3.3.17 and 3.4.11. [ |

Definition 2.4.10. Let M be a simplicial derivable category. A derived hom-
space functor for M is a total right derived functor for the functor M(—,—) :
M x M — sSet. We write RHom ,, : (Ho M) X Ho M — Ho sSet for (the
functor part of) a derived hom-space functor for M.

Proposition 2.4.11. Let M be a simplicial model category.

e [f A is a cofibrant object in M, then the cosimplicial object A* © A is (the
object part of) a left frame on A.

e [f Bis a fibrant object in M, then the simplicial object A®h B is (the object
part of) a right frame on B.

Proof. See Remark 5.2.10 in [Hovey, 1999]. ]
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Corollary 2.4.12. Let M be a simplicial model category. If A is a cofibrant
object in M and B is a fibrant object in M, then:

® The hom-space M(A, B) is (the object part of) a left homotopy function
complex from A to B.

® The hom-space M(A, B) is (the object part of) a right homotopy function
complex from A to B.

Proof. The two claims are formally dual; we will prove the first version.

By proposition 2.4.11, the cosimplicial object A° = A® ® A is (the object
part of) a left frame on A; but there is a natural isomorphism between the left
hom-complex Hom M(/i, B) and the hom-space M(A, B), and B is fibrant by
hypothesis, so we are done. [ |

REMARK 2.4.13. In particular, the derived hom-spaces of the simplicial model
category M agree with the derived hom-spaces of the underlying model category

M.
Proposition 2.4.14. Let M be a simplicial model category.

e [f A is a cofibrant object in M, then (Al 0 A8 0id,, s’ 0id,, 6" ® idA)
is a cylinder object for A’ ® A (and hence, isomorphic to a cylinder object
for A).

e [f B is a fibrant object in M, then (Al M B, 5" idg, 8° Midg, o M idB) is
a path object for A’ h B (and hence, isomorphic to a path object for B).

Proof. Apply propositions 2.4.11 and 4.7.21; but see also Lemma 3.5 in [GJ], or
Lemma 9.5.4 in [Hirschhorn, 2003]. |

Corollary 2.4.15. Let M be a simplicial model category. If A is a cofibrant
object in M and B is a fibrant object in M, then the canonical map

Ho M(A, B) — myM(A, B)
is a natural bijection.

Proof. Proposition 2.4.14 says that (Al 0 A, 0id,, s’ 0id,, 6’ © idA) is a
cylinder object for A’ @ A, so if B is fibrant, we may apply lemma 4.2.14 and
theorem 4.4.1 to deduce that the connected components of M(A, B) are in natural
bijection with the homotopy classes of morphisms A — B. [ |
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Lemma 2.4.16. Let f,, f; : A = B be a parallel pair of morphisms in a sim-
plicial model category M.

e [f A is a cofibrant object in M and f, and f, are in the same connected
component of M(A, B), then f, is a weak equivalence in M if and only if
[ is a weak equivalence in M.

e [f B is a fibrant object in M and f, and f, are in the same connected
component of M(A, B), then f, is a weak equivalence in M if and only if
f1 is a weak equivalence in M.

Proof. The two claims are formally dual; we will prove the first version.

By induction, we may assume that there is an edge a : f, = f; in M(A, B).
Let h : A' ® A — B be the corresponding morphism in M. We then have the
following commutative diagram in M:

NOA—— A

5]G)idAl lfo

A[A—L> B

6°G)idAT Tfl

NEOA —— A

Since A is cofibrant, corollary 2.4.5 implies that the morphisms 6° ®@id,,5' ©
id, : ® A —» A' © A are weak equivalences in M. Thus, by axiom CM2, f,
is a weak equivalence in M if and only if f, is a weak equivalence in M. [

Proposition 2.4.17. Let M be a simplicial model category and let A be a small
category.

e If the projective model structure on [A, M] exists, then [A, M] (with the
projective model structure) is a simplicial model category.

o [f the injective model structure on [A, M] exists, then [A, M] (with the
injective model structure) is a simplicial model category.

Proof. The two claims are formally dual; we will prove the first version.
It is straightforward to check that [A, M] is indeed a locally small simpli-
cially enriched category with finite weighted limits and colimits (which may be
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computed componentwise). It remains to be shown that the projective model
structure on [A, M] satisfies axiom SM7. But fibrations, weak equivalences,
and weighted limits in [A, M] are defined componentwise, so proposition 2.4.4
implies that the property is indeed inherited from M. [ ]

The following lemma is useful in the construction of simplicial model struc-
tures.

Lemma 2.4.18. Let M be a simplicially enriched category, let N be a simplicial
model category, and let U : M — N be a simplicially enriched functor. Given
a commutative diagram in M of the form below,

iy
A ——

f

x> — >

B ——

Ip

the morphism U f : UA — UB is a weak equivalence in N if the following
conditions are satisfied:

e The cotensor products A' h B and dA' i B exist in M and are preserved
byU: M — N.

eUi,:UA—> UAand Ui, : UB — U B are weak equivalences in N'.

® There is a morphism g : B — A in M such that geof =iy, and UB is
fibrant in N

o f : A — B has the left lifting property with respect to all morphisms
p:C = Din M suchthat Up : UC — UD is a fibration in N'.

Proof. The following is a generalisation of the proof of Theorem 1 in [Quillen,
1967, Ch. II, §4].

Let p : A'h B = 0A!' i B be the morphism in M induced by the boundary
inclusion 0A' & Al leta : A — A' B be the composite

f ip A = N A
ASBEABSANBS ANB

where A’ h B — A! i B is induced by the unique morphism A' — A°, and let
b : B — 0A' th B be the unique morphism in M making the diagram below
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2.5

II. SIMPLICIAL CATEGORIES

commute:
B
iBT T&lmidg
B-"-0AMnB
ongl léomidg

i} AOmB
b

We then have the following commutative diagram in M:
