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Preface

These notes are intended as a kind of annotated index to the various standard
references in homotopical algebra: the focus is on definitions and statements of
results, not proofs.
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0

Foundations

0.1 Set theory

In category theory it is often convenient to invoke a certain set-theoretic device
commonly known as a ‘Grothendieck universe’, but we shall say simply ‘uni-
verse’, so as to simplify exposition and proofs by eliminating various circumlo-
cutions involving cardinal bounds, proper classes etc.

Definition 0.1.1. A pre-universe is a set 𝐔 satisfying these axioms:

1. If 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝐔, then 𝑥 ∈ 𝐔.

2. If 𝑥 ∈ 𝐔 and 𝑦 ∈ 𝐔 (but not necessarily distinct), then {𝑥, 𝑦} ∈ 𝐔.

3. If 𝑥 ∈ 𝐔, then 𝒫 (𝑥) ∈ 𝐔, where 𝒫 (𝑥) denotes the set of all subsets of 𝑥.

4. If 𝑥 ∈ 𝐔 and 𝑓 : 𝑥 → 𝐔 is a map, then ⋃𝑖∈𝑥 𝑓(𝑖) ∈ 𝐔.

A universe is a pre-universe 𝐔 with this additional property:

5. 𝜔 ∈ 𝐔, where 𝜔 is the set of all finite (von Neumann) ordinals.

Example 0.1.2. The empty set is a pre-universe, andwith verymild assumptions,
so is the set 𝐇𝐅 of all hereditarily finite sets.

¶ 0.1.3. The notion of universe makes sense in any material set theory, but
their existence must be postulated. We adopt the following:

• Grothendieck–Verdier universe axiom. For each set 𝑥, there exists a
universe 𝐔 with 𝑥 ∈ 𝐔.
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0. Foundations

For definiteness, we may take our base theory to be Mac Lane set theory, which
is a weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC). Readers
interested in the details of Mac Lane set theory are referred to [Mathias, 2001],
but in practice, as long as one is working at all times inside some universe, one
may as well be working in ZFC. Indeed:

Proposition 0.1.4. With the assumptions of Mac Lane set theory, any universe
is a transitive model of ZFC.

Proof. Let 𝐔 be a universe. By definition, 𝐔 is a transitive set containing pairs,
power sets, unions, and 𝜔, so the axioms of extensionality, empty set, pairs,
power sets, unions, choice, and infinity are all automatically satisfied. We must
show that the axiom schemas of separation and replacement are also satisfied,
and in fact it is enough to check that replacement is valid; but this is straightfor-
ward using axioms 2 and 4. ■

Definition 0.1.5. Let 𝐔 be a pre-universe. A 𝐔-set is a member of 𝐔, a 𝐔-class
is a subset of 𝐔, and a proper 𝐔-class is a 𝐔-class that is not a 𝐔-set.

Lemma 0.1.6. A𝐔-class𝑋 is a𝐔-set if and only if there exists a𝐔-class 𝑌 such
that 𝑋 ∈ 𝑌 . ■

Proposition 0.1.7. If 𝐔 is a universe in Mac Lane set theory, then the collection
of all 𝐔-classes is a transitive model of Morse–Kelley class–set theory (MK),
and so is a transitive model of von Neumann–Bernays–Gödel class–set theory
(NBG) in particular. ■

Definition 0.1.8. A 𝐔-small category is a category ℂ such that ob ℂ and mor ℂ
are 𝐔-sets. A locally 𝐔-small category is a category 𭒟 satisfying these condi-
tions:

• ob 𭒟 and mor 𭒟 are 𝐔-classes, and

• for all objects 𝑥 and 𝑦 in 𭒟, the hom-set 𭒟(𝑥, 𝑦) is a 𝐔-set.

An essentially 𝐔-small category is a category 𭒟 for which there exist a 𝐔-small
category ℂ and a functor ℂ → 𭒟 that is fully faithful and essentially surjective
on objects.

Proposition 0.1.9. If𝔻 is a𝐔-small category and 𭒞 is a locally𝐔-small category,
then the functor category [𝔻, 𭒞] is locally 𝐔-small.
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0.1. Set theory

Proof. Strictly speaking, this depends on the set-theoretic implementation of
ordered pairs, categories, functors, etc., but at the very least [𝔻, 𭒞] should be
isomorphic to a locally 𝐔-small category.

In the context of [𝔻, 𭒞], we may regard functors 𝔻 → 𭒞 as being the pair
consisting of the graph of the object map ob 𝔻 → ob 𭒞 and the graph of the
morphism map mor 𝔻 → mor 𭒞, and these are 𝐔-sets by the 𝐔-replacement
axiom. Similarly, if 𝐹 and 𝐺 are objects in [𝔻, 𭒞], then we may regard a natural
transformation 𝛼 : 𝐹 ⇒ 𝐺 as being the triple (𝐹 , 𝐺, 𝐴), where 𝐴 is the set of all
pairs (𝑐, 𝛼𝑐). ■

One complication introduced by having multiple universes concerns the ex-
istence of (co)limits.

Theorem 0.1.10 (Freyd). Let 𭒞 be a category and let 𝜅 be a cardinal such that
|mor 𭒞| ≤ 𝜅. If 𭒞 has products for families of size 𝜅, then any two parallel
morphisms in 𭒞 must be equal.

Proof. Suppose, for a contradiction, that 𝑓, 𝑔 : 𝑋 → 𝑌 are distinct morphisms
in 𭒞. Let 𝑍 be the product of 𝜅-many copies of 𝑌 in 𭒞. The universal property
of products implies there are at least 2𝜅-many distinct morphisms 𝑋 → 𝑍; but
𭒞(𝑋, 𝑍) ⊆ mor 𭒞, so this is an absurdity. ■

Definition 0.1.11. Let 𝐔 be a pre-universe. A 𝐔-complete (resp. 𝐔-cocomplete)
category is a category 𭒞 with the following property:

• For all 𝐔-small categories 𝔻 and all diagrams 𝐴 : 𝔻 → 𭒞, a limit (resp.
colimit) of 𝐴 exists in 𭒞.

We may instead say 𭒞 has all finite limits (resp. finite colimits) in the special
case 𝐔 = 𝐇𝐅.

Proposition 0.1.12. Let 𭒞 be a category and let 𝐔 be a non-empty pre-universe.
The following are equivalent:

(i) 𭒞 is 𝐔-complete.

(ii) 𭒞 has all finite limits and products for all families of objects indexed by a
𝐔-set.
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0. Foundations

(iii) For each 𝐔-small category 𝔻, there exists an adjunction

Δ ⊣ lim←−−𝔻
: [𝔻, 𭒞] → 𭒞

where Δ𝑋 is the constant functor with value 𝑋.

Dually, the following are equivalent:

(i′) 𭒞 is 𝐔-cocomplete.

(ii′) 𭒞 has all finite colimits and coproducts for all families of objects indexed
by a 𝐔-set.

(iii′) For each 𝐔-small category 𝔻, there exists an adjunction

lim−−→𝔻
⊣ Δ : 𭒞 → [𝔻, 𭒞]

where Δ𝑋 is the constant functor with value 𝑋.

Proof. This is a standard result; but we remark that we do require a sufficiently
powerful form of the axiom of choice to pass from (ii) to (iii). □

¶ 0.1.13. In the explicit universe convention, the words ‘set’, ‘class’, etc.
have their usual meanings, and in the implicit universe convention, these in-
stead abbreviate ‘𝐔-set’, ‘𝐔-class’, etc. for a fixed (but arbitrary) universe 𝐔.
However, the word ‘category’ always refers to a category that is contained in
some universe, which may or may not be locally 𝐔-small, and we shall use the
word ‘ensemble’ to refer to sets which may or may not be in 𝐔. In subsequent
chapters, the implicit universe convention should be assumed unless otherwise
stated.

We now recall some definitions and results about ordinal and cardinal num-
bers. Readers familiar with axiomatic set theory may wish to skip ahead.

Definition 0.1.14. A von Neumann ordinal is a set 𝛼 with the following prop-
erties:

• If 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝛼, then 𝑥 ∈ 𝛼.

• The binary relation ∈ is strict total ordering of 𝛼.

• If 𝑆 is a subset of 𝛼 such that
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0.1. Set theory

– ∅ ∈ 𝑆,

– If 𝛽 ∈ 𝑆 and 𝛽 ∪ {𝛽} ∈ 𝛼, then 𝛽 ∪ {𝛽} ∈ 𝑆.

– If 𝑇 ⊆ 𝑆, then ⋃ 𝑇 ∈ 𝑆.

then 𝑆 = 𝛼.

We identify 0 with the von Neumann ordinal ∅, and by induction, we identify
the natural number 𝑛 + 1 with the von Neumann ordinal {0, … , 𝑛}.

Proposition 0.1.15.
(i) If 𝛼 is a von Neumann ordinal, then every member of 𝛼 is an initial segment

of 𝛼 and is in particular a von Neumann ordinal.

(ii) If 𝛼 is a von Neumann ordinal, so is 𝛼 ∪ {𝛼}. (This is usually denoted by
𝛼 + 1 and called the successor of 𝛼.)

(iii) The union of a set 𝑆 of von Neumann ordinals is another von Neumann
ordinal. (This is usually denoted by sup 𝑆 and called the supremum of
𝑆.)

(iv) If 𝐔 is a pre-universe and 𝜅(𝐔) is the set of von Neumann ordinals in 𝐔,
then 𝜅(𝐔) a von Neumann ordinal, but 𝜅(𝐔) ∉ 𝐔.

Proof. Claims (i) – (iii) are all easy, and claim (iv) is Burali-Forti’s paradox. ⧫

Theorem 0.1.16 (Classification of well-orderings).
(i) In Zermelo–Fraenkel set theory, every well-ordered set is isomorphic to a

unique von Neumann ordinal.

(ii) In Mac Lane set theory, if 𝐔 is a pre-universe and 𝑋 is a well-ordered set
in 𝐔, then 𝑋 is isomorphic to a unique von Neumann ordinal in 𝐔.

Proof. Claim (i) is a standard result in axiomatic set theory, and claim (ii) is an
obvious corollary. □

Definition 0.1.17. A transitive set is a set 𝑇 such that, given 𝑥 ∈ 𝑦, if 𝑦 ∈ 𝑇 ,
then 𝑥 ∈ 𝑇 as well. The transitive closure of a set 𝑋 is a set tcl(𝑋) such that,
for all transitive sets 𝑇 with 𝑋 ⊆ 𝑇 , we have tcl(𝑋) ⊆ 𝑇 as well.

Lemma 0.1.18. InMac Lane set theory, every set has a unique transitive closure.
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Proof. One of the axioms of Mac Lane set theory states that every set 𝑋 is a
member of some transitive set 𝑇 , and so 𝑋 ⊆ 𝑇 . Clearly, the intersection of any
family of transitive sets containing 𝑋 is again a transitive set containing 𝑋, so
tcl(𝑋) exists and is unique so long as there is at least one transitive set containing
𝑋. ■

Definition 0.1.19. A partial rank function from a transitive set 𝑇 to a well-
ordered set 𝑊 is a partial function 𝜌 : 𝑇 → 𝑊 with these properties:

• If ∅ ∈ 𝑇 , then 𝜌(∅) is the least element of 𝑊 .

• If 𝑦 ∈ 𝑇 and 𝜌(𝑥) is defined for all 𝑥 ∈ 𝑦, then

𝜌(𝑦) = min {𝑤 ∈ 𝑊 | ∀𝑥 ∈ 𝑦. 𝜌(𝑥) < 𝑤}

provided the RHS is defined.

• Otherwise 𝜌(𝑦) is undefined.

A total rank function is a partial rank function that is defined on its entire do-
main. The rank of a set 𝑋, if it exists, the least von Neumann ordinal rank(𝑋)
for which there exists a total rank function tcl(𝑋) → rank(𝑋).

Proposition 0.1.20. In Mac Lane set theory:

(i) If 𝑇 is a transitive set and 𝑊 is a well-ordered set, then there is a unique
partial rank function 𝜌 : 𝑇 → 𝑊 .

(ii) If 𝐔 is a pre-universe and 𝑥 ∈ 𝐔, then rank(𝑥) can be defined by a Δ0-for-
mula with 𝐔 as a parameter, and for each von Neumann ordinal 𝛼 in 𝐔,
the set

𝐕𝛼 = {𝑥 ∈ 𝐔 | rank(𝑥) < 𝛼}

is a 𝐔-set.

(iii) Assuming the Grothendieck–Verdier universe axiom, rank(𝑥) is defined for
all 𝑥.

Proof. (i). This is a straightforward application of well-founded induction.

(ii). 𝐔 is a transitive set and the set 𝜅(𝐔) of all von Neumann ordinals in 𝐔 is
well-ordered by inclusion, so by claim (i) there is a partial rank function 𝜌 :
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0.1. Set theory

𝐔 ⇀ 𝜅(𝐔). ZFC proves that every set has a rank, so 𝜌 must in fact be a total
rank function; hence, for any 𝑥 ∈ 𝐔, rank(𝑥) is defined. It is clear that 𝜌 can be
defined by a Δ0-formula with only 𝐔 as a parameter, and the rest of the claim
follows.

(iii). Obvious, assuming claim (ii). □

Definition 0.1.21. Two sets are equinumerous if there exists a bijection between
them. A cardinality class in a pre-universe 𝐔 is an equivalence class under the
relation of equinumerosity.

Definition 0.1.22. An ℵ-number is an infinite vonNeumann ordinal 𝜅 such that,
for any von Neumann ordinal 𝜆 such that 𝜅 and 𝜆 are equinumerous, we have
𝜅 ⊆ 𝜆.

Example 0.1.23. The first infinite von Neumann ordinal, i.e. 𝜔 = {0, 1, 2, …},
is the ℵ-number ℵ0.

Theorem 0.1.24 (Classification of cardinalities).
(i) In Zermelo–Fraenkel set theory, for every well-ordered infinite set𝑋, there

exists a unique ℵ-number 𝜅 such that 𝑋 and 𝜅 are equinumerous.

(ii) In Zermelo–Fraenkel set theory with the axiom of choice, the same is true
for any infinite set whatsoever.

(iii) In Mac Lane set theory, if 𝐔 is a universe and 𝑋 is an infinite set in 𝐔,
then there exists a unique ℵ-number 𝜅 in the cardinality class of 𝑋.

(iv) In Mac Lane set theory with the Grothendieck–Verdier universe axiom, if
𝐔 is a pre-universe and 𝜅 is an ℵ-number not in 𝐔, then the cardinality of
𝐔 is at most 𝜅.

Proof. Claim (i) is a standard fact, whence claims (ii) and (iii), by the well-
ordering theorem. Claim (iv) can be proven using axiom 4 for pre-universes. □

¶ 0.1.25. Henceforth, we identify the cardinality class of a finite set with the
unique von Neumann ordinal contained in that class, and similarly we identify
the cardinality class of an infinite set with the unique ℵ-number in that class.
These are the cardinal numbers.

7



0. Foundations

Definition 0.1.26. A cofinal subset of a partially-ordered set 𝑋 is a subset
𝑌 ⊆ 𝑋 such that, for all 𝑥 in 𝑋, there exists some 𝑦 in 𝑌 such that 𝑥 ≤ 𝑦.
A regular cardinal number is an ℵ-number 𝜅 such that any cofinal subset of 𝜅
has cardinality equal to 𝜅. A singular cardinal number is an ℵ-number that is
not regular.

The following helps to motivate the definition of regular cardinal numbers.

Definition 0.1.27. Let 𝐔 be a pre-universe. An arity class in 𝐔 is a 𝐔-class 𝐾
of cardinal numbers satisfying the following conditions:

• 1 ∈ 𝐾 .

• If 𝜅 ∈ 𝐾 and 𝜆 : 𝜅 → 𝐾 is a function, then the cardinal sum ∑𝛼∈𝜅 𝜆(𝛼) is
also in 𝐾 .

• If 𝜅 ∈ 𝐾 and 𝜆 : 𝜅 → 𝐔 is a function such that each 𝜆(𝛼) is a cardinal
number and ∑𝛼∈𝜅 𝜆(𝛼) ∈ 𝐾 , then 𝜆(𝛼) ∈ 𝐾 as well.

Theorem 0.1.28 (Classification of arity classes). In Mac Lane set theory, if 𝐾 is
an arity class in a pre-universe 𝐔, then 𝐾 must be either

• {1}, or

• {0, 1}, or

• of the form {𝜆 ∈ 𝐔 | 𝜆 is a cardinal number and 𝜆 < 𝜅} for some regular
cardinal number 𝜅 (possibly not in 𝐔).

Proof. The notion of arity class and this result are due to Shulman [2012]. □

Definition 0.1.29. Let 𝜅 be a regular cardinal number. A 𝜅-small category
is a category ℂ such that mor ℂ has cardinality < 𝜅. A finite category is an
ℵ0-small category, i.e. a category ℂ such that mor ℂ is finite. A finite diagram
(resp. 𝜅-small diagram, 𝐔-small diagram) in a category 𭒞 is a functor 𝔻 → 𭒞
where 𝔻 is a finite (resp. 𝜅-small, 𝐔-small) category.

Theorem 0.1.30. Let 𝐔 be a pre-universe, let 𝐔+ be a universe with 𝐔 ∈ 𝐔+, let
Set be the category of 𝐔-sets, and let Set+ be the category of 𝐔+-sets.

(i) If𝑋 : 𝔻 → Set is a𝐔-small diagram, then there exist a limit and a colimit
for 𝑋 in Set.

8



0.1. Set theory

(ii) The inclusion Set ↪ Set+ is fully faithful and preserves limits and colimits
for all 𝐔-small diagrams.

Proof. One can construct products, equalisers, coproducts, coequalisers, and
hom-sets in a completely explicit way, making the preservation properties ob-
vious. ⧫

Corollary 0.1.31. The inclusion Set ↪ Set+ reflects limits and colimits for all
𝐔-small diagrams. ■

Corollary 0.1.32. For any 𝐔-small category ℂ:

(i) The functor category [ℂ,Set] is𝐔-complete and𝐔-cocomplete, with limits
and colimits for 𝐔-small diagrams computed componentwise in Set.

(ii) The inclusion [ℂ,Set] ↪ [ℂ,Set+] is fully faithful and both preserves and
reflects limits and colimits for all 𝐔-small diagrams. ■

Definition 0.1.33. An strongly inaccessible cardinal number is a regular car-
dinal number 𝜅 such that, for all sets 𝑋 of cardinality less than 𝜅, the power set
𝒫 (𝑋) is also of cardinality less than 𝜅.

Example 0.1.34. ℵ0 is a strongly inaccessible cardinal number and is the only
one that can be proven to exist in ZFC. It is more conventional to exclude ℵ0
from the definition of strongly inaccessible cardinal number by demanding that
they be uncountable.

Proposition 0.1.35. In Mac Lane set theory:

(i) If 𝐔 is a non-empty pre-universe, then there exists a strongly inaccessible
cardinal number 𝜅 such that the members of 𝐔 are all the sets of rank less
than 𝜅. Moreover, this 𝜅 is the rank and the cardinality of 𝐔.

(ii) If 𝐔 is a universe and 𝜅 is a strongly inaccessible cardinal number such
that 𝜅 ∈ 𝐔, then there exists a 𝐔-set 𝐕𝜅 whose members are all the sets of
rank less than 𝜅, and 𝐕𝜅 is a pre-universe.

(iii) If 𝐔 and 𝐔′ are pre-universes, then either 𝐔 ⊆ 𝐔′ or 𝐔′ ⊆ 𝐔; and if
𝐔 ⫋ 𝐔′, then 𝐔 ∈ 𝐔′.

9



0. Foundations

Proof. (i). Let 𝜅 be the set of all von Neumann ordinals in 𝐔; this exists by
Δ0-separation applied to 𝐔. Since 𝐔 is closed under power sets and internally-
indexed unions, 𝜅 must be a strongly inaccessible cardinal.

We can construct the set all of 𝐔-sets of rank less than 𝜅 using transfinite
recursion on 𝜅 as follows: starting with 𝐕0 = ∅, for each vonNeumann ordinal 𝛼
less than 𝜅, we set 𝐕𝛼+1 = 𝒫 (𝐕𝛼), and for each ordinal 𝜆 that is not a successor,
we set 𝐕𝜆 = ⋃𝛼<𝜆 𝐕𝛼. The well-foundedness of ∈ (restricted to 𝐔) implies that
in fact this must be all of 𝐔.

Clearly, every set of rank less than 𝜅 is in fact a 𝐔-set, and 𝐔 is itself a set of
rank 𝜅. The cardinality of 𝐔 is also 𝜅, since 𝜅 is a regular cardinal number and
any cardinal number less than 𝜅 is a member of 𝐔.

(ii). We may construct 𝐕𝜅 using the same method as in (i). By construction 𝐕𝜅
satisfies axiom 1; since 𝜅 is infinite, 𝐕𝜅 satisfies axioms 2 and 3; and since 𝜅 is
strongly inaccessible, 𝐕𝜅 satisfies axiom 4. Thus 𝐕𝜅 is a pre-universe.

(iii). Again, let 𝜅 be the rank of 𝐔. If 𝜅 ∈ 𝐔′ then we can show by transfinite
induction that 𝐕𝜅 ∈ 𝐔′ and so 𝐔 ⫋ 𝐔′; else we must have 𝐔′ ⊆ 𝐕𝜅 = 𝐔. ■

0.2 Accessibility and ind-completions

Prerequisites. § 0.1.
A classical technology for controlling size problems in category theory, due

to Gabriel and Ulmer [1971], Grothendieck and Verdier [SGA 4a, Exposé I, § 9],
and Makkai and Paré [1989], is the notion of accessibility. Though we make use
of universes, accessibility remains important and is a crucial tool in verifying the
stability of various universal constructions when one passes from one universe
to a larger one.

Definition 0.2.1. Let 𝜅 be a regular cardinal. A 𝜅-filtered category is a category
𭒥 satisfying these conditions:

• 𭒥 is inhabited, i.e. there exists an object in 𭒥.

• If 𝜆 is a cardinal number strictly less than 𝜅 and 𝑆 is a subset of ob 𭒥 of
cardinality 𝜆, then there exist an object 𝑗 and arrows 𝑓𝑖 : 𝑖 → 𝑗 for each
object 𝑖 in 𝑆.

10
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• If 𝑓, 𝑔 : 𝑖 → 𝑗 are a pair of parallel arrows in 𭒥, then there exist an object
𝑘 and an arrow ℎ : 𝑗 → 𝑘 such that ℎ ∘ 𝑓 = ℎ ∘ 𝑔.

A 𝜅-directed preorder is a preordered set that is 𝜅-filtered when considered as
a category; note that the third condition is then vacuous. A 𝜅-filtered diagram
(resp. 𝜅-directed diagram) in a category 𭒞 is a functor 𝔻 → 𭒞 such that 𝔻 is a
𝜅-filtered category (resp. 𝜅-directed preorder). It is conventional to omit mention
of 𝜅 when 𝜅 = ℵ0.

Example 0.2.2. The category with one object ∗ and only one non-trivial arrow
𝑓 is filtered if and only if 𝑓 = 𝑓 ∘ 𝑓 .

Example 0.2.3. Let 𝑋 be any set. The set of all finite subsets of 𝑋, partially
ordered by inclusion, is a directed preorder. More generally, if 𝜅 is any regular
cardinal, then the set of all subsets of 𝑋 with cardinality strictly less than 𝜅 is a
𝜅-directed preorder.

Theorem 0.2.4. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𝜅 be any regular cardinal. Given a 𝐔-small category 𝔻, the following are
equivalent:

(i) 𝔻 is a 𝜅-filtered category.

(ii) The functor lim−−→𝔻
: [𝔻,Set] → Set preserves limits for all diagrams that

are simultaneously 𝜅-small and 𝐔-small.

Proof. The claim (i) ⇒ (ii) is very well known, and the converse is an exercise
in using the Yoneda lemma and manipulating limits and colimits for diagrams
of representable functors; see Satz 5.2 in [Gabriel and Ulmer, 1971]. □

Definition 0.2.5. Let 𝜅 be a regular cardinal in a universe 𝐔+, let 𝐔 be a pre-
universewith𝐔 ⊆ 𝐔+, and letSet+ be the category of𝐔+-sets. A (𝜅, 𝐔)-compact
object in a locally 𝐔+-small category 𭒞 is an object 𝐴 such that the representable
functor 𭒞(𝐴, −) : 𭒞 → Set+ preserves colimits for all 𝐔-small 𝜅-filtered dia-
grams. A 𝜅-compact object is one that is (𝜅, 𝐔)-compact for all pre-universes
𝐔.

Though the above definition is stated using a pre-universe 𝐔 contained in a
universe 𝐔+, the following lemma shows there is no dependence on 𝐔+.

11
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Lemma 0.2.6. Let 𝐴 be an object in a locally 𝐔+-small category 𭒞. The follow-
ing are equivalent:

(i) 𝐴 is a (𝜅, 𝐔)-compact object in 𭒞.

(ii) For all 𝐔-small 𝜅-filtered diagrams 𝐵 : 𝔻 → 𭒞, if 𝜆 : 𝐵 ⇒ Δ𝐶 is a
colimiting cocone, then for any morphism 𝑓 : 𝐴 → 𝐶 , there exist an
object 𝑖 in 𝔻 and a morphism 𝑓 ′ : 𝐴 → 𝐵𝑖 in 𭒞 such that 𝑓 = 𝜆𝑖 ∘ 𝑓 ′; and
moreover if 𝑓 = 𝜆𝑗 ∘ 𝑓 ″ for some morphism 𝑓 ″ : 𝐴 → 𝐵𝑗 in 𭒞, then there
exists an object 𝑘 and a pair of arrows 𝑔 : 𝑖 → 𝑘, ℎ : 𝑖 → 𝑘 in 𝔻 such that
𝐵𝑔 ∘ 𝑓 ′ = 𝐵ℎ ∘ 𝑓 ″.

Proof. Use the explicit description of lim−−→𝔻
𭒞(𝐴, 𝐵) as a filtered colimit of sets;

see Definition 1.1 in [LPAC], or Proposition 5.1.3 in [Borceux, 1994b]. □

Corollary 0.2.7. Let 𝐵 : 𝔻 → 𭒞 be a 𝐔-small 𝜅-filtered diagram, and let 𝜆 :
𝐵 ⇒ Δ𝐶 be a colimiting cocone in 𭒞. If 𝐶 is a (𝜅, 𝐔)-compact object in 𭒞, then
for some object 𝑖 in 𝔻, 𝜆𝑖 : 𝐵𝑖 → 𝐶 is a split epimorphism. ■

Lemma 0.2.8. Let 𝐴 be an object in a category 𭒞.

(i) If 𝐔 is a pre-universe contained in a universe 𝐔+ and 𝜅 is a regular car-
dinal such that 𝐴 is (𝜅, 𝐔+)-compact, then 𝐴 is (𝜅, 𝐔)-compact as well.

(ii) If 𝜅 is a regular cardinal such that𝐴 is (𝜅, 𝐔)-compact and 𝜆 is any regular
cardinal such that 𝜅 ≤ 𝜆, then 𝐴 is also (𝜆, 𝐔)-compact.

Proof. Obvious. ⧫

Lemma 0.2.9. Let 𝜆 be a regular cardinal in a universe 𝐔+, and let 𝐔 be a
pre-universe with𝐔 ⊆ 𝐔+. If 𝐵 : 𝔻 → 𭒞 is a 𝜆-small diagram of (𝜆, 𝐔)-compact
objects in a locally 𝐔+-small category, then the colimit lim−−→𝔻

𝐵, if it exists, is a
(𝜆, 𝐔)-compact object in 𭒞.

Proof. Use theorem 0.2.4 and the fact that 𭒞(−, 𝐶) : 𭒞op → Set+ maps colimits
in 𭒞 to limits in Set+. ■

Corollary 0.2.10. A retract of a (𝜆, 𝐔)-compact object is also a (𝜆, 𝐔)-compact
object.
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Proof. Suppose 𝑟 : 𝐴 → 𝐵 and 𝑠 : 𝐵 → 𝐴 are morphisms in 𭒞 such that
𝑟 ∘ 𝑠 = id𝐵. Then 𝑒 = 𝑠 ∘ 𝑟 is an idempotent morphism and the diagram below

𝐴 𝐴 𝐵
id𝐴

𝑒

𝑟

is a (split) coequaliser diagram in 𭒞, so 𝐵 is (𝜆, 𝐔)-compact if 𝐴 is. ■

Proposition 0.2.11. Let𝐔 be a pre-universe and let Set be the category of𝐔-sets.
For any 𝐔-set 𝐴, the following are equivalent:

(i) 𝐴 has cardinality less than 𝜅.

(ii) The representable functor Set(𝐴, −) : Set → Set preserves colimits for all
𝐔-small 𝜅-filtered diagrams.

(iii) The representable functor Set(𝐴, −) : Set → Set preserves colimits for all
𝐔-small 𝜅-directed diagrams.

Proof. The claim (i) ⇒ (ii) follows from theorem 0.2.4, and (ii) ⇒ (iii) is obvi-
ous. To see (iii) ⇒ (i), we may use corollary 0.2.7 and the fact that every set is
the directed union of its subsets of cardinality at most 𝜅. ■

Corollary 0.2.12. A set is 𝜅-compact if and only if its cardinality is < 𝜅. ■

Definition 0.2.13. Let 𝜅 be a regular cardinal in a universe 𝐔. A 𝜅-accessible
𝐔-category is a locally 𝐔-small category 𭒞 satisfying the following conditions:

• 𭒞 has colimits for all 𝐔-small 𝜅-filtered diagrams.

• There exists a 𝐔-set 𭒢 such that every object in 𭒢 is (𝜅, 𝐔)-compact and,
for every object 𝐵 in 𭒞, there exists a 𝐔-small 𝜅-filtered diagram of objects
in 𭒢 with 𝐵 as its colimit in 𭒞.

We write K𝐔
𝜅 (𭒞) for the full subcategory of 𭒞 spanned by the (𝜅, 𝐔)-compact

objects.

Example 0.2.14. The category of 𝐔-sets is a 𝜅-accessible 𝐔-category for any
regular cardinal 𝜅 in 𝐔.

Remark 0.2.15. Lemma 0.2.9 implies that, for each object 𝐴 in an accessible
𝐔-category, there exists a regular cardinal 𝜆 in 𝐔 such that 𝐴 is (𝜆, 𝐔)-compact.
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Theorem 0.2.16. Let 𭒞 be a locally 𝐔-small category, and let 𝜅 be a regular
cardinal in 𝐔. There exist a locally 𝐔-small category Ind𝜅

𝐔(𭒞) and a functor
𝛾 : 𭒞 → Ind𝜅

𝐔(𭒞) with the following properties:

(i) The objects of Ind𝜅
𝐔(𭒞) are 𝐔-small 𝜅-filtered diagrams 𝐵 : 𝔻 → 𭒞, and

𝛾 sends an object 𝐶 in 𭒞 to the corresponding trivial diagram 𝟙 → 𭒞 with
value 𝐶 .

(ii) The functor 𝛾 : 𭒞 → Ind𝜅
𝐔(𭒞) is fully faithful, injective on objects, pre-

serves all limits that exist in 𭒞, and preserves all 𝜅-small colimits that
exist in 𭒞.

(iii) Ind𝜅
𝐔(𭒞) has colimits for all 𝐔-small 𝜅-filtered diagrams.

(iv) For every object 𝐶 in 𭒞, the object 𝛾𝐶 is (𝜅, 𝐔)-compact in Ind𝜅
𝐔(𭒞), and

for each 𝐔-small 𝜅-filtered diagram 𝐵 : 𝔻 → 𭒞, there is a canonical
colimiting cocone 𝛾𝐵 ⇒ Δ𝐵 in Ind𝜅

𝐔(𭒞).

(v) If 𭒟 is a category with colimits for all 𝐔-small 𝜅-filtered diagrams, then
for each functor 𝐹 : 𭒞 → 𭒟, there exists a functor ̄𝐹 : Ind𝜅

𝐔(𭒞) → 𭒟 that
preserves colimits for all𝐔-small 𝜅-filtered diagrams in Ind𝜅

𝐔(𭒞) such that
𝛾 ̄𝐹 = 𝐹 , and given any functor 𝐺̄ : Ind𝜅

𝐔(𭒞) → 𭒟whatsoever, the induced
map Nat( ̄𝐹 , 𝐺̄) → Nat(𝐹 , 𝛾𝐺̄) is a bijection.

The category Ind𝜅
𝐔(𭒞) is called the free (𝜅, 𝐔)-ind-completion of 𭒞, or the cat-

egory of (𝜅, 𝐔)-ind-objects in 𭒞.

Proof. If 𝐵 : 𝔻 → 𭒞 and 𝐵′ : 𝔻′ → 𭒞 are two 𝐔-small 𝜅-filtered diagrams, then
properties (ii) and (iii) together imply that

Hom(𝐵′, 𝐵) ≅ lim←−−
𝔻′

lim−−→
𝔻

𭒞(𝐵′, 𝐵)

and so, taking the RHS as the definition of the LHS, we need only find a suitable
notion of composition to make Ind𝜅

𝐔(𭒞) into a locally 𝐔-small category. How-
ever, we observe that, if N : 𭒞 → [𭒞op,Set] is the Yoneda embedding, then

Hom(lim−−→
𝔻′

N𝐵′, lim−−→
𝔻

N𝐵) ≅ lim←−−
𝔻′

lim−−→
𝔻

𭒞(𝐵′, 𝐵)

and, assuming property (v), the Yoneda embedding N : 𭒞 → [𭒞op,Set] must
extend along 𝛾 to a functor N̄ : Ind𝜅

𝐔(𭒞) → [𭒞op,Set] that preserves colimits
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for 𝐔-small 𝜅-filtered diagram, so, in consideration of properties (i) and (iv), we
may as well define the composition in Ind𝜅

𝐔(𭒞) so that N̄ becomes fully faithful.
This completes the definition of Ind𝜅

𝐔(𭒞) as a category.
It remains to be shown that Ind𝜅

𝐔(𭒞) actually has properties (ii), (iii), (iv), and
(v); see Corollary 6.4.14 in [Borceux, 1994a] and Theorem 2.26 in [LPAC]. Note
that the fact that 𝛾 preserves colimits for 𝜅-small diagrams essentially follows
from theorem 0.2.4. □

Proposition 0.2.17. Let 𝔹 be a𝐔-small category and let 𝜅 be a regular cardinal
in 𝐔.

(i) Ind𝜅
𝐔(𝔹) is a 𝜅-accessible 𝐔-category.

(ii) Every (𝜅, 𝐔)-compact object in Ind𝜅
𝐔(𝔹) is a retract of an object of the

form 𝛾𝐵, where 𝛾 : 𝔹 → Ind𝜅
𝐔(𝔹) is the canonical embedding.

(iii) K𝐔
𝜅 (Ind𝜅

𝐔(𝔹)) is an essentially 𝐔-small category.

Proof. (i). This claim more-or-less follows from the properties of Ind𝜅
𝐔(𝔹) ex-

plained in the previous theorem.

(ii). Use corollary 0.2.10.

(iii). Since 𝔹 is 𝐔-small and Ind𝜅
𝐔(𝔹) is locally 𝐔-small, claim (ii) implies that

K𝐔
𝜅 (Ind𝜅

𝐔(𝔹)) must be essentially 𝐔-small. ■

Definition 0.2.18. Let 𝜅 be a regular cardinal in a universe 𝐔. A (𝜅, 𝐔)-access-
ible functor is a functor 𝐹 : 𭒞 → 𭒟 such that

• 𭒞 is a 𝜅-accessible 𝐔-category, and

• 𝐹 preserves all colimits for 𝐔-small 𝜅-filtered diagrams.

We write Acc𝐔
𝜅 (𭒞, 𭒟) for the full subcategory of the functor category [𭒞, 𭒟]

spanned by the (𝜅, 𝐔)-accessible functors. An accessible functor is a functor
that is (𝜅, 𝐔)-accessible functor for some regular cardinal 𝜅 in some universe 𝐔.

Theorem 0.2.19 (Classification of accessible categories). Let 𝜅 be a regular
cardinal in a universe 𝐔, and let 𭒞 be a locally 𝐔-small category. The following
are equivalent:

(i) 𭒞 is a 𝜅-accessible 𝐔-category.
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(ii) The inclusion K𝐔
𝜅 (𭒞) ↪ 𭒞 extends along the embedding 𝛾 : 𭒞 → Ind𝜅

𝐔(𭒞)
to a (𝜅, 𝐔)-accessible functor Ind𝜅

𝐔(K𝐔
𝜅 (𭒞)) → 𭒞 that is fully faithful and

essentially surjective on objects.

(iii) There exist a 𝐔-small category 𝔹 and a functor Ind𝜅
𝐔(𝔹) → 𭒞 that is fully

faithful and essentially surjective on objects.

Proof. See Theorem 2.26 in [LPAC], or Theorem 5.3.5 in [Borceux, 1994b].
□

Corollary 0.2.20. If 𭒞 is a 𝜅-accessible𝐔-category and𭒟 is any category, then:

(i) The restriction Acc𝐔
𝜅 (𭒞, 𭒟) → [K𝐔

𝜅 (𭒞), 𭒟] is fully faithful and surjective
on objects.

(ii) In particular, if 𭒟 is also locally 𝐔-small, then Acc𝐔
𝜅 (𭒞, 𭒟) is equivalent

to a locally 𝐔-small category.

(iii) If 𭒟 has colimits for all 𝐔-small 𝜅-filtered diagrams, then the inclusion
Acc𝐔

𝜅 (𭒞, 𭒟) ↪ [𭒞, 𭒟] has a left adjoint. ■

Proposition 0.2.21. Let 𭒞 be a 𝜅-accessible 𝐔-category and let 𭒟 be a locally
𝐔-small category. Given an adjunction 𝐹 ⊣ 𝐺 : 𭒟 → 𭒞, if 𝐺 is fully faith-
ful and preserves colimits for all 𝐔-small 𝜅-filtered diagrams, then 𭒟 is also a
𝜅-accessible 𝐔-category.

Proof. Under our hypotheses, given any 𝐔-small 𝜅-filtered diagram 𝐴 : 𝕁 → 𭒟,
we may take 𝐹 lim−−→𝕁

𝐺𝐴 as its colimit in 𭒟. Our hypotheses also imply that 𝐹
sends (𝜅, 𝐔)-compact objects in 𭒞 to (𝜅, 𝐔)-compact objects in 𭒟; thus if 𭒢 is a
𝐔-small set of objects that generates 𭒞 under 𝐔-small 𝜅-filtered colimits, then
{𝐹 𝑋 | 𝑋 ∈ 𭒢} is a 𝐔-small set of objects that generates 𭒟 in the same sense. ■

Definition 0.2.22. Let 𝜅 be a regular cardinal in a universe 𝐔. A locally 𝜅-
presentable 𝐔-category is a 𝜅-accessible 𝐔-category that is also 𝐔-cocomplete.
A locally presentable 𝐔-category is one that is a locally 𝜅-presentable 𝐔-cat-
egory for some regular cardinal 𝜅 in 𝐔, and we often say ‘locally finitely present-
able’ instead of ‘locally ℵ0-presentable’.

Example 0.2.23. The category of 𝐔-sets is a locally 𝜅-presentable 𝐔-category
for any regular cardinal 𝜅 in 𝐔.
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Lemma 0.2.24. Let 𭒞 be a locally 𝜅-presentable 𝐔-category.

(i) For any regular cardinal 𝜆 in𝐔, if 𝜅 ≤ 𝜆, then 𭒞 is a locally 𝜆-presentable
𝐔-category.

(ii) With 𝜆 as above, if 𝐹 : 𭒞 → 𭒟 is a (𝜅, 𝐔)-accessible functor, then it is also
a (𝜆, 𝐔)-accessible functor.

(iii) If 𝐔+ is any universe with 𝐔 ∈ 𝐔+, and 𭒞 is a locally 𝜅-presentable
𝐔+-category, then 𭒞 must be a preorder.

Proof. (i). See the remark after Theorem 1.20 in [LPAC], or Propositions 5.3.2
and 5.2.3 in [Borceux, 1994b].

(ii). A 𝜆-filtered diagram is certainly 𝜅-filtered, so if 𝐹 preserves colimits for all
𝐔-small 𝜅-filtered diagrams in 𭒞, it must also preserve colimits for all 𝐔-small
𝜆-filtered diagrams.

(iii). This is a corollary of theorem 0.1.10. ■

Corollary 0.2.25. A category 𭒞 is a locally presentable 𝐔-category for at most
one universe 𝐔, provided 𭒞 is not a preorder.

Proof. Use proposition 0.1.35 together with the above lemma. ■

Theorem 0.2.26 (Classification of locally presentable categories). Let 𝜅 be a
regular cardinal in a universe 𝐔, let Set be the category of 𝐔-sets, and let 𭒞 be
a locally 𝐔-small category. The following are equivalent:

(i) 𭒞 is a locally 𝜅-presentable 𝐔-category.

(ii) There exist a 𝐔-small category 𝔹 that has colimits for 𝜅-small diagrams
and a functor Ind𝜅

𝐔(𝔹) → 𭒞 that is fully faithful and essentially surjective
on objects.

(iii) The restricted Yoneda embedding 𭒞 → [K𝐔
𝜅 (𭒞)op,Set] is fully faithful,

(𝜅, 𝐔)-accessible, and has a left adjoint.

(iv) There exist a 𝐔-small category 𝔸 and a fully faithful (𝜅, 𝐔)-accessible
functor 𝑅 : 𭒞 → [𝔸,Set] such that 𝔸 has limits for all 𝜅-small diagrams,
𝑅 has a left adjoint, and 𝑅 is essentially surjective onto the full subcat-
egory of functors 𝔸 → Set that preserve limits for all 𝜅-small diagrams.
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(v) There exist a 𝐔-small category 𝔸 and a fully faithful (𝜅, 𝐔)-accessible
functor 𝑅 : 𭒞 → [𝔸,Set] such that 𝑅 has a left adjoint.

(vi) 𭒞 is a 𝜅-accessible 𝐔-category and is 𝐔-complete.

Proof. See Proposition 1.27, Corollary 1.28, Theorem 1.46, and Corollary 2.47
in [LPAC], or Theorems 5.2.7 and 5.5.8 in [Borceux, 1994b]. □

Remark 0.2.27. If 𭒞 is equivalent to Ind𝜅
𝐔(𝔹) for some 𝐔-small category 𝔹 that

has colimits for all 𝜅-small diagrams, then 𝔹 must be equivalent to K𝐔
𝜅 (𭒞) by

proposition 0.2.17. In other words, every locally 𝜅-presentable 𝐔-category is,
up to equivalence, the (𝜅, 𝐔)-ind-completion of an essentially unique 𝐔-small
𝜅-cocomplete category.

Example 0.2.28. Obviously, for any 𝐔-small category 𝔸, the functor category
[𝔸,Set] is locally finitely presentable. More generally, one may show that for
any 𝜅-ary algebraic theory 𝗧, possibly many-sorted, the category of 𝗧-algebras
in𝐔 is a locally 𝜅-presentable𝐔-category. The above theorem can also be used to
show thatCat, the category of 𝐔-small categories, is a locally finitely presentable
𝐔-small category.

Corollary 0.2.29. Let 𭒞 be a locally 𝜅-presentable𝐔-category. For any𝐔-small
𝜅-filtered diagram 𝔻, lim−−→𝔻

: [𝔻, 𭒞] → 𭒞 preserves 𝜅-small limits.

Proof. The claim is certainly true when 𭒞 = [𝔸,Set], by theorem 0.2.4. In
general, choose a (𝜅, 𝐔)-accessible fully faithful functor 𝑅 : 𭒞 → [𝔸,Set] with
a left adjoint, and simply note that 𝑅 creates limits for all 𝐔-small diagrams as
well as colimits for all 𝐔-small 𝜅-filtered diagrams. ■

Proposition 0.2.30. If 𭒞 is a locally 𝜅-presentable 𝐔-category and 𝔻 is any
𝐔-small category, then the functor category [𝔻, 𭒞] is also a locally 𝜅-presentable
category.

Proof. This can be proven using the classification theorem by noting that the
2-functor [𝔻, −] preserves reflective subcategories, but see also Corollary 1.54
in [LPAC]. □

It is commonplace to say ‘𝜆-presentable object’ instead of ‘𝜆-compact ob-
ject’, especially in algebraic contexts. The following proposition justifies the
alternative terminology:

18



0.2. Accessibility and ind-completions

Proposition 0.2.31. Let 𭒞 be a locally 𝜅-presentable 𝐔-category, and let 𝜆 be a
regular cardinal in 𝐔 with 𝜆 ≥ 𝜅. If ℋ is a small full subcategory of 𭒞 such that

• every (𝜅, 𝐔)-compact object in 𭒞 is isomorphic to an object in ℋ, and

• ℋ is closed in 𭒞 under colimits for 𝜆-small diagrams,

then every (𝜆, 𝐔)-compact object in 𭒞 is isomorphic to an object in ℋ. In par-
ticular,K𝐔

𝜆 (𭒞) is the smallest replete full subcategory of 𭒞 containingK𝐔
𝜅 (𭒞) and

closed in 𭒞 under colimits for 𝜆-small diagrams.
TODO: Simplify this
argument.Proof. Let 𝐶 be any (𝜆, 𝐔)-compact object in 𭒞. Clearly, the comma category

(ℋ ↓ 𝐶) is a 𝐔-small 𝜆-filtered category. Let 𭒢 = ℋ ∩ K𝐔
𝜅 (𭒞). One can show

that (𭒢 ↓ 𝐶) is a cofinal subcategory in (ℋ ↓ 𝐶), and the classification theorem
(0.2.26) plus proposition a.4.20 implies that the tautological cocone on the dia-
gram (𭒢 ↓ 𝐶) → 𭒞 is colimiting, so the tautological cocone on the diagram
(ℋ ↓ 𝐶) → 𭒞 is also colimiting. Now, by corollary 0.2.7, 𝐶 is a retract of an
object in ℋ, and hence 𝐶 must be isomorphic to an object in ℋ, because ℋ is
closed under coequalisers.

For the final claim, note that K𝐔
𝜆 (𭒞) is certainly a replete full subcategory of

𭒞 and contained in any replete full subcategory containing K𝐔
𝜅 (𭒞) and closed in

𭒞 under colimits for 𝜆-small diagrams, so we just have to show thatK𝐔
𝜆 (𭒞) is also

closed in 𭒞 under colimits for 𝜆-small diagrams; for this, we simply appeal to
lemma 0.2.9. ■

Proposition 0.2.32. Let 𭒞 be a locally 𝜅-presentable 𝐔-category and let 𝔻 be
a 𝜇-small category in 𝐔. The (𝜆, 𝐔)-compact objects in [𝔻, 𭒞] are precisely
the diagrams 𝔻 → 𭒞 that are componentwise (𝜆, 𝐔)-compact, so long as 𝜆 ≥
max {𝜅, 𝜇}.

Proof. First, note that Mac Lane’s subdivision category[1] 𝔻§ is also 𝜇-small, so
[𝔻, 𭒞](𝐴, 𝐵) is computed as the limit of a 𝜇-small diagram of hom-sets. More
precisely, using end notation,[2]

[𝔻, 𭒞](𝐴, 𝐵) ≅ ∫𝑑:𝔻
𭒞(𝐴𝑑, 𝐵𝑑)

and so if 𝐴 is componentwise (𝜆, 𝐔)-compact, then [𝔻, 𭒞](𝐴, −) preserves colim-
its for 𝐔-small 𝜆-filtered diagrams, hence 𝐴 is itself (𝜆, 𝐔)-compact.

[1] See [CWM, Ch. IX, § 5].
[2] See § a.5.
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Now, suppose 𝐴 is a (𝜆, 𝐔)-compact object in [𝔻, 𭒞]. Let 𝑑 be an object in
𝔻, let 𝑑∗ : [𝔻, 𭒞] → 𭒞 be evaluation at 𝑑, and let 𝑑∗ : 𭒞 → [𝔻, 𭒞] be the right
adjoint, which is explicitly given by

(𝑑∗𝐶)(𝑑′) = 𝔻(𝑑′, 𝑑) ⋔ 𝐶

where ⋔ is defined by following adjunction:

Set(𝑋, 𭒞(𝐶, 𝐶′)) ≅ 𭒞(𝐶, 𝑋 ⋔ 𝐶′)

The unit 𝜂𝐴 : 𝐴 → 𝑑∗𝑑∗𝐴 is constructed using the universal property of ⋔ in the
obvious way, and the counit 𝜀𝐶 : 𝑑∗𝑑∗𝐶 → 𝐶 is the projection 𝔻(𝑑, 𝑑) ⋔ 𝐶 → 𝐶
corresponding to id𝑑 ∈ 𝔻(𝑑, 𝑑). Since 𭒞 is a locally 𝜆-presentable 𝐔-category,
there exist a 𝐔-small 𝜆-filtered diagram 𝐵 : 𝕁 → 𭒞 consisting of (𝜆, 𝐔)-compact
objects in 𭒞 and a colimiting cocone 𝛼 : 𝐵 ⇒ Δ𝑑∗𝐴, and since each 𝔻(𝑑′, 𝑑)
has cardinality less than 𝜇, the cocone 𝑑∗𝛼 : 𝑑∗𝐵 ⇒ Δ𝑑∗𝑑∗𝐴 is also colimiting,
by corollary 0.2.29. Lemma 0.2.6 then implies 𝜂𝐴 : 𝐴 → 𝑑∗𝑑∗𝐴 factors through
𝑑∗𝛼𝑗 : 𝑑∗(𝐵𝑗) → 𝑑∗𝑑∗𝐴 for some 𝑗 in 𝕁, say

𝜂𝐴 = 𝑑∗𝛼𝑗 ∘ 𝜎

for some 𝜎 : 𝐴 → 𝑑∗𝐵𝑗. But then, by the triangle identity,

id𝐴𝑑 = 𝜀𝐴𝑑 ∘ 𝑑∗𝜂𝐴 = 𝜀𝐴𝑑 ∘ 𝑑∗𝑑∗𝛼𝑗 ∘ 𝑑∗𝜎 = 𝛼𝑗 ∘ 𝜀𝐵𝑗 ∘ 𝑑∗𝜎

and so 𝛼𝑗 : 𝐵𝑗 → 𝐴𝑑 is a split epimorphism, hence 𝐴𝑑 is a (𝜆, 𝐔)-compact
object, by corollary 0.2.10. ■

Remark 0.2.33. The claim in the above proposition can fail if 𝜇 > 𝜆 ≥ 𝜅. For
example, we could take 𭒞 = Set, with 𝔻 being the set 𝜔 considered as a discrete
category; then the terminal object in [𝔻,Set] is componentwise finite, but is not
itself an ℵ0-compact object in Set.

Lemma 0.2.34. Let 𝜅 and 𝜆 be regular cardinals in a universe 𝐔, with 𝜅 ≤ 𝜆.

(i) If𭒟 is a locally 𝜆-presentable𝐔-category, 𭒞 is a locally𝐔-small category,
and 𝐺 : 𭒟 → 𭒞 is a (𝜆, 𝐔)-accessible functor that preserves limits for all
𝐔-small diagrams in 𭒞, then, for any (𝜅, 𝐔)-compact object 𝐶 in 𭒞, the
comma category (𝐶 ↓ 𝐺) has an initial object.
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(ii) If 𭒞 is a locally 𝜅-presentable𝐔-category,𭒟 is a locally𝐔-small category,
and 𝐹 : 𭒞 → 𭒟 is a functor that preserves colimits for all 𝐔-small dia-
grams in 𭒞, then, for any object 𝐷 in 𭒟, the comma category (𝐹 ↓ 𝐷) has
a terminal object.

Proof. (i). Let ℱ be the full subcategory of (𝐶 ↓ 𝐺) spanned by those (𝐷, 𝑔)
where 𝐷 is a (𝜆, 𝐔)-compact object in 𭒟. 𝐺 preserves colimits for all 𝐔-small
𝜆-filtered diagrams, so, by lemma 0.2.6, ℱ must be a weakly initial family in
(𝐶 ↓ 𝐺). Proposition 0.2.17 implies ℱ is an essentially 𝐔-small category, and
since 𭒟 has limits for all 𝐔-small diagrams and 𝐺 preserves them, (𝐶 ↓ 𝐺) is
also 𝐔-complete. Thus, the inclusion ℱ ↪ (𝐶 ↓ 𝐺) has a limit, and it can be
shown that this is an initial object in (𝐶 ↓ 𝐺).[3]

(ii). Let 𭒢 be the full subcategory of (𝐹 ↓ 𝐷) spanned by those (𝐶, 𝑓 ) where
𝐶 is a (𝜅, 𝐔)-compact object in 𭒞; note that proposition 0.2.17 implies 𭒢 is an
essentially 𝐔-small category. Since 𭒞 has colimits for all 𝐔-small diagrams and
𝐹 preserves them, (𝐹 ↓ 𝐷) is also𝐔-cocomplete.[4] Let (𝐶, 𝑓 ) be a colimit for the
inclusion 𭒢 ↪ (𝐹 ↓ 𝐷). It is not hard to check that (𝐶, 𝑓 ) is a weakly terminal
object in (𝐹 ↓ 𝐷), so the formal dual of Freyd’s initial object lemma[5] gives
us a terminal object in (𝐹 ↓ 𝐷); explicitly, it may be constructed as the joint
coequaliser of all the endomorphisms of (𝐶, 𝑓 ). ■

Theorem 0.2.35 (Accessible adjoint functor theorem). Let 𝜅 and 𝜆 be regu-
lar cardinals in a universe 𝐔, with 𝜅 ≤ 𝜆, let 𭒞 be a locally 𝜅-presentable
𝐔-category, and let 𭒟 be a locally 𝜆-presentable 𝐔-category.

Given a functor 𝐹 : 𭒞 → 𭒟, the following are equivalent:

(i) 𝐹 has a right adjoint 𝐺 : 𭒟 → 𭒞, and 𝐺 is a (𝜆, 𝐔)-accessible functor.

(ii) 𝐹 preserves colimits for all 𝐔-small diagrams and sends (𝜅, 𝐔)-compact
objects in 𭒞 to (𝜆, 𝐔)-compact objects in 𭒟.

(iii) 𝐹 has a right adjoint and sends (𝜅, 𝐔)-compact objects in 𭒞 to (𝜆, 𝐔)-com-
pact objects in 𭒟.

[3] See Theorem 1 in [CWM, Ch. X, § 2].
[4] See the Lemma in [CWM, Ch. V, § 6].
[5] See Theorem 1 in [CWM, Ch. V, § 6].
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On the other hand, given a functor 𝐺 : 𭒟 → 𭒞, the following are equivalent:

(iv) 𝐺 has a left adjoint 𝐹 : 𭒞 → 𭒟, and 𝐹 sends (𝜅, 𝐔)-compact objects in 𭒞
to (𝜆, 𝐔)-compact objects in 𭒟.

(v) 𝐺 is a (𝜆, 𝐔)-accessible functor and preserves limits for all 𝐔-small dia-
grams.

(vi) 𝐺 is a (𝜆, 𝐔)-accessible functor and there exist a functor 𝐹0 : K𝐔
𝜅 (𭒞) → 𭒟

and hom-set bijections

𭒞(𝐶, 𝐺𝐷) ≅ 𭒟(𝐹0𝐶, 𝐷)

natural in 𝐷 for each (𝜅, 𝐔)-compact object 𝐶 in 𭒞, where 𝐷 varies in 𭒟.

Proof. Wewill need to refer back to the details of the proof of this theorem later,
so here is a sketch of the constructions involved.

(i) ⇒ (ii). If 𝐹 is a left adjoint, then 𝐹 certainly preserves colimits for all 𝐔-small
diagrams. Given a (𝜅, 𝐔)-compact object 𝐶 in 𭒞 and a 𝐔-small 𝜆-filtered diagram
𝐵 : 𝕁 → 𭒟, observe that

𭒟(𝐹 𝐶, lim−−→
𝕁

𝐵) ≅ 𭒞(𝐶, 𝐺 lim−−→
𝕁

𝐵) ≅ 𭒞(𝐶, lim−−→
𝕁

𝐺𝐵)

≅ lim−−→
𝕁

𭒞(𝐶, 𝐺𝐵) ≅ lim−−→
𝕁

𭒞(𝐹 𝐶, 𝐵)

and thus 𝐹 𝐶 is indeed a (𝜆, 𝐔)-compact object in 𭒟 .

(ii) ⇒ (iii). It is enough to show that, for each object 𝐷 in 𭒟, the comma category
(𝐹 ↓ 𝐷) has a terminal object (𝐺𝐷, 𝜀𝐷);[6] but this was done in the previous
lemma.

(iii)⇒ (i). Given a (𝜅, 𝐔)-compact object𝐶 in 𭒞 and a𝐔-small 𝜆-filtered diagram
𝐵 : 𝕁 → 𭒟, observe that

𭒞(𝐶, 𝐺 lim−−→
𝕁

𝐵) ≅ 𭒟(𝐹 𝐶, lim−−→
𝕁

𝐵) ≅ lim−−→
𝕁

𭒞(𝐹 𝐶, 𝐵)

≅ lim−−→
𝕁

𭒞(𝐶, 𝐺𝐵) ≅ 𭒞(𝐶, lim−−→
𝕁

𝐺𝐵)

[6] See Theorem 2 in [CWM, Ch. IV, § 1].
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because 𝐹 𝐶 is a (𝜆, 𝐔)-compact object in 𭒟; but theorem 0.2.26 says the restric-
ted Yoneda embedding 𭒞 → [K𝐔

𝜅 (𭒞)op,Set] is fully faithful, so this is enough to
conclude that 𝐺 preserves colimits for 𝐔-small 𝜆-filtered diagrams.

(iv) ⇒ (v). If 𝐺 is a right adjoint, then 𝐺 certainly preserves limits for all 𝐔-small
diagrams; the rest of this implication is just (iii) ⇒ (i).

(v) ⇒ (vi). It is enough to show that, for each (𝜅, 𝐔)-compact object 𝐶 in 𭒞, the
comma category (𝐶 ↓ 𝐺) has an initial object (𝐹0𝐶, 𝜂𝐶); but this was done in
the previous lemma. It is clear how to make 𝐹0 into a functor K𝐔

𝜅 (𭒞) → 𭒟.

(vi) ⇒ (iv). We use theorems 0.2.16 and 0.2.26 to extend 𝐹0 : K𝐔
𝜅 (𭒞) → 𭒟 along

the inclusion K𝐔
𝜅 (𭒞) ↪ 𭒞 to get (𝜅, 𝐔)-accessible functor 𝐹 : 𭒞 → 𭒟. We then

observe that, for any 𝐔-small 𝜅-filtered diagram 𝐴 : 𝕀 → 𭒞 of (𝜅, 𝐔)-compact
objects in 𭒞,

𭒞(lim−−→
𝕀

𝐴, 𝐺𝐷) ≅ lim←−−
𝕀

𭒞(𝐴, 𝐺𝐷) ≅ lim←−−
𝕀

𭒞(𝐹0𝐴, 𝐷)

≅ 𭒞(lim−−→
𝕀

𝐹 𝐴, 𝐷) ≅ 𭒞(𝐹 lim−−→
𝕀

𝐴, 𝐷)

is a series of bijections natural in 𝐷, where 𝐷 varies in 𭒟; but 𭒞 is a locally
𝜅-presentable 𝐔-category, so this is enough to show that 𝐹 is a left adjoint of 𝐺.
The remainder of the claim is a corollary of (i) ⇒ (ii). ■

Corollary 0.2.36. Let 𭒞 and 𭒟 be locally presentable 𝐔-categories. If a functor
𝐺 : 𭒟 → 𭒞 has a left adjoint, then there exists a regular cardinal 𝜇 in 𝐔 such
that 𝐺 is a (𝜇, 𝐔)-accessible functor.

Proof. Suppose 𭒞 is a locally 𝜅-presentable 𝐔-category, 𭒟 is a locally 𝜆-present-
able 𝐔-category, and 𝐹 : 𭒞 → 𭒟 is a left adjoint for 𝐺. SinceK𝐔

𝜅 (𭒞) is an essen-
tially 𝐔-small category, recalling lemma 0.2.8, there certainly exists a regular
cardinal 𝜇 in 𝐔 such that 𝜇 ≥ 𝜆 and 𝐹 sends (𝜅, 𝐔)-compact objects in 𭒞 to
(𝜇, 𝐔)-compact objects in 𭒟. The above theorem, plus lemma 0.2.24, implies 𝐺
is an (𝜇, 𝐔)-accessible functor. ■

0.3 Change of universe

Prerequisites. §§ 0.1, 0.2, a.4.
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Having introduced universes into our ontology, it becomes necessary to ask
whether an object with some universal property retains that property when we
enlarge the universe. Though it sounds inconceivable, there do exist examples of
badly-behaved constructions that are not stable under change-of-universe; for ex-
ample, Waterhouse [1975] defined a functor 𝐹 : CRing → Set+, where CRing
is the category of commutative rings in a universe 𝐔 and Set+ is the category
of 𝐔+-sets for some universe 𝐔+ with 𝐔 ∈ 𝐔+, such that the value of 𝐹 at any
given commutative ring in 𝐔 does not depend on 𝐔, and yet the value of the fpqc
sheaf associated with 𝐹 at the field ℚ depends on the size of 𝐔.

Many of the universal properties of interest concern adjunctions, so that is
where we begin.

Definition 0.3.1. Let 𝐹 ⊣ 𝐺 : 𭒟 → 𭒞 and 𝐹 ′ ⊣ 𝐺′ : 𭒟′ → 𭒞′ be adjunctions,
and let 𝐻 : 𭒞 → 𭒞′ and 𝐾 : 𭒟 → 𭒟′ be functors. The mate of a natural
transformation 𝛼 : 𝐻𝐺 ⇒ 𝐺′𝐾 is the natural transformation

𝜀′𝐾𝐹 ∙ 𝐹 ′𝛼𝐹 ∙ 𝐹 ′𝐻𝜂 : 𝐹 ′𝐻 ⇒ 𝐾𝐹

where 𝜂 : id𭒞 ⇒ 𝐺𝐹 is the unit of 𝐹 ⊣ 𝐺 and 𝜀 : 𝐹 ′𝐺′ ⇒ id𭒟 is the counit of
𝐹 ′ ⊣ 𝐺′; dually, the mate of a natural transformation 𝛽 : 𝐹 ′𝐻 ⇒ 𝐾𝐹 is the
natural transformation

𝐺′𝐾𝜀 ∙ 𝐺′𝛽𝐺 ∙ 𝜂′𝐻𝐺 : 𝐻𝐺 ⇒ 𝐺′𝐾

where 𝜂′ : id𭒞′ ⇒ 𝐺′𝐹 ′ is the unit of 𝐹 ′ ⊣ 𝐺′ and 𝜀 : 𝐹 𝐺 ⇒ id𭒟 is the counit
of 𝐹 ⊣ 𝐺.

Lemma 0.3.2. In the above notation, the two mates constructions constitute a
mutually inverse pair of bijections

Nat(𝐹 ′𝐻, 𝐾𝐹 ) ≅ Nat(𝐻𝐺, 𝐺′𝐾)

and moreover, given a further adjunction 𝐹 ″ ⊣ 𝐺″ : 𭒞″ → 𭒟″ and functors
𝐻 ′ : 𭒞′ → 𭒞″ and 𝐾′ : 𭒟′ → 𭒟″, if 𝛼 : 𝐻𝐺 ⇒ 𝐺′𝐾 and 𝛼′ : 𝐻 ′𝐺′ ⇒ 𝐺″𝐾′

have mates 𝛽 : 𝐹 ′𝐻 ⇒ 𝐾𝐹 and 𝛽′ : 𝐹 ″𝐻 ′ ⇒ 𝐾′𝐹 ′ respectively, then the
composite natural transformation 𝛼′𝐾 ∙ 𝐻 ′𝛼 : 𝐻 ′𝐻𝐺 ⇒ 𝐻″𝐾′𝐾 has mate
𝐾′𝛽 ∙ 𝛽′𝐻 : 𝐹 ″𝐻 ′𝐻 ⇒ 𝐾′𝐾𝐹 .

Proof. This is an exercise in using the triangle identities for adjunctions. ⧫
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Definition 0.3.3. Given a diagram of the form

𭒟 𭒟′

𭒞 𭒞′

𝐺

𝐾

𝐺′

𝐻

𝛼

where 𝛼 : 𝐻𝐺 ⇒ 𝐺′𝐾 is a natural isomorphism, 𝐹 ⊣ 𝐺 and 𝐹 ′ ⊣ 𝐺′, we say
the diagram satisfies the left Beck–Chevalley condition if the mate of 𝛼 is also
a natural isomorphism. Dually, given a diagram of the form

𭒞 𭒞′

𭒟 𭒟′

𝐹

𝐻

𝐹 ′

𝐾

𝛽

where 𝛽 : 𝐹 ′𝐻 ⇒ 𝐾𝐹 is a natural isomorphism, 𝐹 ⊣ 𝐺 and 𝐹 ′ ⊣ 𝐺′, we
say the diagram satisfies the right Beck–Chevalley condition if the mate of 𝛽
is also a natural isomorphism.

Remark 0.3.4. Unfortunately, the Beck–Chevalley conditions are not vacuous.
For example, consider the following (strictly!) commutative diagram of forgetful
functors:

CRing Ab

Set Set
id

The mate of the trivial natural transformation in the above diagram is the group
homomorphism ℤ𝑋 → ℤ[𝑋] that sends a generator in ℤ𝑋 to the corresponding
generator in ℤ[𝑋]; clearly, this is never an isomorphism. However, this is unsur-
prising: we do not expect the additive group of free commutative ring generated
by 𝑋 to be naturally isomorphic to the free abelian group generated by 𝑋.

Example 0.3.5. Let 𭒞 be a category with pullbacks, and suppose

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤
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is a pullback square in 𭒞. Let Σ𝑓 : 𭒞∕𝑋 → 𭒞∕𝑌 etc. be the functor that sends an
object 𝑝 : 𝐸 → 𝑋 in 𭒞∕𝑋 to the object 𝑓 ∘ 𝑝 : 𝐸 → 𝑌 in 𭒞∕𝑌 , and consider the
induced (strictly!) commutative diagram of functors:

𭒞∕𝑍 𭒞∕𝑋

𭒞∕𝑊 𭒞∕𝑌

Σ𝑔

Σ𝑧

Σ𝑓

Σ𝑤

Since 𭒞 has pullbacks, Σ𝑔 and Σ𝑓 have right adjoints,[7] and the pullback past-
ing lemma then implies that the above square satisfies the right Beck–Chevalley
condition.

Lemma 0.3.6. Given a diagram of the form

𭒟 𭒟′

𭒞 𭒞′

𝐺

𝐾

𝐺′

𝐻

𝛼

where 𝛼 : 𝐻𝐺 ⇒ 𝐺′𝐾 is a natural isomorphism, 𝐹 ⊣ 𝐺 and 𝐹 ′ ⊣ 𝐺′, the
diagram satisfies the left Beck–Chevalley condition if and only if, for every object
𝐶 in 𭒞, the functor (𝐶 ↓ 𝐺) → (𝐻𝐶 ↓ 𝐺′) sending an object (𝐷, 𝑓) in the comma
category (𝐶 ↓ 𝐺) to the object (𝐾𝐷, 𝛼𝐷 ∘ 𝐻𝑓) in (𝐻𝐶 ↓ 𝐺′) preserves initial
objects.

Proof. We know (𝐹 𝐶, 𝜂𝐶) is an initial object of (𝐶 ↓ 𝐺) and (𝐹 ′𝐻𝐶, 𝜂′
𝐻𝐶) is an

initial object of (𝐻𝐶 ↓ 𝐺′), so there is a unique morphism 𝛽𝐶 : 𝐹 ′𝐻𝐶 → 𝐾𝐹 𝐶
such that 𝐺′𝛽𝐶 ∘ 𝜂′

𝐻𝐶 = 𝛼𝐹 𝐶 ∘ 𝐻𝜂𝐶 . However, we observe that

𝛽𝐶 = 𝛽𝐶 ∘ 𝜀′
𝐹 ′𝐻𝐶 ∘ 𝐹 ′𝜂′

𝐻𝐶

= 𝜀′
𝐾𝐹 𝐶 ∘ 𝐹 ′𝐺′𝛽𝐶 ∘ 𝐹 ′𝜂′

𝐻𝐶

= 𝜀′
𝐾𝐹 𝐶 ∘ 𝐹 ′𝛼𝐹 𝐶 ∘ 𝐹 ′𝐻𝜂𝐶

so 𝛽𝐶 is precisely the component at 𝐶 of the mate of 𝛼. Thus 𝛽𝐶 is an isomorph-
ism for all 𝐶 if and only if the Beck–Chevalley condition holds. ■

[7] See lemma a.1.17.
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Definition 0.3.7. Let 𝜅 be a regular cardinal in a universe 𝐔, and let 𝐔+ be a
universe with 𝐔 ⊆ 𝐔+. A (𝜅, 𝐔, 𝐔+)-accessible extension is a (𝜅, 𝐔)-accessible
functor 𝑖 : 𭒞 → 𭒞+ such that

• 𭒞 is a 𝜅-accessible 𝐔-category,

• 𭒞+ is a 𝜅-accessible 𝐔+-category,

• 𝑖 sends (𝜅, 𝐔)-compact objects in 𭒞 to (𝜅, 𝐔+)-compact objects in 𭒞+, and

• the functor K𝐔
𝜅 (𭒞) → K𝐔+

𝜅 (𭒞+) so induced by 𝑖 is fully faithful and essen-
tially surjective on objects.

Remark 0.3.8. Let 𝔹 be a 𝐔-small category in which idempotents split. Then the
(𝜅, 𝐔)-accessible functor Ind𝜅

𝐔(𝔹) → Ind𝜅
𝐔+(𝔹) obtained by extending the em-

bedding 𝛾+ : 𝔹 → Ind𝜅
𝐔+(𝔹) along 𝛾 : 𝔹 → Ind𝜅

𝐔(𝔹) is a (𝜅, 𝐔, 𝐔+)-extension,
by proposition 0.2.17. The classification theorem (0.2.19) implies all examples
of (𝜅, 𝐔, 𝐔+)-accessible extensions are essentially of this form.

Proposition 0.3.9. Let 𝑖 : 𭒞 → 𭒞+ be a (𝜅, 𝐔, 𝐔+)-accessible extension.

(i) 𭒞 is a locally 𝜅-presentable𝐔-category if and only if 𭒞+ is a locally 𝜅-pre-
sentable 𝐔+-category.

(ii) The functor 𝑖 : 𭒞 → 𭒞+ is fully faithful.

(iii) If 𝐵 : 𭒥 → 𭒞 is any diagram (not necessarily 𝐔-small) and 𭒞 has a limit
for 𝐵, then 𝑖 preserves this limit.

Proof. (i). If 𭒞 is a locally 𝜅-presentable 𝐔-category, then K𝐔
𝜅 (𭒞) has colimits

for all 𝜅-small diagrams, so K𝐔+

𝜅 (𭒞+) also has colimits for all 𝜅-small diagrams.
The classification theorem (0.2.19) then implies 𭒞+ is a locally 𝜅-presentable
𝐔+-category. Reversing this argument proves the converse.

(ii). Let 𝐴 : 𝕀 → 𭒞 and 𝐵 : 𝕁 → 𭒞 be two 𝐔-small 𝜅-filtered diagrams of
(𝜅, 𝐔)-compact objects in 𭒞. Then,

𭒞(lim−−→
𝕀

𝐴, lim−−→
𝕁

𝐵) ≅ lim←−−
𝕀

lim−−→
𝕁

𭒞(𝐴, 𝐵) ≅ lim←−−
𝕀

lim−−→
𝕁

𭒞+(𝑖𝐴, 𝑖𝐵)

≅ 𭒞+
(lim−−→

𝕀
𝑖𝐴, lim−−→

𝕁
𝑖𝐵) ≅ 𭒞+

(𝑖 lim−−→
𝕀

𝐴, 𝑖 lim−−→
𝕁

𝐵)
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because 𝑖 is (𝜅, 𝐔)-accessible and is fully faithful on the subcategoryK𝐔
𝜅 (𭒞), and

therefore 𝑖 : 𭒞 → 𭒞+ itself is fully faithful. Note that this hinges crucially on
theorem 0.1.30.

(iii). Let 𝐵 : 𭒥 → 𭒞 be any diagram. We observe that, for any (𝜅, 𝐔)-compact
object 𝐶 in 𭒞,

𭒞+

(
𝑖𝐶, 𝑖 lim←−−

𭒥
𝐵

)
≅ 𭒞

(
𝐶, lim←−−

𭒥
𝐵

)
because 𝑖 is fully faithful

≅ lim←−−
𭒥

𭒞(𝐶, 𝐵) by definition of limit

≅ lim←−−
𭒥

𭒞+(𝑖𝐶, 𝑖𝐵) because 𝑖 is fully faithful

but we know the restricted Yoneda embedding 𭒞+ → [K𝐔
𝜅 (𭒞)op,Set+] is fully

faithful, so this is enough to conclude that 𝑖 lim←−−𭒥
𝐵 is the limit of 𝑖𝐵 in 𭒞+. ■

Remark 0.3.10. Similarmethods show that any fully faithful functor𭒞 → 𭒞+ sat-
isfying the four bulleted conditions in the definition above is necessarily (𝜅, 𝐔)-
accessible.

Lemma 0.3.11. Let 𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+, and let 𝜅 be a regular
cardinal in 𝐔. Suppose:

• 𭒞 and 𭒟 are locally 𝜅-presentable 𝐔-categories.

• 𭒞+ and 𭒟+ are locally 𝜅-presentable 𝐔+-categories.

• 𝑖 : 𭒞 → 𭒞+ and 𝑗 : 𭒟 → 𭒟+ are (𝜅, 𝐔, 𝐔+)-accessible extensions.

Given a strictly commutative diagram of the form below,

𭒟 𭒟+

𭒞 𭒞+

𝐺

𝑗

𝐺+

𝑖

where𝐺 is (𝜅, 𝐔)-accessible, 𝐺+ is (𝜅, 𝐔+)-accessible, if both have left adjoints,
then the diagram satisfies the left Beck–Chevalley condition.
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Proof. Let 𝐶 be a (𝜅, 𝐔)-compact object in 𭒞. Inspecting the proof of the-
orem 0.2.35, we see that the functor (𝐶 ↓ 𝐺) → (𝑖𝐶 ↓ 𝐺+) induced by 𝑗 preserves
initial objects. As in the proof of lemma 0.3.6, this implies the component at 𝐶
of the left Beck–Chevalley natural transformation 𝐹 +𝑖 ⇒ 𝑗𝐹 is an isomorphism;
but 𭒞 is generated by K𝐔

𝜅 (𭒞) and the functors 𝐹 , 𝐹 +, 𝑖, 𝑗 all preserve colimits for
𝐔-small 𝜅-filtered diagrams, so in fact 𝐹 +𝑖 ⇒ 𝑗𝐹 is a natural isomorphism. ■

Proposition 0.3.12. If 𝑖 : 𭒞 → 𭒞+ is a (𝜅, 𝐔, 𝐔+)-accessible extension and 𭒞
is a locally 𝜅-presentable 𝐔-category, then 𝑖 preserves colimits for all 𝐔-small
diagrams in 𭒞.

Proof. It is well-known that a functor preserves colimits for all𝐔-small diagrams
if and only if it preserves coequalisers for all parallel pairs and coproducts for
all 𝐔-small families, but coproducts for 𝐔-small families can be constructed in
a uniform way using coproducts for 𝜅-small families and colimits for 𝐔-small
𝜅-filtered diagrams. It is therefore enough to show that 𝑖 : 𭒞 → 𭒞+ preserves all
colimits for 𝜅-small diagrams, since 𝑖 is already (𝜅, 𝐔)-accessible.

Let 𝔻 be a 𝜅-small category. Recalling proposition 0.1.12, our problem
amounts to showing that the diagram

𭒞 𭒞+

[𝔻, 𭒞] [𝔻, 𭒞+]

Δ

𝑖

Δ+

𝑖∗

satisfies the left Beck–Chevalley condition. It is clear that 𝑖∗ is fully faithful.
Colimits for 𝐔-small diagrams in [𝔻, 𭒞] and in [𝔻, 𭒞+] are computed compon-
entwise, so Δ and 𝑖∗ are certainly (𝜅, 𝐔)-accessible, and Δ+ is (𝜅, 𝐔+)-accessible.
Using proposition 0.2.32, we see that 𝑖∗ is also a (𝜅, 𝐔, 𝐔+)-accessible extension,
so we apply the lemma above to conclude that the left Beck–Chevalley condition
is satisfied. ■

Theorem 0.3.13 (Stability of accessible adjoint functors). Let 𝐔 and 𝐔+ be uni-
verses, with 𝐔 ∈ 𝐔+, and let 𝜅 and 𝜆 be regular cardinals in 𝐔, with 𝜅 ≤ 𝜆.
Suppose:

• 𭒞 is a locally 𝜅-presentable 𝐔-category.

• 𭒟 is a locally 𝜆-presentable 𝐔-category.
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• 𭒞+ is a locally 𝜅-presentable 𝐔+-category.

• 𭒟+ is a locally 𝜆-presentable 𝐔+-category.

Let 𝑖 : 𭒞 → 𭒞+ be a (𝜅, 𝐔, 𝐔+)-accessible extension and let 𝑗 : 𭒟 → 𭒟+ be a
fully faithful functor.

(i) Given a strictly commutative diagram of the form below,

𭒟 𭒟+

𭒞 𭒞+

𝐺

𝑗

𝐺+

𝑖

where 𝐺 is (𝜆, 𝐔)-accessible and 𝐺+ is (𝜆, 𝐔+)-accessible, if both have
left adjoints and 𝑗 is a (𝜆, 𝐔, 𝐔+)-accessible extension, then the diagram
satisfies the left Beck–Chevalley condition.

(ii) Given a strictly commutative diagram of the form below,

𭒞 𭒞+

𭒟 𭒟+

𝐹

𝑖

𝐹 +

𝑗

if both 𝐹 and 𝐹 + have right adjoints, then the diagram satisfies the right
Beck–Chevalley condition.

Proof. (i). The proof is essentially the same as lemma 0.3.11, though we have
to use proposition 0.3.12 to ensure that 𝑗 preserves colimits for all 𝐔-small
𝜅-filtered diagrams in 𭒞.

(ii). Let 𝐷 be any object in 𭒟. Inspecting the proof of theorem 0.2.35, we
see that our hypotheses, plus the fact that 𝑖 preserves colimits for all 𝐔-small dia-
grams in 𭒞, imply that the functor (𝐹 ↓ 𝐷) → (𝐹 + ↓ 𝑗𝐷) induced by 𝑖 preserves
terminal objects. Thus lemma 0.3.6 implies that the diagram satisfies the right
Beck–Chevalley condition. ■
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Theorem 0.3.14. If 𝑖 : 𭒞 → 𭒞+ is a (𝜅, 𝐔, 𝐔+)-accessible extension and 𭒞 is a
locally 𝜅-presentable 𝐔-category, then:

(i) If 𝜆 is a regular cardinal and 𝜅 ≤ 𝜆 ∈ 𝐔, then 𝑖 : 𭒞 → 𭒞+ is also a
(𝜆, 𝐔, 𝐔+)-accessible extension.

(ii) If 𝜇 is the cardinality of 𝐔, then 𝑖 : 𭒞 → 𭒞+ factors through the inclu-
sion K𝐔+

𝜇 (𭒞+) ↪ 𭒞+ as functor 𭒞 → K𝐔+

𝜇 (𭒞+) that is (fully faithful and)
essentially surjective on objects.

(iii) The (𝜇, 𝐔+)-accessible functor Ind𝜇
𝐔+(𭒞) → 𭒞+ induced by 𝑖 : 𭒞 → 𭒞+ is

fully faithful and essentially surjective on objects.

Proof. (i). Since 𝑖 : 𭒞 → 𭒞+ is a (𝜅, 𝐔)-accessible functor, it is certainly also
(𝜆, 𝐔)-accessible, by lemma 0.2.24. It is therefore enough to show that 𝑖 restricts
to a functor K𝐔

𝜅 (𭒞) → K𝐔+

𝜅 (𭒞+) that is (fully faithful and) essentially surjective
on objects.

Proposition 0.2.31 says K𝐔
𝜆 (𭒞) is the smallest replete full subcategory of 𭒞

that containsK𝐔
𝜅 (𭒞) and is closed in 𭒞 under colimits for 𝜆-small diagrams, there-

fore the replete closure of the image of K𝐔
𝜆 (𭒞) must be the smallest replete full

subcategory of 𭒞+ that contains K𝐔+

𝜅 (𭒞+) and is closed in 𭒞+ under colimits for
𝜆-small diagrams, since 𝑖 is fully faithful and preserves colimits for all 𝐔-small
diagrams. This proves the claim.

(ii). Since every object in 𭒞 is (𝜆, 𝐔)-compact for some regular cardinal 𝜆 < 𝜇,
claim (i) implies that the image of 𝑖 : 𭒞 → 𭒞+ is contained in K𝐔+

𝜇 (𭒞). To
show 𝑖 is essentially surjective onto K𝐔+

𝜇 (𭒞), we simply have to observe that the
inaccessibility of 𝜇 (proposition 0.1.35) and proposition 0.2.31 imply that, for
𝐶′ any (𝜇, 𝐔+)-compact object in 𭒞+, there exists a regular cardinal 𝜆 < 𝜇 such
that 𝐶′ is also a (𝜆, 𝐔+)-compact object, which reduces the question to claim (i).

(iii). This is an immediate corollary of claim (ii) and the classification theorem
(0.2.19) applied to 𭒞+, considered as a (𝜇, 𝐔+)-accessible category. ■

Remark 0.3.15. Although the fact 𝑖 : 𭒞 → 𭒞+ that preserves limits and colimits
for all 𝐔-small diagrams in 𭒞 is a formal consequence of the theorem above (via
e.g. corollary a.4.25), it is not clear whether the theorem can be proven without
already knowing this.
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Corollary 0.3.16. If 𝔹 is a 𝐔-small category and has colimits for all 𝜅-small
diagrams, and 𝜇 is the cardinality of 𝐔, then the canonical (𝜇, 𝐔+)-accessible
functor Ind𝜇

𝐔+(Ind𝜅
𝐔(𝔹)) → Ind𝜅

𝐔+(𝔹) is fully faithful and essentially surjective
on objects. ■

Theorem 0.3.17 (Stability of pointwise Kan extensions). Let 𝐹 : 𭒜 → 𭒞 and
𝐺 : 𭒜 → 𭒟 be functors, and let 𝑖 : 𭒞 → 𭒞+ and 𝑗 : 𭒟 → 𭒟+ be fully faithful
functors. Consider the following (not necessarily commutative) diagram:

𭒜 𭒟 𭒟+

𭒞

𭒞+

𝐹

𝐺 𝑗

𝑖

𝐻

𝐻+

(i) If 𝐻+ is a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 , and 𝐻+𝑖 ≅ 𝑗𝐻 ,
then 𝐻 is a pointwise right Kan extension of 𝐺 along 𝐹 .

(ii) Suppose 𝑗𝐻 is a pointwise right Kan extension of 𝑗𝐺 along 𝐹 . If 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖, then the counit 𝐻+𝑖 ⇒ 𝑗𝐻
is a natural isomorphism, and 𝐻+ is also a pointwise right Kan extension
of 𝑗𝐺 along 𝑖𝐹 ; conversely, if 𝐻+ is a pointwise right Kan extension of
𝑗𝐺 along 𝑖𝐹 , then it is also a pointwise right Kan extension of 𝑗𝐻 along
𝑖.

(iii) If 𝐔 is a pre-universe such that 𭒜 is 𝐔-small and 𝑗 preserves limits for all
𝐔-small diagrams, and 𝐻 is a pointwise right Kan extension of 𝐺 along
𝐹 , then a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 can be computed
as a pointwise right Kan extension of 𝑗𝐻 along 𝑖 (if either one exists).

Dually:

(i′) If 𝐻+ is a pointwise left Kan extension of 𝑗𝐺 along 𝑖𝐹 , and 𝐻+𝑖 ≅ 𝑗𝐻 ,
then 𝐻 is a pointwise left Kan extension of 𝐺 along 𝐹 .

(ii′) Suppose 𝑗𝐻 is a pointwise left Kan extension of 𝑗𝐺 along 𝐹 . If 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖, then the unit 𝑗𝐻 ⇒ 𝐻+𝑖 is a
natural isomorphism, and 𝐻+ is also a pointwise left Kan extension of 𝑗𝐺
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along 𝑖𝐹 ; conversely, if 𝐻+ is a pointwise left Kan extension of 𝑗𝐺 along
𝑖𝐹 , then it is also a pointwise left Kan extension of 𝑗𝐻 along 𝑖.

(iii′) If 𝐔 is a pre-universe such that 𭒜 is 𝐔-small and 𝑗 preserves colimits for
all 𝐔-small diagrams, and 𝐻 is a pointwise left Kan extension of 𝐺 along
𝐹 , then a pointwise left Kan extension of 𝑗𝐺 along 𝑖𝐹 can be computed as
a pointwise left Kan extension of 𝑗𝐻 along 𝑖 (if either one exists).

Proof. (i). Theorem a.4.11 gives an explicit description of 𝐻+ : 𭒞+ → 𭒟+ as a
weighted limit:

𝐻+(𝐶′) ≅ {𭒞+(𝐶′, 𝑖𝐹 ), 𝑗𝐺}𭒜

Since 𝑖 is fully faithful, the weights 𭒞(𝐶, 𝐹 ) and 𭒞+(𝑖𝐶, 𝑖𝐹 ) are naturally iso-
morphic, hence,

𝑗𝐻(𝐶) ≅ 𝐻+(𝑖𝐶) ≅ {𭒞+(𝑖𝐶, 𝑖𝐹 ), 𝑗𝐺}𭒜 ≅ {𭒞(𝐶, 𝐹 ), 𝑗𝐺}𭒜

but, since 𝑗 is fully faithful, 𝑗 reflects all weighted limits, therefore 𝐻 must be a
pointwise right Kan extension of 𝐺 along 𝐹 .

(ii). Let 𝐔+ be a pre-universe such that 𭒜 and 𭒞 are 𝐔+-small categories and
𭒟, 𭒞+, 𭒟+ are locally𝐔+-small categories, and let Set+ be the category of𝐔+-sets.
Using the interchange law (theorem a.5.13) and propositions a.5.7 and a.5.14,
we obtain the following natural bijections:

𭒟+(𝐷′, 𝐻+(𝐶′)) ≅ 𭒟+(𝐷′, {𭒞+(𝐶′, 𝑖), 𝑗𝐻}𭒞)

≅ ∫𝐶:𭒞
Set+(𭒞+(𝐶′, 𝑖𝐶), 𭒟+(𝐷′, 𝑗𝐻𝐶))

≅ ∫𝐶:𭒞
Set+(𭒞+(𝐶′, 𝑖𝐶), 𭒟+(𝐷′, {𭒞(𝐶, 𝐹 ), 𝑗𝐺}𭒜))

≅ ∫𝐶:𭒞 ∫𝐴:𭒜
Set+(𭒞+(𝐶′, 𝑖𝐶),Set+(𭒞(𝐶, 𝐹 𝐴), 𭒟+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐶:𭒞 ∫𝐴:𭒜
Set+(𭒞(𝐶, 𝐹 𝐴),Set+(𭒞+(𝐶′, 𝑖𝐶), 𭒟+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐴:𭒜 ∫𝐶:𭒞
Set+(𭒞(𝐶, 𝐹 𝐴),Set+(𭒞+(𝐶′, 𝑖𝐶), 𭒟+(𝐷′, 𝑗𝐺𝐴)))

≅ ∫𝐴:𭒜
Set+(𭒞+(𝐶′, 𝑖𝐹 𝐴), 𭒟+(𝐷′, 𝑗𝐺𝐴))

≅ 𭒟+(𝐷′, {𭒞+(𝐶′, 𝑖𝐹 ), 𝑗𝐺}𭒜)
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Thus, 𝐻+ is a pointwise right Kan extension of 𝑗𝐺 along 𝑖𝐹 if and only if 𝐻+ is a
pointwise right Kan extension of 𝑗𝐻 along 𝑖. The fact that the counit 𝐻+𝑖 ⇒ 𝑗𝐻
is a natural isomorphism is just corollary a.4.15.

(iii). Apply corollary a.4.14 to claim (ii). ■

Corollary 0.3.18. Let 𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+, and let 𝜅 and 𝜆 be
regular cardinals in 𝐔. Suppose:

• 𭒞 is a locally 𝜅-presentable 𝐔-category.

• 𭒟 is a locally 𝜆-presentable 𝐔-category.

• 𭒞+ is a locally 𝜅-presentable 𝐔+-category.

• 𭒟+ is a locally 𝜆-presentable 𝐔+-category.

Let 𝐹 : 𭒜 → 𭒞 and 𝐺 : 𭒜 → 𭒟 be functors, let 𝑖 : 𭒞 → 𭒞+ be a (𝜅, 𝐔, 𝐔+)-ac-
cessible extension, and let 𝑗 : 𭒟 → 𭒟+ be a (𝜆, 𝐔, 𝐔+)-accessible extension.
Consider the following (not necessarily commutative) diagram:

𭒜 𭒟 𭒟+

𭒞

𭒞+

𝐹

𝐺 𝑗

𝑖

𝐻

𝐻+

(i) If 𝐻 is a pointwise right Kan extension of 𝐺 along 𝐹 , then 𝑗𝐻 is a point-
wise right Kan extension of 𝑗𝐺 along𝐹 , and if𝐻+ is a pointwise right Kan
extension of 𝑗𝐻 along 𝑖, then 𝐻+ is also a pointwise right Kan extension
of 𝑗𝐺 along 𝑖𝐹 .

(ii) Assuming 𭒜 is 𝐔-small, if 𝐻 is a pointwise left Kan extension of 𝐺 along
𝐹 , then 𝑗𝐻 is a pointwise left Kan extension of 𝑗𝐺 along 𝐹 , and if 𝐻+ is
a pointwise left Kan extension of 𝑗𝐻 along 𝑖, then 𝐻+ is also a pointwise
left Kan extension of 𝑗𝐺 along 𝑖𝐹 .

Proof. Use the theorem and the fact that 𝑖 and 𝑗 preserve limits for all diagrams
and colimits for 𝐔-small diagrams. ■
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0.4. Small object arguments

0.4 Small object arguments

Prerequisites. §§ 0.1, 0.2, 0.3, a.2.
The small object argument is a recurring construction in homotopical al-

gebra, originally due to Quillen [1967, Ch. II, § 3] but refined by many authors
since—notably by Garner [2009]. Roughly speaking, the small object argument
shows that, under certain hypotheses, starting from a small set ℐ of morphisms in
a cocomplete category 𭒞, one can define the notions of ‘relative ℐ-cell complex’
and ‘ℐ-fibration’ so that every morphism in 𭒞 factors as a relative ℐ-cell complex
followed by an ℐ-fibration.

In this section, we will study the small object argument with a view toward
questions of stability under change-of-universe.

Definition 0.4.1. Let 𭒞 be a category, and let ℐ be a subset of mor 𭒞. A present-
ation for a relative ℐ-cell complex in 𭒞 consists of the following data:

• An ordinal 𝛼. (We say the presentation is indexed over 𝛼.)

• A colimit-preserving functor 𝑋• : [𝛼] → 𭒞, where [𝛼] is the well-ordered
set {0, … , 𝛼} considered as a preorder category.

• For each ordinal 𝛽 < 𝛼, a (possibly empty) indexing set 𝑇𝛽 ; and for each
element 𝑗 of 𝑇𝛽 , a commutative diagram of the form below,

𝑈𝛽,𝑗 𝑋𝛽

𝑉𝛽,𝑗 𝑋𝛽+1

𝑒𝛽,𝑗

𝑢𝛽,𝑗

𝑋𝛽→𝛽+1

𝑣𝛽,𝑗

where 𝑒𝛽,𝑗 : 𝑈𝛽,𝑗 → 𝑉𝛽,𝑗 is a morphism in ℐ.

These data are moreover required to satisfy the following condition:

• For each ordinal 𝛽 < 𝛾 , the coproducts ∐𝑗∈𝑇𝛽
𝑆𝛽,𝑗 and ∐𝑗∈𝑇𝛽

𝐷𝛽,𝑗 exist in
𭒞, and the induced diagram

∐𝑗∈𝑇𝛽
𝑈𝛽,𝑗 𝑋𝛽

∐𝑗∈𝑇𝛽
𝑉𝛽,𝑗 𝑋𝛽+1

∐𝑗∈𝑇𝛽
𝑒𝛽,𝑗

𝑢𝛽

𝑋𝛽→𝛽+1

𝑣𝛽
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is a pushout square in 𭒞.

The presentation is said to be 𝐔-small (resp. 𝜅-small for a regular cardinal 𝜅) if
𝛼 is an ordinal in 𝐔 (resp. |𝛼| < 𝜅) and the disjoint union ∐𝛽<𝛼 𝑇𝛽 is in 𝐔 (resp.
has cardinality less than 𝜅). A sequential presentation is one where each 𝑇𝛽 is
a singleton, in which case we suppress the index 𝑗 in 𝑒𝛽,𝑗 , 𝑢𝛽,𝑗 , and 𝑣𝛽,𝑗 .

A relative ℐ-cell complex in 𭒞 is amorphism 𝑓 : 𝑋 → 𝑌 in 𭒞 for which there
exists a presentation as above with 𝑓 equal to 𝑋0 → 𝑋𝛼. Given an initial object
0 in 𭒞, an ℐ-cell complex in 𭒞 is an object 𝑌 for which the unique morphism
0 → 𝑌 is a relative ℐ-cell complex.

Remark 0.4.2. For any object 𝑋 in 𭒞 and any subset ℐ ⊆ mor 𭒞, the morphism
id : 𝑋 → 𝑋 is a relative ℐ-cell complex in 𭒞, with the obvious presentation
indexed over 0). More generally, every isomorphism in 𭒞 is a relative ℐ-cell
complex, with a presentation indexed over 1 (and 𝑇0 = ∅); but in order to get a
sequential presentation, one must assume that there is an isomorphism in ℐ.

Proposition 0.4.3. Let 𭒞 be a category, let ℐ be a subset of mor 𭒞, let 𝜅 be a
regular cardinal, and let cellℐ,𝜅 𭒞 be the set of relative ℐ-cell complexes in 𭒞 that
admit a 𝜅-small presentation.

(i) Every morphism in ℐ is also in cellℐ,𝜅 𭒞.

(ii) For each object 𝑋 in 𭒞, the morphism id : 𝑋 → 𝑋 is in cellℐ,𝜅 𭒞.

(iii) If 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are both in cellℐ,𝜅 𭒞, then so is 𝑔 ∘ 𝑓 .

(iv) Let 𝛼 be an ordinal and let 𝑋• : 𝛼 → 𭒞 be a colimit-preserving functor. If
|𝛼| < 𝜅 and 𝜆 is a colimiting cocone from 𝑋• to 𝑌 and, for 𝛽 ≤ 𝛾 < 𝛼,
the morphism 𝑋𝛽→𝛾 : 𝑋𝛽 → 𝑋𝛾 is in cellℐ,𝜅 𭒞, then each component 𝜆𝛽 :
𝑋𝛽 → 𝑌 is also in cellℐ,𝜅 𭒞.

(v) Given a pushout diagram of the form below in 𭒞,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

if 𝑔 is in cellℐ,𝜅 𭒞 and 𭒞 has colimits for all 𝜅-small diagrams, then 𝑓 is
also in cellℐ,𝜅 𭒞.
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Proof. (i). Given any morphism 𝑒 : 𝑈 → 𝑉 in ℐ, we have the following pushout
diagram:

𝑈 𝑈

𝑉 𝑉

𝑒

id

𝑒

id

Thus 𝑒 : 𝑈 → 𝑉 is in cellℐ 𭒞.

(ii). See remark 0.4.2.

(iii). It is clear that appending any 𝜅-small presentation for 𝑔 to any 𝜅-small
presentation for 𝑓 yields a 𝜅-small presentation of 𝑔 ∘ 𝑓 .

(iv). The case 𝛼 = 0 falls under claim (ii). If 𝛼 = 𝛾 + 1, then the component
𝜆𝛾 : 𝑋𝛾 → 𝑌 must be an isomorphism, and thus 𝜆𝛽 = 𝜆𝛾 ∘ 𝑋𝛽→𝛾 is also in cellℐ 𭒞;
and if 𝛼 is a positive limit ordinal, since every terminal segment of 𝛼 is cofinal in
𝛼, it is clear that concatenating 𝜅-small presentations for 𝑋𝛾→𝛾+1 for 𝛽 ≤ 𝛾 < 𝛼
yields a 𝜅-small presentation for 𝜆𝛽 : 𝑋𝛽 → 𝑌 .

(v). Fix a 𝜅-small presentation of 𝑔 : 𝑍 → 𝑊 . By the pushout pasting lemma,
given a commutative diagram of the form below,

∐𝑗∈𝑇𝛽
𝑈𝛽,𝑗 𝑍𝛽 𝑋𝛽

∐𝑗∈𝑇𝛽
𝑉𝛽,𝑗 𝑍𝛽+1 𝑋𝛽+1

∐𝑗∈𝑇𝛽
𝑒𝛽,𝑗

𝑢𝛽

𝑍𝛽→𝛽+1 𝑋𝛽→𝛽+1

𝑣𝛽

if both squares are pushout diagrams, then the outer rectangle is a pushout dia-
gram as well. Since pushout along 𝑧 : 𝑍 → 𝑋 is the left adjoint of the evident
functor 𝑧∗ : 𝑋∕𭒞 → 𝑍∕𭒞, it preserves all colimits, and thus we obtain a 𝜅-small
presentation of 𝑓 : 𝑋 → 𝑌 . ■

Definition 0.4.4. Let 𭒞 be a category and let ℐ be a subset of mor 𭒞. An ℐ-inject-
ive morphism in 𭒞 is a morphism that has the right lifting property with respect
to every morphism in ℐ.[8] An ℐ-cofibration in 𭒞 is a morphism that has the left
lifting property with respect to every ℐ-injective morphism.

[8] Equivalently, it is a morphism 𝑓 : 𝑋 → 𝑌 in 𭒞 that is an ℐ-injective object in the slice category
𭒞∕𝑌 .

37



0. Foundations

Proposition 0.4.5. Let 𭒞 be a category, let ℐ be a subset of mor 𭒞, and let
cellℐ 𭒞, injℐ 𭒞, and cofℐ 𭒞 be the set of relative ℐ-cell complexes, ℐ-injections,
and ℐ-cofibrations in 𭒞, respectively.

(i) We have ℐ ⊆ cellℐ 𭒞 ⊆ cofℐ 𭒞.

(ii) A morphism is in injℐ 𭒞 if and only if it has the right lifting property with
respect to every ℐ-cofibration.

(iii) In particular, a morphism is in injℐ 𭒞 if and only if it has the right lifting
property with respect to every relative ℐ-cell complex.

Proof. (i). Follows immediately from the definition of ‘relative ℐ-cell complex’
and proposition a.2.12.

(ii) and (iii). See proposition a.2.3. ■

Some authors define ‘relative ℐ-cell complex’ so that every such morphism
admits a sequential presentation. The following lemma and its corollary show
that there is no loss of generality in doing so.

Lemma 0.4.6. Let 𝜅 be a regular cardinal, let 𭒞 be a category with colimits for
all 𝜅-small diagrams, and let 𝛼 be an ordinal of cardinality less than 𝜅. For each
ordinal 𝛽 < 𝛼, let 𝑒𝛽 : 𝑈𝛽 → 𝑉𝛽 be a morphism in 𭒞, and for each ordinal 𝛽 ≤ 𝛼,
let

𝐶𝛽 =
(∐

𝛾<𝛽
𝑉𝛾)

⨿
( ∐

𝛽≤𝛾<𝛼
𝑈𝛾)

be a coproduct in 𭒞 with coproduct insertions 𝑢𝛾,𝛽 : 𝑈𝛾 → 𝐶𝛽 (for 𝛽 ≤ 𝛾 < 𝛼)
and 𝑣𝛾,𝛽 : 𝑉𝛾 → 𝐶𝛽 (for 𝛾 < 𝛽).

Given ordinals 𝛽 < 𝛽′ ≤ 𝛼, there is a unique morphism 𝐶𝛽 → 𝐶𝛽′ such that,
for 𝜁 < 𝛽 ≤ 𝜁 ′ < 𝛽′ ≤ 𝜁″, the following diagrams commute:

𝑉𝜁 𝐶𝛽

𝑉𝜁 𝐶𝛽′

id

𝑣𝜁,𝛽

𝑣𝜁,𝛽′

𝑈𝜁′ 𝐶𝛽

𝑉𝜁′ 𝐶𝛽′

𝑒𝜁′

𝑢𝜁′,𝛽

𝑣𝜁′,𝛽′

𝑈𝜁″ 𝐶𝛽

𝑈𝜁″ 𝐶𝛽′

id

𝑢𝜁″,𝛽

𝑢𝜁″,𝛽′
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This yields a functor 𝐶• : [𝛼] → 𭒞, and it preserves colimits. Moreover, the
diagrams below are pushout squares for all ordinals 𝛽 < 𝛼:

𝑈𝛽 𝐶𝛽

𝑉𝛽 𝐶𝛽+1

𝑒𝛽

𝑢𝛽,𝛽

𝑣𝛽,𝛽+1

Proof. This is a straightforward exercise. See Proposition 10.2.7 in [Hirschhorn,
2003]. □

Corollary 0.4.7. Let 𝜅 be a regular cardinal, let 𭒞 be a category with colimits
for 𝜅-small diagrams, and let ℐ be a subset of mor 𭒞. If 𝑓 : 𝑋 → 𝑌 is a relative
ℐ-cell complex in 𭒞 that admits a 𝜅-small presentation, and either

• 𝑋 = 𝑌 and 𝑓 = id𝑋 , or

• 𝑓 is an isomorphism and ℐ contains an isomorphism, or

• 𝑓 is not an isomorphism,

then 𝑓 also admits a 𝜅-small sequential presentation.

Proof. We have already commented on the first two cases in remark 0.4.2. The
third case is proven by transfinite induction, where in the induction step we may
assume that 𝑓 is presented by just one pushout diagram:

∐𝑗∈𝑇 𝑈𝑗 𝑋

∐𝑗∈𝑇 𝑉𝑗 𝑌

∐𝑗∈𝑇 𝑒𝑗

𝑢

𝑓

𝑣

By decomposing the morphism ∐𝑗∈𝑇 𝑒𝑗 : ∐𝑗∈𝑇 𝑈𝑗 → ∐𝑗∈𝑇 𝑉𝑗 as in the earlier
lemma and applying the pushout pasting lemma, we obtain a sequential present-
ation of 𝑓 , which is 𝜅-small precisely if |𝑇 | < 𝜅. ■

Definition 0.4.8. Let 𝐔 be a universe, let 𭒞 be a category, let ℐ be a subset of
mor 𭒞, and let cellℐ,𝐔 𭒞 be the set of relative ℐ-cell complexes in 𭒞 that have
a 𝐔-small presentation. We say (ℐ, 𭒞) is admissible for the 𝐔-small object
argument when the following conditions are satisfied:
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• ℐ is a 𝐔-set.

• 𭒞 be a locally 𝐔-small category with colimits for all 𝐔-small diagrams.

• There is a regular cardinal 𝜅 in 𝐔 such that, for everymorphism 𝑒 : 𝑈 → 𝑉
in ℐ, every ordinal 𝛼 in 𝐔, and every functor 𝑋• : 𝛼 → 𭒞, if |𝛼| ≥ 𝜅, and
the morphism 𝑋𝛽→𝛾 : 𝑋𝛽 → 𝑋𝛾 is in cellℐ,𝐔 𭒞 for all ordinals 𝛽 ≤ 𝛾 < 𝛼,
then the canonical comparison map lim−−→𝛽<𝛼

𭒞(𝑈, 𝑋𝛽) → 𭒞(𝑈, lim−−→𝛽<𝛼
𝑋𝛽)

is a bijection.

The sequential 𝐔-rank of ℐ in 𭒞 is the least cardinal 𝜅 with the above property.

Remark 0.4.9. Notice that, if |𝛼| ≥ 𝜅, then 𝛼 is a 𝜅-directed preorder. Thus, for
any locally presentable 𝐔-category 𭒞 and any 𝐔-subset ℐ ⊆ mor 𭒞 whatsoever,
(ℐ, 𭒞) is admissible for the 𝐔-small object argument.

Definition 0.4.10. Let 𝐔 be a universe. A 𝐔-cofibrantly-generated factor-
isation system on a category 𭒞 on is a weak factorisation system on 𭒞 that is
cofibrantly generated by some 𝐔-subset of mor 𭒞.

Theorem 0.4.11 (Quillen’s small object argument). Let 𝐔 be a universe, let 𭒞
be a locally 𝐔-small category with colimits for all 𝐔-small diagrams, and let ℐ
be a 𝐔-subset of mor 𭒞.

(i) There exist a functor 𝑀 : [𝟚, 𭒞] → 𭒞 and two natural transformations
𝑖 : dom ⇒ 𝑀 , 𝑝 : 𝑀 ⇒ codom such that, for all morphisms 𝑓 : 𝑋 → 𝑌
in 𭒞, the morphism 𝑖𝑓 : 𝑋 → 𝑀(𝑓) is in cellℐ,𝐔 𭒞, and we have 𝑓 = 𝑝𝑓 ∘𝑖𝑓 .

(ii) If (ℐ, 𭒞) is moreover admissible for the 𝐔-small object argument, then we
may choose 𝑀 , 𝑖, and 𝑝 so that, for all morphisms 𝑓 : 𝑋 → 𝑌 in 𭒞, the
morphism 𝑝𝑓 : 𝑀(𝑓) → 𝑌 in injℐ 𭒞.

(iii) In particular, if (ℐ, 𭒞) is admissible, then (cofℐ 𭒞, injℐ 𭒞) is a𝐔-cofibrantly-
generated factorisation system on 𭒞 and extends to a functorial weak fac-
torisation system.

Proof. (i). Let 𝜅 be any regular cardinal, and let 𝛼 be the least ordinal of car-
dinality 𝜅.[9] For each morphism 𝑓 : 𝑋 → 𝑌 in 𭒞, we construct by transfinite
recursion a colimit-preserving functor 𝑀•(𝑓 ) : [𝛼] → 𭒞 and a cocone 𝑝𝑓;• :
𝑀•(𝑓 ) → 𝑌 satisfying the following conditions:

[9] We could also take 𝜅 = 0, but then the factorisation so obtained is trivial.
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• 𝑀0(𝑓 ) = 𝑋, 𝑝𝑓;0 = 𝑝.

• For each ordinal 𝛽 < 𝛼, if 𝑇𝛽(𝑓 ) is the set of all commutative diagrams in
𭒞 of the form below,

𝑈𝛽,𝑗 𝑀𝛽(𝑓 )

𝑉𝛽,𝑗 𝑌

𝑒𝛽,𝑗

𝑢𝛽,𝑗

𝑝𝑓;𝛽

𝑣𝛽,𝑗

is in ℐ and 𝑢𝛽,𝑗 : 𝑈𝛽,𝑗 → 𝑋𝛽 is in 𭒞, then 𝑇𝛽(𝑓 ) is a 𝐔-set (because ℐ is a
𝐔-set and 𭒞 is a locally 𝐔-small category), and we have a pushout square
of the following form,

∐𝑗∈𝑇𝛽(𝑓 ) 𝑈𝛽,𝑗 𝑀𝛽(𝑓 )

∐𝑗∈𝑇𝛽(𝑓 ) 𝑉𝛽,𝑗 𝑀𝛽+1(𝑓 )

∐𝑗∈𝑇𝛽(𝑓) 𝑒𝛽,𝑗

𝑢𝛽

𝑋𝛽→𝛽+1

̄𝑣𝛽

where 𝑢𝛽 : ∐𝑗∈𝑇𝛽(𝑓 ) 𝑈𝛽,𝑗 → 𝑋𝛽 is the evident morphism induced by the
universal property of coproducts. Observe that there is then a unique
morphism 𝑝𝑓;𝛽+1 : 𝑀𝛽+1(𝑓 ) → 𝑌 such that

𝑝𝑓;𝛽+1 ∘ 𝑀𝛽→𝛽+1(𝑓 ) = 𝑝𝛽

𝑝𝑓;𝛽+1 ∘ ̄𝑣𝛽,𝑗 = 𝑣𝛽,𝑗and

for all 𝑗 in 𝑇𝛽(𝑓 ), where ̄𝑣𝛽,𝑗 : 𝑉𝛽,𝑗 → 𝑀𝛽+1(𝑓 ) is the evident component
of ̄𝑣𝛽 : ∐𝑗∈𝑇𝛽(𝑓 ) 𝑉𝛽,𝑗 → 𝑀𝛽+1(𝑓 ).

• For limit ordinals 𝛾 ≤ 𝛼, 𝑀𝛾(𝑓 ) = lim−−→𝛽<𝛾
𝑀𝛽(𝑓 ), and 𝑝𝛾 : 𝑀𝛾(𝑓 ) → 𝑌 is

defined by the universal property of 𝑋𝛾 .

It is not hard to see that the functor 𝑀•(𝑓 ) : [𝛼] → 𭒞 so defined is itself functorial
in 𝑓 ; in particular, defining 𝑀(𝑓) = 𝑀𝛼(𝑓 ), 𝑖𝑓 = 𝑀0→𝛼(𝑓 ), 𝑝𝑓 = 𝑝𝑓;𝛼, we
obtain a functor 𝑀 : [𝟚, 𭒞] → 𭒞 with two natural transformations 𝑖 : 𝑀 ⇒ dom
and 𝑝 : 𝑀 ⇒ codom; by construction, we have 𝑓 = 𝑝𝑓 ∘ 𝑖𝑓 , and 𝑖𝑓 : 𝑋 → 𝑀(𝑓)
is in cellℐ,𝐔 𭒞.
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(ii). Now, take 𝜅 to be a regular cardinal as in definition 0.4.8. We wish to show
that themorphism 𝑝𝑓 constructed above has the right lifting property with respect
to all morphisms in ℐ. Consider a lifting problem of the form below,

𝑈 𝑀(𝑓)

𝑉 𝑌

𝑒

𝑢

𝑝𝑓

𝑣

where 𝑒 : 𝑈 → 𝑉 is in ℐ. Since ℐ is admissible, there must exist an ordinal
𝛽 < 𝛼 and a morphism 𝑢′ : 𝑈 → 𝑀𝛽(𝑓 ) such that 𝑢 = 𝑀𝛽→𝛼(𝑓 ) ∘ 𝑢′. We then
obtain the following commutative diagram:

𝑈 𝑀𝛽(𝑓 )

𝑉 𝑌

𝑒

𝑢′

𝑝𝑓;𝛽

𝑣

Since this is one of the diagrams in the set 𝑇𝛽(𝑓 ), it must embed in a commutative
diagram of the form below,

𝑈 𝑀𝛽(𝑓 ) 𝑀𝛼(𝑓 )

𝑉 𝑀𝛽+1(𝑓 )

𝑉 𝑌

𝑒

𝑢′

𝑝𝑓;𝛼

𝑣

and thus we have the required lift 𝑉 → 𝑀(𝑓).

(iii). Finally, apply proposition 0.4.5 and theorem a.2.28. ■

Corollary 0.4.12. With other notation in the theorem, a morphism 𝑔 : 𝑍 → 𝑊
is in cofℐ 𭒞 if and only if there exists a commutative diagram of the following
form in 𭒞,

𝑍 𝑊 ′

𝑊 𝑊

𝑔

𝑖

id
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where 𝑖 : 𝑍 → 𝑊 ′ is in cellℐ,𝐔 𭒞.

Proof. (i). If 𝑔 : 𝑍 → 𝑊 is in cofℐ 𭒞, then 𝑔 has the left lifting property with
respect to 𝑝𝑔 : 𝑀(𝑔) → 𝑊 , and so there exists a commutative diagram of the
required form. Conversely, suppose we have 𝑔 = 𝑝 ∘ 𝑖, 𝑖 = 𝑗 ∘ 𝑔, and id𝑊 = 𝑝 ∘ 𝑗
for some 𝑖 : 𝑍 → 𝑊 ′ in cellℐ,𝐔 𭒞 and some 𝑗 : 𝑊 → 𝑊 ′ in 𭒞. Then 𝑔 is a
retract of 𝑖,

𝑍 𝑍 𝑍

𝑊 𝑊 ′ 𝑊

𝑔

id

𝑖

id

𝑔

id

𝑗 𝑝

but proposition 0.4.5 says 𝑖 is in cofℐ 𭒞, so by proposition a.2.12, 𝑔 is also in
cofℐ 𭒞. ■

Lemma 0.4.13. Let 𭒞 be a full subcategory of a category 𭒞+, let ℐ be a subset
of mor 𭒞, and let 𝜅 be a regular cardinal. If 𭒞 is closed in 𭒞+ under colimits for
all 𝜅-small diagrams, then cellℐ,𝜅 𭒞 = cellℐ,𝜅 𭒞+ ∩ mor 𭒞.

Proof. Obvious. ⧫

Theorem 0.4.14 (Stability of cofibrantly-generated factorisation systems). Let
𝐔 and 𝐔+ be universes, with 𝐔 ∈ 𝐔+. Suppose:

• 𭒞 is a locally 𝐔-small and 𝐔-cocomplete category.

• 𭒞+ is a locally 𝐔+-small and 𝐔+-cocomplete category.

• The inclusion 𭒞 ↪ 𭒞+ preserves colimits for all 𝐔-small diagrams.

• ℐ is a 𝐔-subset of mor 𭒞.

• (ℐ, 𭒞) is admissible for the 𝐔-small object argument, and (𝐿, 𝑅) is the
functorial factorisation system on 𭒞 constructed by Quillen’s small object
argument argument.

• (ℐ, 𭒞+) is admissible for the 𝐔+-small object argument, and (𝐿+, 𝑅+) is
the functorial factorisation system on 𭒞+ constructed by Quillen’s small
object argument argument.
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Under these hypotheses, if the sequential𝐔-rank of ℐ in 𭒞 is equal to the sequen-
tial 𝐔+-rank of ℐ in 𭒞+, then:

(i) For each morphism 𝑓 : 𝑋 → 𝑌 in 𭒞, we have a commutative diagram of
the following form in 𭒞+,

𝑀+(𝑓 )

𝑋 𝑌

𝑀(𝑓)

≅

𝑅+𝑓𝐿+𝑓

𝐿𝑓 𝑅𝑓

and the isomorphism 𝑀+(𝑓 ) → 𝑀(𝑓) is moreover canonical and natural
in 𝑓 .

(ii) We have cellℐ,𝐔 𭒞 ⊆ cellℐ,𝐔 𭒞+ ⊆ cellℐ,𝐔+ 𭒞+.

(iii) (cofℐ 𭒞+, injℐ 𭒞+) is an extension of (cofℐ 𭒞, injℐ 𭒞).

Proof. (i). This can be seen by examining the explicit construction in the proof
of theorem 0.4.11.

(ii). This is implied by the lemma.

(iii). Since (cofℐ 𭒞, injℐ 𭒞) and (cofℐ 𭒞+, injℐ 𭒞+) are both cofibrantly generated
by ℐ, by proposition a.2.18, we have injℐ 𭒞 ⊆ injℐ 𭒞+ and so cofℐ 𭒞 ⊇ cofℐ 𭒞+ ∩
mor 𭒞. It remains to be shown that cofℐ 𭒞 ⊆ cofℐ 𭒞+, but this is implied by
corollary 0.4.12 applied to claim (ii). ■

Remark 0.4.15. Let 𝜅 be a regular cardinal in 𝐔, let ℬ be a 𝐔-small categorywith
colimits for all 𝜅-small diagrams, let 𭒞 = Ind𝜅

𝐔(ℬ), and let 𭒞+ = Ind𝜅
𝐔+(ℬ). Then

𭒞 is a locally 𝜅-presentable 𝐔-category, the inclusion 𭒞 ↪ 𭒞+ is an accessible
(𝜅, 𝐔, 𝐔+) extension, and any 𝐔-subset ℐ ⊆ mor 𭒞 whatsoever will satisfy the
hypotheses of the theorem.

Proposition 0.4.16. Let 𝐹 ⊣ 𝑈 : 𭒟 → 𭒞 be an adjunction of categories, let
ℐ ⊆ mor 𭒞, and let 𭒥 = {𝐹 𝑓 | 𝑓 ∈ ℐ}.

(i) 𝐹 sends relative ℐ-cell complexes in 𭒞 to relative 𭒥-cell complexes in 𭒟.

(ii) 𝑈 sends 𭒥-injective morphisms in 𭒟 to ℐ-injective morphisms in 𭒞.
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(iii) 𝐹 sends ℐ-cofibrations in 𭒞 to 𭒥-cofibrations in 𭒟.

Proof. (i). This is a corollary of the fact that 𝐹 preserves all colimits.

(ii). As in the proof of proposition a.2.19, a morphism 𝑓 : 𝑋 → 𝑌 in 𭒟 has
the right lifting property with respect to all morphisms in 𭒥 if and only if 𝑈𝑓 :
𝑈𝑋 → 𝑈𝑌 has the right lifting property with respect to all morphisms in ℐ.

(iii). Similarly, a morphism 𝑔 : 𝑍 → 𝑊 in 𭒞 has the left lifting property with
respect to all morphisms of the form 𝑈𝑓 : 𝑈𝑋 → 𝑈𝑌 where 𝑓 : 𝑋 → 𝑌 is
a 𭒥-injective morphism 𝑓 : 𝑋 → 𝑌 in 𭒟 if and only if 𝐹 𝑔 : 𝐹 𝑍 → 𝐹 𝑊 is
a 𭒥-cofibration in 𭒟; but we know that 𝑈 sends 𭒥-injective morphisms in 𭒟 to
ℐ-injective morphisms in 𭒞, so 𝐹 must send ℐ-cofibrations in 𭒞 to 𭒥-cofibrations
in 𭒟. ■

Theorem 0.4.17 (Garner’s small object argument). Let 𭒞 be a locally present-
able 𝐔-category and let ℐ be any 𝐔-subset of mor 𭒞. There then exists an algeb-
raic factorisation system (𝗟, 𝗥) on 𭒞 such that the induced weak factorisation
system is cofibrantly generated by ℐ.

Proof. See Theorem 4.4 in [Garner, 2009]. □

Proposition 0.4.18. Let 𝐔 be a universe, let Set be the category of 𝐔-sets, let
𝔹 be a 𝐔-small category, let 𭒞 = [𝔹op,Set], and let ℐ be the subset of mor 𭒞
consisting of all monomorphisms 𝑒 : 𝑈 → 𝑉 in 𭒞 where 𝑉 is a quotient of a
representable presheaf.

(i) (cofℐ 𭒞, injℐ 𭒞) is a 𝐔-cofibrantly-generated weak factorisation system.

(ii) cellℐ,𝐔 𭒞 is precisely the class of all monomorphisms in 𭒞.

(iii) cofℐ 𭒞 = cellℐ 𭒞.

Proof. (i). Since 𝔹 is small and 𭒞 is well-powered and well-copowered, the
full subcategory of [𝟚, 𭒞] spanned by ℐ is essentially 𝐔-small. We know that
𭒞 is locally finitely presentable, thus, taking a 𝐔-set of representatives of the
isomorphism classes in ℐ, and recalling remark 0.4.9, Quillen’s small object
argument (theorem 0.4.11) implies (cofℐ 𭒞, injℐ 𭒞) is indeed a 𝐔-cofibrantly-
generated weak factorisation system.
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(ii). It is clear that the class of injective maps is closed under pushout and
transfinite composition in Set, so the same must be true of monomorphisms in
𭒞, since colimits in 𭒞 are computed componentwise. Thus every morphism in
cellℐ 𭒞 is a monomorphism.

Conversely, suppose 𝑓 : 𝑋 → 𝑌 is a monomorphism. Fix an ordinal 𝛼
and a bijection 𝑦• : 𝛼 → ∐𝐵∈ob 𝔹 𝑌 (𝐵), and write 𝐵𝛽 for the object in 𝔹 such
that 𝑦𝛽 ∈ 𝑌 (𝐵𝛽). We will construct a 𝐔-small presentation for 𝑓 by transfinite
recursion on 𝛼.

• To begin, put 𝑋0 = 𝑋 and 𝑓0 = 𝑓 .

• For each ordinal 𝛽 < 𝛼, the Yoneda lemma implies there is a unique

morphism 𝑎𝛽h𝐵𝛽
→ 𝑌 in 𭒞 such that 𝑎𝛽(id𝐵𝛽 ) = 𝑦𝛽 ; let ̄𝑣𝛽 : 𝑉𝛽 → 𝑌

be the image of 𝑎𝛽 , and let 𝑒𝛽 : 𝑈𝛽 → 𝑉𝛽 and 𝑢𝛽 : 𝑈𝛽 → 𝑉𝛽 be defined by
the pullback square shown below:

𝑈𝛽 𝑋𝛽

𝑉𝛽 𝑌

𝑒𝛽

𝑢𝛽

𝑓𝛽

̄𝑣𝛽

Since 𝑓𝛽 is a monomorphism, 𝑒𝛽 must also be a monomorphism and hence
is in ℐ. There is then a commutative diagram in 𭒞 of the following form,

𝑈𝛽 𝑋𝛽

𝑉𝛽 𝑋𝛽+1

𝑌

𝑒𝛽

𝑢𝛽

𝑓𝛽

𝑣𝛽

̄𝑣𝛽

𝑓𝛽+1

where 𝑓𝛽+1 : 𝑋𝛽+1 → 𝑌 is the union of 𝑓𝛽 : 𝑋𝛽 → 𝑌 and ̄𝑣𝛽 : 𝑉𝛽 → 𝑌
considered as subobjects of 𝑌 ; note that the inner square of the diagram is
then a pushout square.

• Finally, for limit ordinals 𝛾 < 𝛼, we take 𝑓𝛾 : 𝑋𝛾 → 𝑌 to be the union
⋃𝛽<𝛾 𝑓𝛽 .
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This completes the presentation of 𝑓 : 𝑋 → 𝑌 as a relative ℐ-cell complex in 𭒞,
and it is clearly 𝐔-small.

(iii). Corollary 0.4.12 implies that each morphism in cofℐ 𭒞 is a retract of some
morphism in cellℐ,𝐔 𭒞, but the class of monomorphisms is closed under retracts,
so in this case we must have cofℐ 𭒞 = cellℐ,𝐔 𭒞. Since cellℐ,𝐔 𭒞 ⊆ cellℐ 𭒞 ⊆
cofℐ 𭒞, we also deduce that cellℐ,𝐔 𭒞 = cellℐ 𭒞. ■
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I

Simplicial sets

Simplicial sets, like simplicial complexes, are combinatorial models for spaces
built up by gluing standard 𝑛-simplices together; unlike simplicial complexes,
an 𝑛-simplex in a simplicial set need not be uniquely determined by its vertices.
It is for this reason that simplicial sets were once known by the unwieldy name
‘complete semi-simplicial (c.s.s.) complex’.

In the 1960s, it was discovered that one can mimic the definitions and con-
structions of classical homotopy theory by combinatorial means using simplicial
sets, and that the resulting theory is moreover equivalent to the classical theory
in a natural, functorial way. More recently, it has been shown that the homotopy
theory of simplicial sets is universal in a precise sense,[1] so it seems fitting that
we begin here.

1.1 Basics

Definition 1.1.1. The simplex category is the category 𝚫 whose objects are the
positive finite ordinals and whose morphisms are the monotone maps. We use
the geometer’s convention: [𝑛] denotes the ordinal {0, 1, … , 𝑛}.

Definition 1.1.2. A simplicial object in a category 𭒞 is a functor 𝚫op → 𭒞,
and a morphism of simplicial objects in 𭒞 is a natural transformation of such
functors. The category of simplicial objects in 𭒞 is the functor category [𝚫op, 𭒞]
and is denoted by 𝐬𭒞.

[1] See [Dugger, 2001a].
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Definition 1.1.3. The coface maps in 𝚫 are the morphisms 𝛿𝑖
𝑛 : [𝑛 − 1] → [𝑛],

where 𝛿𝑖
𝑛 is the unique injective monotone map that misses 𝑖; and the codegen-

eracy maps in 𝚫 are the morphisms 𝜎𝑖
𝑛 : [𝑛 + 1] → [𝑛], where 𝜎𝑖

𝑛 is the unique
surjective monotone map with 𝜎𝑖

𝑛(𝑖) = 𝜎𝑖
𝑛(𝑖 + 1) = 𝑖.

Theorem 1.1.4 (Cosimplicial identities). The following equations hold in 𝚫:

𝛿𝑗+1
𝑛+1 ∘ 𝛿𝑖

𝑛 = 𝛿𝑖
𝑛+1 ∘ 𝛿𝑗

𝑛 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝜎𝑗
𝑛 ∘ 𝜎𝑖

𝑛+1 = 𝜎𝑖
𝑛 ∘ 𝜎𝑗+1

𝑛+1 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝜎𝑗+1
𝑛+1 ∘ 𝛿𝑖

𝑛+1 = 𝛿𝑖
𝑛 ∘ 𝜎𝑗

𝑛 if 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

𝛿𝑗+1
𝑛 ∘ 𝜎𝑖

𝑛 = 𝜎𝑖
𝑛+1 ∘ 𝛿𝑗+2

𝑛+1 if 0 ≤ 𝑖 < 𝑗 < 𝑛
𝜎𝑖

𝑛 ∘ 𝛿𝑖
𝑛 = id if 0 ≤ 𝑖 ≤ 𝑛

𝜎𝑖+1
𝑛 ∘ 𝛿𝑖

𝑛 = id if 0 ≤ 𝑖 < 𝑛

Equivalently, the following diagrams commute:

[𝑛 − 1] [𝑛]

[𝑛] [𝑛 + 1]

𝛿𝑖

𝛿𝑗 𝛿𝑗+1

𝛿𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛 + 1] [𝑛]

[𝑛] [𝑛 − 1]

𝜎𝑖

𝜎𝑗+1 𝜎𝑗

𝜎𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛] [𝑛 + 1]

[𝑛 − 1] [𝑛]

𝛿𝑖

𝜎𝑗 𝜎𝑗+1

𝛿𝑖

for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

[𝑛] [𝑛 − 1]

[𝑛 + 1] [𝑛]

𝜎𝑖

𝛿𝑗+2 𝛿𝑗+1

𝜎𝑖

for 0 ≤ 𝑖 < 𝑗 < 𝑛
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[𝑛 − 1] [𝑛]

[𝑛] [𝑛 − 1]

𝛿𝑖

𝛿𝑖 id
𝜎𝑖+1

𝜎𝑖

for 0 ≤ 𝑖 ≤ 𝑛

Moreover, every morphism [𝑛] → [𝑚] in 𝚫 is uniquely a composite of the form

𝛿𝑗1
𝑚 ∘ ⋯ ∘ 𝛿𝑗𝑚−𝑘

𝑘 ∘ 𝜎𝑖𝑛−𝑘
𝑘 ∘ ⋯ ∘ 𝜎𝑖1

𝑛

where 𝑘 ≤ min {𝑛, 𝑚}, and

0 ≤ 𝑖𝑛−𝑘 ≤ ⋯ ≤ 𝑖1 ≤ 𝑛
0 ≤ 𝑗𝑚−𝑘 ≤ ⋯ ≤ 𝑗1 ≤ 𝑚

The category 𝚫 is uniquely characterised by these properties.

Proof. See [May, 1967, § 2], [GZ, Ch. II, § 2], or [Weibel, 1994, § 8.1]. □

Definition 1.1.5. Let 𝐴 be a simplicial object in a category 𭒞. A face operator
for 𝐴 is a morphism of the form 𝐴(𝛿𝑖

𝑛) : 𝐴([𝑛]) → 𝐴([𝑛 − 1]), and a degeneracy
operator for 𝐴 is a morphism of the form 𝐴(𝜎𝑖

𝑛) : 𝐴([𝑛]) → 𝐴([𝑛 + 1]). For
brevity, we will usually write 𝐴𝑛 instead of 𝐴([𝑛]), 𝑑𝑛

𝑖 instead of 𝐴(𝛿𝑖
𝑛), and 𝑠𝑛

𝑖
instead of 𝐴(𝜎𝑖

𝑛).

Corollary 1.1.6 (Simplicial identities). The face and degeneracy operators of a
simplicial object satisfy the formal duals of the equations in theorem 1.1.4. ■

Corollary 1.1.7. A simplicial object 𝐴 is uniquely determined by the sequence
of objects 𝐴0, 𝐴1, 𝐴2, … together with the face and degeneracy operators. Con-
versely, any sequence of objects equipped with face and degeneracy operators
satisfying the simplicial identities defined a simplicial object. ■

Definition 1.1.8. A simplicial set is a simplicial object in Set, and the category
of simplicial sets is denoted by sSet.

Lemma 1.1.9.
(i) Limits (resp. colimits) in sSet are constructed degreewise: a cone (resp.

cocone) in sSet over a diagram is limiting (resp. colimiting) if and only if
it is so in every degree.

(ii) A morphism of sSet is monic (resp. epic) if and only if it is degreewise
injective (resp. surjective).
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Proof. These are standard facts about functor categories. □

Definition 1.1.10. The standard 𝑛-simplex in sSet, denoted by Δ𝑛, is the rep-
resentable presheaf 𝚫(−, [𝑛]).

Theorem 1.1.11. Let Δ• : 𝚫 → sSet be the functor [𝑛] ↦ Δ𝑛.

(i) For any simplicial set 𝑋, the map sSet(Δ𝑛, 𝑋) → 𝑋𝑛 defined by 𝑓 ↦
𝑓𝑛(id[𝑛]) is a bijection and is moreover natural in [𝑛] and 𝑋.

(ii) sSet has limits and colimits for all small diagrams, every epimorphism is
effective, and for all morphisms 𝑓 : 𝑋 → 𝑌 in sSet, the pullback functor
𝑓 ∗ : sSet∕𝑌 → sSet∕𝑋 preserves colimits.

(iii) Δ• : 𝚫 → sSet is a dense functor, i.e. for any simplicial set 𝑋, the tau-
tological cocone[2] from the canonical diagram (Δ• ↓ 𝑋) → sSet to 𝑋 is
colimiting.

(iv) Let ℰ be a locally small category with colimits for all small diagrams. If
𝐹 : sSet → ℰ is a functor that preserves small colimits, then it is left
adjoint to the functor ℰ → sSet defined by 𝐸 ↦ ℰ(𝐹 Δ•, 𝐸).

(v) With ℰ as above, the functor 𝐹 ↦ 𝐹 Δ• from the category of colimit-
preserving functors sSet → ℰ to the category of all functors 𝚫 → ℰ is
fully faithful and essentially surjective on objects.

Proof. Claim (i) is just the Yoneda lemma, claim (ii) follows from the lemma
above, and claims (iii)–(v) are just facts about dense functors, pointwise left
Kan extensions, weighted colimits: see proposition a.4.20, theorem a.4.11, and
proposition a.5.11. ■

Definition 1.1.12. An element of 𝑋𝑛 is called an 𝑛-simplex of 𝑋; in particular,
an element of 𝑋0 is a vertex of 𝑋 and an element of 𝑋1 is an edge of 𝑋. This
is justified by statement (i) in the above theorem. Given an edge 𝑓 of 𝑋, the
source of 𝑓 is the vertex 𝑑1(𝑓 ), and the target of 𝑓 is the vertex 𝑑0(𝑓 ); we write
𝑓 : 𝑥 → 𝑦 to mean 𝑑1(𝑓 ) = 𝑥 and 𝑑2(𝑓 ) = 𝑦.

[2] See definition a.4.10.
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Definition 1.1.13. The standard 𝑛-simplex in Top, denoted by |Δ𝑛|, is the to-
pological space

|Δ𝑛| = {(𝑥0, … , 𝑥𝑛) ∈ [0, 1]𝑛+1 | 𝑥0 + ⋯ + 𝑥𝑛 = 1}

where [0, 1] is the closed unit interval with the standard metric. The functor
|Δ•| : 𝚫 → Top sends [𝑛] to |Δ𝑛| and is defined on morphisms by linearly
interpolating the obvious map of vertices.

Corollary 1.1.14. There exists an adjunction

|−| ⊣ S : Top → sSet

extending the functor |Δ•| : 𝚫 → Top defined above, and this adjunction is
unique up to unique isomorphism. Explicitly, we may take

S(𝑌 )𝑛 = Top(|Δ𝑛|, 𝑌 )

with the evident face and degeneracy operators induced by the coface and code-
generacy maps in 𝚫. ■

Definition 1.1.15. The geometric realisation of a simplicial set 𝑋 is the topo-
logical space |𝑋|, and the singular set of a topological space 𝑌 is the simplicial
set S(𝑌 ).

Remark 1.1.16. The geometric realisation |𝑋| is stable under universe enlarge-
ment, by theorem 0.3.17.

Theorem 1.1.17. Let CGHaus be the category of compactly-generated Haus-
dorff spaces[3] and continuous maps.

(i) The topological standard 𝑛-simplex |Δ𝑛| is a compact Hausdorff space.

(ii) For any simplicial set 𝑋, the geometric realisation |𝑋| is a compactly-
generated Hausdorff space.

(iii) The previously-constructed adjunction |−| ⊣ S : Top → sSet restricts
to an adjunction between CGHaus and sSet, and moreover the functor
|−| : sSet → CGHaus preserves finite limits and reflects isomorphisms.

Proof. Claim (i) is a standard fact, while claims (ii) and (iii) are proven in [GZ,
Ch. III, § 3]. □

[3] See definition a.1.26.
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1.2 Nerves, skeletons, and coskeletons

Prerequisites. §§ 1.1, a.1.

Proposition 1.2.1. Let N : Cat → sSet be the functor defined by the formula

N(ℂ)𝑛 = Fun([𝑛], ℂ)

where [𝑛] here denotes the preorder category {0 → ⋯ → 𝑛}.

(i) N : Cat → sSet has a left adjoint 𝜏1 : sSet → Cat such that 𝜏1Δ𝑛 = [𝑛].

(ii) The functor N is fully faithful and exhibits Cat as a reflective subcategory
of sSet.

(iii) N : Cat → sSet is a cartesian closed functor.

(iv) The functor 𝜏1 preserves finite products.

Proof. (i). Apply theorem 1.1.11.

(ii). A functor is entirely determined by its action on objects, arrows, and com-
posable strings of arrows, so N is fully faithful.

(iii). N preserves binary products, so we have the following natural bijections:

sSet(Δ𝑛, N([ℂ, 𝔻])) ≅ Fun([𝑛], [ℂ, 𝔻])
≅ Fun([𝑛] × ℂ, 𝔻)
≅ sSet(N([𝑛] × ℂ), N(𝔻))
≅ sSet(N([𝑛]) × N(ℂ), N(𝔻))
≅ sSet(N([𝑛]), [N(ℂ), N(𝔻)])
≅ sSet(Δ𝑛, [N(ℂ), N(𝔻)])

Thus, by theYoneda lemma, the canonical morphismN([ℂ, 𝔻]) → [N(ℂ), N(𝔻)]
is an isomorphism.

(iv). It is clear that 𝜏1 preserves terminal objects. Let 𝑋 and 𝑌 be simplicial sets.
We wish to show that the canonical morphism 𝜏1(𝑋 × 𝑌 ) → 𝜏1𝑋 × 𝜏1𝑌 is an
isomorphism; but since 𝜏1 is a left adjoint and both sSet and Cat are cartesian

54



1.2. Nerves, skeletons, and coskeletons

closed, it is enough to check the claim for 𝑌 = Δ𝑛, because sSet is generated
under colimits by {Δ𝑛 | 𝑛 ∈ ℕ}. We have the following natural bijections:

Fun(𝜏1(𝑋 × Δ𝑛), ℂ) ≅ sSet(𝑋 × Δ𝑛, N(ℂ))
≅ sSet(𝑋, N(ℂ)Δ𝑛

)
≅ sSet(𝑋, N([[𝑛], ℂ]))
≅ Fun(𝜏1𝑋, [[𝑛], ℂ])
≅ Fun(𝜏1𝑋 × [𝑛], ℂ)
≅ Fun(𝜏1𝑋 × 𝜏1Δ𝑛, ℂ)

The claim follows by the Yoneda lemma. ■

Definition 1.2.2. The fundamental category of a simplicial set 𝑋 is the small
category 𝜏1𝑋, and the nerve of a small category ℂ is the simplicial set N(ℂ).

Remark 1.2.3. Given a simplicial set 𝑋, the fundamental category 𝜏1𝑋 admits
the following presentation by generators and relations: the objects are the ver-
tices of 𝑋, and the arrows are generated by the edges of 𝑋, modulo the relation
𝑑0(𝛼) ∘ 𝑑2(𝛼) = 𝑑1(𝛼) for all 2-simplices 𝛼 in 𝑋. This shows that 𝜏1𝑋 is stable
under universe enlargement.

Proposition 1.2.4. Let disc : Set → sSet be the functor defined by the formula

(disc 𝑌 )𝑛 = 𝑌

with id𝑌 for all the face and degeneracy maps.

(i) disc : Set → sSet has a left adjoint 𝜋0 : sSet → Set such that 𝜋0Δ𝑛 = 1.

(ii) The functor disc is fully faithful and exhibits Set as a reflective subcategory
of sSet.

(iii) N : Set → sSet is a cartesian closed functor.

(iv) The functor 𝜋0 preserves products.

Proof. (i). We could apply theorem 1.1.11, but it is also fairly straightforward to
check that this explicit construction works: for each simplicial set 𝑋, we define
𝜋0𝑋 by the coequaliser diagram in Set shown below,

𝑋1 𝑋0 𝜋0𝑋
𝑑0

𝑑1
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and for each morphism 𝑓 : 𝑋 → 𝑌 in sSet, we define 𝜋0𝑓 to be the unique
morphism making the evident diagram commute.

(ii). It is clear that disc is fully faithful.

(iii). By proposition a.1.15, we have an analogous adjunction 𝜋0 ⊣ disc : Set →
Cat. It is clear that we have a natural isomorphism N(disc 𝑌 ) ≅ disc 𝑌 for every
set 𝑌 , and we know disc : Set → Cat and N : Cat → sSet are cartesian closed
functors, so disc : Set → sSet must also be cartesian closed.

(iv). Similarly, for any simplicial set 𝑋, we have a natural isomorphism 𝜋0𝑋 ≅
𝜋0𝜏1𝑋; but we know that 𝜋0 : Cat → Set preserves finite products, and 𝜏1 :
sSet → Cat preserves finite products by proposition 1.2.1, so 𝜋0 : sSet → Set
must also preserve finite products. ■

Definition 1.2.5. The set of connected components of a simplicial set 𝑋 is the
set 𝜋0𝑋, and a discrete simplicial set is one that is isomorphic to disc 𝑌 for some
set 𝑌 .

¶ 1.2.6. We will usually not distinguish between 𝑌 and disc 𝑌 notationally.

Proposition 1.2.7. Let N : Grpd → sSet be the functor defined by the formula

N(𝔾)𝑛 = Fun(𝐈[𝑛], 𝔾)

where 𝐈[𝑛] here denotes the groupoid obtained by freely inverting the arrows in
the preorder category [𝑛].

(i) For any groupoid 𝔾, the nerve N(𝔾) is the same (up to isomorphism)
whether computed for 𝔾 as a groupoid or 𝔾 as a category.

(ii) N : Grpd → sSet has a left adjoint 𝜋1 : sSet → Grpd such that 𝜋1Δ𝑛 =
𝐈[𝑛].

(iii) The functorN is fully faithful and exhibitsGrpd as a reflective subcategory
of sSet.

(iv) N : Grpd → sSet is a cartesian closed functor.

(v) The functor 𝜋1 preserves finite products.
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Proof. (i). By the universal property of 𝐈[𝑛], there is a natural bijection

Fun(𝐈[𝑛], 𝔾) ≅ Fun([𝑛], 𝔾)

for all groupoids 𝔾, so the two nerve constructions do indeed agree.

(ii) and (iii). These are proven in exactly the same way as in proposition 1.2.1.

(iv) and (v). These are proven in exactly the same way as in proposition 1.2.4.
■

Definition 1.2.8. The fundamental groupoid of a simplicial set 𝑋 is the small
groupoid 𝜋1𝑋.

Remark 1.2.9. Given a simplicial set 𝑋, the fundamental groupoid 𝜋1𝑋 admits
a presentation of the same kind as the fundamental category 𝜏1𝑋, and in fact 𝜋1𝑋
is isomorphic to the groupoid obtained by freely inverting the arrows in 𝜏1𝑋:

Fun(𝜋1𝑋, 𝔾) ≅ sSet(𝑋, N(𝔾)) ≅ Fun(𝜏1𝑋, 𝔾)

This shows that 𝜋1𝑋 is stable under universe enlargement.

Definition 1.2.10. Let 𝑛 be a natural number, and let 𝚫≤𝑛 be the full subcategory
of 𝚫 spanned by the objects [0], … , [𝑛]. An 𝑛-truncated simplicial set is a func-
tor 𝚫≤𝑛

op → Set, and we write sSet≤𝑛 for the category of 𝑛-truncated simplicial
sets. The brutal 𝑛-truncation of a simplicial set 𝑋 is the 𝑛-truncated simplicial
set 𝑋≤𝑛 defined by the evident reduct:

𝑋≤𝑛([𝑚]) = 𝑋([𝑚])

Proposition 1.2.11. Let 𝑛 be a natural number, and let 𝑗 : 𝚫≤𝑛 → 𝚫 be the
inclusion.

(i) The functor 𝑗∗ : sSet → sSet≤𝑛 has a left adjoint Lan𝑗 : sSet≤𝑛 → sSet.

(ii) The unit id ⇒ 𝑗∗ Lan𝑗 is a natural isomorphism.

(iii) Lan𝑗 : sSet≤𝑛 → sSet is a fully faithful functor.

(i′) The functor 𝑗∗ : sSet → sSet≤𝑛 has a right adjoint Ran𝑗 : sSet≤𝑛 → sSet.

(ii′) The counit 𝑗∗ Ran𝑗 ⇒ id is a natural isomorphism.
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(iii′) Ran𝑗 : sSet≤𝑛 → sSet is a fully faithful functor.

Proof. (i) and (i′). Use theorem a.4.11.

(ii) and (ii′). The inclusion 𝑗 : 𝚫≤𝑛 → 𝚫 is fully faithful, so the unit id ⇒ 𝑗∗ Lan𝑗
and the counit 𝑗∗ Ran𝑗 ⇒ id are natural isomorphisms, by corollary a.4.15.

(iii) and (iii′). It is a well-known fact that the unit (resp. counit) of an adjunc-
tion is a natural isomorphism if and only if the left (resp. right) adjoint is fully
faithful.[4] ■

Definition 1.2.12. For each natural number 𝑛, with notation as above, let sk𝑛 :
sSet → sSet be the composite Lan𝑗 𝑗∗, and let cosk𝑛 : sSet → sSet be the
composite Ran𝑗 𝑗∗. The 𝑛-skeleton of a simplicial set 𝑋 is the simplicial set
sk𝑛(𝑋), and the 𝑛-coskeleton of a simplicial set is the simplicial set cosk𝑛(𝑋).
A 𝑛-skeletal simplicial set is one that is isomorphic to the 𝑛-skeleton of some
simplicial set, and an 𝑛-coskeletal simplicial set is one that is isomorphic to the
𝑛-coskeleton of some simplicial set.

Remark 1.2.13. In the special case 𝑛 = 0, Lan𝑗 may be identified with the func-
tor disc : Set → sSet defined in proposition 1.2.4. Thus, 0-skeletal simpli-
cial sets are precisely the discrete simplicial sets. On the other hand, given a
set 𝑋, Ran𝑗 𝑋 can be identified with the simplicial set whose 𝑚-simplices are
(𝑚 + 1)-tuples of elements of 𝑋, with face and degeneracy maps induced by the
appropriate projections.

Proposition 1.2.14. Let 𝑛 be a natural number.

(i) The full subcategory of 𝑛-skeletal simplicial sets is a coreflective subcat-
egory of sSet, with coreflector sk𝑛.

(ii) sk𝑛 is the underlying endofunctor of an idempotent comonad on sSet.

(iii) A simplicial set 𝑋 is 𝑛-skeletal if and only if the counit sk𝑛(𝑋) → 𝑋 is an
isomorphism.

(iv) If 𝑚 ≥ 𝑛, then any 𝑛-skeletal simplicial set is also 𝑚-skeletal.

(i′) The full subcategory of 𝑛-coskeletal simplicial sets is a reflective subcat-
egory of sSet, with reflector cosk𝑛.

[4] See e.g. [CWM, Ch. IV, § 3].

58



1.2. Nerves, skeletons, and coskeletons

(ii′) cosk𝑛 is the underlying endofunctor of an idempotent monad on sSet.

(iii′) A simplicial set 𝑋 is 𝑛-coskeletal if and only if the unit 𝑋 → cosk𝑛(𝑋) is
an isomorphism.

(iv′) If 𝑚 ≥ 𝑛, then any 𝑛-coskeletal simplicial set is also 𝑚-coskeletal.

Proof. All straightforward from the definitions. ⧫

Proposition 1.2.15. Let 𝑛 be a natural number, and let 𝑋 be a simplicial set.

(i) We have the following adjunction:

sk𝑛 ⊣ cosk𝑛 : sSet → sSet

(ii) The counit sk𝑛(𝑋) → 𝑋 is a monomorphism, and 𝑋 is 𝑛-skeletal if and
only if all 𝑚-simplices of 𝑋 are degenerate for 𝑚 > 𝑛.

(iii) 𝑋 is 𝑛-coskeletal if and only if, for all natural numbers 𝑚, the map

𝑋𝑚 ≅ sSet(Δ𝑚, 𝑋) → sSet(sk𝑛(Δ𝑚), 𝑋)

induced by the counit sk𝑛(Δ𝑚) → Δ𝑚 is a bijection.

Proof. (i). Immediate from the definition of sk𝑛 and cosk𝑛.

(ii). The most straightforward way of seeing this is to construct sk𝑛(𝑋) explicitly
as the smallest simplicial subset of 𝑋 containing all of its 𝑛-simplices.

(iii). Apply the Yoneda lemma in conjunction with claim (i). ■

Example 1.2.16. For any small category ℂ, the nerve N(ℂ) is a 2-coskeletal
simplicial set: by definition, an 𝑚-simplex of N(ℂ) is just a functor [𝑚] → ℂ,
but the property of being a functor can be detected by only inspecting the vertices,
edges, and 2-cells.

Proposition 1.2.17. The following full subcategories are exponential ideals of
sSet:

(i) Discrete simplicial sets.

(ii) Simplicial sets isomorphic to the nerve of some category.
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(iii) Simplicial sets isomorphic to the nerve of some groupoid.

(iv) 𝑛-coskeletal simplicial sets for some natural number 𝑛.

Proof. Apply proposition a.1.13 to propositions 1.2.4, 1.2.1, 1.2.7, and 1.2.14.
■

1.3 The Kan–Quillen model structure

Prerequisites. §§ 0.4 1.1, a.2.
In [1967], Quillen constructed an axiomatic framework for doing homotopy

theory in abstract categories, which he called ‘closed model categories’, and
showed that sSet can be endowed with a model structure such that the result-
ing homotopy theory is equivalent in a strong sense to the homotopy theory of
topological spaces.

Definition 1.3.1. A horn is a simplicial subset of the form Λ𝑛
𝑘 ⊆ Δ𝑛, where Λ𝑛

𝑘
is the union of the images of 𝛿0

𝑛 , … , 𝛿𝑘−1
𝑛 , 𝛿𝑘+1

𝑛 , … , 𝛿𝑛
𝑛 : Δ𝑛−1 → Δ𝑛 in sSet. In

other words, Λ𝑛
𝑘 is the union of all the faces of Δ𝑛 that include the 𝑘-th vertex.

The boundary of Δ𝑛 is the simplicial subset 𝜕Δ𝑛 ⊆ Δ𝑛 generated by the images
of 𝛿0

𝑛 , … , 𝛿𝑛
𝑛 : Δ𝑛−1 → Δ𝑛.

Remark 1.3.2. The boundary 𝜕Δ𝑛 may be identified with sk𝑛−1Δ𝑛.

Definition 1.3.3. A cofibration in sSet is a monomorphism. A Kan fibration
is a morphism 𝑓 : 𝑋 → 𝑌 in sSet that has the right lifting property with respect
to the horn inclusions Λ𝑛

𝑘 ↪ Δ𝑛, where 𝑛 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛. A Kan complex
is a simplicial set 𝑋 such that the unique morphism 𝑋 → 1 is a Kan fibration.

Remark 1.3.4. In other words, a Kan complex is a simplicial set 𝑋 satisfying
the Kan condition: every horn 𝛼′ : Λ𝑛

𝑘 → 𝑋 has a filler, i.e. a morphism 𝛼 :
Δ𝑛 → 𝑋 (equivalently, an 𝑛-simplex of 𝑋) such that 𝛼′ is the restriction along
the inclusion Λ𝑛

𝑘 ↪ Δ𝑛.

Lemma 1.3.5. If 𝑋 is a Kan complex, then the fundamental category 𝜏1𝑋 is a
groupoid, and the unit 𝜂𝑋 : 𝑋 → N(𝜏1𝑋) is an epimorphism.

Proof. Let 𝑥, 𝑦, and 𝑧 be vertices in 𝑋, and let 𝑓 : 𝑥 → 𝑦 and 𝑔 : 𝑦 → 𝑧 be
edges in 𝑋.[5] Then the pair (𝑓 , 𝑔) defines a horn Λ2

1 → 𝑋, and so by the Kan

[5] Recall definition 1.1.12.
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condition, there exists a 2-simplex 𝛼 of 𝑋 such that 𝑑2(𝛼) = 𝑓 and 𝑑0(𝛼) = 𝑔.
By remark remark 1.2.3, the composite 𝑔 ∘ 𝑓 defined in 𝜏1𝑋 must correspond
to the edge 𝑑1(𝛼). Since the arrows in 𝜏1𝑋 are generated by the edges of 𝑋, we
conclude by induction that 𝜂𝑋 : 𝑋 → N(𝜏1𝑋) is a surjection on vertices and
edges.

Similarly, given an edge 𝑓 : 𝑥 → 𝑦, the Kan condition ensures that there
exist two 2-simplices 𝛽 and 𝛾 such that

𝑑2(𝛼) = 𝑓 𝑑1(𝛼) = id𝑥

𝑑0(𝛼) = 𝑓 𝑑1(𝛼) = id𝑦

where id𝑥 : 𝑥 → 𝑥 is the edge 𝑠0(𝑥), and id𝑦 : 𝑦 → 𝑦 is the edge 𝑠0(𝑦). Together
with the argument in the previous paragraph, this shows that 𝜏1𝑋 is a groupoid.

Finally, to show that 𝜂𝑋 : 𝑋 → N(𝜏1𝑋) is a surjection on 𝑛-simplices for
𝑛 ≥ 2, we simply observe that an 𝑛-simplex of N(𝜏1𝑋) is just a string of 𝑛
composable edges of 𝑋, so we may appeal to the Kan condition again to obtain
the corresponding 𝑛-simplex of 𝑋. ■

Corollary 1.3.6. If 𝑋 is a Kan complex, then the unit 𝜂𝑋 : 𝑋 → N(𝜋1𝑋) is an
epimorphism.

Proof. Since 𝜏1𝑋 is already a groupoid, the canonical functor 𝜏1𝑋 → 𝜋1𝑋 must
be an isomorphism. (See remark 1.2.9.) ■

Proposition 1.3.7. Let ℐ and 𭒥 be the following subsets of mor sSet:

ℐ = {Λ𝑛
𝑘 ↪ Δ𝑛 | 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛}

𭒥 = {𝜕Δ𝑛 ↪ Δ𝑛 | 𝑛 ≥ 0}

(i) There exist a pair of functorial factorisation systems on sSet, one indu-
cing a weak factorisation system cofibrantly generated by ℐ, and the other
inducing a weak factorisation system cofibrantly generated by 𭒥.

(ii) A morphism is ℐ-injective if and only if it is a Kan fibration, and every
ℐ-cofibration is a monomorphism (but not vice versa).

(iii) A morphism is a 𭒥-cofibration if and only if it is a monomorphism, and
every 𭒥-injective morphism is a Kan fibration (but not vice versa).
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Proof. (i). Since sSet is a locally finitely presentable category, we may apply
Quillen’s small object argument (theorem 0.4.11).

(ii). The definition of ‘Kan fibration’ is exactly the definition of ‘ℐ-fibration’; on
the other hand, the class of monomorphisms is closed under pushout, transfin-
ite composition, and retracts in Set, so the same is true for sSet, and thus, by
corollary 0.4.12, every ℐ-cofibration must be a monomorphism.

(iii). To prove that injℐ 𭒞 ⊇ inj𭒥 𭒞, it is enough to check that ℐ ⊆ cof𭒥 𭒞; since
every morphism in ℐ is a monomorphism, it will suffice to show that cof𭒥 𭒞
is precisely the class of all monomorphisms. For this, see the remarks at the
beginning of [Joyal and Tierney, 2008, § 3.1], or Proposition 1 in [Quillen, 1967,
Ch. II, § 2]. □

Definition 1.3.8. An anodyne extension, or trivial cofibration in sSet, is a
cofibration that has the left lifting property with respect to all Kan fibrations. A
trivial Kan fibration is a Kan fibration that has the right lifting property with
respect to all cofibrations.

Proposition 1.3.9. Let 𝑖 : 𝑍 → 𝑊 be a cofibration in sSet and let 𝑝 : 𝑋 → 𝑌
be a Kan fibration. Suppose we have a commutative diagram

[𝑊 , 𝑋]

𝐿(𝑖, 𝑝) [𝑍, 𝑋]

[𝑊 , 𝑌 ] [𝑍, 𝑌 ]

[𝑊 ,𝑝]

[𝑖,𝑋]

[𝑍,𝑝]

[𝑖,𝑌 ]

where the square in the lower right is a pullback square.

(i) The unique morphism [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝) making the diagram commute is
a Kan fibration.

(ii) If 𝑖 : 𝑍 → 𝑊 is an anodyne extension, then [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝) is a trivial
Kan fibration.

(iii) If 𝑝 : 𝑍 → 𝑊 is a trivial Kan fibration, then so is [𝑊 , 𝑋] → 𝐿(𝑖, 𝑝).
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Proof. (i). See Theorem 3.3.1 in [Hovey, 1999], or Proposition 5.2 in [GJ, Ch. I].

(ii) and (iii). See Proposition 11.5 in [GJ, Ch. I]; for a purely combinatorial
proof, see Theorem 3.2.1 in [Joyal and Tierney, 2008]. □

Corollary 1.3.10.
(i) If 𝑝 : 𝑋 → 𝑌 is a Kan fibration (resp. trivial Kan fibration), then for all

simplicial sets 𝑊 , the morphism [𝑊 , 𝑝] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] is also a
Kan fibration (resp. trivial Kan fibration).

(ii) If 𝑖 : 𝑍 → 𝑊 is a cofibration (resp. anodyne extension) and 𝑋 is a Kan
complex, then the morphism [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋] is a Kan fibration
(resp. trivial Kan fibration).

(iii) If 𝑊 is any simplicial set and 𝑋 is a Kan complex, then [𝑊 , 𝑋] is also a
Kan complex.

Proof. (i). Take 𝑍 = ∅; noting that the canonical morphism ∅ → 𝑊 is a
cofibration, and that [∅, 𝑝] : [∅, 𝑋] → [∅, 𝑌 ] is an isomorphism, the proposition
above then implies [𝑊 , 𝑝] : [𝑊 , 𝑋] → [𝑊 , 𝑌 ] is a Kan fibration (resp. trivial
Kan fibration).

(ii). Take 𝑌 = 1; since [𝑊 , 1] → [𝑍, 1] is an isomorphism, the proposition
above implies [𝑖, 𝑋] : [𝑊 , 𝑋] → [𝑍, 𝑋] is a Kan fibration (resp. trivial Kan
fibration).

(iii). Noting that [∅, 𝑋] is a terminal object in sSet, we apply claim (ii) to the
case 𝑍 = ∅ to obtain the desired conclusion. ■

The following combinatorial definition of weak homotopy equivalence is due
to Joyal and Tierney [2008]. Recalling the definition of 𝜋0 : sSet → Set from
proposition 1.2.4 as the functor sending a simplicial set 𝑋 to the set 𝜋0 of its
connected components,

Definition 1.3.11. Aweak homotopy equivalence of simplicial sets is amorph-
ism 𝑓 : 𝑊 → 𝑍 such that, for every Kan complex 𝐾 , the induced map

𝜋0[𝑓 , 𝐾] : 𝜋0[𝑍, 𝐾] → 𝜋0[𝑊 , 𝐾]

is a bijection of sets.
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Proposition 1.3.12.
(i) A Kan fibration 𝑝 : 𝑋 → 𝑌 is trivial if and only if it is a weak homotopy

equivalence.

(ii) A cofibration 𝑖 : 𝑍 → 𝑊 is an anodyne extension if and only if it is a
weak homotopy equivalence.

Proof. See Propositions 3.4.1 and 3.4.2 in [Joyal and Tierney, 2008]. □

In summary, we have:

Theorem 1.3.13. sSet, regarded as a sSet-enriched category via its cartesian
closed structure, is a simplicial model category where

• the cofibrations are the monomorphisms in sSet,

• the fibrations are the Kan fibrations, and

• the weak equivalences are the weak homotopy equivalences.

This is the Kan–Quillen model structure on simplicial sets.

Proof. We know sSet has limits and colimits for all small diagrams and is a
cartesian closed category, so it satisfies axioms CM1 and SM0. Using the defin-
ition of weak homotopy equivalence given above, the class of weak homotopy
equivalences has the 2-out-of-6 property by lemma a.3.13, hence axiom CM2 is
satisfied. Proposition 1.3.7 plus theorem 3.1.7 then shows that the announced
cofibrations, fibrations, and weak equivalences do indeed constitute a closed
model structure on sSet.

Finally, we note that proposition 1.3.9 is precisely the condition required by
axiom SM7. ■

Proposition 1.3.14. There exist a functor 𝑅 : sSet → sSet and a natural trans-
formation 𝜂 : idsSet ⇒ 𝑅 such that, for all simplicial sets 𝑋, 𝑅𝑋 is a Kan com-
plex and 𝑖𝑋 : 𝑋 → 𝑅𝑋 is an anodyne extension. Moreover, any such functor 𝑅
preserves weak homotopy equivalences.

Proof. By proposition 1.3.7, for each 𝑋, there is a factorisation of the unique
morphism 𝑋 → 1 as an anodyne extension 𝑖𝑋 : 𝑋 → 𝑅𝑋 followed by a Kan
fibration 𝑅𝑋 → 1, and this is moreover functorial in 𝑋. Finally, if 𝑓 : 𝑋 → 𝑌
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is a weak homotopy equivalence in sSet, then the commutativity of the diagram
below

𝑋 𝑅𝑋

𝑌 𝑅𝑌

𝑓

𝑖𝑋

𝑅𝑓

𝑖𝑌

plus proposition 1.3.12 and the 2-out-of-3 property for weak homotopy equival-
ences implies 𝑅𝑓 is also a weak homotopy equivalence. ■

1.4 Intrinsic homotopy

Prerequisites. §§ 1.3, a.3.

Definition 1.4.1. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in sSet.
An intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 is an edge of the exponential object [𝑋, 𝑌 ]
such that 𝑑1(𝛼) = 𝑓0 and 𝑑0(𝛼) = 𝑓1. (Note the subscripts!) We say 𝑓0 and 𝑓1
are intrisically homotopic if there is a zigzag of intrinsic homotopies connecting
𝑓0 and 𝑓1, or equivalently, if 𝑓0 and 𝑓1 are in the same connected component of
[𝑋, 𝑌 ].

Remark 1.4.2. By the Yoneda lemma,

[𝑋, 𝑌 ]1 ≅ sSet(Δ1, [𝑋, 𝑌 ]) ≅ sSet(Δ1 × 𝑋, 𝑌 )

so an intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1 is essentially the same thing as a morphism
𝛼̃ : Δ1 × 𝑋 → 𝑌 such that 𝛼̃ ∘ (𝛿1 × id𝑌 ) = 𝑓0 and 𝛼̃ ∘ (𝛿0 × id𝑌 ) = 𝑓1 (where
we have suppressed the canonical isomorphism 𝑋 ≅ Δ0 ×𝑋), just as in classical
homotopy theory. Also,

sSet(Δ1 × 𝑋, 𝑌 ) ≅ sSet(𝑋, [Δ1, 𝑌 ])

so intrinsic homotopies 𝛼 : 𝑓0 ⇒ 𝑓1 correspond to morphisms 𝛼̂ : 𝑋 → [Δ1, 𝑌 ]
such that [𝛿1, 𝑌 ] ∘ 𝛼̂ = 𝑓0 and [𝛿0, 𝑌 ] ∘ 𝛼̂ = 𝑓1 (where we have suppressed the
canonical isomorphism [Δ0, 𝑌 ] ≅ 𝑌 ).

The notion of intrinsic homotopy is not well-behaved for general simplicial
sets 𝑌 . For example, the existence of an intrinsic homotopy 𝑓0 ⇒ 𝑓1 does not
guarantee the existence of an “inverse” intrinsic homotopy 𝑓1 ⇒ 𝑓0, and even
if we have intrinsic homotopies 𝑓0 ⇒ 𝑓1 and 𝑓1 ⇒ 𝑓2, there need not be an
intrinsic homotopy 𝑓0 ⇒ 𝑓2. However:
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Proposition 1.4.3. For any simplicial set𝑋 and any Kan complex 𝑌 , the relation
∼ on sSet(𝑋, 𝑌 ) defined by

𝑓0 ∼ 𝑓1 if and only if there exists an intrinsic homotopy 𝑓0 ⇒ 𝑓1

is an equivalence relation.

Proof. The relation ∼ is certainly reflexive whether or not 𝑌 is a Kan complex.
Recalling lemma 1.3.5, the transitivity of ∼ may be deduced from the fact that the
unit 𝜂𝑋 : 𝑋 → N(𝜏1𝑋) is an epimorphism, and the symmetry of ∼ corresponds
to the fact that 𝜏1𝑋 is a groupoid. ■

¶ 1.4.4. Let Kan be the full subcategory of sSet spanned by the Kan com-
plexes. For each category 𭒞 with finite products and each functor 𝐹 : sSet → 𭒞
that preserves finite products, let 𝐹 [Kan] denote the following 𭒞-enriched cat-
egory:

• ob 𝐹 [Kan] = obKan.

• For each pair of Kan complexes 𝑋 and 𝑌 , the hom-object is 𝐹 [𝑋, 𝑌 ],
where [𝑋, 𝑌 ] is the exponential object in sSet.

• Composition and identity morphisms are induced by 𝐹 from the cartesian
closed structure of sSet.

The next definition is a prime example of the above construction.

Definition 1.4.5. The homotopy category of Kan complexes is the category
𝐇 = 𝜋0[Kan]. A homotopy type is an isomorphism class of objects in 𝐇.

Proposition 1.4.6. For each simplicial set 𝑍, let 𝜂𝑍 : 𝑍0 → 𝜋0𝑍 be the map of
vertices induced by the adjunction unit idsSet ⇒ disc 𝜋0.

(i) There is a (unique) functor 𝛑 : Kan → 𝐇 that acts as the identity on
objects and as 𝜂[𝑋,𝑌 ] : [𝑋, 𝑌 ]0 → 𝜋0[𝑋, 𝑌 ] on morphisms.

(ii) The functor 𝛑 is full, surjective on objects, and preserves finite products.

(iii) Kan is closed under products for all small families in sSet, and 𝐇 has
products for finite families.

(iv) Kan and 𝐇 are cartesian closed categories, and 𝛑 : Kan → 𝐇 is a
cartesian closed functor.
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(v) A morphism 𝑓 : 𝑋 → 𝑌 in Kan is a weak homotopy equivalence if and
only if 𝛑𝑓 : 𝛑𝑋 → 𝛑𝑌 is an isomorphism in 𝐇.

Proof. (i). The construction of 𝐇 as 𝜋0[Kan] ensures that 𝛑 is indeed a functor.

(ii). It is clear from the construction of 𝜋0𝑍 as a coequaliser that 𝜂𝑍 : 𝑍0 → 𝜋0𝑍
is a surjection; thus 𝛑 is a full functor. It is obviously surjective on objects, and
it preserves finite products because 𝜋0 does.

(iii). By proposition a.2.12, the class of Kan fibrations is closed under products
for small families, so Kan is as well. By claim (ii), 𝐇 inherits finite products
from Kan.

(iv). By proposition 1.3.9, [𝑌 , 𝐾] is a Kan complex whenever 𝐾 is, which com-
bined with claim (iii) implies Kan is cartesian closed. Proposition a.1.11 says
we have natural isomorphisms [𝑋 × 𝑌 , 𝐾] ≅ [𝑋, [𝑌 , 𝐾]], so it follows that we
have natural bijections

𝜋0[𝑋 × 𝑌 , 𝐾] ≅ 𝜋0[𝑋, [𝑌 , 𝐾]]

for all 𝑋, 𝑌 , and 𝐾 in Kan, and this descends along 𝛑 to make 𝐇 cartesian
closed.

(v). The Joyal–Tierney definition says 𝑓 : 𝑋 → 𝑌 is a weak equivalence if and
only if 𝜋0[𝑓 , 𝐾] : 𝜋0[𝑌 , 𝐾] → 𝜋0[𝑋, 𝐾] is a bijection for all Kan complexes 𝐾;
but this is natural in 𝐾 , so the Yoneda lemma implies this happens if and only if
𝛑𝑓 : 𝛑𝑋 → 𝛑𝑌 is an isomorphism in 𝐇. ■

Proposition 1.4.7.
(i) For each simplicial set 𝑋, there exists a Kan complex 𝑅𝑋 such that the

functors 𝜋0[𝑋, −], 𝜋0[𝑅𝑋, −] : Kan → Set are isomorphic.

(ii) For each simplicial set 𝑋, the functor 𝜋0[𝑋, −] : Kan → Set factors
through 𝛑 : Kan → 𝐇 as a representable functor on 𝐇.

(iii) The functor 𝛑 : Kan → 𝐇 extends to a functor 𝛑 : sSet → 𝐇 that
sends weak homotopy equivalences to isomorphisms, and this extension is
unique up (not necessarily unique) isomorphism.
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Proof. (i). By proposition 1.3.14, there is an anodyne extension 𝑖 : 𝑋 → 𝑅𝑋
where𝑅𝑋 is a Kan complex; but proposition 1.3.12 says that anodyne extensions
are weak homotopy equivalences, so 𝜋0[𝑖, 𝐾] : 𝜋0[𝑅𝑋, 𝐾] → 𝜋0[𝑋, 𝐾] is a
bijection natural in 𝐾 , as required.

(ii). The claim is certainly true if 𝑋 were a Kan complex, and by claim (i),
𝜋0[𝑋, −] is always isomorphic to 𝜋0[𝑅𝑋, −] for some Kan complex 𝑅𝑋.

(iii). Formally, what we seek is a functor 𝐹 : sSet → 𝐇 such that, for all Kan
complexes 𝑌 and 𝐾 ,

𝐇(𝐹 𝑌 , 𝛑𝐾) = 𝜋0[𝑌 , 𝐾]

and, for all weak homotopy equivalences 𝑓 : 𝑋 → 𝑌 in sSet, the induced
hom-set map 𝐇(𝐹 𝑓, 𝛑𝐾) : 𝐇(𝐹 𝑌 , 𝛑𝐾) → 𝐇(𝐹 𝑋, 𝛑𝐾) is a bijection for all
Kan complexes 𝐾 . Clearly, for any such 𝐹 and any simplicial set 𝑋, there must
be bijections

𝐇(𝐹 𝑋, 𝛑𝐾) ≅ 𝜋0[𝑋, 𝐾]

that are natural in 𝐾 , but by claim (ii), this is representable as a functor 𝐇 → Set
for each 𝑋, so we can certainly construct such a functor 𝐹 , and it is unique up
to isomorphism. ■

Proposition 1.4.8. Let 𝐹 : Kan → 𭒞 be any functor that sends trivial Kan
fibrations in Kan to isomorphisms in 𭒞.

(i) If 𝑓0, 𝑓1 : 𝑋 → 𝑌 are a parallel pair of morphisms inKan and there exists
an intrinsic homotopy 𝑓0 ⇒ 𝑓1, then 𝐹 𝑓0 = 𝐹 𝑓1.

(ii) If 𝑓0, 𝑓1 : 𝑋 → 𝑌 are an intrinsically homotopic pair of morphisms in
Kan, then 𝐹 𝑓0 = 𝐹 𝑓1.

(iii) There exists a unique functor 𝐹 : 𝐇 → 𭒞 such that 𝐹 = 𝐹 𝛑.

Proof. (i). By remark 1.4.2, given any intrinsic homotopy 𝛼 : 𝑓0 ⇒ 𝑓1, we
may construct a morphism 𝛼̂ : 𝑋 → [Δ1, 𝑌 ] such that [𝛿1, 𝑌 ] ∘ 𝛼̂ = 𝑓0 and

[𝛿0, 𝑌 ] ∘ 𝛼̂ = 𝑓1. Clearly, 𝛿1 : Δ0 → Δ1 is isomorphic to the horn inclusion
Λ1

0 ↪ Δ1, and 𝛿0 : Δ0 → Δ1 is isomorphic to the horn inclusion Λ1
1 ↪ Δ1, so by

proposition 1.3.9, the morphisms [𝛿1, 𝑌 ], [𝛿0, 𝑌 ] : [Δ1, 𝑌 ] → 𝑌 are both trivial
Kan fibrations. Thus, we must have 𝐹 𝑓0 = 𝐹 𝑓1.
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(ii). Proposition 1.4.3 implies that 𝑓0 and 𝑓1 are intrinsically homotopic if and
only if there exists an intrinsic homotopy 𝑓0 ⇒ 𝑓1, so this reduces to claim (i).

(iii). The uniqueness of 𝐹 : 𝐇 → 𭒞 is an immediate corollary of the fact that
𝛑 : Kan → 𝐇 is full and surjective on objects; it remains to be shown that such
an 𝐹 exists. However, given any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in Kan, by the
construction of 𝐇, we have 𝛑𝑓0 = 𝛑𝑓1 if and only if 𝑓0 and 𝑓1 are intrinsically
homotopic, so 𝐹 indeed factors through 𝛑. ■

Corollary 1.4.9.
(i) Any functor 𝐹 : Kan → 𭒞 that sends trivial Kan fibrations in Kan to

isomorphisms in 𭒞 must also send weak homotopy equivalences inKan to
isomorphisms in 𭒞.

(ii) 𝐇 is the localisation of Kan away from weak homotopy equivalences.

(iii) If Ho sSet is the localisation of sSet away from weak homotopy equival-
ences, then the functor 𝛑 : sSet → 𝐇 induces a functor Ho sSet → 𝐇 that
is fully faithful and essentially surjective on objects.

Proof. (i). The above proposition says 𝐹 = 𝐹 𝛑 for some 𝐹 , and we know from
proposition 1.4.6 that 𝛑 inverts weak homotopy equivalences, so 𝐹 must also
invert weak homotopy equivalences.

(ii). This is a restatement of claim (iii) of the above proposition.

(iii). Apply proposition 1.4.7. ■

Remark 1.4.10. Fixing a fibrant replacement functor 𝑅 : sSet → sSet as in
proposition 1.3.14, we have the following explicit construction of Ho sSet:

• The objects are simplicial sets.

• For any two simplicial sets 𝑋 and 𝑌 , Ho sSet(𝑋, 𝑌 ) = 𝜋0[𝑅𝑋, 𝑅𝑌 ].

• Composition and identity morphisms are constructed as in 𝐇.

• The localising functor 𝛾 : sSet → Ho sSet inverting weak homotopy
equivalences is the one sending 𝑓 : 𝑋 → 𝑌 to the homotopy class of
𝑅𝑓 : 𝑅𝑋 → 𝑅𝑌 .

The homotopy category of simplicial sets is the category Ho sSet.
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Definition 1.4.11. An intrinsic homotopy equivalence in sSet is a pair (𝑓 , 𝑔),
where 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are morphisms in sSet such that 𝑔 ∘ 𝑓 ∼ id𝑋
and 𝑓 ∘ 𝑔 ∼ id𝑌 . Two morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are mutual in-
strinsic homotopy inverses when (𝑓 , 𝑔) constitute an intrinsic homotopy equi-
valence.

Proposition 1.4.12 (Formal Whitehead theorem).
(i) If (𝑓 , 𝑔) is an intrinsic homotopy equivalence inKan, then 𝛑𝑓 and 𝛑𝑔 are

mutual inverses in 𝐇.

(ii) A morphism in Kan is a weak homotopy equivalence if and only if it has
a intrinsic homotopy inverse.

Proof. The claims are immediate consequences of propositions 1.4.6 and 1.4.9
applied to the definition of intrinsic homotopy equivalence. ■
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II

Homotopical categories

2.1 Basics

Prerequisites. § a.3.

Definition 2.1.1. A relative category 𭒞 is a category with weak equivalences
if it is semi-satured and weq 𭒞 has the 2-out-of-3 property, and it is a homotop-
ical category if weq 𭒞 has the 2-out-of-6 property. A homotopical functor is a
relative functor between homotopical categories.

Remark 2.1.2. If 𭒞 is a relative category such that weq 𭒞 has the 2-out-of-6 prop-
erty, then every isomorphism in 𭒞 is automatically a weak equivalence. Indeed,
suppose 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are mutual inverses in 𭒞; then the fact that
𝑔 ∘ 𝑓 = id𝑋 and 𝑓 ∘ 𝑔 = id𝑌 are in weq 𭒞 implies that 𝑓 and 𝑔 must also be in
weq 𭒞. Recalling lemma a.3.13, it follows that every homotopical category is a
category with weak equivalences.

¶ 2.1.3. To simplify notation, we will usually not distinguish between und 𭒞
and 𭒞. For example, when 𭒞 and 𭒟 are relative categories, then by ‘ordinary
functor 𭒞 → 𭒟’ we mean a functor und 𭒞 → und 𭒟.

Example 2.1.4. Any saturated relative category is automatically a homotopical
category, by corollary a.3.14. In particular, any minimal saturated relative cat-
egory is a homotopical category. On the other hand, any maximal relative cat-
egory is obviously a homotopical category.

Remark 2.1.5. A relative category 𭒞 is a category with weak equivalences or a
homotopical category if and only if the opposite relative category 𭒞op is.
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Lemma 2.1.6. Let 𝐴 be an object in a homotopical category (resp. category
with weak equivalences) 𭒞. Then the slice category 𭒞∕𝐴 is also a homotopical
category (resp. category with weak equivalences) if we declare a morphism in
𭒞∕𝐴 to be a weak equivalence if and only if it is a weak equivalence in 𭒞.

Proof. Use lemma a.3.13 on the projection functor 𭒞∕𝐴 → 𭒞. ■

Lemma 2.1.7. Any relative subcategory𭒟 of a homotopical category (resp. cat-
egory with weak equivalences) 𭒞 is also a homotopical category (resp. category
with weak equivalences).

Proof. Use lemma a.3.13 on the inclusion 𭒟 ↪ 𭒞. ■

Lemma 2.1.8. Let 𭒞 and𭒟 be two relative categories. If𭒟 is a homotopical cat-
egory (resp. category with weak equivalences), then the relative functor category
[𭒞, 𭒟]h is also a homotopical category (resp. category with weak equivalences).

Proof. This is a straightforward check. ⧫

Definition 2.1.9. Two objects in a relative category are weakly equivalent if
they can be connected by a zigzag of weak equivalences; we write 𝑋 w≃ 𝑌 to
mean that 𝑋 and 𝑌 are weakly equivalent.

Remark 2.1.10. If 𝑋 and 𝑌 are weakly equivalent in a relative category 𭒞, then
they are isomorphic in Ho 𭒞. The converse is certainly true if 𭒞 is saturated, but
is false if 𭒞 is not semi-saturated.

Definition 2.1.11. A parallel pair of morphisms in a relative category 𭒞 are
weakly homotopic if they are equal in Ho 𭒞; we write 𝑓 w∼ 𝑔 to mean that 𝑓
and 𝑔 are weakly homotopic.

Definition 2.1.12. An equivalence in a relative category 𭒞 is a pair (𝑓 , 𝑔), where
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 are morphisms in 𭒞 such that 𝑔 ∘ 𝑓 w∼ id𝑋 and
𝑓 ∘ 𝑔 w∼ id𝑌 . Two morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 in 𭒞 are mutual
quasi-inverses when (𝑓 , 𝑔) constitute an equivalence in 𭒞.

Remark 2.1.13. It follows from the definitions that quasi-inverses are unique up
to weak homotopy.

Lemma 2.1.14. If the localisation functor 𝛾 : 𭒞 → Ho 𭒞 for a relative category
𭒞 is full, then the following are equivalent for all morphisms 𝑓 : 𝑋 → 𝑌 in 𭒞:
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• 𝑓 is a morphism in 𭒞 and has a quasi-inverse.

• 𝛾𝑓 is an isomorphism in 𭒞.

Proof. Obvious. ⧫

Remark 2.1.15. Clearly, any isomorphism in any relative category has a quasi-
inverse; but this implies that in a relative category that is not semi-saturated, a
morphism that has a quasi-inverse need not be a weak equivalence. On other
hand, if 𝑓 is a morphism in a saturated homotopical category and 𝑓 has a quasi-
inverse, then 𝑓 must be a weak equivalence.

Definition 2.1.16. A relative category 𭒞 has theWhitehead property when the
following are equivalent:

• 𝑓 is a weak equivalence in 𭒞.

• 𝑓 is a morphism in 𭒞 and has a quasi-inverse.

Theorem 2.1.17. Let 𭒞 be a relative category. The following are equivalent:

(i) 𭒞 has the Whitehead property.

(ii) The localisation functor 𝛾 : 𭒞 → Ho 𭒞 is full, and 𭒞 is a saturated homo-
topical category.

Proof. (i) ⇒ (ii). By theorem a.3.21, every morphism 𝛾𝑋0 → 𝛾𝑋𝑛 in Ho 𭒞 is of
the form

(𝛾𝑓𝑛)
−1 ∘ ⋯ ∘ 𝛾ℎ2 ∘ (𝛾𝑓1)

−1 ∘ 𝛾ℎ1

for some morphisms ℎ1 : 𝑋0 → 𝑌1, 𝑓1 : 𝑋1 → 𝑌1, ℎ2 : 𝑋1 → 𝑌2, etc. in 𭒞, where
𝑓1, … , 𝑓𝑛 are weak equivalences. By the Whitehead property, each 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑖
has a quasi-inverse in 𭒞, say 𝑔𝑖 : 𝑌𝑖 → 𝑋𝑖. Since 𝛾𝑔𝑖 = (𝛾𝑓𝑖)

−1, it follows that

(𝛾𝑓𝑛)
−1 ∘ ⋯ ∘ ℎ2 ∘ (𝛾𝑓1)

−1 ∘ 𝛾ℎ1 = 𝛾(𝑔𝑛 ∘ ⋯ ∘ ℎ2 ∘ 𝑔1 ∘ ℎ1)

and therefore 𝛾 : 𭒞 → Ho 𭒞 is indeed full.
In particular, every morphism 𝑓 : 𝑋 → 𝑌 in 𭒞 such that 𝛾𝑓 : 𝛾𝑋 → 𝛾𝑌 is

an isomorphism in Ho 𭒞 must have a quasi-inverse, and hence must be a weak
equivalence, in view of the Whitehead property. We therefore conclude that 𭒞 is
a saturated homotopical category.

(ii) ⇒ (i). The converse follows from the definitions and lemma 2.1.14. ■
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Remark 2.1.18. The Whitehead property is in general not inherited by slice cat-
egories or by functor categories. For example, if 𝑞∘𝑓 = 𝑝 and 𝑔 is a quasi-inverse
for 𝑓 , it is only guaranteed that 𝑞 w∼ 𝑝 ∘ 𝑔.

Definition 2.1.19. Let 𝐹 , 𝐺 : 𭒞 → 𭒟 be two ordinary functors between relative
categories. A natural weak equivalence 𝛼 : 𝐹 ⇒ 𝐺 is a natural transformation
such that 𝛼𝐶 : 𝐹 𝐶 → 𝐺𝐶 is a weak equivalence in 𭒟 for all objects 𝐶 in 𭒞, and
we say 𝐹 and 𝐺 are naturally weakly equivalent if they can be connected by a
zigzag of natural weak equivalences.

Remark 2.1.20. This is precisely the notion of weak equivalence in the relative
functor category [min und 𭒞, 𭒟]h. Although the definition above applies to all
functors, if 𝐻 : 𭒟 → ℰ is an ordinary functor, then the natural transformation
𝐻𝛼 : 𝐻𝐹 ⇒ 𝐻𝐺 is only guaranteed to be a natural weak equivalence if we
assume 𝐻 is a relative functor.

Definition 2.1.21. A relative equivalence is a relative functor 𝐹 : 𭒞 → 𭒟 for
which there exists a relative functor 𝐺 : 𭒟 → 𭒞 such that 𝐺𝐹 is naturally weakly
equivalent to id𭒞 and 𝐹 𝐺 is naturally weakly equivalent to id𭒟. Such a 𝐺 is said
to be a relative inverse of 𝐹 . If 𭒞 and 𭒟 are homotopical categories then we
may say homotopical equivalence and homotopical inverse instead of ‘relative
equivalence’ and ‘relative inverse’.

Proposition 2.1.22. If 𝐹 : 𭒞 → 𭒟 is a relative equivalence of relative categories
with relative inverse 𝐺 : 𭒟 → 𭒞, then Ho 𝐹 : Ho 𭒞 → Ho 𭒟 is an equivalence
of categories, with quasi-inverse Ho 𝐺 : Ho 𭒟 → Ho 𭒞. ■

2.2 Homotopical Kan extensions

Prerequisites. §§ 2.1, a.3.

Definition 2.2.1. Let 𭒞 be a homotopical category. A homotopically initial ob-
ject in 𭒞 is an object 𝐴 for which there exists a zigzag of natural transformations
of the form

Δ𝐴 𝐹 𝐺 id𭒞
𝛼

where Δ𝐴 : 𭒞 → 𭒞 is the constant functor with value 𝐴, 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 is
a weak equivalence in 𭒞, and the squiggles denote (possibly trivial) zigzags of
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natural weak equivalences. Dually, a homotopically terminal object in 𭒞 is a
homotopically initial object in 𭒞op.

Proposition 2.2.2. Let 𭒞 be a homotopical category. If 𝐴 is a homotopically
initial (resp. homotopically terminal) object in 𭒞, then:

(i) Any object in 𭒞weakly equivalent to𝐴 is also a homotopically initial (resp.
homotopically terminal) object in 𭒞.

(ii) 𝐴 is an initial (resp. terminal) object in Ho 𭒞.

(iii) If 𭒞 is a minimal homotopical category, then𝐴 is an initial (resp. terminal)
object in 𭒞 as well.

Conversely, any initial (resp. terminal) object in 𭒞 is also homotopically initial
(resp. homotopically terminal).

Proof. Obvious. (This is Proposition 38.3 in [DHKS].) ⧫

Proposition 2.2.3. If 𝐴 is a homotopically initial object in a homotopical cat-
egory 𭒞, then for any object 𝑍 in 𭒞, the zigzag category 𭒞(𝐓)(𝐴, 𝑍) is connected.

Proof. By theorem a.3.21, there is a bijection between the connected compon-
ents of 𭒞(𝐓)(𝐴, 𝑍) and the morphisms 𝐴 → 𝑍 in Ho 𭒞; but we know 𝐴 is an
initial object in Ho 𭒞, so 𭒞(𝐓)(𝐴, 𝑍) has exactly one connected component. ■

Lemma 2.2.4. Let 𝐻 : 𭒞 → 𭒟 be a relative functor and let 𝐹 : 𭒞 → 𭒟 be
an ordinary functor. If If weq 𭒟 has the 2-out-of-3 property and 𝐹 is naturally
weakly equivalent to 𝐻 , then 𝐹 is also a relative functor.

Proof. Apply the 2-out-of-3 property inductively. ⧫

Lemma 2.2.5. If 𝐴 and 𝐴′ be homotopically initial objects in a homotopical
category 𭒞, then 𝐴 w≃ 𝐴′, and moreover every morphism 𝐴 → 𝐴′ in 𭒞 is a weak
equivalence.

Proof. This is paragraph 38.5 in [DHKS].
Suppose, as in the definition, that we have endofunctors 𝐹 , 𝐹 ′, 𝐺, 𝐺′ on 𭒞

and natural transformations 𝛼 : 𝐹 ⇒ 𝐺, 𝛼′ : 𝐹 ′ ⇒ 𝐺′, such that 𝐹 w≃ Δ𝐴,
𝐹 ′ w≃ Δ𝐴′, 𝐺 w≃ id𭒞, and 𝐺′ w≃ id𭒞, and the morphisms 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 and
𝛼′

𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ are both weak equivalences. Note that the previous lemma
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implies 𝐺 and 𝐺′ are both homotopical functors, while a similar argument shows
that 𝐹 and 𝐹 ′ sends all morphisms to weak equivalences.

Let 𝑓 : 𝐴 → 𝐴′ be a morphism in 𭒞. By applying the 2-out-of-3 property
repeatedly in the following diagram,

𝐴 𝐹 𝐴 𝐺𝐴 𝐴

𝐴 𝐹 𝐴′ 𝐺𝐴′ 𝐴′

𝐹 𝑓

𝛼𝐴

𝐺𝑓 𝑓

𝛼𝐴′

we see that 𝑓 is a weak equivalence if and only if 𝛼𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ is a weak
equivalence. Since 𝛼′

𝐴′ : 𝐹 ′𝐴′ → 𝐺′𝐴′ is a weak equivalence, and 𝐺𝐴′ w≃ 𝐴′,
it follows that 𝛼′

𝐺𝐴′ : 𝐹 𝐺𝐴′ → 𝐺′𝐺𝐴′ is a weak equivalence, and since 𝐺
is homotopical, so 𝐺𝛼′

𝐺𝐴′ : 𝐺𝐹 𝐺𝐴′ → 𝐺𝐺′𝐺𝐴′ is also a weak equivalence.
Similarly, 𝛼𝐴 : 𝐹 𝐴 → 𝐺𝐴 is a weak equivalence, and 𝐴 w≃ 𝐹 𝐴′ w≃ 𝐺′𝐹 𝐴′, so
𝛼𝐺′𝐹 𝐴′ : 𝐹 𝐺′𝐹 𝐴′ → 𝐺𝐺′𝐹 𝐴′ is a weak equivalence as well.

Now, by applying the 2-out-of-6 property to the diagram below,

𝐹 𝐹 ′𝐹 𝐴′ 𝐺𝐹 ′𝐹 𝐴′ 𝐺𝐹 ′𝐺𝐴′

𝐹 𝐺′𝐹 𝐴′ 𝐺𝐺′𝐹 𝐴′ 𝐺𝐺′𝐺𝐴′

𝐹 𝛼′
𝐹 𝐴′

𝛼𝐹 ′𝐹 𝐴′

𝐺𝛼′
𝐹 𝐴′

𝐺𝐹 ′𝛼𝐴′

𝐺𝛼′
𝐺𝐴′

𝛼𝐺′𝐹 𝐴′ 𝐺𝐺′𝛼𝐴′

we may deduce that 𝐺𝐺′𝛼𝐴′ : 𝐺𝐺′𝐹 𝐴′ → 𝐺𝐺′𝐺𝐴′ is a weak equivalence, and
hence that 𝛼𝐴′ : 𝐹 𝐴′ → 𝐺𝐴′ is a weak equivalence, as required. ■

Definition 2.2.6. A homotopically contractible category is a homotopical cat-
egory 𭒞 such that the unique (homotopical) functor 𭒞 → 𝟙 is a homotopical
equivalence, where 𝟙 is the trivial category with only one object.

¶ 2.2.7. We will say that an object in a homotopical category 𭒞 characterised
by a homotopical universal property is homotopically unique if the full subcat-
egory spanned by such objects inside the homotopical category of objects in 𭒞
equipped with the relevant additional structure.

Proposition 2.2.8. Let 𭒞 be a homotopical category. The following are equival-
ent:

(i) 𭒞 is homotopically contractible.
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(ii) 𭒞 is inhabited, and for every object 𝐴 in 𭒞, the constant functor Δ𝐴 is
naturally weakly equivalent to id𭒞.

(iii) There exists an object 𝐴 in 𭒞 such that Δ𝐴 and id𭒞 are naturally weakly
equivalent.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].) ⧫

Proposition 2.2.9. Let 𭒞 be a homotopically contractible category.

(i) Every morphism in 𭒞 is a weak equivalence.

(ii) The unique functor Ho 𭒞 → 𝟙 is an equivalence of categories.

(iii) If 𭒞 is a minimal homotopical category, then 𭒞 → 𝟙 is also an equivalence
of categories.

(iv) The opposite homotopical category 𭒞op and the homotopical functor cat-
egory [𭒟, 𭒞]h (for any homotopical category 𭒟) are also homotopically
contractible.

(v) Every object in 𭒞 is both homotopically initial and homotopically terminal.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].) ⧫

Proposition 2.2.10. Let 𭒞 be a homotopical category. If 𭒟 is the full homo-
topical subcategory of 𭒞 spanned by the homotopically initial (or homotopically
terminal) objects, then 𭒟 is homotopically contractible.

Proof. This follows from lemma 2.2.5. ■

Remark 2.2.11. Even if 𭒞 is a saturated homotopical category, an object that
is initial in Ho 𭒞 need not be homotopically initial in 𭒞. Indeed, let 𭒞 be the
maximal homotopical category generated by a graph of the following form:

• • • • • • ⋯

No object in 𭒞 is homotopically initial, because the length of the shortest zigzag
connecting two objects cannot be bounded above; yet every object in Ho 𭒞 is
initial. The same argument shows that 𭒞 is not homotopically contractible, but
Ho 𭒞 is certainly contractible.
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Definition 2.2.12. Let 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒞 → ℰ be two ordinary functors
between homotopical categories. A homotopical left Kan extension (resp. ho-
motopical right Kan extension) of 𝐺 along 𝐹 is a homotopically initial (resp.
homotopically terminal) object of the homotopical category (𝐺 ↓ 𝐹 ∗)h (resp.
(𝐹 ∗ ↓ 𝐺)h) described below:

• The objects are pairs (𝐻, 𝛼) where 𝐻 is a homotopical functor 𭒟 → ℰ and
𝛼 is a natural transformation of type 𝐺 ⇒ 𝐻𝐹 (resp. 𝐻𝐹 ⇒ 𝐺).

• The morphisms (𝐻 ′, 𝛼′) → (𝐻, 𝛼) are those natural transformations 𝛽 :
𝐻 ′ ⇒ 𝐻 such that 𝛽𝐹 ∙ 𝛼′ = 𝛼 (resp. 𝛼 ∙ 𝛽𝐹 = 𝛼′).

• The weak equivalences are the natural weak equivalences.

Remark 2.2.13. Note that any homotopical Kan extension of 𝐹 : 𭒞 → 𭒟 along
𝐺 : 𭒞 → ℰ has, by definition, an underlying homotopical functor 𭒟 → ℰ.

Corollary 2.2.14. Homotopical Kan extensions are homotopically unique, any
two homotopical left (resp. right) Kan extensions of 𝐺 along 𝐹 are naturally
weakly equivalent. ■

Definition 2.2.15. Let 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒞 → ℰ be two ordinary functors
between homotopical categories, and let 𝐿 : ℰ → ℱ be a homotopical func-
tor. We say 𝐿 preserves a homotopical left (resp. right) Kan extension (𝐻, 𝛼)
of 𝐺 along 𝐹 if (𝐿𝐻, 𝐿𝛼) is a homotopical left (resp. right) Kan extension of
𝐿𝐹 along 𝐺. If a homotopical Kan extension is preserved by all homotopical
functors, then it is said to be absolute.

2.3 Quillen–Verdier derived functors

Prerequisites. §§ 2.1, a.3, a.4
The fact that Ho : ℜ𝔢𝔩ℭ𝔞𝔱 → ℭ𝔞𝔱 is a 2-functor means that relative functors

𝐹 : 𭒞 → 𭒟 descend to functors Ho 𝐹 : Ho 𭒞 → Ho 𭒟 in a very well-behaved
way. However, what can we say about ordinary (i.e. not necessarily relative)
functors 𭒞 → 𭒟?

In this section, we follow [DHKS, §§ 40–43].

Definition 2.3.1. Let 𭒞 and 𭒟 be relative categories. A left deformation retract
for an ordinary functor 𝐹 : 𭒞 → 𭒟 is a triple (𭒞◦, 𝑄, 𝑝) where
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• 𝑄 : 𭒞 → 𭒞 is a relative functor,

• 𭒞◦ is a full subcategory of 𭒞 with the induced relative subcategory struc-
ture, and

• 𝑝 : 𝑄 ⇒ id𭒞 is a natural weak equivalence,

and these data are required to have the following properties:

• For all objects 𝑋 in 𭒞, the object 𝑄𝑋 is in 𭒞◦.

• The restriction 𝐹 |𭒞◦ : 𭒞◦ → 𭒟 is a relative functor.

An ordinary functor 𝐹 : 𭒞 → 𭒟 is left deformable if there exists a left deform-
ation retract for 𝐹 .

Dually, a right deformation retract for an ordinary functor 𝐺 : 𭒟 → 𭒞 is a
triple (𭒟◦, 𝑅, 𝑖) where

• 𝑅 : 𭒟 → 𭒟 is a relative functor,

• 𭒟◦ is a full subcategory of 𭒟 with the induced relative subcategory struc-
ture, and

• 𝑖 : id𭒟 ⇒ 𝑅 is a natural weak equivalence,

and these data are required to have the following properties:

• For all objects 𝐴 in 𭒟, the object 𝑅𝐴 is in 𭒟◦.

• The restriction 𝐺|𭒟◦ : 𭒟◦ → 𭒞 is a relative functor.

An ordinary functor 𝐺 : 𭒟 → 𭒞 is right deformable if there exists a left right
deformation retract for 𝐺.

Remark 2.3.2. Every relative functor is both left deformable and right deform-
able, with trivial left and right deformation retracts.

Lemma 2.3.3. Let 𭒞 and 𭒟 be relative categories.

• If (𭒞◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 : 𭒞 → 𭒟, then the composite
𝐹 𝑄 : 𭒞 → 𭒟 is a relative functor.

• If (𭒟◦, 𝑅, 𝑖) is a right deformation retract for 𝐺 : 𭒟 → 𭒞, then the com-
posite 𝐺𝑅 : 𭒟 → 𭒞 is a relative functor.
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Proof. Immediate from the definitions. ■

The following definition is essentially due to Verdier [1963], but we use the
formulation of Quillen [1967, Ch. I, § 4].

Definition 2.3.4. Let 𭒞 and 𭒟 be relative categories, and let 𝛾𭒞 : 𭒞 → Ho 𭒞 and
𝛾𭒟 : 𭒟 → Ho 𭒟 be the localising functors. A total left derived functor for an
ordinary functor 𝐹 : 𭒞 → 𭒟 is a right (!) Kan extension of 𝛾𭒟𝐹 : 𭒞 → Ho 𭒟
along 𝛾𭒞 : 𭒞 → Ho 𭒞. Dually, a total right derived functor for an ordinary
functor 𝐺 : 𭒟 → 𭒞 is a left (!) Kan extension of 𝛾𭒞𝐺 : 𭒟 → Ho 𭒞 along
𝛾𭒟 : 𭒟 → Ho 𭒟.

Remark 2.3.5. As with everything with a universal property, total derived func-
tors are unique up to unique isomorphism if they exist.

Theorem 2.3.6. With other notation as in the definition:

(i) Let 𝐹 : 𭒞 → 𭒟 be an ordinary functor. If (𭒞◦, 𝑄, 𝑝) is a left deformation
retract for 𝐹 , then (Ho(𝐹 𝑄), 𝛾𭒟𝐹 𝑝) is an absolute right Kan extension of
𝛾𭒟𝐹 : 𭒞 → Ho 𭒟 along 𝛾𭒞 : 𭒞 → Ho 𭒞.

(ii) Let 𝐹 , 𝐹 ′ : 𭒞 → 𭒟 be a parallel pair of ordinary functors. If (𝐋𝐹 , 𝛿) and
(𝐋𝐹 ′, 𝛿′) are total left derived functors for 𝐹 and 𝐹 ′ (respectively), then
for any natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′, there exists a unique natural
transformation 𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′ such that 𝛿′ ∙ (𝐋𝜑)𝛾𭒞 = 𝛾𭒟𝜑 ∙ 𝛿.

(iii) Moreover, if (𭒞◦, 𝑄, 𝑝) is a left deformation retract for both 𝐹 and 𝐹 ′, then
we may take 𝐋𝜑 = Ho(𝜑𝑄).

(iv) Let 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒟 → ℰ be ordinary functors between re-
lative categories. If (𝐋𝐹 , 𝛿𝐹 ), (𝐋𝐺, 𝛿𝐺), and (𝐋(𝐺𝐹 ), 𝛿𝐺𝐹 ) are total
left derived functors for 𝐹 , 𝐺, and 𝐺𝐹 (respectively), then there is a
unique natural transformation 𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ) such that
𝛿𝐺𝐹 ∙ 𝞵𝐺,𝐹 𝛾𭒞 = 𝛿𝐺𝐹 ∙ (𝐋𝐺)𝛿𝐹 .

(v) If (𭒞◦, 𝑄𭒞◦
, 𝑝𭒞◦

) is a left deformation retract for 𝐹 , (𭒟◦, 𝑄𭒟◦
, 𝑝𭒟◦

) is a left
deformation retract for 𝐺, and 𝐹 maps objects in 𭒞◦ to objects in 𭒟◦, then

(𭒞◦, 𝑄𭒞◦
, 𝑝𭒞◦

) is also a left deformation retract for 𝐺𝐹 , and the canonical
comparison 𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ) is an isomorphism.

Dually:
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(i′) If 𝐺 : 𭒟 → 𭒞 is an ordinary functor and (𭒟◦, 𝑅, 𝑖) is a right deformation
retract for 𝐹 , then (Ho(𝐺𝑅), 𝛾𭒞𝐺𝑖) is an absolute left Kan extension of
𝛾𭒞𝐺 : 𭒟 → Ho 𭒞 along 𝛾𭒟 : 𭒟 → Ho 𭒟.

(ii′) Let 𝐺, 𝐺′ : 𭒟 → 𭒞 be a parallel pair of ordinary functors. If (𝐑𝐺, 𝛿) and
(𝐑𝐺′, 𝛿′) are total right derived functors for 𝐺 and 𝐺′ (respectively), then
for any natural transformation 𝜓 : 𝐺′ ⇒ 𝐺, there exists a unique natural
transformation 𝐑𝜓 : 𝐑𝐺′ ⇒ 𝐑𝐺 such that (𝐑𝜓)𝛾𭒟 ∙ 𝛿′ = 𝛿 ∙ 𝛾𭒞𝜓 .

(iii′) Moreover, if (𭒟◦, 𝑅, 𝑖) is a right deformation retract for both 𝐺 and 𝐺′,
then we may take 𝐑𝜓 = Ho(𝜓𝑅).

(iv′) Let 𝐹 : 𭒞 → ℬ and 𝐺 : 𭒟 → 𭒞 be ordinary functors between re-
lative categories. If (𝐑𝐹 , 𝛿𝐹 ), (𝐑𝐺, 𝛿𝐺), and (𝐑(𝐹 𝐺), 𝛿𝐹 𝐺) are total
right derived functors for 𝐹 , 𝐺, and 𝐹 𝐺 (respectively), then there is a
unique natural transformation 𝞭𝐹 ,𝐺 : 𝐑(𝐹 𝐺) ⇒ (𝐑𝐹 )(𝐑𝐺) such that
𝞭𝐹 ,𝐺𝛾𭒟 ∙ 𝛿𝐹 𝐺 = (𝐑𝐹 )𝛿𝐺 ∙ 𝛿𝐹 𝐺.

(v′) If (𭒞◦, 𝑅𭒞◦
, 𝑖𭒞◦

) is a right deformation retract for 𝐹 , (𭒟◦, 𝑅𭒟◦
, 𝑖𭒟◦

) is a
right deformation retract for 𝐺, and 𝐺 maps objects in 𭒟◦ to objects in
𭒞◦, then (𭒟◦, 𝑄𭒟◦

, 𝑖𭒟◦

) is also a right deformation retract for 𝐹 𝐺, and the
canonical comparison 𝞭𝐹 ,𝐺 : 𝐑(𝐹 𝐺) ⇒ (𝐑𝐹 )(𝐑𝐺) is an isomorphism.

Proof. (i). To simplify notation, let 𝐋𝐹 = Ho(𝐹 𝑄). Let 𝐻 : Ho 𭒟 → ℰ and
𝐾 : Ho 𭒞 → ℰ be any two ordinary functors, and let 𝛼 : 𝐾𝛾𭒞 ⇒ 𝐻𝛾𭒟𝐹 be any
natural transformation. Observe that the following diagrams commute for every
object 𝑋 in 𭒞:

𝛾𭒞𝑄𝑄𝑋 𝛾𭒞𝑄𝑋

𝛾𭒞𝑄𝑋 𝛾𭒞𝑋

𝛾𭒞𝑄𝑝𝑋

𝛾𭒞𝑝𝑄𝑋

𝛾𭒞𝑝𝑋

𝛾𭒞𝑝𝑋

𝛾𭒟𝐹 𝑄𝑄𝑄𝑋 𝛾𭒟𝐹 𝑄𝑄𝑋

𝛾𭒟𝐹 𝑄𝑄𝑋 𝛾𭒟𝐹 𝑄𝑋

𝛾𭒟𝐹 𝑄𝑝𝑄𝑋

𝛾𭒟𝐹 𝑝𝑄𝑄𝑋

𝛾𭒟𝐹 𝑝𝑄𝑋

𝛾𭒟𝐹 𝑝𝑄𝑋

Since 𝛾𭒞𝑝 and 𝛾𭒟𝐹 𝑝𝑄 are natural isomorphisms, we must have these equalities:

𝛾𭒞𝑄𝑝 = 𝛾𭒞𝑝𝑄 𝛾𭒟𝐹 𝑄𝑝𝑄 = 𝛾𭒟𝐹 𝑝𝑄𝑄
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Now, suppose we are given 𝛼̄ : 𝐾 ⇒ 𝐻(𝐋𝐹 ) such that 𝛼 = 𝐻𝛾𭒟𝐹 𝑝 ∙ 𝛼̄𝛾𭒞. Then:

𝛼̄𝛾𭒞 = 𝛼̄𝛾𭒞 ∙ 𝐾𝛾𭒞𝑝 ∙ 𝐾(𝛾𭒞𝑝)
−1

= 𝐻(𝐋𝐹 )𝛾𭒞𝑝 ∙ 𝛼̄𝛾𭒞𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

= 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ 𝛼̄𝛾𭒞𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

and so, recursing once and applying the equations above,

𝛼̄𝛾𭒞 = 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ (𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ 𝛼̄𝛾𭒞𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

)𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

= 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ 𝐻𝛾𭒟𝐹 𝑄𝑝𝑄 ∙ 𝛼̄𝛾𭒞𝑄𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ 𝐻𝛾𭒟𝐹 𝑝𝑄𝑄 ∙ 𝛼̄𝛾𭒞𝑄𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ (𝐻𝛾𭒟𝐹 𝑝 ∙ 𝛼̄𝛾𭒞)𝑄𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝐻𝛾𭒟𝐹 𝑄𝑝 ∙ 𝛼𝑄𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝛼𝑄 ∙ 𝐾𝛾𭒞𝑄𝑝 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝛼𝑄 ∙ 𝐾𝛾𭒞𝑝𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1

= 𝛼𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

However, the 2-dimensional universal property of Ho 𭒞 implies that the map
shown below is a bijection,

[Ho 𭒞, ℰ](𝐾, 𝐻(𝐋𝐹 )) → [𭒞, ℰ](𝐾𝛾𭒞, 𝐻(𝐋𝐹 )𝛾𭒞)
𝛼̄ ↦ 𝛼̄𝛾𭒞

and so this calculation determines 𝛼̄ : 𝐾 ⇒ 𝐻(𝐋𝐹 ) uniquely. Conversely, define
𝛼̄ to be the unique natural transformation such that 𝛼̄𝛾𭒞 = 𝛼𝑄 ∙ 𝐾(𝛾𭒞𝑝)

−1; then,

𝐻𝛾𭒟𝐹 𝑝 ∙ 𝛼̄𝛾𭒞 = 𝐻𝛾𭒟𝐹 𝑝 ∙ 𝛼𝑄 ∙ 𝐾(𝛾𭒞𝑝)
−1

= 𝛼 ∙ 𝐾𝛾𭒞𝑝 ∙ 𝐾(𝛾𭒞𝑝)
−1

= 𝛼

and therefore (𝐋𝐹 , 𝛾𭒟𝐹 𝑝) is indeed an absolute right Kan extension of 𝛾𭒟𝐹 :
𭒞 → Ho 𭒟 along 𝛾𭒞 : 𭒞 → Ho 𭒞.

(ii). Noting that 𝛾𭒟𝜑∙𝛿 is a natural transformation (𝐋𝐹 )𝛾𭒞 ⇒ 𝛾𭒟𝐹 ′, the universal
property of (𝐋𝐹 ′, 𝛿′) yields a unique natural transformation 𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′

such that 𝛾𭒟𝜑 ∙ 𝛿 = 𝛿′ ∙ (𝐋𝜑)𝛾𭒞, as required.
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(iii). Ho(𝜑𝑄) is a natural transformation Ho(𝐹 𝑄) ⇒ Ho(𝐹 ′𝑄), and we have

𝛾𭒟𝐹 𝑝 ∙ Ho(𝛾𭒟𝜑𝑄)𝛾𭒞 = 𝛾𭒟𝐹 𝑝 ∙ 𝛾𭒟𝜑𝑄 = 𝛾𭒟𝜑 ∙ 𝛾𭒟𝐹 ′𝑝

as required.

(iv). Since 𝛿𝐺𝐹 ∙ (𝐋𝐹 )𝛿 is a natural transformation (𝐋𝐺)(𝐋𝐹 )𝛾𭒞 ⇒ 𝛾𭒟𝐺𝐹 , the
universal property of (𝐋(𝐺𝐹 ), 𝛿𝐺𝐹 ) yields the required natural transformation
𝞵𝐺,𝐹 : (𝐋𝐺)(𝐋𝐹 ) ⇒ 𝐋(𝐺𝐹 ).

(v). Our hypotheses imply that the restriction 𝐺𝐹 |𭒞◦ : 𭒞◦ → ℰ is a relative
functor, so (𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) is indeed a left deformation retract for 𝐺𝐹 : 𭒞 → ℰ. It
follows that 𝐺𝑄𭒟◦

𝐹 𝑄𭒞◦
and 𝐺𝐹 𝑄𭒞◦

are both relative functors 𭒞 → ℰ; moreover,

𝛾ℰ𝐺𝐹 𝑝𭒞◦
∙ Ho(𝐺𝑝𭒟◦

𝐹 𝑄𭒞◦

)𝛾𭒞 = 𝛾ℰ𝐺𝐹 𝑝𭒞◦
∙ 𝛾ℰ𝐺𝑝𭒟◦

𝐹 𝑄𭒞◦

= 𝛾ℰ𝐺𝑝𭒟◦
𝐹 ∙ 𝛾ℰ𝐺𝑄𭒟◦

𝐹 𝑝𭒞◦

= 𝛾ℰ𝐺𝑝𭒟◦
𝐹 ∙ Ho(𝐺𝑄𭒟◦

)(𝛾𭒟𝐹 𝑝𭒞◦

)

so wemust have 𝞵𝐺,𝐹 = Ho(𝐺𝑝𭒟◦
𝐹 𝑄𭒞◦

). However, because 𝐹 𝑄𭒞◦
𝑋 is in 𭒟◦ for

all objects 𝑋 in 𭒞, 𝐺𝑝𭒟◦
𝐹 𝑄𭒞◦

: 𝐺𝑄𭒟◦
𝐹 𝑄𭒞◦

⇒ 𝐺𝐹 𝑄𭒞◦
must be a natural weak

equivalence, and so 𝞵𝐺,𝐹 : Ho(𝐺𝑄𭒟◦

) Ho(𝐹 𝑄𭒞◦

) ⇒ Ho(𝐺𝐹 𝑄𭒞◦

) is indeed a
natural isomorphism. ■

Definition 2.3.7. The 2-category of small left deformation retracts is defined
as follows:

• The objects are pairs (𭒞, 𭒞◦, 𝑄𭒞◦
, 𝑝𭒞◦

) where 𭒞 is a small relative category
and (𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) is a left deformation retract for id : 𭒞 → 𭒞.

• A 1-morphism 𝐹 : (𭒞, 𭒞◦, 𝑄𭒞◦
, 𝑝𭒞◦

) → (𭒟, 𭒟◦, 𝑄𭒟◦
, 𝑝𭒟◦

) is an ordinary
functor 𝐹 : 𭒞 → 𭒟, such that (𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) is a left deformation retract
for 𝐹 , and 𝐹 sends objects in 𭒞◦ to objects in 𭒟◦.

• The 2-morphisms are ordinary natural transformations.

• All compositions and identities are inherited from 2-category of small cat-
egories.

We write 𝔏𝔇𝔢𝔣 for this 2-category, and we write LDefFun for its hom-sets.
The 2-category of small right deformation retracts is defined dually:
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• The objects are pairs (𭒟, 𭒟◦, 𝑅𭒟◦
, 𝑖𭒟◦

)where𭒟 is a small relative category
and (𭒟◦, 𝑅𭒟◦

, 𝑖𭒟◦

) is a right deformation retract for id : 𭒟 → 𭒟.

• A 1-morphism 𝐺 : (𭒟, 𭒟◦, 𝑅𭒟◦
, 𝑖𭒟◦

) → (𭒞, 𭒞◦, 𝑅𭒞◦
, 𝑖𭒞◦

) is an ordinary
functor 𝐺 : 𭒟 → 𭒞, such that (𭒟◦, 𝑅𭒟◦

, 𝑖𭒟◦

) is a right deformation retract
for 𝐺, and 𝐺 sends objects in 𭒟◦ to objects in 𭒞◦.

• The 2-morphisms are ordinary natural transformations.

• All compositions and identities are inherited from 2-category of small cat-
egories.

We write ℜ𝔇𝔢𝔣 for this 2-category, and we write RDefFun for its hom-sets.

Remark 2.3.8. The duality principle for deformation retracts can be formalised
as follows: there is a 2-functor 𝔏𝔇𝔢𝔣co → ℜ𝔇𝔢𝔣 that sends (𭒞, 𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

)
to its opposite (𭒞op, (𭒞◦)op, (𝑄𭒞◦

)
op, (𝑝𭒞◦

)
op

), and it has an evident strict in-
verse ℜ𝔇𝔢𝔣co → 𝔏𝔇𝔢𝔣. Note that these two 2-functors reverse the direction
of 2-morphisms but preserve the direction of 1-morphisms!

Corollary 2.3.9. There are two pseudofunctors, 𝐋 and 𝐑, where:

• 𝐋 is a pseudofunctor 𝔏𝔇𝔢𝔣 → ℭ𝔞𝔱 that sends an object (𭒞, 𭒞◦, 𝑄𭒞◦
, 𝑝𭒞◦

)
to the homotopy category Ho 𭒞, a 1-morphism 𝐹 : (𭒞, 𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) →
(𭒟, 𭒟◦, 𝑄𭒟◦

, 𝑝𭒟◦

) to its total left derived functor 𝐋𝐹 : Ho 𭒞 → Ho 𭒟,
and a 2-morphism 𝜑 : 𝐹 ⇒ 𝐹 ′ to the derived natural transformation
𝐋𝜑 : 𝐋𝐹 ⇒ 𝐋𝐹 ′, and 𝐋 preserves identity 1-morphisms strictly.

• 𝐑 is a pseudofunctorℜ𝔇𝔢𝔣 → ℭ𝔞𝔱 that sends an object (𭒟, 𭒟◦, 𝑅𭒟◦
, 𝑖𭒟◦

)
to the homotopy category Ho 𭒞, a 1-morphism 𝐺 : (𭒟, 𭒟◦, 𝑅𭒟◦

, 𝑖𭒟◦

) →
(𭒞, 𭒞◦, 𝑅𭒞◦

, 𝑖𭒞◦

) to its total right derived functor 𝐑𝐺 : Ho 𭒟 → Ho 𭒞,
and a 2-morphism 𝜓 : 𝐺′ ⇒ 𝐺 to the derived natural transformation
𝐑𝜓 : 𝐑𝐺′ ⇒ 𝐑𝐺, and 𝐑 preserves identity 1-morphisms strictly.

• 𝐋 and 𝐑 are compatible with the duality principle, in the sense that the
following diagrams commute (strictly):

𝔏𝔇𝔢𝔣co ℭ𝔞𝔱co

ℜ𝔇𝔢𝔣 ℭ𝔞𝔱

(−)op

𝐋co

(−)op

𝐑

ℜ𝔇𝔢𝔣co ℭ𝔞𝔱co

𝔏𝔇𝔢𝔣 ℭ𝔞𝔱

(−)op

𝐑co

(−)op

𝐋
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Proof. The main claims follow from theorem 2.3.6; the only thing left to check
is that the collection of 2-isomorphisms 𝞵 and 𝞭 satisfy the coherence laws for
pseudofunctors; that is, we should show that the following diagrams commute:

(𝐋𝐻)(𝐋𝐺)(𝐋𝐹 ) (𝐋𝐻)𝐋(𝐺𝐹 )

𝐋(𝐻𝐺)(𝐋𝐹 ) 𝐋(𝐻𝐺𝐹 )

𝞵𝐻,𝐺(𝐋𝐹 )

(𝐋𝐻)𝞵𝐺,𝐹

𝞵𝐻,𝐺𝐹

𝞵𝐻𝐺,𝐹

𝐑(𝐹 𝐺𝐻) (𝐑𝐹 )𝐑(𝐺𝐻)

𝐑(𝐹 𝐺)(𝐑𝐻) (𝐑𝐹 )(𝐑𝐺)(𝐑𝐻)

𝞭𝐹 𝐺,𝐻

𝞭𝐹 ,𝐺𝐻

(𝐑𝐹 )𝞭𝐺,𝐻

𝞭𝐹 ,𝐺(𝐑𝐻)

However, using the explicit formulae for 𝝻 and 𝝳 in the proof of the theorem, it
is easy to see that these diagrams do indeed commute. ■

Definition 2.3.10. A deformable adjunction between two relative categories
is an ordinary adjunction where the left adjoint is left deformable and the right
adjoint is right deformable.

Theorem 2.3.11. Let 𭒞 and 𭒟 be two relative categories, and let

𝐹 ⊣ 𝐺 : 𭒟 → 𭒞

be an adjunction of ordinary categories, with

𝜂 : id𭒞 ⇒ 𝐺𝐹
𝜀 : 𝐹 𝐺 ⇒ id𭒟

as the unit and counit (respectively).

(i) If (𭒞◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 , and (𭒟◦, 𝑅, 𝑖) is a right
deformation retract for 𝐺, then for 𝐋𝐹 = Ho(𝐹 𝑄) and 𝐑𝐺 = Ho(𝐺𝑅),

𝐋𝐹 ⊣ 𝐑𝐺 : Ho 𭒟 → Ho 𭒞

is an adjunction with the following unit and counit:

̄𝜂 = Ho(𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄) ∙ (Ho 𝑝)−1 : idHo 𭒞 ⇒ (𝐑𝐺)(𝐑𝐹 )
̄𝜀 = (Ho 𝑖)−1 ∙ Ho(𝜀𝑅 ∙ 𝐹 𝑝𝐺𝑅) : (𝐋𝐹 )(𝐑𝐺) ⇒ idHo 𭒟
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(ii) Let 𝐹 ′ ⊣ 𝐺′ : 𭒟′ → 𭒞′ be another adjunction, with unit 𝜂′ and counit 𝜀′,
and let 𝐻 : 𭒞′ → 𭒞 and 𝐾 : 𭒟′ → 𭒟 be homotopical functors. If

• (𭒞◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 ,
• (𭒞′◦, 𝑄′, 𝑝′) is a left deformation retract for 𝐹 ′,

• 𝐻 sends objects in 𭒞′◦ to objects in 𭒞◦,

• (𭒟◦, 𝑅, 𝑖) is a right deformation retract for 𝐺,
• (𭒟′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′, and

• 𝐾 sends objects in 𭒟′◦ to objects in 𭒟◦,

then for any conjugate pair of natural transformations 𝜑 : 𝐹 𝐻 ⇒ 𝐾𝐹 ′,
𝜓 : 𝐻𝐺′ ⇒ 𝐺𝐾 , i.e. a pair (𝜑, 𝜓) satisfying the equations below,

𝜀𝐾 ∙ 𝐹 𝜓 = 𝐾𝜀′ ∙ 𝜑𝐺′ 𝐺𝜑 ∙ 𝜂𝐻 = 𝜓𝐹 ′ ∙ 𝐻𝜂′

the derived natural transformations 𝐋𝜑 : (𝐋𝐹 )(Ho 𝐻) ⇒ (Ho 𝐾)(𝐋𝐹 ′)
and 𝐑𝜓 : (Ho 𝐾)(𝐑𝐺′) ⇒ (𝐑𝐺)(Ho 𝐾) also constitute a conjugate pair.

(iii) Let 𝐹 ′ ⊣ 𝐺′ : 𭒟′ → 𭒟 be another adjunction, with unit 𝜂′ and counit 𝜀′.
If

• (𭒞◦, 𝑄, 𝑝) is a left deformation retract for 𝐹 ,
• (𭒞′◦, 𝑄′, 𝑝′) is a left deformation retract for 𝐹 ′,

• 𝐹 sends objects in 𭒞◦ to objects in 𭒞′◦,

• (𭒟◦, 𝑅, 𝑖) is a right deformation retract for 𝐺,
• (𭒟′◦, 𝑅′, 𝑖′) is a right deformation retract for 𝐺′, and

• 𝐺′ sends objects in 𭒟′◦ to objects in 𭒟◦,

then the three derived adjunctions

𝐋𝐹 ⊣ 𝐑𝐺 : Ho 𭒟 → Ho 𭒞
𝐋𝐹 ′ ⊣ 𝐑𝐺′ : Ho 𭒟′ → Ho 𭒟

𝐋(𝐹 ′𝐹 ) ⊣ 𝐑(𝐺𝐺′) : Ho 𭒟′ → Ho 𭒞

are compatible with the comparison isomorphisms 𝞵𝐹 ′,𝐹 and 𝞭𝐺,𝐺′, i.e.

̄𝜂″ = (𝞭−1
𝐺,𝐺′ ∘ 𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ̄𝜂′(𝐋𝐹 ) ∙ ̄𝜂

̄𝜀″ = ̄𝜀′ ∙ (𝐋𝐹 ′) ̄𝜀(𝐑𝐺′) ∙ (𝞵−1
𝐹 ′,𝐹 ∘ 𝞭𝐺,𝐺′)
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where ̄𝜂″ and ̄𝜀″ are the unit and counit for 𝐋(𝐹 ′𝐹 ) ⊣ 𝐑(𝐺𝐺′) as con-
structed in claim (i), and ∘ denotes the horizontal composition[1] of natural
transformations.

Proof. (i). We will check that the triangle identities hold for the announced unit
and counit. First, observe that these diagrams commute:

𝐹 𝑄 𝐹 𝑄𝐺𝐹 𝐹 𝑄𝐺𝑅𝐹

𝐹 𝐹 𝐺𝐹 𝐹 𝐺𝑅𝐹

𝐹 𝑅𝐹

𝐹 𝑝

𝐹 𝑄𝜂

𝐹 𝑝𝐺𝐹

𝐹 𝑄𝐺𝑖𝐹

𝐹 𝑝𝐺𝑅𝐹

id

𝐹 𝜂

𝜀𝐹

𝐹 𝐺𝑖𝐹

𝜀𝑅𝐹

𝑖𝐹

𝑄𝐺 𝐺𝐹 𝑄𝐺 𝐺𝑅𝐹 𝑄𝐺

𝐺 𝐺𝐹 𝐺 𝐺𝑅𝐹 𝐺

𝐺 𝐺𝑅

𝑝𝐺

𝜂𝑄𝐺

𝐺𝐹 𝑝𝐺

𝐺𝑖𝐹 𝑄𝐺

𝐺𝑅𝐹 𝑝𝐺

id

𝜂𝐺

𝐺𝜀

𝐺𝑖𝐹 𝐺

𝐺𝑅𝜀

𝐺𝑖

Thus, we have the following equations:

̄𝜀(𝐋𝐹 ) ∙ (𝐋𝐹 ) ̄𝜂 = Ho(𝑖𝐹 𝑄)−1 ∙ Ho(𝜀𝑅𝐹 𝑄 ∙ 𝐹 𝑝𝐺𝑅𝐹 𝑄)
∙ Ho(𝐹 𝑄𝐺𝑖𝐹 𝑄 ∙ 𝐹 𝑄𝜂𝑄) ∙ Ho(𝐹 𝑄𝑝)−1

= Ho(𝑖𝐹 𝑄)−1 ∙ Ho(𝑖𝐹 𝑄 ∙ 𝐹 𝑝𝑄) ∙ Ho(𝐹 𝑄𝑝)−1

= Ho(𝐹 𝑝𝑄) ∙ Ho(𝐹 𝑄𝑝)−1

(𝐑𝐹 ) ̄𝜀 ∙ ̄𝜂(𝐑𝐺) = Ho(𝐺𝑅𝑖)−1 ∙ Ho(𝐺𝑅𝜀𝑅 ∙ 𝐺𝑅𝐹 𝑝𝐺𝑅)
∙ Ho(𝐺𝑖𝐹 𝑄𝐺𝑅 ∙ 𝜂𝑄𝐺𝑅) ∙ Ho(𝑝𝐺𝑅)−1

= Ho(𝐺𝑅𝑖)−1 ∙ Ho(𝐺𝑖𝑅 ∙ 𝑝𝐺𝑅) ∙ Ho(𝑝𝐺𝑅)−1

= Ho(𝐺𝑅𝑖)−1 ∙ Ho(𝐺𝑖𝑅)

[1] — also known as the Godement product.
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We must now show that

Ho(𝐹 𝑝𝑄) ∙ Ho(𝐹 𝑄𝑝)−1 = idHo(𝐹 𝑄)

Ho(𝐺𝑅𝑖)−1 ∙ Ho(𝐺𝑖𝑅) = idHo(𝐺𝑅)and

but those equations hold because the diagrams of natural weak equivalences be-
low commute:

𝐹 𝑄 𝐹 𝑄 𝐹 𝑄𝑄 𝐹 𝑄 𝐹 𝑄

𝐹 𝑄 𝐹 𝑄𝑄 𝐹 𝑄𝑄𝑄 𝐹 𝑄𝑄 𝐹 𝑄

𝐹 𝑄 𝐹 𝑄𝑄 𝐹 𝑄𝑄𝑄 𝐹 𝑄𝑄 𝐹 𝑄

𝐹 𝑄𝑝 𝐹 𝑝𝑄

𝐹 𝑄𝑝

𝐹 𝑄𝑝

𝐹 𝑄𝑝𝑄

𝐹 𝑄𝑄𝑝

𝐹 𝑝𝑄𝑄 𝐹 𝑄𝑝

𝐹 𝑄𝑝

𝐹 𝑄𝑝 𝐹 𝑄𝑝𝑄 𝐹 𝑄𝑝𝑄 𝐹 𝑄𝑝

𝐺𝑅 𝐺𝑅 𝐺𝑅𝑅 𝐺𝑅 𝐺𝑅

𝐺𝑅 𝐺𝑅𝑅 𝐺𝑅𝑅𝑅 𝐺𝑅𝑅 𝐺𝑅

𝐺𝑅 𝐺𝑅𝑅 𝐺𝑅𝑅𝑅 𝐺𝑅𝑅 𝐺𝑅

𝐺𝑅𝑖

𝐺𝑖𝑅

𝐺𝑅𝑅𝑖 𝐺𝑅𝑖

𝐺𝑅𝑖

𝐺𝑅𝑖 𝐺𝑖𝑅𝑅 𝐺𝑅𝑖𝑅 𝐺𝑅𝑖

𝐺𝑅𝑖 𝐺𝑅𝑖𝑅 𝐺𝑅𝑖𝑅 𝐺𝑅𝑖

(Recall theorem a.3.21.)

(ii). We use the following explicit formulae for 𝐋𝜑 and 𝐑𝜓 :

𝐋𝜑 = Ho(𝜑𝑄′) ∙ Ho(𝐹 𝑝𝐻𝑄′) ∙ Ho(𝐹 𝑄𝐻𝑝′)−1

𝐑𝜓 = Ho(𝐺𝑅𝐾𝑖′)−1 ∙ Ho(𝐺𝑖𝐾𝑅′) ∙ Ho(𝜓𝑅′)

We wish to show that these equations hold:

̄𝜀(Ho 𝐾) ∙ (𝐋𝐹 )(𝐑𝜓) = (Ho 𝐾) ̄𝜀′ ∙ (𝐋𝜑)(𝐑𝐺′)(1)

(𝐑𝐺)(𝐋𝜑) ∙ ̄𝜂(Ho 𝐻) = (𝐑𝜓)(𝐋𝐹 ′) ∙ (Ho 𝐻) ̄𝜂′(2)

Observe that the following diagrams commute,
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𝐹 𝑄𝐺𝑅𝐾 𝐹 𝐺𝑅𝐾 𝑅𝐾 𝐾

𝐹 𝑄𝐺𝑅𝐾𝑅′ 𝐹 𝐺𝑅𝐾𝑅′ 𝑅𝐾𝑅′ 𝐾𝑅′

𝐹 𝑄𝐻𝐺′𝑅′ 𝐹 𝑄𝐺𝐾𝑅′ 𝐹 𝐺𝐾𝑅′ 𝐾𝑅′ 𝐾𝑅′

𝐹 𝑄𝐻𝐺′𝑅′ 𝐹 𝐻𝐺′𝑅′ 𝐹 𝐺𝐾𝑅′

𝐹 𝑄𝐺𝑅𝐾𝑖′

𝐹 𝑝𝐺𝑅𝐾 𝜀𝑅𝐾

𝑅𝐾𝑖′

𝑖𝐾

𝐾𝑖′

𝐹 𝑝𝐺𝑅𝐾𝑅′ 𝜀𝑅𝐾𝑅′ 𝑖𝐾𝑅′

𝐹 𝑄𝜓𝑅′

𝐹 𝑄𝐺𝑖𝐾𝑅′

𝐹 𝑝𝐺𝐾𝑅′ 𝜀𝐾𝑅′

𝑖𝐾𝑅′

𝐹 𝑝𝐻𝐺′𝑅′ 𝐹 𝜓𝑅′

𝐹 𝐻𝑄′𝐺′𝑅′ 𝐾𝐹 ′𝑄′𝐺′𝑅′ 𝐾𝐹 ′𝐺′𝑅′

𝐹 𝐻𝑄′𝐺′𝑅′ 𝐹 𝐻𝐺′𝑅′ 𝐾𝐹 ′𝐺′𝑅′ 𝐾𝑅′ 𝐾

𝐹 𝑄𝐻𝑄′𝐺′𝑅′ 𝐹 𝑄𝐻𝐺′𝑅′

𝐹 𝑄𝐻𝐺′𝑅′ 𝐹 𝑄𝐻𝐺′𝑅′

𝜑𝑄′𝐺′𝑅′ 𝐾𝐹 ′𝑝′𝐺′𝑅′

𝐹 𝐻𝑝′𝐺′𝑅′ 𝜑𝐺′𝑅′ 𝐾𝜀′𝑅′ 𝐾𝑖′

𝐹 𝑝𝐻𝑄′𝐺′𝑅′

𝐹 𝑄𝐻𝑝′𝐺′𝑅′

𝐹 𝑄𝐻𝑝′𝐺′𝑅′

𝐹 𝑝𝐻𝐺′𝑅′

and so we have the identities shown below:

̄𝜀(Ho 𝐾) ∙ (𝐋𝐹 )(𝐑𝜓) = Ho(𝐾𝑖′)−1 ∙ Ho(𝜀𝐾𝑅′ ∙ 𝐹 𝜓𝑅′ ∙ 𝐹 𝑝𝐻𝐺′𝑅′)
(Ho 𝐾) ̄𝜀′ ∙ (𝐋𝜑)(𝐑𝐺′) = Ho(𝐾𝑖′)−1 ∙ Ho(𝐾𝜀′𝑅′ ∙ 𝜑𝐺′𝑅′ ∙ 𝐹 𝑝𝐻𝐺′𝑅′)

Since 𝜀𝐾 ∙ 𝐹 𝜓 = 𝐾𝜀′ ∙ 𝜑𝐺′, we conclude that equation (1) holds. The dual
calculation proves equation (2).

(iii). Recall that the comparison isomorphisms have the following explicit forms:

𝞵𝐹 ′,𝐹 = Ho(𝐹 ′𝑝′𝐹 𝑄) 𝞭𝐺,𝐺′ = Ho(𝐺𝑖𝐺′𝑅′)

Thus, (𝞭−1
𝐺,𝐺′ ∘ 𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ̄𝜂′(𝐋𝐹 ) ∙ ̄𝜂 expands to

Ho(𝐺𝑖𝐺′𝑅′𝐹 ′𝐹 𝑄)−1 ∙ Ho(𝐺𝑅𝐺′𝑅′𝐹 ′𝑝′𝐹 𝑄)
∙ Ho(𝐺𝑅𝐺′𝑖′𝐹 ′𝑄′𝐹 𝑄 ∙ 𝐺𝑅𝜂𝑄′𝐹 𝑄) ∙ Ho(𝐺𝑅𝑝′𝐹 𝑄)−1

∙ Ho(𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄) ∙ (Ho 𝑝)−1
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and a straightforward calculation then shows

(𝞭−1
𝐺,𝐺′ ∘ 𝞵𝐹 ′,𝐹 ) ∙ (𝐑𝐺) ̄𝜂′(𝐋𝐹 ) ∙ ̄𝜂 = Ho(𝐺𝐺′𝑖′𝐹 ′𝐹 𝑄 ∙ 𝐺𝜂𝐹 𝑄 ∙ 𝜂𝑄) ∙ (Ho 𝑝)−1

but the RHS is precisely the definition of ̄𝜂″. The dual calculation proves the
other equation. ■

Proposition 2.3.12. Let 𭒞 and 𭒟 be two relative categories, let 𝐹 ⊣ 𝐺 : 𭒟 → 𭒞
be an adjunction of ordinary categories with unit 𝜂 and counit 𝜀, let (𭒞◦, 𝑄, 𝑝) be
a left deformation retract for 𝐹 , and let (𭒟◦, 𝑅, 𝑖) be a right deformation retract
for 𝐺. Consider the following statements:

(i) For all objects 𝑋̃ in 𭒞◦ and all objects ̂𝐵 in 𭒟◦, if 𝐹 𝑋̃ → ̂𝐵 is a weak
equivalence in 𭒟, then its right adjoint transpose 𝑋̃ → 𝐺 ̂𝐵 is a weak
equivalence in 𭒞.

(ii) The natural transformation 𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄 : 𝑄 ⇒ 𝐺𝑅𝐹 𝑄 is a natural weak
equivalence.

(iii) The derived adjunction unit ̄𝜂 : idHo 𭒞 ⇒ (𝐑𝐺)(𝐋𝐹 ) is a natural isomorph-
ism.

(i′) For all objects 𝑋̃ in 𭒞◦ and all objects ̂𝐵 in𭒟◦, if 𝑋̃ → 𝐺 ̂𝐵 is a weak equi-
valence in 𭒞, then its left adjoint transpose𝐹 𝑋̃ → ̂𝐵 is a weak equivalence
in 𭒟.

(ii′) The natural transformation 𝜀𝑅 ∙ 𝐹 𝑝𝐺𝑅 : 𝐹 𝑄𝐺𝑅 ⇒ 𝑅 is a natural weak
equivalence.

(iii′) The derived adjunction counit ̄𝜀 : (𝐋𝐹 )(𝐑𝐺) ⇒ idHo 𭒟 is a natural iso-
morphism.

We have the implications (i) ⇒ (ii) ⇒ (iii); if weq 𭒞 has the 2-out-of-3 property,
then (ii) ⇒ (i); and if 𭒞 is a saturated homotopical category, then (iii) ⇒ (ii).
Dually, (i′) ⇒ (ii′) ⇒ (iii′); if weq 𭒟 has the 2-out-of-3 property, then (ii′) ⇒
(i′); and if 𭒟 is a saturated homotopical category, then (iii′) ⇒ (ii′).

Proof. (i) ⇒ (ii). We have a natural weak equivalence 𝑖𝐹 𝑄 : 𝐹 𝑄 ⇒ 𝑅𝐹 𝑄, so,
by the hypothesis, its right adjoint transpose 𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄 is also a natural weak
equivalence.
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(ii) ⇒ (iii). The derived adjunction unit is given by ̄𝜂 = Ho(𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄) ∙
(Ho 𝑝)−1, which is certainly a natural isomorphism if 𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄 is a natural
weak equivalence.

(ii) ⇒ (i). Assume weq 𭒞 has the 2-out-of-3 property. Given 𝑋̃ in 𭒞◦, the diagram
below commutes,

𝑄𝑋̃ 𝐺𝐹 𝑄𝑋̃ 𝐺𝑅𝐹 𝑄𝑋̃

𝑋̃ 𝐺𝐹 𝑋̃ 𝐺𝑅𝐹 𝑋̃

𝑝𝑋̃

𝜂𝑄𝑋̃ 𝐺𝑖𝐹 𝑄𝑋̃

𝐺𝑅𝐹 𝑝𝑋̃

𝜂𝑋̃ 𝐺𝑖𝐹 𝑋̃

but the top row and the two vertical arrows are weak equivalences in 𭒞, so the
bottom row must be a weak equivalence as well, by the 2-out-of-3 property.

Let 𝑔 : 𝐹 𝑋̃ → ̂𝐵 be a weak equivalence in 𭒟, and let 𝑓 = 𝐺𝑔 ∘ 𝜂𝑋̃ be its
right adjoint transpose in 𭒞. We know 𝐺𝑅 : 𭒟 → 𭒞 is a relative functor, so
𝐺𝑅𝑔 : 𝐺𝑅𝐹 𝑋̃ → 𝐺𝑅 ̂𝐵 is a weak equivalence in 𭒞; but

𝐺𝑖 ̂𝐵 ∘ 𝑓 = 𝐺𝑖 ̂𝐵 ∘ 𝐺𝑔 ∘ 𝜂𝑋̃ = 𝐺𝑅𝑔 ∘ (𝐺𝑖𝐹 𝑋̃ ∘ 𝜂𝑋̃)

and we know 𝐺𝑖 ̂𝐵 : 𝐺 ̂𝐵 → 𝐺𝑅 ̂𝐵 is a weak equivalence in 𭒞, so by the 2-out-of-3
property again, 𝑓 must be a weak equivalence in 𭒞.

(iii) ⇒ (ii). Now assume 𭒞 is a saturated homotopical category. If ̄𝜂 is a natural
isomorphism, then Ho(𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄) must also be a natural isomorphism, and so
𝐺𝑖𝐹 𝑄 ∙ 𝜂𝑄 is a natural weak equivalence, by the saturation hypothesis. ■

Corollary 2.3.13. With notation as above, suppose the Quillen equivalence
condition is satisfied:

• For all objects 𝑋̃ in 𭒞◦ and all objects ̂𝐵 in 𭒟◦, a morphism 𝐹 𝑋̃ → ̂𝐵 is a
weak equivalence in 𭒟 if and only if its right adjoint transpose 𝑋̃ → 𝐺 ̂𝐵
is a weak equivalence in 𭒞.

Then the derived adjunction is an adjoint equivalence of categories. ■

2.4 DHKS derived functors

Prerequisites. §§ 2.1, 2.2, 2.3.
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Notice that in theorem 2.3.6, we constructed derived functors by applying
the 2-functor Ho : ℜ𝔢𝔩ℭ𝔞𝔱 → ℭ𝔞𝔱 to a relative functor that is naturally weakly
equivalent to the original functor, and then we showed that its homotopy version
has a universal property. This suggests that the intermediate relative functor
might itself have a homotopical universal property.

In this section we follow [DHKS, Ch. VII].

Definition 2.4.1. Let 𭒞 and 𭒟 be homotopical categories. A homotopical left
approximation for an ordinary functor 𝐹 : 𭒞 → 𭒟 is a homotopical right (!)
Kan extension of 𝐹 along id𭒞. Dually, a homotopical right approximation for
an ordinary functor 𝐺 : 𭒟 → 𭒞 is a homotopical left (!) Kan extension of 𝐺
along id𭒟.

Remark 2.4.2. More explicitly, a homotopical left approximation for 𝐹 : 𭒞 → 𭒟
is a homotopically terminal object in the homotopical category ([𭒞, 𭒟]h ↓ 𝐹 )h
described below:

• The objects are pairs (𝐾, 𝛼) where 𝐾 is a homotopical functor 𭒞 → 𭒟 and
𝛼 is a natural transformation of type 𝐾 ⇒ 𝐹 .

• The morphisms (𝐾′, 𝛼′) → (𝐾, 𝛼) are those natural transformations 𝜓 :
𝐾′ ⇒ 𝐾 such that 𝛼 ∙ 𝜓 = 𝛼′.

• The weak equivalences are the natural weak equivalences.

Dually, a homotopical right approximation for 𝐺 : 𭒟 → 𭒞 is a homotopically
initial object in the homotopical category (𝐹 ↓ [𭒟, 𭒞]h)h. By corollary 2.2.14,
homotopical approximations are homotopically unique.

We have the following special case:

Proposition 2.4.3. Let 𝑄 be a homotopical endofunctor on a homotopical cat-
egory 𭒞 and let 𝑝 : 𝑄 ⇒ id𭒞 be a natural transformation. The following are
equivalent:

(i) (𝑄, 𝑝) is a homotopical left approximation for id𭒞.

(ii) (𭒞, 𭒞, 𝑄, 𝑝) is a left deformation retract for id𭒞.

Dually, let 𝑅 be a homotopical endofunctor on a homotopical category 𭒟, and
let 𝑖 : id𭒟 ⇒ 𝑅 be a natural transformation. The following are equivalent:
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(i′) (𝑅, 𝑖) is a homotopical right approximation for id𭒞.

(ii′) (𭒟, 𭒟, 𝑅, 𝑖) is a right deformation retract for id𭒟.

Proof. (i) ⇒ (ii). If (𝑄, 𝑝) is a homotopical left approximation for id𭒞, then there
must exist a commutative diagram of the form below,

id𭒞 𝑄1 𝑄2 ⋯ 𝑄

id𭒞 id𭒞 id𭒞 ⋯ id𭒞

id 𝑝1 𝑝2 𝑝

where all the arrows in the top row are natural weak equivalences. Using 2-out-
of-3 property, we deduce (by induction) that 𝑝1, 𝑝2, … , 𝑝 are also natural weak
equivalences; thus (𭒞, 𭒞, 𝑄, 𝑝) is indeed a left deformation retract for id𭒞.

(ii) ⇒ (i). If (𭒞, 𭒞, 𝑄, 𝑝) is a left deformation retract for id𭒞, then 𝑝 : 𝑄 ⇒ id𭒞 is a
natural weak equivalence; but (id𭒞, idid𭒞) is a terminal object in ([𭒞, 𭒞]h ↓ id𭒞)h,
so by proposition 2.2.2, (𝑄, 𝑝) must be a homotopically terminal object. ■

Definition 2.4.4. Let 𝐹 , 𝐹 ′ : 𭒞 → 𭒟 be ordinary functors between homotopical
categories, and let 𝜑 : 𝐹 ⇒ 𝐹 ′ be a natural transformation. We define the
homotopical category ([min 𝟚, [𭒞, 𭒟]h]h ↓ 𝜑)h

as follows:

• The objects are tuples (𝐻, 𝐻 ′, 𝛼, 𝛼′, 𝜃) where 𝐻 and 𝐻 ′ are homotopical
functors 𭒞 → 𭒟, 𝛼 and 𝛼′ are natural transformations of type 𝐻 ⇒ 𝐹 and
𝐻 ′ ⇒ 𝐹 ′ (respectively), and 𝜃 : 𝐻 ⇒ 𝐻 ′ is a natural transformation such
that 𝜑 ∙ 𝛼 = 𝛼′ ∙ 𝜃.

• The morphisms (𝐻, 𝐻 ′, 𝛼, 𝛼′, 𝜃) → (𝐾, 𝐾′, 𝛽, 𝛽′, 𝜒) are pairs (𝜁 , 𝜁 ′) of
natural transformations, where 𝜁 : 𝐻 ⇒ 𝐾 and 𝜁 ′ : 𝐻 ′ ⇒ 𝐾′, such that
𝜒 ∙ 𝜁 = 𝜁 ′ ∙ 𝜃, 𝛽 ∙ 𝜁 = 𝛼, and 𝛽′ ∙ 𝜁 ′ = 𝛼′.

• The weak equivalences are those (𝜁 , 𝜁 ′) where both 𝜁 and 𝜁 ′ are natural
weak equivalences.

A homotopical left approximation for 𝜑 is a homotopically terminal object
(𝕃𝐹 , 𝕃𝐹 ′, 𝛿, 𝛿′, 𝕃𝜑) in ([min 𝟚, [𭒞, 𭒟]h]h ↓ 𝜑)h

such that (𝕃𝐹 , 𝛿) is a homotop-
ical left approximation for 𝐹 and (𝕃𝐹 ′, 𝛿′) is a homotopical left approximation
for 𝐹 ′.
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Dually, let 𝐺, 𝐺′ : 𭒟 → 𭒞 be ordinary functors between homotopical cat-
egories, and let 𝜓 : 𝐺′ ⇒ 𝐺 be a natural transformation. We define the homo-
topical category (𝜓 ↓ [min 𝟚, [𭒟, 𭒞]h]h)h

as follows:

• The objects are tuples (𝐻, 𝐻 ′, 𝛼, 𝛼′, 𝜃) where 𝐻 and 𝐻 ′ are homotopical
functors 𭒟 → 𭒞, 𝛼 and 𝛼′ are natural transformations of type 𝐺 ⇒ 𝐻 and
𝐺′ ⇒ 𝐻 ′ (respectively), and 𝜃 : 𝐻 ′ ⇒ 𝐻 is a natural transformation such
that 𝛼 ∙ 𝜓 = 𝜃 ∙ 𝛼′.

• The morphisms (𝐾, 𝐾′, 𝛽, 𝛽′, 𝜒) → (𝐻, 𝐻 ′, 𝛼, 𝛼′, 𝜃) are pairs (𝜁 , 𝜁 ′) of
natural transformations, where 𝜁 : 𝐾 ⇒ 𝐻 and 𝜁 ′ : 𝐾′ ⇒ 𝐻 ′, such that
𝜁 ∙ 𝜒 = 𝜃 ∙ 𝜁 ′, 𝜁 ∙ 𝛽 = 𝛼, and 𝜁 ′ ∙ 𝛽′ = 𝛼′.

• The weak equivalences are those (𝜁 , 𝜁 ′) where both 𝜁 and 𝜁 ′ are natural
weak equivalences.

A homotopical right approximation for 𝜓 is a homotopically initial object
(ℝ𝐺, ℝ𝐺′, 𝛿, 𝛿′, ℝ𝜓) in (𝜓 ↓ [min 𝟚, [𭒟, 𭒞]h]h)h

such that (ℝ𝐺, 𝛿) is a homo-
topical right approximation for 𝐺 and (ℝ𝐺′, 𝛿′) is a homotopical right approx-
imation for 𝐺′.

Theorem 2.4.5. Let 𭒞 and 𭒟 be homotopical categories.

(i) Let 𝐹 : 𭒞 → 𭒟 be an ordinary functor. If (𭒞◦, 𝑄, 𝑝) is a left deformation
retract for𝐹 , then (𝐹 𝑄, 𝐹 𝑝) is a homotopical absolute right Kan extension
of 𝐹 along id𭒞.

(ii) Let 𝐹 , 𝐹 ′ : 𭒞 → 𭒟 be a parallel pair of ordinary functors. If (𭒞◦, 𝑄, 𝑝) is
a left deformation retract for both 𝐹 and 𝐹 ′, then for any natural trans-
formation 𝜑 : 𝐹 ⇒ 𝐹 ′, (𝐹 𝑄, 𝐹 ′𝑄, 𝐹 𝑝, 𝐹 ′𝑝, 𝜑𝑄) is a homotopical left
approximation for 𝜑.

(iii) Let 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒟 → ℰ be ordinary functors between ho-
motopical categories. If (𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) is a left deformation retract for
𝐹 , (𭒟◦, 𝑄𭒟◦

, 𝑝𭒟◦

) is a left deformation retract for 𝐺, and 𝐹 maps ob-
jects in 𭒞◦ to objects in 𭒟◦, then, for any homotopical left approximation

((𝕃𝐹 ), 𝛿𝐹 ) for 𝐹 and any homotopical left approximation ((𝕃𝐺), 𝛿𝐺) for
𝐺, ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) is a homotopical left approximation for 𝐺𝐹 .

Dually:
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(i′) Let 𝐺 : 𭒟 → 𭒞 be an ordinary functor. If (𭒟◦, 𝑅, 𝑖) is a right deformation
retract for 𝐹 , then (𝐺𝑅, 𝐺𝑖) is a homotopical absolute left Kan extension
of 𝐺 along id𭒟.

(ii′) Let 𝐺, 𝐺′ : 𭒟 → 𭒞 be a parallel pair of ordinary functors. If (𭒟◦, 𝑅, 𝑖)
is a right deformation retract for both 𝐺 and 𝐺′, then for any natural
transformation 𝜓 : 𝐺′ ⇒ 𝐺, (𝐺𝑅, 𝐺′𝑅, 𝐺𝑖, 𝐺′𝑖, 𝜓𝑅) is a homotopical
right approximation for 𝜓 .

(iii′) Let 𝐹 : 𭒞 → ℬ and 𝐺 : 𭒟 → 𭒞 be ordinary functors between ho-
motopical categories. If (𭒞◦, 𝑅𭒞◦

, 𝑖𭒞◦

) is a right deformation retract for
𝐹 , (𭒟◦, 𝑅𭒟◦

, 𝑖𭒟◦

) is a right deformation retract for 𝐺, and 𝐺 maps ob-
jects in𭒟◦ to objects in 𭒞◦, then, for any homotopical right approximation

((ℝ𝐹 ), 𝛿𝐹 ) for 𝐹 and any homotopical right approximation ((ℝ𝐺), 𝛿𝐺)
for𝐺, ((ℝ𝐹 )(ℝ𝐺), 𝛿𝐹 ∘ 𝛿𝐺) is a homotopical right approximation for𝐹 𝐺.

Proof. (i). Let 𝐻 : 𭒟 → ℰ and 𝐾 : 𭒞 → ℰ be any two homotopical functors, and
let 𝛼 : 𝐾 ⇒ 𝐻𝐹 be any natural transformation. Then, we have the following
commutative diagram of natural transformations,

𝐾 𝐾𝑄 𝐻𝐹 𝑄

𝐻𝐹
𝛼

𝐾𝑝 𝛼𝑄

𝐻𝐹 𝑝

and, for any other homotopical functor 𝐾′ : 𭒞 → ℰ and natural transformation
𝜓 : 𝐾′ ⇒ 𝐾 , for 𝛼′ = 𝛼 ∙ 𝜓 , the diagram

𝐾′ 𝐾′𝑄 𝐻𝐹 𝑄

𝐾 𝐾𝑄 𝐻𝐹 𝑄

𝐻𝐹

𝜓 𝜓𝑄

𝐾′𝑝 𝛼′𝑄

𝛼

𝐾𝑝 𝛼𝑄

𝐻𝐹 𝑝

also commutes; thus, (𝐻𝐹 𝑄, 𝐻𝐹 𝑝) is indeed a homotopically terminal object
in ([𭒞, ℰ]h ↓ 𝐻𝐹 )h.
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(ii). Suppose (𝐻, 𝐻 ′, 𝛼, 𝛼′, 𝜃) is an object in ([min 𝟚, [𭒞, 𭒟]h]h ↓ 𝜑)h
. The dia-

gram below commutes,

𝐻𝑄 𝐻 ′𝑄

𝐻 𝐻 ′

𝐹 𝑄 𝐹 ′𝑄

𝐹 𝐹 ′

𝛼𝑄

𝜃𝑄

𝛼′𝑄

𝜑𝑄

𝐻𝑝 𝐻′𝑝

𝐹 𝑝 𝐹 ′𝑝

𝛼

𝜃

𝛼′

𝜑

and (𝐻𝑝, 𝐻 ′𝑝) is a weak equivalence, so (𝐹 𝑄, 𝐹 ′𝑄, 𝐹 𝑝, 𝐹 ′𝑝, 𝜑𝑄) is indeed a
homotopically terminal object in ([min 𝟚, [𭒞, 𭒟]h]h ↓ 𝜑)h

.

(iii). To begin, observe that 𝐺𝑝𭒟◦
𝐹 𝑄𭒞◦

: 𝐺𝑄𭒟◦
𝐹 𝑄𭒞◦

⇒ 𝐺𝐹 𝑄𭒞◦
is a natural

weak equivalence; and, as established above, both 𝛿𝐹 𝑄𭒞◦
: (𝕃𝐹 )𝑄𭒞◦

⇒ 𝐹 𝑄𭒞◦

and 𝛿𝐺𝑄𭒟◦
: (𝕃𝐺)𝑄𭒟◦

⇒ 𝐺𝑄𭒟◦
are natural weak equivalences, so their hori-

zontal composite (𝛿𝐺𝑄𭒞◦

)∘(𝛿𝐹 𝑄𭒟◦

) is also a natural weak equivalence. We also
know that (𭒞◦, 𝑄𭒞◦

, 𝑝𭒞◦

) is a left deformation retract for𝐺𝐹 , so (𝐺𝐹 𝑄𭒞◦
, 𝐺𝐹 𝑝𭒞◦

)
is a homotopical left approximation for 𝐺𝐹 . Now, noting that the following dia-
gram commutes,

(𝕃𝐺)𝑄𭒟◦
(𝕃𝐹 )𝑄𭒞◦

𝐺𝑄𭒟◦
𝐹 𝑄𭒞◦

𝐺𝐹 𝑄𭒞◦

(𝕃𝐺)(𝕃𝐹 ) 𝐺𝐹 𝐺𝐹

((𝕃𝐺)𝑝𭒟◦
)∘((𝕃𝐹 )𝑝𭒞◦

)

(𝛿𝐺𝑄𭒟◦
)∘(𝛿𝐹 𝑄𭒞◦

)

(𝐺𝑝𭒟◦
)∘(𝐹 𝑝𭒞◦

)

𝐺𝑝𭒟◦
𝐹 𝑄𭒞◦

𝐺𝐹 𝑝𭒞◦

𝛿𝐺∘𝛿𝐹

we conclude that ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) and (𝐺𝐹 𝑄𭒞◦
, 𝐺𝐹 𝑝𭒞◦

) are weakly equi-
valent in ([𭒞, ℰ]h ↓ 𝐺𝐹 )h, and so ((𝕃𝐺)(𝕃𝐹 ), 𝛿𝐺 ∘ 𝛿𝐹 ) is also a homotopical left
approximation for 𝐺𝐹 , by proposition 2.2.2. ■

Remark 2.4.6. Unfortunately, the assignment 𝐹 ↦ 𝐹 𝑄 (resp. 𝐺 ↦ 𝐺𝑅) does
not extend to lax (resp. oplax) 2-functors, because we do not have a natural trans-
formation id𭒞 ⇒ 𝑄 (resp. 𝑅 ⇒ id𭒟).

Corollary 2.4.7. Let 𭒞 and 𭒟 be homotopical categories, and let 𝛾𭒞 : 𭒞 → Ho 𭒞
and 𝛾𭒟 : 𭒟 → Ho 𭒟 be the respective localising functors.
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• If 𝐹 : 𭒞 → 𭒟 is a left deformable functor and (𝕃𝐹 , 𝛿) is any homotopical
left approximation for𝐹 , then (Ho(𝕃𝐹 ), 𝛾𭒟𝛿) is a total left derived functor
for 𝐹 .

• If𝐺 : 𭒟 → 𭒞 is a right deformable functor and (ℝ𝐺, 𝛿) is any homotopical
right approximation for 𝐺, then (Ho(ℝ𝐺), 𝛾𭒞𝛿) is a total right derived
functor for 𝐺.

Proof. Combine theorems 2.3.6 and 2.4.5. ■
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III

Model categories

3.1 Basics

Prerequisites. §§ 2.1, a.2.
In [1967], Quillen introduced the notion of a ‘closed model category’ (but

we shall say simply ‘model category’) for homotopy theory, so as to formalise
the similarities between the homotopy theory of spaces and homological algebra.
The idea was that, to do homotopy theory, one really only needed to know which
morphisms are cofibrations, which are weak equivalences, and which are fibra-
tions.

Definition 3.1.1. A model category is a locally small category ℳ equipped
with three subclasses 𭒞, 𭒲, ℱ of mor ℳ satisfying the following axioms:[1]

• CM1. ℳ has finite limits and finite colimits.

• CM2. 𭒲 has the 2-out-of-3 property.

• CM3. 𭒞, 𭒲, and ℱ are closed under retracts.

• CM4. Given a commutative diagram

𝐴 𝑋

𝐵 𝑌

𝑖 𝑝

[1] This presentation is due to Quillen [1969].
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where 𝑖 is in 𭒞 and 𝑝 is in ℱ, if at least one of 𝑖 or 𝑝 is also in 𭒲, then there
exists a morphism 𝐵 → 𝑋 making both of the evident triangles commute.

• CM5. Any morphism 𝑓 in ℳ may be factored in two ways:

– 𝑓 = 𝑝 ∘ 𝑖 where 𝑖 is in 𭒞 ∩ 𭒲 and 𝑝 is in ℱ, and

– 𝑓 = 𝑞 ∘ 𝑗, where 𝑗 is in 𭒞 and 𝑞 is in 𭒲 ∩ ℱ.

The triple (𭒞, 𭒲, ℱ) is said to be a model structure on ℳ. Given such a model
structure on ℳ,

• a cofibration is a morphism in 𭒞,

• a weak equivalence is a morphism in 𭒲,

• a fibration is a morphism in ℱ,

• a trivial cofibration (or acyclic cofibration) is a morphism in 𭒞 ∩ 𭒲, and

• a trivial fibration (or acyclic fibration) is a morphism in 𭒲 ∩ ℱ;

• a cofibrant object is an object 𝑋 such that the unique morphism 0 → 𝑋
is a cofibration, and

• a fibrant object is an object 𝑋 such that the unique morphism 𝑋 → 1 is
a fibration.

• a cofibrant–fibrant object is an object that is both cofibrant and fibrant.

Definition 3.1.2. A DHK model category is a model category satisfying the
following variants of CM1 and CM5:

• CM1*. ℳ is complete and cocomplete.

• CM5*. The (𭒞 ∩ 𭒲, ℱ) and (𭒞, 𭒲 ∩ ℱ)-factorisations can be chosen func-
torially in the sense of definition a.2.21.

Remark 3.1.3. Hovey [1999] and Hirschhorn [2003] attribute the stronger defin-
ition of ‘model category’ to Dwyer, Hirschhorn and Kan [DHK], hence the name
‘DHK model category’; of course, this is the definition used in the cited works,
as well as in [DHKS]. Note also that the definition in [Hovey, 1999] includes the
functorial factorisations as a structure instead of a property. On the other hand,
[DS] and [GJ] use Quillen’s 1969 definition essentially verbatim.
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Example 3.1.4. Let ℳ be any category with finite limits and finite colimits. The
trivial model structure on ℳ is defined by the following data:

• The weak equivalences are the isomorphisms.

• Every morphism is both a cofibration and a fibration.

It is straightforward to directly verify that the axioms are satisfied in this case.
Notice that if ℳ is complete and cocomplete, then the trivial model structure
even makes ℳ into a DHK model category.

Remark 3.1.5. Let ℳ be a category with finite limits and finite colimits. Then,
(𭒞, 𭒲, ℱ) is a model structure on ℳ if and only if (ℱop, 𭒲op, 𭒞op) is a model
structure on ℳop.

Lemma 3.1.6. Let ℳ be a category with a pair of weak factorisation systems
(𭒞′, ℱ) and (𭒞, ℱ′). Define the following subensemble of mor 𭒞:

𭒲 = {𝑞 ∘ 𝑗 | 𝑗 ∈ 𭒞′, 𝑞 ∈ ℱ′}

(i) 𭒞 ∩ 𭒲 ⊆ 𭒞′ ⊆ 𭒲.

(ii) If 𭒞′ ⊆ 𭒞, then ℱ′ ⊆ ℱ and 𭒞 ∩ 𭒲 = 𭒞′.

Dually:

(i′) 𭒲 ∩ ℱ ⊆ ℱ′ ⊆ 𭒲.

(ii′) If ℱ′ ⊆ ℱ, then 𭒞′ ⊆ 𭒞 and 𭒲 ∩ ℱ = ℱ′.

Proof. (i). If 𝑗 : 𝑋 → 𝑌 is in 𭒞′, then 𝑗 is also in 𭒲, because id𝑌 is in ℱ; thus
𭒞′ ⊆ 𭒲. Now, suppose 𝑖 : 𝑋 → 𝑍 is in 𭒞 ∩ 𭒲; then there must be 𝑗 : 𝑋 → 𝑌
in 𭒞′ and 𝑞 : 𝑌 → 𝑍 in ℱ′ such that 𝑖 = 𝑞 ∘ 𝑗, and so we have the commutative
diagram shown below:

𝑋 𝑌

𝑍 𝑍

𝑖

𝑗

𝑞

id

Since 𝑖 ⧄ 𝑞, 𝑖 must be a retract of 𝑗; hence, by proposition a.2.12, 𝑖 is in 𭒞′, and
therefore 𭒞 ∩ 𭒲 ⊆ 𭒞′.

(ii). If we know 𭒞′ ⊆ 𭒞, then ℱ′ ⊆ ℱ by proposition a.2.3, and 𭒞′ ⊆ 𭒞 ∩ 𭒲, so
from claim (i) it follows that 𭒞′ = 𭒞 ∩ 𭒲. ■
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Theorem 3.1.7. Letℳ be a locally small category and let 𭒞, 𭒲, ℱ be subclasses
of mor ℳ. Assuming ℳ has finite limits and finite colimits, the following are
equivalent:

(i) (𭒞, 𭒲, ℱ) is a model structure for ℳ.

(ii) 𭒲 has the 2-out-of-3 property in ℳ, and both (𭒞 ∩ 𭒲, ℱ) and (𭒞, 𭒲 ∩ ℱ)
are weak factorisation systems for ℳ.

Proof. (i) ⇒ (ii). The fact that we have two weak factorisation systems follows
from Lemma 1.1 in [GJ, Ch. II] or Proposition 7.2.3 in [Hirschhorn, 2003].

(ii) ⇒ (i). We may deduce from proposition a.2.12 that 𭒞 and ℱ are closed under
retracts, and it remains to be shown that 𭒲 is closed under retracts.

Let 𝑤 : 𝑋 → 𝑍 be a morphism in 𭒲, and consider a commutative diagram
of the form below:

𝑋′ 𝑋 𝑋′

𝑍′ 𝑍 𝑍′

𝑤′

𝑠𝑋

id

𝑤

𝑟𝑋

𝑤′

id

𝑠𝑍 𝑟𝑍

Choose a (𭒞 ∩ 𭒲, ℱ) factorisation for 𝑤′, say 𝑤′ = 𝑝′ ∘ 𝑗′, with 𝑗′ : 𝑋′ → 𝑌 ′ in
𭒞 ∩ 𭒲 and 𝑝′ : 𝑌 ′ → 𝑍′ in ℱ. Construct the following commutative diagram,

𝑋′ 𝑋 𝑋′

𝑌 ′ 𝑌 𝑌 ′

𝑍′ 𝑍 𝑍′

𝑗′

𝑠𝑋

𝑢

𝑟𝑋

𝑗′

𝑝′

𝑠𝑌

𝑣

𝑟𝑌

𝑗′

𝑠𝑍 𝑟𝑍

where the top left square is a pushout square, 𝑣 ∘ 𝑢 = 𝑤, and 𝑟𝑌 ∘ 𝑠𝑌 = id𝑌 .
Since 𭒞 ∩ 𭒲 is closed under pushouts, 𝑢 is also in 𭒞 ∩ 𭒲, and by the 2-out-of-3
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property, 𝑣 is in 𭒲. Thus, 𝑝′ is in ℱ and is a retract of 𝑣:

𝑌 ′ 𝑌 𝑌 ′

𝑍′ 𝑍 𝑍′

𝑝′

𝑠𝑌

id

𝑣

𝑟𝑌

𝑝′

id

𝑠𝑍 𝑟𝑍

Using the 2-out-of-3 property again, choose a (𭒞 ∩ 𭒲, 𭒲 ∩ ℱ)-factorisation of
𝑣, say 𝑣 = 𝑞 ∘ 𝑗. Since 𝑗 ⧄ 𝑝′, there exists a morphism 𝑟 such that 𝑟 ∘ 𝑗 = 𝑟𝑌 and
𝑝′ ∘ 𝑟 = 𝑟𝑍 ∘ 𝑞; putting 𝑠 = 𝑗 ∘ 𝑠𝑌 , we obtain 𝑟 ∘ 𝑠 = 𝑟𝑌 ∘ 𝑠𝑌 = id𝑌 , thus 𝑝′ is a
retract of 𝑞 and must therefore be in ℱ ∩ 𭒲. Hence, 𝑤′ = 𝑝′ ∘ 𝑗′ is in 𭒲. □

Remark 3.1.8. May and Ponto [2012, Ch. 14] define ‘model category’ to mean
a complete and cocomplete locally small category ℳ equipped with a triple of
classes (𭒞, 𭒲, ℱ) satisfying condition (ii) of the above proposition; if the two
weak factorisation systems can be extended to a pair of functorial factorisation
systems, then this is a DHK model category.

Lemma 3.1.9. Let 𝐴 be an object in a model category ℳ. Then the slice
category ℳ∕𝐴 has the slice model structure, where a morphism in ℳ∕𝐴 is a
cofibration, weak equivalence, or fibration if it is so in ℳ.

Proof. Use lemmas 2.1.6 and a.2.11, plus the fact that ℳ∕𝐴 has finite limits and
finite colimits if ℳ does. ■

Definition 3.1.10. Let 𝑋 be an object in a model category ℳ.

• A cofibrant replacement for 𝑋 is a pair (𝑋̃, 𝑝) where 𝑋̃ is a cofibrant
object in ℳ and 𝑝 is a weak equivalence 𝑋̃ → 𝑋.

• A fibrant replacement for 𝑋 is a pair (𝑋̂, 𝑖) where 𝑋̂ is a fibrant object
in ℳ and 𝑖 is a weak equivalence 𝑋 → 𝑋̂.

• A fibrant cofibrant replacement for 𝑋 is a cofibrant replacement (𝑋̃, 𝑝)
where 𝑝 : 𝑋̃ → 𝑋 is a trivial fibration.

• A cofibrant fibrant replacement for 𝑋 is a fibrant replacement (𝑋̂, 𝑖)
where 𝑖 : 𝑋 → 𝑋̂ is a trivial cofibration.

Definition 3.1.11. Let ℳ be a model category.
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• A cofibrant replacement functor for ℳ is a pair (𝑄, 𝑝), where 𝑄 is an
endofunctor on ℳ and 𝑝 is a natural transformation 𝑄 ⇒ idℳ such that,
for every object 𝑋 in ℳ, (𝑄𝑋, 𝑝𝑋) is a cofibrant replacement for 𝑋.

• A fibrant replacement functor for ℳ is a pair (𝑅, 𝑖), where 𝑅 is an en-
dofunctor on ℳ and 𝑖 is a natural transformation idℳ ⇒ 𝑅 such that, for
every object 𝑋 in ℳ, (𝑅𝑋, 𝑖𝑋) is a fibrant replacement for 𝑋.

• A fibrant cofibrant replacement functor for ℳ is a pair (𝑄, 𝑝), where 𝑄
is an endofunctor on ℳ and 𝑝 is a natural transformation 𝑄 ⇒ idℳ such
that, for every object 𝑋 in ℳ, (𝑄𝑋, 𝑝𝑋) is a fibrant cofibrant replacement
for 𝑋.

• A cofibrant fibrant replacement functor for ℳ is a pair (𝑅, 𝑖), where 𝑅
is an endofunctor on ℳ and 𝑖 is a natural transformation idℳ ⇒ 𝑅 such
that, for every object 𝑋 in ℳ, (𝑅𝑋, 𝑖𝑋) is a cofibrant fibrant replacement
for 𝑋.

Remark 3.1.12. Note that a fibrant cofibrant replacement for 𝑋 is precisely a
cofibrant replacement for 𝑋 that is fibrant as an object in ℳ∕𝑋 , and a cofibrant
fibrant replacement for 𝑋 is precisely a fibrant replacement for 𝑋 that is cofibrant
as an object in 𝑋∕ℳ.

Moreover, if 𝑋 is fibrant and (𝑋̃, 𝑝) is a fibrant cofibrant replacement for 𝑋,
then 𝑋̃ is both fibrant and cofibrant in ℳ, and if 𝑋 is cofibrant and (𝑋̂, 𝑖) is a
cofibrant fibrant replacement for 𝑋, then 𝑋̂ is both cofibrant and fibrant in ℳ.

Proposition 3.1.13.
(i) Any object in a model category has both a fibrant cofibrant replacement

and a cofibrant fibrant replacement.

(ii) Any DHKmodel category has both a fibrant cofibrant replacement functor
and a cofibrant fibrant replacement functor.

Proof. (i). Use axiom CM5.

(ii). Use axiom CM5*. ■

3.2 Left and right homotopy

Prerequisites. § 3.1.
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Definition 3.2.1. Let 𝑋 be an object in a model category ℳ.

• A cylinder object for 𝑋 is a quadruple (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝), where Cyl(𝑋)
is an object in ℳ, 𝑝 : Cyl(𝑋) → 𝑋 is a weak equivalence, and 𝑖0 and 𝑖1
are sections of 𝑝 such that the morphism [𝑖0, 𝑖1] : 𝑋 + 𝑋 → Cyl(𝑋) is a
cofibration.

• A path object for 𝑋 is a quadruple (Path(𝑋), 𝑖, 𝑝0, 𝑝1), where Path(𝑋) is
an object in ℳ, 𝑖 : 𝑋 → Path(𝑋) is a weak equivalence, and 𝑝0 and 𝑝1 are
retractions of 𝑖 such that the morphism ⟨𝑝0, 𝑝1⟩ : Path(𝑋) → 𝑋 × 𝑋 is a
fibration.

Remark 3.2.2. Let (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) be a cylinder object for 𝑋. By definition,
𝑝 ∘ 𝑖0 = 𝑝 ∘ 𝑖1 = id𝑋 , and 𝑝 is a weak equivalence, so by the 2-out-of-3 property,
𝑖0 and 𝑖1 must also be weak equivalences 𝑋 → Cyl(𝑋).

Dually, if (Path(𝑋), 𝑖, 𝑝0, 𝑝1) is a path object for 𝑋, then 𝑝0 and 𝑝1 must be
weak equivalences Path(𝑋) → 𝑋.

Proposition 3.2.3. Let 𝑋 be an object in a model category ℳ.

(i) There exists a cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for𝑋, where themorphism
𝑝 : Cyl(𝑋) → 𝑋 is a trivial fibration.

(ii) There exists a path object (Path(𝑋), 𝑖, 𝑝0, 𝑝1) for 𝑋, where the morphism
𝑖 : 𝑋 → Path(𝑋) is a trivial cofibration.

Proof. Use axioms CM1 and CM5. ■

Definition 3.2.4. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a
model category ℳ, let (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) be a cylinder object for 𝑋, and let

(Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) be a path object for 𝑌 .

• A left homotopy from 𝑓0 to 𝑓1 with respect to (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) is a
morphism 𝐻 : Cyl(𝑋) → 𝑌 such that 𝐻 ∘ 𝑖0 = 𝑓0 and 𝐻 ∘ 𝑖1 = 𝑓1.

• A right homotopy from 𝑓0 to 𝑓1 with respect to (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) is a
morphism 𝐻 : 𝑋 → Path(𝑌 ) such that 𝑝0 ∘ 𝐻 = 𝑓0 and 𝑝1 ∘ 𝐻 = 𝑓1.

• We say 𝑓0 and 𝑓1 are left homotopic if there exists a left homotopy from
𝑓0 to 𝑓1 with respect to some cylinder object for 𝑋.
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III. Model categories

• We say 𝑓0 and 𝑓1 are right homotopic if there exists a right homotopy
from 𝑓0 to 𝑓1 with respect to some path object for 𝑌 .

Remark 3.2.5. If 𝑓0 and 𝑓1 are either left homotopic or right homotopic, then
they must represent the same morphism in Ho ℳ. For definiteness, let us write
𝛾 : ℳ → Ho ℳ for the localising functor, and suppose 𝐻 : Cyl(𝑋) → 𝑌 is
a left homotopy from 𝑓0 to 𝑓1. Since 𝑖0 and 𝑖1 are both sections of the weak
equivalence 𝑝 : Cyl(𝑋) → 𝑋, we must have 𝛾𝑖0 = (𝛾𝑝)−1 = 𝛾𝑖1; but 𝑓0 = 𝐻 ∘ 𝑖0
and 𝑓1 = 𝐻 ∘ 𝑖1, so indeed 𝛾𝑓0 = 𝛾𝑓1. This is one of the reasons for calling
Ho ℳ the homotopy category of ℳ.

However, it is not quite true that 𝛾𝑓0 = 𝛾𝑓1 if and only if 𝑓0 and 𝑓1 are either
left homotopic or right homotopic; this only happens in special cases. In general,
being left/right homotopic fails to even be an equivalence relation.

Definition 3.2.6. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a model category ℳ.

• A left homotopy left inverse of 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋 in ℳ such
that 𝑔 ∘ 𝑓 and id𝑋 are left homotopic.

• A right homotopy right inverse of 𝑓 is a morphism ℎ : 𝑌 → 𝑋 in ℳ
such that 𝑓 ∘ ℎ and id𝑌 are right homotopic.

• A right homotopy left inverse of 𝑓 is a morphism 𝑔 : 𝑌 → 𝑋 in ℳ such
that 𝑔 ∘ 𝑓 and id𝑋 are right homotopic.

• A left homotopy right inverse of 𝑓 is a morphism ℎ : 𝑌 → 𝑋 in ℳ such
that 𝑓 ∘ ℎ and id𝑌 are left homotopic.

A homotopy equivalence in ℳ is a pair (𝑓 , 𝑔) such that 𝑔 (resp. 𝑓 ) is both a left
homotopy left inverse and a right homotopy right inverse for 𝑓 (resp. 𝑔). Two
morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 in ℳ are mutual homotopy inverses
when (𝑓 , 𝑔) constitute a homotopy equivalence in ℳ.

Remark 3.2.7. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be morphisms in a model
category.

• 𝑔 is a left homotopy left inverse for 𝑓 if and only if 𝑓 is a left homotopy
right inverse for 𝑔.

• 𝑔 is a right homotopy left inverse for 𝑓 if and only if 𝑓 is a right homotopy
left inverse for 𝑔.
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However, note that the dual of ‘left homotopy left inverse’ is ‘right homotopy
right inverse’, and the dual of ‘right homotopy left inverse’ is ‘left homotopy
right inverse’!

Lemma 3.2.8. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category, and suppose 𝑓0 and 𝑓1 are either left or right homotopic. Then, 𝑓0 is
a weak equivalence if and only if 𝑓1 is a weak equivalence.

Proof. Assume 𝑓0 and 𝑓1 are left homotopic; the other case is formally dual.
So, there exist a cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋 and a morphism 𝐻 :
Cyl(𝑋) → 𝑌 such that 𝐻 ∘ 𝑖0 = 𝑓0 and 𝐻 ∘ 𝑖1 = 𝑓1. Suppose 𝑓0 is a weak equi-
valence. By remark 3.2.2, 𝑖0 is a weak equivalence, so the 2-out-of-3 property
implies 𝐻 is also a weak equivalence; but 𝑖1 is a weak equivalence as well, so
𝑓1 must be a weak equivalence too. A symmetrical argument proves that 𝑓0 is a
weak equivalence if 𝑓1 is. ■

Lemma 3.2.9. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑋 be morphisms in a model
category ℳ.

(i) If 𝑔 ∘ 𝑓 is either left or right homotopic to id𝑋 , and 𝑓 ∘ 𝑔 is either left or
right homotopic to id𝑌 , then (𝑓 , 𝑔) is an equivalence in ℳ (in the sense of
definition 2.1.12).

(ii) If there exist morphisms 𝑔, ℎ : 𝑌 → 𝑋 such that 𝑔 ∘ 𝑓 is either left or right
homotopic to id𝑋 and 𝑓 ∘ ℎ is either left or right homotopic to id𝑌 , then
(the image of) 𝑓 is an isomorphism in Ho ℳ.

Proof. Obvious, given remark 3.2.5. ⧫

Lemma 3.2.10. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

(i) Given any cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, 𝑓0 ∘ 𝑝 : Cyl(𝑋) → 𝑌
is a left homotopy from 𝑓0 to itself.

(ii) Given any path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , 𝑖 ∘ 𝑓0 : 𝑋 → Path(𝑌 ) is a
right homotopy from 𝑓0 to itself.

(iii) If 𝐻 : Cyl(𝑋) → 𝑌 is a left homotopy from 𝑓0 to 𝑓1 with respect to a cyl-
inder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, then the same 𝐻 is a left homotopy
from 𝑓1 to 𝑓0 for the cylinder object (Cyl(𝑋), 𝑖1, 𝑖0, 𝑝).
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(iv) If 𝐻 : 𝑋 → Path(𝑌 ) is a right homotopy from 𝑓0 to 𝑓1 with respect to a
path object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , then the same𝐻 is a right homotopy
from 𝑓1 to 𝑓0 for the path object (Path(𝑌 ), 𝑖, 𝑝1, 𝑝0).

Proof. Obvious. ⧫

Lemma 3.2.11. Let 𝑋 be a cofibrant object in a model category ℳ. Given two
cylinder objects for 𝑋, say (Cyl(𝑋)′, 𝑖′

0, 𝑖′
1, 𝑝′) and (Cyl(𝑋)″, 𝑖″

0 , 𝑖″
1 , 𝑝″), there

exists a third cylinder object (Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) such that the diagram below com-
mutes,

𝑋 𝑋 𝑋

Cyl(𝑋)′ Cyl(𝑋)″

Cyl(𝑋)

𝑋

𝑖′
0

𝑖0

𝑖′
1 𝑖″

0 𝑖″
1

𝑖1

𝑝′ 𝑝″
𝑝

and the diamond is a pushout diagram.
Dually, if 𝑌 is a fibrant object in ℳ, and we have two path objects for 𝑌 ,

say (Path(𝑌 )′, 𝑖′, 𝑝′
0, 𝑝′

1) and (Path(𝑌 )″, 𝑖″, 𝑝″
0 , 𝑝″

1 ), then there exists a third path
object (Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) such that the diagram below commutes,

𝑌

Path(𝑌 )

Path(𝑌 )′ Path(𝑌 )″

𝑌 𝑌 𝑌

𝑖
𝑖′ 𝑖″

𝑝0 𝑝1

𝑝′
0 𝑝′

1 𝑝″
0 𝑝″

1

and the diamond is a pullback diagram.

Proof. See Lemma 1.5 in [GJ, Ch. II], or Lemma 7.4.2 in [Hirschhorn, 2003].
□

Corollary 3.2.12. Let 𝑓0, 𝑓1, 𝑓2 : 𝑋 → 𝑌 be three parallel morphisms in a
model category ℳ.
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(i) If 𝑓0 and 𝑓1 are left homotopic, and 𝑓1 and 𝑓2 are left homotopic, then 𝑓0
and 𝑓2 are also left homotopic.

(ii) If 𝑓0 and 𝑓1 are right homotopic, and 𝑓1 and 𝑓2 are right homotopic, then
𝑓0 and 𝑓2 are also right homotopic. ■

Lemma 3.2.13. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

(i) If 𝑋 is cofibrant, and 𝑓0 and 𝑓1 are left homotopic, given any path object

(Path(𝑌 ), 𝑖, 𝑝0, 𝑝1) for 𝑌 , there is a right homotopy 𝐻 : 𝑋 → Path(𝑌 )
from 𝑓0 to 𝑓1.

(ii) If 𝑌 is fibrant, and 𝑓0 and 𝑓1 are right homotopic, given any cylinder object

(Cyl(𝑋), 𝑖0, 𝑖1, 𝑝) for 𝑋, there is a left homotopy 𝐻 : Cyl(𝑋) → 𝑌 from
𝑓0 to 𝑓1.

Proof. See Proposition 1.8 in [GJ, Ch. II], or Proposition 7.4.7 in [Hirschhorn,
2003]. □

Proposition 3.2.14. Let 𝑋 and 𝑌 be objects in a model category ℳ.

(i) If 𝑋 is cofibrant, then being left homotopic is an equivalence relation on
the hom-set ℳ(𝑋, 𝑌 ).

(ii) If 𝑌 is fibrant, then being right homotopic is an equivalence relation on
the hom-set ℳ(𝑋, 𝑌 ).

(iii) If 𝑋 is cofibrant and 𝑌 is fibrant, then these two equivalence relations on
ℳ(𝑋, 𝑌 ) coincide.

Proof. Use the preceding lemmas. ■

Lemma 3.2.15. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

(i) If 𝑓0 and 𝑓1 are right homotopic and 𝑔 : 𝑊 → 𝑋 is any morphism in ℳ,
then 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are also right homotopic.

(ii) If 𝑓0 and 𝑓1 are left homotopic and 𝑔 : 𝑌 → 𝑍 is any morphism in ℳ,
then 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1 are also left homotopic.
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Proof. Obvious. ⧫

Corollary 3.2.16. Let ℳ be a model category, and let ℳcf be the full subcat-
egory spanned by the cofibrant–fibrant objects. Then the equivalence relation
induced by homotopy is a congruence onℳcf; in particular, there exist a locally
small category ℳ′ and a full functor ℳcf → ℳ′ with these properties:

• The objects of ℳ′ are those of ℳcf.

• The hom-set ℳ′(𝑋, 𝑌 ) is ℳ(𝑋, 𝑌 ) modulo homotopy.

• The functor ℳcf → ℳ′ sends each morphism in ℳ′ to its homotopy
class. ■

The next result is a version of Whitehead’s theorem; however, this is a purely
formal consequence of themodel category axioms and has no real content, unlike
the original theorem.

Proposition 3.2.17. Let 𝑋 and 𝑌 be cofibrant–fibrant objects in a model cat-
egory ℳ. If 𝑓 : 𝑋 → 𝑌 is a weak equivalence, then 𝑓 has a homotopy inverse
in ℳ.

Proof. See Theorem 1.10 in [GJ, Ch. II], or Theorem 7.5.10 in [Hirschhorn,
2003]. □

Lemma 3.2.18. Let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms in a model
category ℳ.

• If 𝑔 : 𝑊 → 𝑋 is a morphism with a right homotopy right inverse in ℳ,
then 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are right homotopic if and only if 𝑓0 and 𝑓1 are right
homotopic.

• If 𝑔 : 𝑌 → 𝑍 is a morphism with a left homotopy left inverse in ℳ,
then 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1 are left homotopic if and only if 𝑓0 and 𝑓1 are left
homotopic.

Proof. This follows immediately from the definitions and lemma 3.2.15. ■

Corollary 3.2.19. Let 𝑊 , 𝑋, 𝑌 , 𝑍 be cofibrant–fibrant objects in a model cat-
egory ℳ, and let 𝑓0, 𝑓1 : 𝑋 → 𝑌 be a parallel pair of morphisms.
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• If 𝑔 : 𝑊 → 𝑋 is a weak equivalence such that 𝑓0 ∘ 𝑔 and 𝑓1 ∘ 𝑔 are
homotopic, then 𝑓0 and 𝑓1 are homotopic.

• If 𝑔 : 𝑌 → 𝑍 is a weak equivalence such that 𝑔 ∘ 𝑓0 and 𝑔 ∘ 𝑓1 are
homotopic, then 𝑓0 and 𝑓1 are homotopic.

Proof. Apply proposition 3.2.17 in conjunction with the above lemma. ■

3.3 The homotopy category

Prerequisites. §§ 3.1, 3.2, a.3.

Definition 3.3.1. TheQuillen homotopy category (or, more simply, homotopy
category) of a model category ℳ is the category Ho ℳ obtained by freely in-
verting the weak equivalences in ℳ, as in definition a.3.9.

Theorem 3.3.2. Let ℳ be a model category and let 𝛾 : ℳ → Ho ℳ be the
localising functor.

(i) Ho ℳ is equivalent to the locally small category ℳ′ defined in corol-
lary 3.3.4, and ℳ is a saturated homotopical category.

(ii) If 𝑋 and 𝑌 are cofibrant–fibrant objects in ℳ, then the hom-ensemble
map ℳ(𝑋, 𝑌 ) → Ho ℳ(𝑋, 𝑌 ) induced by 𝛾 is surjective; and moreover
for any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℳ, we have 𝛾𝑓0 = 𝛾𝑓1 if and only
if 𝑓0 and 𝑓1 are homotopic.

(iii) For any two objects 𝑋 and 𝑌 in ℳ, every morphism 𝑋 → 𝑌 in Ho ℳ
can be represented as a zigzag of the form

𝑋 𝑋̃ ̂𝑌 𝑌𝑝 𝑖

where (𝑋̃, 𝑝) is any cofibrant replacement for 𝑋 and ( ̂𝑌 , 𝑖) is any fibrant
replacement for 𝑌 .

Proof. (i). This is Theorem 1.11 in [GJ, Ch. II], or Proposition 5.8 in [DS].

(ii). Implied by claim (i).
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(iii). Using claim (ii), every morphism 𝑋 → 𝑌 in Ho ℳ can be represented as
a zigzag of the form

𝑋 𝑋̃ ̂𝑌 𝑌

𝑅𝑋̃ 𝑄 ̂𝑌

𝑝

𝑖′

𝑖

𝑓 ′

𝑝′

where (𝑅𝑋̃, 𝑖′) is a cofibrant fibrant replacement for 𝑋̃ and (𝑄 ̂𝑌 , 𝑝′) is a fibrant
cofibrant replacement for ̂𝑌 ; but such a zigzag is manifestly equivalent to the
zigzag

𝑋 𝑋̃ ̂𝑌 𝑌𝑝 𝑓 𝑖

where 𝑓 = 𝑝′ ∘ 𝑓 ′ ∘ 𝑖′. □

Corollary 3.3.3. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a model category ℳ. If
𝑓 has a quasi-inverse in ℳ (in the sense of definition 2.1.12), then 𝑓 is a weak
equivalence in ℳ.

Proof. If 𝑓 has a quasi-inverse in ℳ, then (the image of) 𝑓 is an isomorph-
ism in Ho ℳ; but ℳ is a saturated homotopical category, so 𝑓 must be a weak
equivalence in ℳ. ■

Corollary 3.3.4. Let ℳ be a model category and let 𝛾 : ℳ → Ho ℳ be the
localising functor.

(i) If 𝑋 is a cofibrant object in ℳ and 𝑌 is a fibrant object in ℳ, then the
hom-class map ℳ(𝑋, 𝑌 ) → Ho ℳ(𝑋, 𝑌 ) induced by 𝛾 is surjective.

(ii) Moreover, for any parallel pair 𝑓0, 𝑓1 : 𝑋 → 𝑌 in ℳ, if 𝑋 is cofibrant
and 𝑌 is fibrant, we have 𝛾𝑓0 = 𝛾𝑓1 if and only if 𝑓0 and 𝑓1 are homotopic.

(iii) The full subcategoryℳcf of cofibrant–fibrant objects inℳ has the White-
head property (in the sense of definition 2.1.16).

Proof. (i). This immediately follows from statement (iii) of the above theorem.

(ii). As noted in remark 3.2.5, if 𝑓0, 𝑓1 : 𝑋 → 𝑌 are homotopic, then we must
have 𝛾𝑓0 = 𝛾𝑓1. Conversely, suppose 𝛾𝑓0 = 𝛾𝑓1 with 𝑋 cofibrant and 𝑌 fibrant.
Let (𝑅𝑋, 𝑖′) be a cofibrant fibrant replacement for 𝑋 and (𝑄𝑌 , 𝑝′) be a fibrant
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cofibrant replacement for 𝑌 . Then, there exists morphisms 𝑓 ′
0 , 𝑓 ′

1 : 𝑅𝑋 → 𝑄𝑌
such that 𝑓0 = 𝑝′∘𝑓 ′

0 ∘𝑖′ and 𝑓1 = 𝑝′∘𝑓 ′
1 ∘𝑖′. Since 𝑖′ : 𝑋 → 𝑅𝑋 and 𝑝′ : 𝑄𝑌 → 𝑌

are weak equivalences, we must have 𝛾𝑓 ′
0 = 𝛾𝑓 ′

1 in Ho ℳ. The theorem then
implies 𝑓 ′

0 and 𝑓 ′
1 are homotopic; thus 𝑓0 and 𝑓1 are also homotopic, by lemmas

3.2.13 and 3.2.15.

(iii). Apply theorem 2.1.17 in conjunction with lemma 3.2.9 and the above co-
rollary. ■

Corollary 3.3.5. Let 𝑓 : 𝑋 → 𝑌 be a morphism between two cofibrant objects
in a model category ℳ. The following are equivalent:

(i) 𝑓 : 𝑋 → 𝑌 is a weak equivalence in ℳ.

(ii) Ho ℳ(𝑓 , 𝑍) : Ho ℳ(𝑌 , 𝑍) → Ho ℳ(𝑋, 𝑍) is a bijection for all cofibrant–
fibrant objects 𝑍 in ℳ.

(iii) ℳ′(𝑓 , 𝑍) : ℳ′(𝑌 , 𝑍) → ℳ′(𝑋, 𝑍) is a bijection for all cofibrant–
fibrant objects 𝑍 in ℳ, where ℳ′(𝑌 , 𝑍) (resp. ℳ′(𝑋, 𝑍)) denotes the
set of all morphisms 𝑌 → 𝑍 (resp. 𝑋 → 𝑍) in ℳ modulo homotopy.

Proof. (i) ⇒ (ii). Every weak equivalence in ℳ becomes an isomorphism in
Ho ℳ, so in particular Ho ℳ(𝑓 , 𝑍) : Ho ℳ(𝑌 , 𝑍) → Ho ℳ(𝑋, 𝑍) must be a
bijection.

(ii) ⇔ (iii). The previous corollary implies that the vertical arrows in the follow-
ing commutative diagram are bijections,

ℳ′(𝑌 , 𝑍) ℳ′(𝑋, 𝑍)

Ho ℳ(𝑌 , 𝑍) Ho ℳ(𝑋, 𝑍)

ℳ′(𝑓 ,𝑍)

Ho ℳ(𝑓 ,𝑍)

and so ℳ′(𝑓 , 𝑍) is a bijection if and only if Ho ℳ(𝑓 , 𝑍) is a bijection.

(ii) ⇒ (i). Suppose (𝑋̂, 𝑖𝑋) is a cofibrant fibrant replacement for 𝑋 and ( ̂𝑌 , 𝑖𝑌 )
is a cofibrant fibrant replacement for 𝑌 . Then, (by axiom CM5) there exists a
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morphism ̂𝑓 : 𝑋̂ → ̂𝑌 making the diagram below commute,

𝑋 𝑌

𝑋̂ ̂𝑌

𝑖𝑋

𝑓

𝑖𝑌

̂𝑓

and by the 2-out-of-3 property, 𝑓 is a weak equivalence if and only if ̂𝑓 is a weak
equivalence. On the other hand, the following diagram also commutes,

Ho ℳ( ̂𝑌 , 𝑍) Ho ℳ(𝑋̂, 𝑍)

Ho ℳ(𝑌 , 𝑍) Ho ℳ(𝑋, 𝑍)

Ho ℳ(𝑖𝑌 ,𝑍)

Ho ℳ( ̂𝑓 ,𝑍)

Ho ℳ(𝑖𝑋 ,𝑍)

Ho ℳ(𝑓 ,𝑍)

and so Ho ℳ(𝑓 , 𝑍) is a bijection if and only if Ho ℳ( ̂𝑓 , 𝑍) is a bijection; but
𝑋̂ and ̂𝑌 are both cofibrant–fibrant objects, so if Ho ℳ(𝑓 , 𝑍) is a bijection for
all cofibrant–fibrant objects 𝑍, then ̂𝑓 must be a weak equivalence (because ℳ
is a saturated homotopical category). ■

Proposition 3.3.6 (Joyal). Let ℳ and ℳ′ be two model categories with the
same underlying category. If cofibrations in ℳ are cofibrations in ℳ′ and vice
versa, then the following are equivalent:

(i) Every weak equivalence in ℳ is a weak equivalence in ℳ′.

(ii) Every fibrant object in ℳ′ is a fibrant object in ℳ.

(iii) Every cofibrant–fibrant object in ℳ′ is a cofibrant–fibrant object in ℳ.

(iv) Every weak equivalence between cofibrant objects in ℳ is a weak equi-
valence between cofibrant objects in ℳ′.

Proof. This result is due to Joyal [2010].

(i) ⇒ (ii). Since every trivial cofibration in ℳ is a trivial cofibration in ℳ′,
theorem 3.1.7 (plus the definition of weak factorisation system) implies every
fibration in ℳ′ is a fibration in ℳ; in particular, every fibrant object in ℳ′ is a
fibrant object in ℳ.
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(ii) ⇒ (iii). Obvious.

(iii) ⇒ (iv). Let 𝑓 : 𝑋 → 𝑌 be a weak equivalence between cofibrant objects
in ℳ. 𝑋 and 𝑌 are also cofibrant objects in ℳ′, and by proposition 3.2.3, we
may choose cylinder objects for 𝑋 and 𝑌 in ℳ that are also cylinder objects
in ℳ′, since the trivial fibrations in ℳ and ℳ′ are the same. Now, if 𝑍 is a
cofibrant–fibrant object in ℳ′, then it is also a a cofibrant–fibrant object in ℳ,
and so by lemma 3.2.10, we deduce that the homotopy relation on morphisms
𝑋 → 𝑍 (resp. 𝑌 → 𝑍) in ℳ agrees with the homotopy relation on morphisms
𝑋 → 𝑍 (resp. 𝑌 → 𝑍) in ℳ′. Thus, applying corollary 3.3.5, we conclude that
𝑓 : 𝑋 → 𝑌 is also a weak equivalence in ℳ′.

(iv) ⇒ (i). Let 𝑓 : 𝑋 → 𝑌 be a weak equivalence in ℳ, let (𝑋̃, 𝑝𝑋) be a
fibrant cofibrant replacement for 𝑋 in ℳ, and let ( ̃𝑌 , 𝑝𝑌 ) be a fibrant cofibrant
replacement for 𝑌 in ℳ. There exists a morphism ̃𝑓 : 𝑋̃ → ̃𝑌 making the
following diagram commute,

𝑋̃ ̃𝑌

𝑋 𝑌

𝑝𝑋

̃𝑓

𝑝𝑌

𝑓

and by the 2-out-of-3 property, ̃𝑓 : 𝑋̃ → ̃𝑌 is a weak equivalence between cofi-
brant objects in ℳ. The hypothesis says ̃𝑓 is also a weak equivalence between
cofibrant objects in ℳ′, and 𝑝𝑋 and 𝑝𝑌 are trivial cofibrations in ℳ′, so we
conclude that 𝑓 : 𝑋 → 𝑌 is a weak equivalence in ℳ′ as well. ■

Theorem 3.3.7 (Determination principle). Amodel structure is uniquely determ-
ined by any one of the following sets of data:

(i) The cofibrations and the weak equivalences.

(ii) The cofibrations and the trivial cofibrations.

(iii) The cofibrations and the fibrant objects.

(iv) The cofibrations and the cofibrant–fibrant objects.

(v) The cofibrations and the weak equivalences between cofibrant objects.

(vi) The cofibrations and the fibrations.
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(vii) The trivial cofibrations and the trivial fibrations.

(i′) The fibrations and the weak equivalences.

(ii′) The fibrations and the trivial fibrations.

(iii′) The fibrations and the cofibrant objects.

(iv′) The fibrations and the cofibrant–fibrant objects.

(v′) The fibrations and the weak equivalences between fibrant objects.

Proof. (i) and (ii). By theorem 3.1.7, the fibrations are precisely the morphisms
with the right lifting property with respect to every trivial cofibration.

(iii), (iv), and (v). Apply Joyal’s result (proposition 3.3.6) and reduce to case (i).

(vi). The trivial cofibrations are precisely the morphisms with the left lifting
property with respect to all fibrations, and the trivial fibrations are precisely the
morphisms with the right lifting property with respect to all cofibrations, so this
reduces to case (vii).

(vii). Axioms CM2 and CM5 imply that every weak equivalence is of the form
𝑝 ∘ 𝑖 where 𝑖 is a trivial cofibration and 𝑝 is a trivial fibration. Thus, the trivial
cofibrations and the trivial fibrations together determine the weak equivalences.
On the other hand, the trivial cofibrations determine the fibrations, and the trivial
fibrations determine the cofibrations, thus the entire model structure is determ-
ined. ■

3.4 Quillen functors

Prerequisites. §§ 2.3, 2.4, 3.1.

Definition 3.4.1. A left Quillen functor is a functor 𝐹 : 𭒩 → ℳ between
model categories that has a right adjoint and preserves cofibrations and trivial
cofibrations; dually, a right Quillen functor is a functor 𝐺 : ℳ → 𭒩 between
model categories that has a left adjoint and preserves fibrations and trivial fibra-
tions. A Quillen adjunction is an adjunction

𝐹 ⊣ 𝐺 : ℳ → 𭒩
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where ℳ and 𭒩 are model categories, such that 𝐹 is a left Quillen functor and
𝐺 is a right Quillen functor. A Quillen equivalence is a Quillen adjunction as
above satisfying this additional condition:

• Given a cofibrant object 𝐴 in 𭒩 and fibrant object 𝑋 in ℳ, a morphism
𝐹 𝐴 → 𝑌 is a weak equivalence in ℳ if and only if its right adjoint trans-
pose 𝐴 → 𝐺𝑌 is a weak equivalence in 𭒩.

Proposition 3.4.2. Let 𝐹 ⊣ 𝐺 : ℳ → 𭒩 be an adjunction between model
categories. The following are equivalent:

(i) 𝐹 ⊣ 𝐺 is a Quillen adjunction.

(ii) 𝐹 is a left Quillen functor.

(iii) 𝐺 is a right Quillen functor.

(iv) 𝐹 preserves cofibrations and 𝐺 preserves fibrations.

(v) 𝐹 preserves trivial cofibrations and 𝐺 preserves trivial fibrations.

Proof. Use proposition a.2.19. ■

Remark 3.4.3. A functor between model categories that preserves both trivial
cofibrations and trivial fibrations must also preserve weak equivalences, since
axioms CM2 and CM5 together imply that a morphism is a weak equivalence
if and only if it is of the form 𝑝 ∘ 𝑖 where 𝑖 is a trivial cofibration and 𝑝 is a
trivial fibration. In particular, a functor that is both left and right Quillen must
be homotopical.

Proposition 3.4.4.
(i) A left Quillen functor preserves cofibrant objects, and a right Quillen func-

tor preserves fibrant objects.

(ii) The composite of two Quillen adjunctions is also a Quillen adjunction.

(iii) The composite of two Quillen equivalences is also a Quillen equivalence.

Proof. Obvious. ⧫
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Lemma 3.4.5 (Kenneth S. Brown). Let ℳ be a model category and let 𭒞 be
a category with weak equivalences. If 𝐹 : ℳ → 𭒞 sends trivial cofibrations
(resp. trivial fibrations) in ℳ to weak equivalences in 𭒞, then 𝐹 preserves all
weak equivalences between cofibrant (resp. fibrant) objects.

Proof. See Lemma 9.9 in [DS], Lemma 7.7.1 in [Hirschhorn, 2003], or Lemma
14.5 in [DHKS]. □

Corollary 3.4.6. Let 𝐹 ⊣ 𝐺 : ℳ → 𭒩 be a Quillen adjunction.

• If𝐴 and𝐵 are cofibrant objects in𭒩 and 𝑓 : 𝐴 → 𝐵 is a weak equivalence
in 𭒩, then 𝐹 𝑓 is a weak equivalence in ℳ.

• If𝑋 and 𝑌 are fibrant objects inℳ and 𝑔 : 𝑋 → 𝑌 is a weak equivalence
in ℳ, then 𝐺𝑔 is a weak equivalence in 𭒩. ■

Proposition 3.4.7 (Dugger). Let 𝐹 ⊣ 𝐺 be an adjunction between DHK model
categories. The following are equivalent:

(i) 𝐹 ⊣ 𝐺 is a Quillen adjunction.

(ii) 𝐹 preserves cofibrations between cofibrant objects and all trivial cofibra-
tions.

(iii) 𝐺 preserves fibrations between fibrant objects and all trivial fibrations.

Proof. See Proposition 8.5.4 in [Hirschhorn, 2003], or Corollary a.2 in [Dugger,
2001b]. □

Proposition 3.4.8. Let ℳ and 𭒩 be model categories, let ℳf be the full sub-
category of fibrant objects in ℳ, and let 𭒩c be the full subcategory of cofibrant
objects in 𭒩.

• If 𝐹 : 𭒩 → ℳ is a left Quillen functor and (𝑄, 𝑝) is a cofibrant replace-
ment functor for 𭒩, then (𭒩c, 𝑄, 𝑝) is a left deformation retract for 𝐹 .

• If𝐺 : ℳ → 𭒩 is a right Quillen functor and (𝑅, 𝑖) is a fibrant replacement
functor for ℳ, then (ℳf, 𝑅, 𝑖) is a right deformation retract for 𝐺.

Proof. Apply Ken Brown’s lemma (3.4.5). ■

Theorem 3.4.9. Let ℳ and 𭒩 be model categories, and suppose both have
fibrant and cofibrant replacement functors.TODO: State the

version for model
categories without
fibrant/cofibrant re-
placement functors.
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(i) If 𝐹 : 𭒩 → ℳ is a left Quillen functor, then it has a total left derived
functor 𝐋𝐹 : Ho 𭒩 → Ho ℳ as well as a homotopical left approximation
𝕃𝐹 : 𭒩 → ℳ.

(ii) If 𝐹 : 𭒩 → ℳ and 𝐺 : ℳ → ℒ are left Quillen functors, then the com-
posite (𝐋𝐺)(𝐋𝐹 ) is a total left derived functor for 𝐺𝐹 , and the composite
(𝕃𝐺)(𝕃𝐹 ) is a homotopical left approximation for 𝐺𝐹 .

Dually:

(i′) If 𝐺 : ℳ → 𭒩 is a right Quillen functor, then it has a total right derived
functor 𝐑𝐺 : Ho ℳ → Ho 𭒩 as well as a homotopical right approxima-
tion ℝ𝐺 : ℳ → 𭒩.

(ii′) If 𝐹 : 𭒩 → 𭒫 and 𝐺 : ℳ → 𭒩 are right Quillen functors, then the com-
posite (𝐑𝐹 )(𝐑𝐺) is a total right derived functor for𝐹 𝐺, and the composite
(ℝ𝐹 )(ℝ𝐺) is a homotopical right approximation for 𝐹 𝐺.

Furthermore:

(iii) If 𝐹 ⊣ 𝐺 : ℳ → 𭒩 is a Quillen adjunction, then there is a derived
adjunction 𝐋𝐹 ⊣ 𝐋𝐺 : Ho ℳ → Ho 𭒩.

Proof. Apply theorems 2.3.6 and 2.4.5 together with proposition 3.4.4. ■

Definition 3.4.10. Let 𝔸 be a small category and let ℳ be a model category.

• The injective model structure on the functor category [𝔸, ℳ] is a model
structure such that a morphism in [𝔸, ℳ] is a cofibration (resp. weak equi-
valence) if and only if all its components are cofibrations (resp. weak equi-
valences) in ℳ.

• Theprojectivemodel structure on the functor category [𝔸, ℳ] is amodel
structure such that a morphism in [𝔸, ℳ] is a fibration (resp. weak equi-
valence) if and only if all its components are fibrations (resp. weak equi-
valences) in ℳ.

Remark 3.4.11. The injective (resp. projective) model structure on [𝔸, ℳ] is
unique if it exists, by the determination principle (theorem 3.3.7).
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Proposition 3.4.12. Let ℳ be a model category, let 𝔸 be a small category, and
let Δ : ℳ → [𝔸, ℳ] be the functor that sends an object 𝑋 in ℳ to the constant
functor Δ𝑋 : 𝔸 → ℳ with value 𝑋.

• If ℳ has colimits for diagrams of shape 𝔸, then Δ : ℳ → [𝔸, ℳ] is
a right Quillen functor with respect to the projective model structure on
[𝔸, ℳ] if it exists.

• If ℳ has limits for diagrams of shape 𝔸, then Δ : ℳ → [𝔸, ℳ] is a left
Quillen functor with respect to the injective model structure on [𝔸, ℳ] if
it exists.

Proof. Δ certainly preserves fibrations (resp. cofibrations) and weak equival-
ences with respect to the projective (resp. injective) model structure, so by pro-
position 3.4.2, lim−−→𝔻

⊣ Δ (resp. Δ ⊣ lim←−−𝔻
) is a Quillen adjunction.[2] ■

Proposition 3.4.13. Let ℳ be a model category and let 𝐼 be a set.

(i) The functor category [𝐼, ℳ] admits a model structure that is simultan-
eously an injective model structure and a projective model structure.

(ii) If ℳ has products and coproducts for families of objects indexed by 𝐼 ,
then Δ : ℳ → [𝐼, ℳ] is both a left Quillen functor and a right Quilen
functor.

Proof. (i). If we declare the cofibrations (resp. weak equivalences, fibrations)
in [𝐼, ℳ] to be precisely the morphisms that are cofibrations (resp. weak equi-
valences, fibrations) componentwise, then the axioms CM1–5 may be verified
componentwise as well.

(ii). Apply proposition 3.4.12. ■

3.5 Reedy diagrams

Prerequisites. §§ 3.1, 3.4

Definition 3.5.1. A direct category is a category 𭒞 equipped with a function
deg : ob 𭒞 → ℕ such that, if 𝑓 : 𝐴 → 𝐵 is a morphism in 𭒞, then deg 𝐴 ≤ deg 𝐵,

[2] Recall proposition 0.1.12.
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with equality if and only if 𝑓 = id𝐴 = id𝐵. An inverse category is a category 𭒞
such that 𭒞op is a direct category.

Remark 3.5.2. The degree function for a direct or inverse category is not de-
termined by the underlying category: for example, if deg is a degree function
for 𭒞, then so is 𝐴 ↦ 1 + deg 𝐴. However, the partial order induced by deg is
determined by the underlying category of a direct (resp. inverse): deg 𝐴 ≤ deg 𝐵
if and only if there exists a morphism 𝐴 → 𝐵 (resp. 𝐵 → 𝐴) in 𭒞; note that this
relation is indeed antisymmetric because the only morphisms that do not change
the degree are identity morphisms.

Definition 3.5.3. A Reedy category is a category 𭒞 equipped with two subcat-
egories, the direct subcategory 𭒞→ and the inverse subcategory 𭒞←, such that
the following conditions are satisfied:

• ob 𭒞 = ob 𭒞→ = ob 𭒞←.

• There exists a function deg : ob 𭒞 → ℕ such that (𭒞→, deg) is a direct
category and (𭒞←, deg) is an inverse category.

• Every morphism in 𭒞 admits a unique factorisation of the form 𝑠∘𝑑, where
𝑑 is in 𭒞← and 𝑠 is in 𭒞→.

A Reedy diagram in a category ℳ is a functor 𭒞 → ℳ, where 𭒞 is a Reedy
category.

Remark 3.5.4. Any direct (resp. inverse) category is a Reedy category in a trivial
way: take the whole category as the direct (resp. inverse) subcategory, and take
disc ob 𭒞 as the inverse (resp. direct) subcategory.

Example 3.5.5. The simplex category 𝚫 is a Reedy category, where the direct
subcategory consists of all degeneracy operators and their composites, and the
inverse subcategory consists of all face operators and their composites; note that
the unique factorisation condition is implied by theorem 1.1.4.

Remark 3.5.6. The opposite of any Reedy category is automatically a Reedy
category, after exchanging the direct and inverse subcategories.

Definition 3.5.7. Let 𝐴 be an object in a Reedy category 𭒞.
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• The latching category of 𭒞 at 𝐴, denoted by 𝜕(𭒞→ ↓ 𝐴), is the largest full
subcategory of the slice category (𭒞→ ↓ 𝐴) that does not contain the object
id𝐴 : 𝐴 → 𝐴.

• The matching category of 𭒞 at 𝐴, denoted by 𝜕(𝐴 ↓ 𭒞←), is the largest
full subcategory of the slice category (𝐴 ↓ 𭒞←) that does not contain the
object id𝐴 : 𝐴 → 𝐴.

Remark 3.5.8. If 𭒞 is a Reedy category whose direct (resp. inverse) subcategory
is discrete, then all its latching (resp. matching) categories are empty.

Definition 3.5.9. Let ℳ be a category with limits and colimits for all finite (resp.
small) diagrams, and let 𝑋 : ℂ → ℳ be a finite (resp. small) Reedy diagram.

• The latching object of 𝑋 at 𝐴, denoted by L𝐴(𝑋), is the colimit of the
diagram 𝜕(ℂ→ ↓ 𝐴) → ℳ obtained by composing 𝑋 : ℂ → ℳ and the
projection 𝜕(ℂ→ ↓ 𝐴) → ℂ.

• The matching object of 𝑋 at 𝐴, denoted by M𝐴(𝑋), is the limit of the
diagram 𝜕(𝐴 ↓ ℂ←) → ℳ obtained by composing 𝑋 : ℂ → ℳ and the
projection 𝜕(𝐴 ↓ ℂ←) → ℂ.

• The latchingmorphism of 𝑋 at 𝐴 is the morphism L𝐴(𝑋) → 𝑋𝐴 induced
by the inclusion 𝜕(𭒞→ ↓ 𝐴) ↪ (𭒞→ ↓ 𝐴).

• The matching morphism of 𝑋 at 𝐴 is the morphism 𝑋𝐴 → M𝐴(𝑋) in-
duced by the inclusion 𝜕(𝐴 ↓ 𭒞←) ↪ (𝐴 ↓ 𭒞←).

Remark 3.5.10. The latching object L𝐴(𝑋) is functorial in 𝐴 (as 𝐴 varies in the
direct subcategory), and the matching object M𝐴(𝑋) is functorial in 𝐴 (as 𝐴
varies in the inverse subcategory). Of course, it goes without saying that L𝐴(𝑋)
and M𝐴(𝑋) are both functorial in 𝑋 (as 𝑋 varies in [ℂ, ℳ]).

Definition 3.5.11. Let ℳ be a category with limits and colimits for all finite
(resp. small) diagrams, and let 𝜑 : 𝑋 ⇒ 𝑌 be a natural transformation between
two finite (resp. small) Reedy diagrams 𝑋, 𝑌 : ℂ → ℳ.
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• The relative latching morphism 𝑋𝐴 ∪L𝐴(𝑋) L𝐴(𝑌 ) → 𝑌 𝐴 is the unique
morphism in ℳ making the diagram below commute,

L𝐴(𝑋) L𝐴(𝑌 )

𝑋𝐴 𝑋𝐴 ∪L𝐴(𝑋) L𝐴(𝑌 )

𝑌 𝐴

L𝐴(𝜑)

𝜑𝐴

where the arrows L𝐴(𝑋) → 𝑋𝐴 and L𝐴(𝑌 ) → 𝑌 𝐴 are the latching morph-
isms and the square is a pushout square.

• The relative matching morphism 𝑋𝐴 → M𝐴(𝑋)×M𝐴(𝑌 ) 𝑌 𝐴 is the unique
morphism in ℳ making the diagram below commute,

𝑋𝐴

M𝐴(𝑋) ×M𝐴(𝑌 ) 𝑌 𝐴 𝑌 𝐴

M𝐴(𝑋) M𝐴(𝑌 )

𝜑𝐴

M𝐴(𝜑)

where the arrows 𝑋𝐴 → M𝐴(𝑋) and 𝑌 𝐴 → M𝐴(𝑌 ) are the latching
morphisms and the square is a pullback square.

Remark 3.5.12. If the direct subcategory of ℂ is discrete, then L𝐴(𝑋) is an initial
object in ℳ for all 𝐴 and 𝑋, so the relative latching morphism of a natural
transformation 𝜑 : 𝑋 ⇒ 𝑌 at any object 𝐴 in ℂ is (isomorphic to) 𝜑𝐴 : 𝑋𝐴 →
𝑌 𝐴 itself.

Dually, if the inverse subcategory of ℂ is discrete, then M𝐴(𝑋) is a terminal
object in ℳ for all 𝐴 and 𝑋, so the relative matching morphism of a natural
transformation 𝜑 : 𝑋 ⇒ 𝑌 at any object 𝐴 in ℂ is (isomorphic to) 𝜑𝐴 : 𝑋𝐴 →
𝑌 𝐴 itself.

Definition 3.5.13. Let ℳ be a model category, let ℂ be a finite (resp. small)
Reedy category, and assume ℳ has limits and colimits for all finite (resp. small)
diagrams.
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• A Reedy weak equivalence in [ℂ, ℳ] is a natural transformation such
that all its components are weak equivalences in ℳ.

• A Reedy cofibration in [ℂ, ℳ] is a natural transformation such that all
its relative latching morphisms are cofibrations in ℳ.

• A Reedy fibration in [ℂ, ℳ] is a natural transformation such that all its
relative matching morphisms are fibrations in ℳ.

Proposition 3.5.14. With notation as in the definition:

• A Reedy cofibration in [ℂ, ℳ] is a Reedy weak equivalence if and only if
all its relative latching morphisms are trivial cofibrations in ℳ.

• A Reedy fibration in [ℂ, ℳ] is a Reedy weak equivalence if and only if all
its relative matching morphisms are trivial fibrations in ℳ.

TODO: Check if this
requires functorial
factorisation. Surely
not!

Proof. This is Theorem 15.3.15 in [Hirschhorn, 2003]. □

Theorem 3.5.15. With notation as in the definition, the announced weak equi-
valences, cofibrations, and fibrations constitute a model structure on [ℂ, ℳ],
called the Reedy model structure; moreover, if ℳ is a DHK model category,
then so is [ℂ, ℳ] when equipped with the Reedy model structure.

TODO: Check if this
requires functorial
factorisation. Surely
not!

Proof. See Theorem 5.2.5 in [Hovey, 1999], or Theorem 15.3.4 in [Hirschhorn,
2003]. □

Corollary 3.5.16. Let ℳ be a model category, let ℂ be a finite (resp. small)
Reedy category, and assumeℳ has limits and colimits for all finite (resp. small)
diagrams.

• If the direct subcategory of ℂ is discrete, then the Reedy model structure
on [ℂ, ℳ] is the injective model structure.

• If the inverse subcategory of ℂ is discrete, then the Reedy model structure
on [ℂ, ℳ] is the projective model structure.

Proof. This follows from the theorem and remark 3.5.12. ■

Corollary 3.5.17. Let ℳ be a DHK model category.

• If ℂ is a direct category, then the adjunction lim−−→ℂ
⊣ Δ : ℳ → [ℂ, ℳ] is

deformable.
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3.6. Combinatorial model categories

• If ℂ is an inverse category, then the adjunction Δ ⊣ lim←−−ℂ
: [ℂ, ℳ] → ℳ

is deformable.

Proof. Apply theorem 3.4.9 to the above corollary. ■

3.6 Combinatorial model categories

Prerequisites. §§ 0.2, 0.4, 3.1, a.2.

Definition 3.6.1. A cofibrantly-generated model category is a complete and
cocomplete model category ℳ such that there exist a set ℐ of cofibrations and a
set ℐ′ of trivial cofibrations satisfying these conditions:

• (ℐ, ℳ) admits the small object argument, and cofℳ ℐ is the class of all
cofibrations in ℳ.

• (ℐ′, ℳ) admits the small object argument, and cofℳ ℐ′ is the class of all
trivial cofibrations in ℳ.

Remark 3.6.2. By Quillen’s small object argument (0.4.11), any cofibrantly-
generated model category satisfies axiom CM5* and thus is a DHK model cat-
egory.

Theorem 3.6.3 (Kan’s recognition principle). Let ℳ be a complete and cocom-
plete locally small category, let 𭒲 be a subcategory of ℳ containing all the
objects, and let ℐ and ℐ′ be subsets ofmor ℳ. Assume the following hypotheses:

• 𭒲 is closed under retracts and has the 2-out-of-3 property in ℳ.

• (ℐ, ℳ) and (ℐ′, ℳ) both admit the small object argument.

• injℳ ℐ ⊆ 𭒲 ∩ injℳ ℐ′.

• cofℳ ℐ′ ⊆ 𭒲 ∩ cofℳ ℐ.

If, in addition, either

• injℳ ℐ = 𭒲 ∩ injℳ ℐ′, or

• cofℳ ℐ′ = 𭒲 ∩ cofℳ ℐ.
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then there exists a unique model structure on ℳ such that cofℳ ℐ is the class
of cofibrations, cofℳ ℐ′ is the class of trivial cofibrations, and 𭒲 is the class of
weak equivalences.

Proof. See Theorem 11.3.1 in [Hirschhorn, 2003]. □

Theorem 3.6.4 (Kan’s lifting theorem). Let ℳ be a complete and cocomplete
locally small category, let𭒩 be a cofibrantly generated model category. Assume
the following hypotheses:

• 𝐹 ⊣ 𝐺 : ℳ → 𭒩 is an adjunction of categories.

• 𭒥 is a generating set of cofibrations in 𭒩.

• 𭒥′ is a generating set of trivial cofibrations in 𭒩.

• (ℐ, ℳ) and (ℐ′, ℳ) admit the small object argument, where ℐ and ℐ′ are
the following sets:

ℐ = {𝐹 𝑓 | 𝑓 ∈ 𭒥}
ℐ′ = {𝐹 𝑓 | 𝑓 ∈ 𭒥′}

• 𝐺 sends relative ℐ′-cell complexes in ℳ to weak equivalences in 𭒩.

Then:

(i) There is a uniquemodel structure onℳwith cofℳ ℐ as the class of cofibra-
tions and cofℳ ℐ′ as the class of trivial cofibrations.

(ii) Amorphism 𝑔 : 𝐴 → 𝐵 inℳ is a weak equivalence in this model structure
if and only if 𝐺𝑔 : 𝐺𝐴 → 𝐺𝐵 is a weak equivalence in 𭒩.

(iii) 𝐹 ⊣ 𝐺 : ℳ → 𭒩 is a Quillen adjunction with respect to this model
structure.

Proof. See Theorem 11.3.2 in [Hirschhorn, 2003]. □

Theorem 3.6.5 (Existence of cofibrantly-generated projective model structures).
Let ℳ be a cofibrantly-generated model category. If 𝔸 is a small category, then
the projective model structure on [𝔸, ℳ] exists and is cofibrantly generated.

Proof. See Theorem 11.6.1 in [Hirschhorn, 2003]. □
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Definition 3.6.6. A combinatorial model category is a cofibrantly-generated
model category that is also a locally presentable category.

Remark 3.6.7. Since locally presentable categories are automatically complete
and cocomplete,[3] in light of remark 0.4.9, to show that a locally presentable
model category ℳ is a combinatorial model category, it is enough to verify that
there exist sets ℐ and ℐ′ such that cofℳ ℐ is the class of all cofibrations in ℳ
and cofℳ ℐ′ is the class of all trivial cofibrations in ℳ.

Theorem 3.6.8 (Existence of combinatorial injective model structures). Let ℳ
be a combinatorial model category. If 𝔸 is a small category, then the injective
model structure on [𝔸, ℳ] exists and is combinatorial.

Proof. This theorem is due to Lurie; see [HTT, Proposition A.2.8.2]. □

3.7 Monoidal model categories

Prerequisites. §§ 3.1, 3.4, b.1, b.2.

Proposition 3.7.1. Let 𭒞 and𭒟 be categories with pullbacks, let ℰ be a category
with pushouts, and let ℐ ⊆ mor 𭒞, 𭒥 ⊆ mor 𭒟 and 𭒦 ⊆ mor ℰ be subensembles.
Suppose we have the following functors

⊘ : 𭒞 × 𭒟 → ℰ
⋔ : 𭒟op × ℰ → 𭒞
⟜ : ℰ × 𭒞op → 𭒟

and natural bijections:

ℰ(𝐶 ⊘ 𝐷, 𝐸) ≅ 𭒞(𝐶, 𝐷 ⋔ 𝐸)
ℰ(𝐶 ⊘ 𝐷, 𝐸) ≅ 𭒟(𝐷, 𝐸 ⟜ 𝐶)
𭒞(𝐶, 𝐷 ⋔ 𝐸) ≅ 𭒟(𝐷, 𝐸 ⟜ 𝐶)

Then the following are equivalent:

[3] See theorem 0.2.26.
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(i) If 𝑓 : 𝐶 → 𝐶′ is in ℐ, 𝑔 : 𝐷 → 𝐷′ is in 𭒥, and the square in the diagram
below is a pushout square in ℰ,

𝐶 ⊘ 𝐷 𝐶 ⊘ 𝐷′

𝐶′ ⊘ 𝐷 (𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷)

𝐶′ ⊘ 𝐷′

𝑓⊘id𝐷

id𝐶⊘𝑔

𝑓⊘id𝐷′

id𝐶′⊘𝑔

𝑓◲𝑔

then the unique morphism 𝑓 ◲ 𝑔 making the diagram commute is in ⧄𭒦.

(ii) If 𝑔 : 𝐷 → 𝐷′ is in 𭒥, ℎ : 𝐸 → 𝐸′ is in 𭒦, and the square in the diagram
below is a pullback square in 𭒞,

𝐷′ ⋔ 𝐸

(𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸) 𝐷 ⋔ 𝐸

𝐷′ ⋔ 𝐸′ 𝐷 ⋔ 𝐸′

id𝐷′⋔ℎ

𝑔⋔id𝐸

𝑔◰ℎ

id𝐷⋔ℎ

𝑔⋔id𝐸′

then the unique morphism 𝑔 ◰ ℎ making the diagram commute is in ℐ⧄.

(iii) If ℎ : 𝐸 → 𝐸′ is in 𭒦, 𝑓 : 𝐶 → 𝐶′ is in ℐ and the square in the diagram
below is a pullback square in 𭒟,

𝐸 ⟜ 𝐶′

(𝐸′ ⟜ 𝐶′) ×𝐸′⟜𝐶 (𝐸 ⟜ 𝐶) 𝐸 ⟜ 𝐶

𝐸′ ⟜ 𝐶′ 𝐸′ ⟜ 𝐶

ℎ⟜id𝐶

id𝐸⟜𝑓

ℎ◰𝑓

ℎ⟜id𝐶

id𝐸′⟜𝑓

then the unique morphism ℎ ◰ 𝑓 making the diagram commute is in 𭒥⧄.
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Proof. (i) ⇒ (ii). Let 𝑓 : 𝐶 → 𝐶′ be in ℐ, let 𝑔 : 𝐷 → 𝐷′ be in 𭒥, let ℎ : 𝐸 → 𝐸′

be in 𭒦, and suppose we have a commutative diagram of the following form:

𝐶 𝐷′ ⋔ 𝐸

𝐶′ (𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸)

𝑓 𝑔◰ℎ

By the universal property of pullbacks, this corresponds to a commutative dia-
gram in 𭒞 of the form below,

𝐶 𝐷′ ⋔ 𝐸

𝐶′ 𝐷′ ⋔ 𝐸′

𝐷 ⋔ 𝐸 𝐷 ⋔ 𝐸′

𝑓

𝑔⋔id𝐸

id𝐷′⋔ℎ

𝑔⋔id𝐸′

id𝐷⋔ℎ

and, by adjoint transposition, to a commutative diagram in ℰ of the form

𝐶 ⊘ 𝐷 𝐶 ⊘ 𝐷′

𝐶′ ⊘ 𝐷 𝐸

𝐶′ ⊘ 𝐷′ 𝐸′

𝑓⊘id𝐷

id𝐶⊘𝑔

𝑓⊗id𝐷′

id𝐶′⊘𝑔
ℎ

whence, by the universal property of pushouts, commutative diagram in ℰ of the
following form:

(𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷) 𝐸

𝐶′ ⊘ 𝐷′ 𝐸′

𝑓◲𝑔 ℎ

But (𝑓 ◲ 𝑔) ⧄ ℎ, so we conclude that 𝑓 ⧄ (𝑔 ◰ ℎ).

(ii) ⇒ (iii), (i) ⇒ (ii). A similar argument works. ■
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Definition 3.7.2. Let 𭒞, 𭒟, and ℰ be three model categories. AQuillen adjunc-
tion of two variables consists of three functors ⊘, ⋔, ⟜ with natural bijections
as in the proposition satisfying the following (equivalent) axioms:

(a) If ℎ : 𝐸 → 𝐸′ is a fibration in ℰ and 𝑓 : 𝐶 → 𝐶′ is a cofibration in 𭒞, then
the morphism ℎ ◰ 𝑓 : 𝐸 ⟜ 𝐶′ → (𝐸′ ⟜ 𝐶′) ×𝐸′⟜𝐶 (𝐸 ⟜ 𝐶) is a fibration
in 𭒟, which is a weak equivalence if either ℎ or 𝑓 is.

(b) If 𝑓 : 𝐶 → 𝐶′ is a cofibration in 𭒞 and 𝑔 : 𝐷 → 𝐷′ is a cofibration in
𭒟, then the morphism 𝑓 ◲ 𝑔 : 𝐶 ⊘ 𝐷 → (𝐶 ⊘ 𝐷′) ∪𝐶⊘𝐷 (𝐶′ ⊘ 𝐷) is a
cofibration in ℰ, which is a weak equivalence if either 𝑓 or 𝑔 is.

(c) If 𝑔 : 𝐷 → 𝐷′ is a cofibration in 𭒞 and ℎ : 𝐸 → 𝐸′ is a fibration in 𭒟, then
the morphism 𝑔 ◰ ℎ : 𝐷′ ⋔ 𝐸 → (𝐷′ ⋔ 𝐸′) ×𝐷⋔𝐸′ (𝐷 ⋔ 𝐸) is a fibration
in 𭒞, which is a weak equivalence if either 𝑔 or ℎ is.

Proposition 3.7.3. Let (⊘, ⋔, ⟜) be a Quillen adjunction of two variables as
above.

(i) For each cofibrant object 𝐶 in 𭒞, the adjunction

𝐶 ⊘ (−) ⊣ (−) ⟜ 𝐶 : ℰ → 𭒟

is a Quillen adjunction.

(ii) For each cofibrant object 𝐷 in 𭒟, the adjunction

(−) ⊘ 𝐷 ⊣ 𝐷 ⋔ (−) : ℰ → 𭒞

is a Quillen adjunction.

(iii) For each fibrant object 𝐸 in ℰ, the adjunction

𝐸 ⟜ (−) ⊣ (−) ⋔ 𝐸 : 𭒟op → 𭒞

is a Quillen adjunction.

Proof. Immediate from the definitions. ⧫

Corollary 3.7.4.
(i) For each object 𝐶 in 𭒞, 𝐶 ⊘ (−) preserves weak equivalences between co-

fibrant objects, and (−) ⊘ 𝐶 preserves weak equivalences between fibrant
objects.
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(ii) For each object 𝐷 in 𭒟, (−) ⊘ 𝐷 preserves weak equivalences between
cofibrant objects, and𝐷⋔(−) preserves weak equivalences between fibrant
objects.

(iii) For each object 𝐸 in ℰ, 𝐸 ⟜ (−) sends weak equivalences between cofi-
brant objects in 𭒞 to weak equivalences between fibrant objects in 𭒟, and
(−) ⋔ 𝐸 sends weak equivalences between cofibrant objects in 𭒟 to weak
equivalences between fibrant objects in 𭒟.

Proof. Apply Ken Brown’s lemma (3.4.5). ■

Lemma 3.7.5. Let 𭒱 be a monoidal category, let ℳ be a model category with
fibrant and cofibrant replacement functors, and let 𝑝 : ̃𝐼 → 𝐼 be a morphism in
𭒱, where 𝐼 is the monoidal unit of 𭒱.

If ℳ has a left 𭒱-action ⊘ and right adjoint right 𭒱op-action ⟜ such that
the adjunction

̃𝐼 ⊗ (−) ⊣ (−) ⟜ ̃𝐼 : ℳ → ℳ

is a Quillen adjunction, then the following are equivalent:

(i) For all cofibrant objects 𝑋 in ℳ, 𝑝 ⊘ id𝑋 : ̃𝐼 ⊘ 𝑋 → 𝐼 ⊘ 𝑋 is a weak
equivalence.

(ii) For all fibrant objects 𝑌 in ℳ, id𝑌 ⟜ 𝑝 : 𝑌 ⟜ 𝐼 → 𝑌 ⟜ ̃𝐼 is a weak
equivalence.

If ℳ has a right 𭒱-action ⦸ and a right adjoint left 𭒱op-action ⊸ such that
the adjunction

(−) ⦸ ̃𝐼 ⊣ ̃𝐼 ⊸ (−) : ℳ → ℳ

is a Quillen adjunction, then the following are equivalent:

(i′) For all cofibrant objects 𝑋 in ℳ, id𝑋 ⦸ 𝑝 : 𝑋 ⦸ ̃𝐼 → 𝑋 ⦸ 𝐼 is a weak
equivalence.

(ii′) For all fibrant objects 𝑌 in ℳ, 𝑝 ⊸ id𝑌 : 𝐼 ⊸ 𝑌 → ̃𝐼 ⊸ 𝑌 is a weak
equivalence.

Proof. Since 𝞰𝑋 : 𝑋 → 𝐼 ⊘ 𝑋 is a natural isomorphism, the adjunction

𝐼 ⊘ (−) ⊣ (−) ⟜ 𝐼 : ℳ → ℳ
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is an adjoint equivalence of categories, and a fortiori a Quillen equivalence, and
the natural transformations 𝑝 ⊘ (−) and (−) ⟜ 𝑝 constitute a conjugate pair.
Theorem 2.3.11 says that the derived natural transformations for 𝑝 ⊘ (−) and
(−)⟜𝑝 constitute a conjugate pair of natural transformations between the derived
adjunctions. Applying proposition 2.3.12 to theorem 3.4.9, we deduce that the
following are equivalent:

• For all cofibrant objects 𝑋, 𝑝 ⊘ id𝑋 is a weak equivalence.

• The left derived natural transformation for 𝑝 ⊘ (−) is a natural isomorph-
ism.

• The right derived natural transformation for (−)⊘𝑝 is a natural isomorph-
ism.

• For all fibrant objects 𝑌 , id𝑌 ⟜ 𝑝 is a weak equivalence. ■

Definition 3.7.6. A monoidal model category is a biclosed monoidal category
ℳ equipped with a model structure satisfying the following additional axioms:

• Pushout–product axiom. The right ℳ-hom system (⊗, ⊸, ⟜), where ⊸
(resp. ⟜) is the right (resp. left) internal hom functor of ℳ, is a Quillen
adjunction of two variables.

• Unit axiom. For each cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼
and each cofibrant object 𝑋 in ℳ, themorphisms 𝑝⊗id𝑋 : ̃𝐼⊗𝑋 → 𝐼⊗𝑋
and id𝑋 ⊗ 𝑝 : 𝑋 ⊗ ̃𝐼 → 𝑋 ⊗ 𝐼 are weak equivalences in ℳ.

Lemma 3.7.7. Let ℳ be a biclosed monoidal category equipped with a model
structure satisfying the pushout–product axiom, and let 𝑋 be any object in ℳ.
The following are equivalent:

(i) There exists a cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼 such
that 𝑝 ⊗ id𝑋 and id𝑋 ⊗ 𝑝 are weak equivalences in ℳ.

(ii) There exists a fibrant cofibrant replacement (𝑄𝐼, 𝑞) of the monoidal unit
𝐼 such that 𝑞 ⊗ id𝑋 and id𝑋 ⊗ 𝑞 are weak equivalences in ℳ.

(iii) For any cofibrant replacement ( ̃𝐼, 𝑝) of the monoidal unit 𝐼 , both 𝑝 ⊗ id𝑋
and id𝑋 ⊗ 𝑝 are weak equivalences in ℳ.
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Proof. (i) ⇒ (ii). Let (𝑄𝐼, 𝑞) be a fibrant cofibrant replacement of 𝐼 ; such ex-
ists by proposition 3.1.13. Since ̃𝐼 is cofibrant, axiom CM5 implies there is a
morphism 𝑤 : ̃𝐼 → 𝑄𝐼 such that 𝑞 ∘ 𝑤 = 𝑝, and the 2-out-of-3 property implies
𝑤 is a weak equivalence. Corollary 3.7.4 says 𝑤 ⊗ id𝑋 and id𝑋 ⊗ 𝑤 are weak
equivalences, thus by the 2-out-of-3 property again 𝑞 ⊗ id𝑋 and id𝑋 ⊗ 𝑞 must be
weak equivalences.

(ii) ⇒ (iii). A similar argument works.

(iii) ⇒ (i). Obvious, given the existence of cofibrant replacements. ■

Corollary 3.7.8. Letℳ be a biclosed monoidal category equipped with a model
structure. If the monoidal unit 𝐼 is a cofibrant object in ℳ, then the following
are equivalent:

(i) ℳ is a monoidal model category.

(ii) ℳ satisfies the pushout–product axiom. ■

Definition 3.7.9. A cartesian model category is a cartesian closed category ℳ
equipped with a model structure satisfying the following additional axioms:

• Pushout–product axiom. The left ℳ-hom system (×, [−, −], [−, −]) is a
Quillen adjunction of two variables.

• Cofibrant unit axiom. Every terminal object in ℳ is cofibrant.

Example 3.7.10. The Kan–Quillen model structure on sSetmakes it a cartesian
model category: sSet is a cartesian closed combinatorial model category (a for-
tiori a DHK model category), all simplicial sets are cofibrant, and the pushout–
product axiom is just proposition 1.3.9.

Definition 3.7.11. An isocofibration is a functor that is injective on objects. An
isofibration is a functor 𝐹 : 𭒞 → 𭒟 such that, for every object 𝐶 in 𭒞 and every
isomorphism 𝑓 : 𝐹 𝐶 → 𝐷 in 𭒟, there exists an isomorphism ̃𝑓 : 𝐶 → 𝐷̃ in 𭒞
such that 𝐹 ̃𝑓 = 𝑓 .

Proposition 3.7.12. Let Cat be the category of small categories. The following
data constitute a model structure on Cat:

• The weak equivalences are the functors that are fully faithful and essen-
tially surjective on objects.
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• The cofibrations are the isocofibrations.

• The fibrations are the isofibrations.

Moreover, the factorisations for axiom CM5 may be chosen functorially, so that
Cat becomes a DHK model category. This model structure is called the canon-
ical model structure on Cat.

Proof. It is not hard to show that Cat has limits and colimits for all small dia-
grams, so axiom CM1* is satisfied. It is also clear that the announced class of
weak equivalences has the 2-out-of-3 property, so by theorem 3.1.7, it is enough
to show that we have a pair of compatible weak factorisation systems.

Let 𝐼 : 𝔸 → 𝔹 be an isocofibration and 𝑃 : ℂ → 𝔻 be an isofibration, and
suppose we have a commutative diagram of the following form:

𝔸 ℂ

𝔹 𝔻

𝐼

𝐹

𝑃

𝐺

First, suppose 𝑃 is a weak equivalence. Then, 𝑃 must be surjective on objects,
so we may define a map 𝐻 : ob 𝔹 → ob ℂ by taking 𝐻𝐵 = 𝐹 𝐴 if 𝐵 = 𝐼𝐴
for some 𝐴, and if 𝐵 is not in the image of 𝐴, define 𝐻𝐵 to be any object in ℂ
such that 𝑃 𝐻𝐵 = 𝐺𝐵; there is then a unique way of extending 𝐻 to a functor
𝔹 → ℂ making the evident diagram commute.

Next, instead suppose 𝐼 is a weak equivalence. Then, 𝐼 may be regarded as
the inclusion of a full subcategory that is essentially surjective on objects. For
each object 𝐵 in 𝔹 that is not in the image of 𝐼 , fix an object 𝐴 in 𝔸 and an
isomorphism 𝐼𝐴

≅
→ 𝐵. Since 𝑃 is an isofibration, for each such 𝐵 we may also

choose an object 𝐶 in ℂ and an isomorphism 𝐹 𝐴
≅
→ 𝐶 whose image under 𝑃 is

𝐺𝐼𝐴
≅
→ 𝐺𝐵. There is then a unique functor 𝐻 : 𝔹 → ℂ that makes the evident

diagram commute and sends 𝐵 to the chosen 𝐶 and 𝐼𝐴
≅
→ 𝐵 to 𝐹 𝐴

≅
→ 𝐶 .

It remains to be shown that every functor can be factorised in the required
manner. Let 𝐹 : ℂ → 𝔻 be any functor. Consider the iso-comma category
(𝐹 ↓ 𝔻)iso:

• The objects are triples (𝐶, 𝐷, 𝛼), where 𝐶 is an object in ℂ, 𝐷 is an object
in 𝔻, and 𝛼 : 𝐹 𝐶 → 𝐷 is an isomorphism in 𝔻.
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• The morphisms (𝐶, 𝐷, 𝛼) → (𝐶′, 𝐷′, 𝛼′) is a morphism 𝑓 : 𝐶 → 𝐶′ is in
ℂ together with a morphism 𝑔 : 𝐷 → 𝐷′ in 𝔻 such that 𝑔 ∘ 𝛼 = 𝛼′ ∘ 𝐹 𝑓 .[4]

• Composition and identities are inherited from ℂ and 𝔻.

There is an evident isocofibration 𝐼 : ℂ → (𝐹 ↓ 𝔻)iso sending an object 𝐶 in ℂ
to the object (𝐶, 𝐹 𝐶, id𝐹 𝐶), and it is easy to see that 𝐼 is a weak equivalence.
On the other hand, the projection 𝑃 : (𝐹 ↓ 𝔻)iso → 𝔻 is an isofibration by
construction, and obviously 𝐹 = 𝑃 𝐼 . Thus, we have factored 𝐹 as a trivial
isocofibration followed by an isofibration, and it is clear that this construction is
functorial in 𝐹 .

Now, consider instead the category 𝐌(𝐹 ) defined below:

• ob 𝐌(𝐹 ) = ob ℂ ⨿ ob 𝔻.

• If 𝐶 and 𝐶′ are objects in ℂ, while 𝐷 and 𝐷′ are objects in 𝔻, then:

Hom(𝐶, 𝐶′) = 𝔻(𝐹 𝐶, 𝐹 𝐶′)
Hom(𝐶, 𝐷′) = 𝔻(𝐹 𝐶, 𝐷′)
Hom(𝐷, 𝐶′) = 𝔻(𝐷, 𝐹 𝐶′)
Hom(𝐷, 𝐷′) = 𝔻(𝐷, 𝐷′)

• Composition and identities are inherited from 𝔻.

There is an evident isocofibration 𝐼 : ℂ → 𝐌(𝐹 ) that sends an object 𝐶 in ℂ to
the corresponding object in 𝐌(𝐹 ) and sends a morphism 𝑓 : 𝐶 → 𝐶′ in ℂ to
the morphism in 𝐌(𝐹 ) corresponding to 𝐹 𝑓 : 𝐹 𝐶 → 𝐹 𝐶′ in 𝔻. On the other
hand, there is an evident projection 𝑃 : 𝐌(𝐹 ) → 𝔻 that is fully faithful and
surjective on objects, i.e. 𝑃 is a trivial isofibration. Of course, 𝐹 = 𝑃 𝐼 , so this
is a factorisation of 𝐹 as an isocofibration followed by a trivial isofibration, and
it is clear that this construction is functorial in 𝐹 . ■

Theorem 3.7.13. Let Cat be considered as a model category via the canonical
model structure.

(i) Every object in Cat is both cofibrant and fibrant.

(ii) Cat is a combinatorial model category.

[4] However, because 𝛼 and 𝛼′ are isomorphisms, 𝑓 freely and uniquely determines 𝑔.
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(iii) Cat is a cartesian model category.

Proof. (i). The unique functor ∅ → ℂ is vacuously an isocofibration, and the
unique functor ℂ → 𝟙 is certainly an isofibration.

(ii). Cat is a locally finitely presentable category,[5] and it remains to be shown
that the canonical model structure is a cofibrantly-generated model structure.

By the very definition of isofibration, the set {𝟙 → 𝐈𝟚} is a generating set of
trivial isocofibrations, where 𝐈𝟚 is the groupoid containing only a pair of non-
trivial isomorphisms. It is also straightforward to see that a functor is …

… surjective on objects if and only if it has the right lifting property with
respect to the unique functor ∅ → 𝟙;

… full if and only if it has the right lifting property with respect to the inclu-
sion disc 2 → 𝟚; and

… faithful if and only if it has the right lifting property with respect the sur-
jective functor 𝔼 → 𝟚, where 𝔼 is the category with a parallel pair of
non-trivial morphisms.

However, a functor is a trivial isofibration if and only if it is fully faithful and
surjective on objects, so {∅ → 𝟙, disc 2 → 𝟚, 𝔼 → 𝟚} is a set of generating iso-
cofibrations.

(iii). Let 𝐹 : ℂ → ℂ′ and 𝐺 : 𝔻 → 𝔻′ be isocofibrations, and consider the
functor 𝐹 ◲ 𝐹 ′ defined by the diagram below:

ℂ × 𝔻 ℂ × 𝔻′

ℂ′ ⊗ 𝔻 (ℂ × 𝔻′) ∪ℂ×𝔻 (ℂ′ × 𝔻)

ℂ′ × 𝔻′

𝐹 ×id𝔻

idℂ×𝐺

𝐹 ×id𝔻′

idℂ′×𝐺

𝐹 ◲𝐺

The functor ob : Cat → Set has both left and right adjoints, so it is easy to
see that 𝐹 ◲ 𝐺 is an isocofibration. Moreover, if 𝐹 : ℂ → ℂ′ is a trivial

[5] — because e.g. Cat is the category of models for a finite limit sketch; see Proposition 1.51 in
[LPAC] or Proposition 5.6.4 in [Borceux, 1994b].
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isocofibration, onemay directly verify that𝐹 ×id𝔻 : ℂ×𝔻 → ℂ′×𝔻 and𝐹 ×id𝔻′ :
ℂ×𝔻′ → ℂ′ ×𝔻′ are trivial isocofibrations; but trivial isocofibrations are closed
under pushout, so applying the 2-out-of-3 property of weak equivalences, we
conclude that 𝐹 ◲𝐺 is a trivial isocofibration if 𝐹 is. The symmetrical argument
shows that 𝐹 ◲ 𝐺 is a trivial isocofibration if 𝐺 is.

Having shown that Cat satisfies the pushout–product axiom, we must now
verify that Cat is cartesian closed and has a cofibrant unit; but the former is a
very well-known fact, and the latter follows from claim (i). ■

Theorem 3.7.14. Let Grpd be the category of small groupoids.

(i) The following data constitute a model structure on Grpd:

• The weak equivalences are the functors that are fully faithful and
essentially surjective on objects.

• The cofibrations are the isocofibrations.

• The fibrations are the isofibrations.

This model structure is called the canonical model structure on Grpd.

(ii) Every object in Grpd is both cofibrant and fibrant.

(iii) Grpd is a combinatorial model category.

(iv) Grpd is a cartesian model category.

(v) The inclusion und : Grpd → Cat preserves and reflects weak equival-
ences, isocofibrations, and isofibrations; moreover, it is both a left Quillen
functor and a right Quillen functor.

Proof. (i). The proof of proposition 3.7.12 goes through forGrpdwithout modi-
fications.

(ii) – (iv). These can be proven in essentially the same way as proposition 3.7.12,
though one should note that the generating isocofibrations and generating trivial
isocofibrations for Grpd are different.

(v). It is clear that und : Grpd → Cat has the announced preservation and
reflection properties. One may check that und has a left adjoint 𝐈 : Cat → Grpd
and a right adjoint iso : Cat → Grpd, so und is both a left Quillen functor and
a right Quillen functor. ■
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A

Generalities

a.1 Cartesian closed categories

Definition a.1.1. Let 𭒞 be a category with binary products, and let 𝑌 and 𝑍 be
objects in 𭒞. An exponential object for 𝑌 and 𝑍 is an object [𝑌 , 𝑍]𭒞 in 𭒞 and
a morphism ev𝑌 ,𝑍 : [𝑌 , 𝑍]𭒞 × 𝑌 → 𝑍 with the following universal property:

• For all morphisms 𝑓 : 𝑋 × 𝑌 → 𝑍 in 𭒞, there exists a unique morphism
̄𝑓 : 𝑋 → [𝑌 , 𝑍]𭒞 such that ev𝑌 ,𝑍 ∘ ( ̄𝑓 × id𝑌 ) = 𝑓 .

An exponentiable object in 𭒞 is an object 𝑌 such that, for all objects 𝑍 in 𭒞,
the exponential object [𝑌 , 𝑍]𭒞 exists. We may write [𝑌 , 𝑍] or 𝑍𝑌 instead of
[𝑌 , 𝑍]𭒞 if there is no risk of confusion.

Lemma a.1.2. Let 𝑌 be an object in a category 𭒞 with binary products. The
following are equivalent:

(i) 𝑌 is an exponentiable object in 𭒞.

(ii) The functor − × 𝑌 : 𭒞 → 𭒞 has a right adjoint [𝑌 , −]𭒞 : 𭒞 → 𭒞, and the
counit of this adjunction is ev𝑌 ,−.

Proof. Immediate from the definitions. ⧫

Definition a.1.3. A cartesian closed category is a category with finite products,
in which every object is exponentiable. A locally cartesian closed category is
a category 𭒞 such that, for every object 𝐼 , the slice category 𭒞∕𝐼 is a cartesian
closed category.
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Example a.1.4. Set is cartesian closed category; in fact, it is even a locally
cartesian closed category.

Proposition a.1.5. Let 𭒞 be a cartesian closed category.

(i) The assignment (𝑌 , 𝑍) ↦ [𝑌 , 𝑍]𭒞 extends to a functor 𭒞op × 𭒞 → 𭒞.

(ii) For each object 𝑍, the functor [−, 𝑍]𭒞 : 𭒞op → 𭒞 is a contravariant right
adjoint for itself.

Proof. (i). This is an instance of the parametrised adjunction theorem.[1]

(ii). We have the following natural bijections:

𭒞(𝑋, [𝑌 , 𝑍]) ≅ 𭒞(𝑋 × 𝑌 , 𝑍)
≅ 𭒞(𝑌 × 𝑋, 𝑍)
≅ 𭒞(𝑌 , [𝑋, 𝑍])

■

Lemma a.1.6. Let 𭒞 and 𭒟 be cartesian closed categories. If 𝐹 : 𭒞 → 𭒟 is a
functor that preserves binary products, then:

(i) For any two objects 𝑋 and 𝑌 in 𭒞, there is a unique morphism 𝜑𝑌 ,𝑍 :
𝐹 [𝑋, 𝑌 ]𭒞 → [𝐹 𝑋, 𝐹 𝑌 ]𭒟 such that the following diagram commutes:

𝐹 [𝑋, 𝑌 ]𭒞 × 𝐹 𝑋 𝐹 ([𝑋, 𝑌 ]𭒞 × 𝑋)

[𝐹 𝑋, 𝐹 𝑌 ]𭒟 × 𝐹 𝑋 𝐹 𝑌

𝜑𝑋,𝑌 ×id

≅

𝐹ev𝑋,𝑌

ev𝐹 𝑋,𝐹 𝑌

(ii) The morphism 𝜑𝑌 ,𝑍 is natural in both 𝑌 and 𝑍.

Proof. The existence and uniqueness of 𝜑𝑋,𝑌 follows from the universal prop-
erty of [𝐹 𝑋, 𝐹 𝑌 ]𭒟 as an exponential object, and a standard argument proves
naturality. ⧫

Definition a.1.7. A cartesian closed functor is a functor 𝐹 : 𭒞 → 𭒟 between
cartesian closed categories such that the canonical comparisonmorphisms 𝜑𝑋,𝑌 :
𝐹 [𝑋, 𝑌 ]𭒞 → [𝐹 𝑋, 𝐹 𝑌 ]𭒟 described above are isomorphisms.

[1] See Theorem 3 in [CWM, Ch. IV, § 7].
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Proposition a.1.8. Let 𭒞 and 𭒟 be cartesian closed categories, and let 𝑌 be
an object in 𭒞 and let 𝑍 be an object in 𭒟. Suppose we have an adjunction
𝐹 ⊣ 𝐺 : 𭒟 → 𭒞 with unit 𝜂 : id𭒞 ⇒ 𝐺𝐹 and counit 𝜀 : id𭒞 ⇒ 𝐹 𝐺; then:

(i) If 𝜓𝐹 𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝐺𝐹 𝑌 , 𝐺𝑍]𭒞 is the canonical comparison
morphism, then 𝜃𝑌 ,𝑍 = [𝜂𝑌 , 𝐺𝑍]𭒞 ∘ 𝜓𝐹 𝑌 ,𝑍 is the unique morphism in 𭒞
making the following diagram commute:

𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐺𝐹 𝑌

[𝑌 , 𝐺𝑍]𭒞 × 𝑌 𝐺([𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 )

𝐺𝑍 𝐺𝑍

𝜃𝑌 ,𝑍×id

id×𝜂𝑌

≅

ev𝑌 ,𝐺𝑍 𝐺ev𝐹 𝑌 ,𝑍

(ii) If the canonical comparison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an iso-
morphism for all objects𝑋 in 𭒞, and𝜑𝑌 ,𝐺𝑍 : 𝐹 [𝑌 , 𝐺𝑍]𭒞 → [𝐹 𝑌 , 𝐹 𝐺𝑍]𭒟
is the canonical comparison morphism, then 𝜒𝑌 ,𝑍 = [𝐹 𝑌 , 𝜀𝑍]𭒟 ∘ 𝜑𝑌 ,𝐺𝑍 is
the unique morphism in 𭒟 making the following diagram commute:

𝐹 [𝑌 , 𝐺𝑍]𭒞 × 𝐹 𝑌 𝐹 ([𝑌 , 𝐺𝑍]𭒞 × 𝑌 )

[𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 𝐹 𝐺𝑍

𝑍 𝑍

𝜒𝑌 ,𝑍×id

≅

ev𝑌 ,𝐺𝑍

ev𝐹 𝑌 ,𝑍 𝜀𝑍

Moreover, under this hypothesis, 𝐺𝜒𝑌 ,𝑍 ∘ 𝜂[𝑌 ,𝐺𝑍]𭒞
is a two-sided inverse

for 𝜃𝑌 ,𝑍 .

(iii) If 𝜃𝑌 ,𝑍 is an isomorphism for all objects 𝑍 in 𭒟, then for all objects 𝑋
in 𭒞, the canonical comparison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an
isomorphism.
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Proof. (i). The claim is proven by the commutativity of the following diagram:

𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐺𝐹 𝑌 𝐺([𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 )

[𝐺𝐹 𝑌 , 𝐺𝑍]𭒞 × 𝑌 [𝐺𝐹 𝑌 , 𝐺𝑍]𭒞 × 𝐺𝐹 𝑌

[𝑌 , 𝐺𝑍]𭒞 𝐺𝑍

𝜓𝐹 𝑌 ,𝑍×id

id×𝜂𝑌

𝜓𝐹 𝑌 ,𝑍×id

≅

𝐺ev𝐹 𝑌 ,𝑍

[𝜂𝑌 ,𝑍]𭒞

id×𝜂𝑌
ev𝐺𝐹 𝑌 ,𝐺𝑍

ev𝑌 ,𝐺𝑍

(ii). To show that 𝜒𝑌 ,𝑍 makes the diagram commute, one uses the fact that
ev𝐹 𝑌 ,𝑍 : [𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 → 𝑍 is natural in 𝑍. Since 𝐹 preserves products
with 𝑌 , we have the following natural bijections:

𭒞(𝑋, 𝐺[𝐹 𝑌 , 𝑍]𭒟) ≅ 𭒟(𝐹 𝑋, [𝐹 𝑌 , 𝑍]𭒟) ≅ 𭒟(𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ 𭒟(𝐹 (𝑋 × 𝑌 ), 𝑍) ≅ 𭒞(𝑋 × 𝑌 , 𝐺𝑍) ≅ 𭒞(𝑋, [𝑌 , 𝐺𝑍]𭒞)

One obtains explicit isomorphisms by chasing id𝑋 in both directions. Taking
𝑋 = [𝑌 , 𝐺𝑍]𭒞, we find that the isomorphism [𝑌 , 𝐺𝑍]𭒞 → 𝐺[𝐹 𝑌 , 𝑍]𭒟 is pre-
cisely 𝐺𝜒𝑌 ,𝑍 ∘ 𝜂[𝑌 ,𝐺𝑍]𭒞

, and taking 𝑋 = 𝐺[𝐹 𝑌 , 𝑍]𭒟, we find that the inverse is
the right exponential transpose of

𝐺(ev𝐹 𝑌 ,𝑍 ∘ (𝜀[𝐹 𝑌 ,𝑍]𭒟
× id𝑌 )) ∘ 𝜂𝐺[𝐹 𝑌 ,𝑍]𭒟×𝑌

where we have suppressed the comparison isomorphism 𝐹 (𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 ) ≅
𝐹 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 ; but naturality of the comparison morphisms for binary
products gives us the commutative diagram below,

𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 𝐺𝐹 (𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 )

𝐺(𝐹 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 ) 𝐺([𝐹 𝑌 , 𝑍]𭒟 × 𝐹 𝑌 )

𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝑌 𝐺𝐹 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐺𝐹 𝑌 𝐺[𝐹 𝑌 , 𝑍]𭒟 × 𝐺𝐹 𝑌

𝜂

≅

≅

𝐺(𝜀×id)

≅

𝜂×𝜂

id×𝜂

𝐺𝜀×id
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so, suppressing the comparison isomorphisms, we obtain the following equation:

𝐺(𝜀[𝐹 𝑌 ,𝑍]𭒟
× id𝐹 𝑌 ) ∘ 𝜂𝐺[𝐹 𝑌 ,𝑍]𭒟×𝑌 = id𝐺[𝐹 𝑌 ,𝑍]𭒟

× 𝜂𝑌

Thus, the isomorphism 𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝐺𝑌 , 𝑍]𭒞 is indeed 𝜃𝑌 ,𝑍 , as claimed.

(iii). Now, suppose 𝜃𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝐺𝑌 , 𝑍]𭒞 is an isomorphism for all
𝑍. Then, we have the natural bijections

𭒟(𝐹 𝑋 × 𝐹 𝑌 , 𝑍) ≅ 𭒟(𝐹 𝑋, [𝐹 𝑌 , 𝑍]𭒟) ≅ 𭒞(𝑋, 𝐺[𝐹 𝑌 , 𝑍]𭒟)
≅ 𭒞(𝑋, [𝑌 , 𝐺𝑍]𭒞) ≅ 𭒞(𝑋 × 𝑌 , 𝐺𝑍) ≅ 𭒟(𝐹 (𝑋 × 𝑌 ), 𝑍)

and by chasing id𝑍 for 𝑍 = 𝐹 𝑋 × 𝐹 𝑌 , we conclude that the canonical compar-
ison morphism 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 is an isomorphism. ■

Definition a.1.9. A Frobenius adjunction of cartesian closed categories is an
adjunction 𝐹 ⊣ 𝐺 : 𭒟 → 𭒞 where 𭒞 and 𭒟 are cartesian closed categories, such
that the natural morphisms 𝜃𝑌 ,𝑍 : 𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝑌 , 𝐺𝑍]𭒞 described above are
isomorphisms, or equivalently, such that the left adjoint 𝐹 : 𭒞 → 𭒟 preserves
binary products.

Remark a.1.10. If 𭒞 and 𭒟 are cartesian closed categories and 𝐺 : 𭒟 → 𭒞 is any
functor that preserves finite products, then 𝐺 induces a 𭒟-enrichment of 𭒞 from
the cartesian closed structure of 𭒞, and the exponential comparison morphisms
𝜓𝑌 ,𝑍 : 𝐺[𝑌 , 𝑍]𭒞 → [𝐺𝑌 , 𝐺𝑍]𭒟 makes 𝐺 : 𭒟 → 𭒞 into a 𭒟-enriched functor.

Now, suppose 𝐺 has a left adjoint 𝐹 : 𭒞 → 𭒟. The adjunction 𝐹 ⊣ 𝐺 is a
Frobenius adjunction precisely when it is compatible with the 𭒟-enrichments of
𭒞 and 𭒟. (Of course, this means 𝐹 is also a 𭒟-enriched functor.)

However, not all enriched adjunctions between cartesian closed categories
are of the above form.

Proposition a.1.11. Let 𝑋, 𝑌 , and 𝑍 be any three objects in a cartesian closed
category 𭒞.

(i) There is a unique morphism 𝜆𝑋,𝑌 ,𝑍 : [𝑋 × 𝑌 , 𝑍] → [𝑋, [𝑌 , 𝑍]] making
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the following diagram commute:

([𝑋 × 𝑌 , 𝑍] × 𝑋) × 𝑌 [𝑋 × 𝑌 , 𝑍] × (𝑋 × 𝑌 )

([𝑋, [𝑌 , 𝑍]] × 𝑋) × 𝑌

[𝑌 , 𝑍] × 𝑌 𝑍

(𝜆𝑋,𝑌 ,𝑍×id𝑋)×id𝑌

≅

ev𝑋×𝑌 ,𝑍

ev𝑋,[𝑌 ,𝑍]×id𝑋

ev𝑌 ,𝑍

(ii) The morphisms 𝜆𝑋,𝑌 ,𝑍 : [𝑋 × 𝑌 , 𝑍] → [𝑋, [𝑌 , 𝑍]] constitute a natural
isomorphism.

Proof. The existence and uniqueness of 𝜆𝑋,𝑌 ,𝑍 follows from the universal prop-
erty of [𝑋, [𝑌 , 𝑍]] and [𝑌 , 𝑍] as exponential objects, and a standard argument
shows that 𝜆𝑋,𝑌 ,𝑍 is natural in 𝑋, 𝑌 , and 𝑍. By the associativity of cartesian
products, we have the following natural bijections:

𭒞(𝑇 , [𝑋 × 𝑌 , 𝑍]) ≅ 𭒞(𝑇 × (𝑋 × 𝑌 ), 𝑍)
≅ 𭒞((𝑇 × 𝑋) × 𝑌 , 𝑍) ≅ 𭒞(𝑇 × 𝑋, [𝑌 , 𝑍]) ≅ 𭒞(𝑇 , [𝑋, [𝑌 , 𝑍]])

Chasing id𝑇 for 𝑇 = [𝑋 × 𝑌 , 𝑍], we find that 𝜆𝑋,𝑌 ,𝑍 is an isomorphism. ■

Definition a.1.12. Let 𭒞 be a cartesian closed category. An exponential ideal of
𭒞 is a full subcategory 𭒟 ⊆ 𭒞 such that, for all objects 𝑌 in 𭒞, if 𝑍 is in 𭒟, then
the exponential object [𝑌 , 𝑍]𭒞 is (isomorphic to) an object in 𭒟. A reflective
exponential ideal of 𭒞 is an exponential ideal 𭒟 such that the inclusion 𭒟 ↪ 𭒞
has a left adjoint.

Proposition a.1.13. Let 𭒞 be a cartesian closed category, let 𝐺 : 𭒟 → 𭒞 be the
inclusion of a full subcategory, and suppose 𝐺 has a left adjoint 𝐹 : 𭒞 → 𭒟.
The following are equivalent:

(i) 𝐹 preserves finite products.

(ii) 𝐹 preserves binary products.

(iii) 𭒟 is a reflective exponential ideal of 𭒞.

(iv) 𭒟 is a cartesian closed category, 𝐺 : 𭒟 → 𭒞 is a cartesian closed functor,
and the canonical morphisms𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝑌 , 𝐺𝑍]𭒞 are isomorphisms.
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Proof. (i) ⇒ (ii). Immediate.

(ii) ⇒ (iii). Under our hypotheses, the product of two objects 𝑋 and 𝑌 in 𭒟 can
be computed as 𝐹 (𝐺𝑋 × 𝐺𝑌 ). Let 𝜂 : id𭒞 → 𝐺𝐹 be the unit of the adjunction.
We have the following natural bijections:

𭒞(𝑋, [𝑌 , 𝐺𝑍]𭒞) ≅ 𭒞(𝑋 × 𝑌 , 𝐺𝑍)
≅ 𭒟(𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ 𭒟(𝐹 𝐺𝐹 𝑋 × 𝐹 𝑌 , 𝑍)
≅ 𭒞(𝐺𝐹 𝑋 × 𝑌 , 𝐺𝑍)
≅ 𭒞(𝐺𝐹 𝑋, [𝑌 , 𝐺𝑍]𭒞)

By chasing these maps explicitly, we find that every morphism 𝑋 → [𝑌 , 𝐺𝑍]𭒞
factors through 𝜂𝑋 : 𝑋 → 𝐺𝐹 𝑋 in a unique way. In particular, we have

id[𝑌 ,𝐺𝑍]𭒞
= 𝑟𝑌 ,𝑍 ∘ 𝜂[𝑌 ,𝐺𝑍]𭒞

for a unique 𝑟𝑌 ,𝑍 : 𝐺𝐹 [𝑌 , 𝐺𝑍]𭒞 → [𝑌 , 𝐺𝑍]𭒞. The triangle identity then implies
𝐹 𝑟𝑌 ,𝑍 = 𝜀𝐹 [𝑌 ,𝐺𝑍]𭒞

, thus,

𝜂[𝑌 ,𝐺𝑍]𭒞
∘ 𝑟𝑌 ,𝑍 = 𝐺𝐹 𝑟𝑌 ,𝑍 ∘ 𝜂𝐺𝐹 [𝑌 ,𝐺𝑍]𭒞

= 𝐺𝜀𝐹 [𝑌 ,𝐺𝑍]𭒞
∘ 𝜂𝐺𝐹 [𝑌 ,𝐺𝑍]𭒞

= id𝐺𝐹 [𝑌 ,𝐺𝑍]𭒞

and therefore 𝑟𝑌 ,𝑍 is an isomorphism.

(iii) ⇒ (iv). It is a standard fact that a reflective subcategory is closed under all
limits that exist in 𭒞, so 𭒟 must have finite products and 𝐺 : 𭒟 → 𭒞 preserves
them. If 𭒟 is an exponential ideal, then 𝜂[𝑌 ,𝐺𝑍]𭒞

: [𝑌 , 𝐺𝑍]𭒞 → 𝐺𝐹 [𝑌 , 𝐺𝑍]𭒞
must be an isomorphism, so we obtain natural bijections

𭒟(𝑋 × 𝑌 , 𝑍) ≅ 𭒞(𝐺𝑋 × 𝐺𝑌 , 𝐺𝑍)
≅ 𭒞(𝐺𝑋, [𝐺𝑌 , 𝐺𝑍]𭒞)
≅ 𭒞(𝐺𝑋, 𝐺𝐹 [𝐺𝑌 , 𝐺𝑍]𭒞)
≅ 𭒟(𝐹 𝐺𝑋, 𝐹 [𝐺𝑌 , 𝐺𝑍]𭒞)
≅ 𭒟(𝑋, 𝐹 [𝐺𝑌 , 𝐺𝑍]𭒞)
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and therefore we may take [𝑌 , 𝑍]𭒟 = 𝐹 [𝐺𝑌 , 𝐺𝑍]𭒞. Obviously, this makes
𝐺 : 𭒟 → 𭒞 into a cartesian closed functor. We also have

𭒞(𝑋, 𝐺[𝐹 𝑌 , 𝑍]𭒟) = 𭒞(𝑋, 𝐺𝐹 [𝐺𝐹 𝑌 , 𝐺𝑍]𭒞)
≅ 𭒞(𝑋, [𝐺𝐹 𝑌 , 𝐺𝑍]𭒞)
≅ 𭒞(𝐺𝐹 𝑌 , [𝑋, 𝐺𝑍]𭒞)
≅ 𭒞(𝐺𝐹 𝑌 , 𝐺𝐹 [𝑋, 𝐺𝑍]𭒞)
≅ 𭒞(𝑌 , 𝐺𝐹 [𝑋, 𝐺𝑍]𭒞)
≅ 𭒞(𝑌 , [𝑋, 𝐺𝑍]𭒞)
≅ 𭒞(𝑋, [𝑌 , 𝐺𝑍]𭒞)

and so the canonical morphism 𝐺[𝐹 𝑌 , 𝑍]𭒟 → [𝑌 , 𝐺𝑍]𭒞 is an isomorphism.

(iv) ⇒ (i). It is not hard to show that 𝜂1 : 1 → 𝐺𝐹 1 is an isomorphism for any
adjunction whatsoever; but 𝐺 is fully faithful, so this implies 𝐹 1 is a terminal
object in 𭒟. Now apply proposition a.1.8. ■

Corollary a.1.14. If ℰ is a reflective exponential ideal of𭒟, and𭒟 is a reflective
exponential ideal of 𭒞, then ℰ is also a reflective exponential ideal of 𭒞. ■

Proposition a.1.15. Let Cat be the category of small categories, and let Grpd
be the full subcategory of groupoids.

(i) There exist adjunctions

𝜋0 ⊣ disc ⊣ ob ⊣ codisc : Set → Cat

where ob ℂ is the set of objects in a categoryℂ, disc 𝑋 is the category with
ob disc 𝑋 = 𝑋 and all arrows trivial, and codisc 𝑋 is the category with
ob disc 𝑋 = 𝑋 and a unique arrow between any two objects.

(ii) The functor disc : Set → Cat is fully faithful and exhibits Set as a reflect-
ive exponential ideal of Cat.

(iii) The functor 𝜋0 : Cat → Set preserves finite products.

(iv) There exist adjunctions

𝐈 ⊣ und ⊣ iso : Cat → Grpd

where und : Grpd → Cat is the inclusion and iso ℂ is the maximal sub-
groupoid of a category ℂ.
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(v) Grpd is a reflective exponential ideal of Cat.

(vi) The functor 𝐈 : Cat → Grpd preserves finite products.

(vii) The adjunctions in (i) factor through Grpd, yielding adjunctions

𝜋0 ⊣ disc ⊣ ob ⊣ codisc : Set → Grpd

where 𝜋0 : Grpd → Set again preserves finite products.

(viii) The functor Cat → Set that sends a category ℂ to the set of isomorphism
classes in ℂ preserves finite products.

Proof. (i). The functor disc : Set → Cat obviously satisfies the solution set
condition, so the general adjoint functor theorem gives us a left adjoint 𝜋0 :
Cat → Set; the existence of the other adjunctions is obvious.

(ii). It is clear that disc : Set → Cat is fully faithful, and direct computation
shows that [ℂ, disc 𝑋] is a discrete category for any ℂ, so Set is indeed a reflect-
ive exponential ideal of Cat.

(iii). Thus, by proposition a.1.13, 𝜋0 : Cat → Setmust preserve finite products.

(iv). It is not hard to check that the inclusion Grpd → Cat satisfies the solution
set condition, so the general adjoint functor theorem gives us a left adjoint 𝐈 :
Cat → Grpd; the fact that iso : Cat → Grpd is right adjoint to the inclusion is
obvious.

(v). Direct computation shows that [ℂ, 𝔾] is a groupoid whenever 𝔾 is, soGrpd
is indeed a reflective exponential ideal of Cat.

(vi). Thus, 𝐈 : Cat → Grpd must preserve finite products.

(vii). Clearly, disc 𝑋 and codisc 𝑋 are already groupoids, so the adjunctions do
indeed factor through Grpd.

(viii). The set of isomorphism classes of objects in ℂ is precisely 𝜋0 iso ℂ. ■

Definition a.1.16. The dependent sum of an object 𝑝 : 𝑋 → 𝐼 in 𭒞∕𝐼 along
a morphism 𝑗 : 𝐼 → 𝐽 in 𭒞 is the object 𝑗 ∘ 𝑝 : 𝑋 → 𝐽 in 𭒞∕𝐽 , and we write
Σ𝑗 : 𭒞∕𝐼 → 𭒞∕𝐽 for the functor sending an object to its dependent sum along 𝑗.
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Lemma a.1.17. Let 𝑗 : 𝐼 → 𝐽 be a morphism in a category 𭒞. The following
are equivalent:

(i) 𭒞 has pullbacks along 𝑗.

(ii) There exists an adjunction

Σ𝑗 ⊣ 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼

whereΣ𝑗 is the dependent sum functor, and the right adjoint 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼
is the pullback functor.

Proof. This is just a matter of unwinding the definitions. ⧫

Definition a.1.18. Let 𭒞 be a category with pullbacks. A dependent product
of an object 𝑝 : 𝑋 → 𝐼 in 𭒞∕𝐼 along a morphism 𝑗 : 𝐼 → 𝐽 in 𭒞 is an object Π𝑗𝑝
in 𭒞∕𝐽 and a morphism ev𝑗,𝑝 : 𝑗∗Π𝑗𝑝 → 𝑝 in 𭒞∕𝐼 with the following universal
property:

• For all morphisms 𝑓 : 𝑗∗𝑞 → 𝑝 in 𭒞∕𝐼 , there exists a unique morphism
̄𝑓 : 𝑞 → Π𝑗𝑝 in 𭒞∕𝐽 such that ev𝑗,𝑝 ∘ 𝑗∗ ̄𝑓 = 𝑓 .

A ΣΠ-category is a category 𭒞 with finite limits such that, for every morphism
𝑗 : 𝐼 → 𝐽 in 𭒞, dependent products along 𝑗 exist.

Lemma a.1.19. Let 𝑗 : 𝐼 → 𝐽 be a morphism in a category 𭒞 with pullbacks.
The following are equivalent:

(i) For all objects 𝑝 : 𝑋 → 𝐼 in 𭒞, a dependent product of 𝑝 along 𝑗 exists.

(ii) The pullback functor 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼 has a right adjoint Π𝑗 : 𭒞∕𝐼 → 𭒞∕𝐽
that sends an object to its dependent product along 𝑗, and the counit of
this adjunction is ev𝑗,−.

Proof. This is just a matter of unwinding the definitions. ⧫

Corollary a.1.20. If 𝑗 : 𝐼 → 𝐽 is a morphism in a ΣΠ-category 𭒞, then the
pullback functor 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼 preserves all limits and colimits. ■

Proposition a.1.21. Let 𭒞 be a category with a terminal object. The following
are equivalent:

(i) 𭒞 is a ΣΠ-category.
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(ii) 𭒞 is a locally cartesian closed category.

Proof. See Proposition 9.20 in [Awodey, 2010]. □

Theorem a.1.22. Let 𝔻 be a small category, and let 𭒞 = [𝔻op,Set]. Then:

(i) 𭒞 has limits and colimits for all small diagrams, and these can be construc-
ted componentwise in Set: a cone (resp. cocone) in 𭒞 over (resp. under) a
diagram in 𭒞 is a limiting cone (resp. colimiting cocone) if and only if it is
so in every component.

(ii) Every internal equivalence relation in 𭒞 is the kernel pair of its coequal-
iser.

(iii) For all morphisms 𝑗 : 𝐼 → 𝐽 in 𭒞, the pullback functor 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼
preserves all limits and colimits.

(iv) The Yoneda embedding h• : 𝔻 → 𭒞 is a dense functor, i.e. for every
presheaf 𝑋 : 𝔻op → Set, the tautological cocone[2] from the canonical
diagram (h• ↓ 𝑋) → 𭒞 to 𝑋 is a colimiting cocone.

(v) 𭒞 is a locally finitely presentable category.

(vi) 𭒞 is a ΣΠ-category.

Proof. (i). This is a standard fact about presheaf categories.

(ii) and (iii). The claims are true for Set, and hence for 𭒞 by claim (i).

(iv). See proposition a.4.20.

(v). See theorem 0.2.26.

(vi). Apply theorem 0.2.35 to construct a right adjoint for 𝑗∗ : 𭒞∕𝐽 → 𭒞∕𝐼 . ■

Remark a.1.23. The Yoneda lemma gives us an explicit description of the ex-
ponential objects in [𝔻op,Set]: given two presheaves 𝑌 , 𝑍 : 𝔻op → Set, if 𝑍𝑌

is their exponential object, then we must have

𝑍𝑌 (𝑑) ≅ [𝔻op,Set](h𝑑 , 𝑍𝑌 ) ≅ [𝔻op,Set](h𝑑 × 𝑌 , 𝑍)

and so we may define 𝑌 𝑍 by 𝑌 𝑍(𝑑) = [𝔻op,Set](h𝑑 × 𝑌 , 𝑍).
[2] See definition a.4.10.
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Definition a.1.24. Let 𝑌 and 𝑍 be topological spaces, and let [𝑌 , 𝑍] be the set
of all continuous maps 𝑌 → 𝑍. The compact–open topology on [𝑌 , 𝑍] is the
coarsest topology such that the subsets

𝑉 (𝐾, 𝑈) = {𝑓 ∈ [𝑌 , 𝑍] | 𝐾 ⊆ 𝑓 −1𝑈}

are open in [𝑌 , 𝑍] for all compact subsets 𝐾 ⊆ 𝑋 and all open subsets 𝑈 ⊆ 𝑌 .

Remark a.1.25. If 𝑌 is a discrete space, then the compact–open topology on
[𝑌 , 𝑍] coincides with the product topology on 𝑍𝑌 .

Definition a.1.26. A compactly-generated Hausdorff space is a Hausdorff to-
pological space 𝑋 such that a subset 𝑈 ⊆ 𝑋 is open if and only if, for every
continuous map 𝑓 : 𝐾 → 𝑋 where 𝐾 is a compact Hausdorff space, 𝑓 −1𝑈 is an
open subset of 𝐾 . We write CGHaus for the category of compactly-generated
Hausdorff spaces and continuous maps.

Proposition a.1.27.
(i) If 𝑌 is a locally compact Hausdorff space, then for all topological spaces

𝑍, the set of all continuous maps 𝑌 → 𝑍, equipped with the compact–
open topology, is an exponential object [𝑌 , 𝑍] in Top.

(ii) Top is not a cartesian closed category.

(iii) CGHaus is a cartesian closed category.

Proof. Claim (i) follows from Theorems 46.10 and 46.11 in [Munkres, 2000],
and claim (ii) is Proposition 7.1.2 in [Borceux, 1994a], and claim (iii) is proved
in [GZ, Ch. III, § 2]. □

a.2 Factorisation systems

Definition a.2.1. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in a category
𭒞. Given a commutative square in 𭒞,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤
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a lift is a morphism ℎ : 𝑊 → 𝑋 such that 𝑓 ∘ ℎ = 𝑤 and ℎ ∘ 𝑔 = 𝑧.
We say 𝑔 has the left lifting property with respect to 𝑓 and 𝑓 has the right

lifting property with respect to 𝑔, and we write 𝑔 ⧄ 𝑓 , if every commutative
square in 𭒞 of the form above has a lift. We say 𝑓 is left orthogonal to 𝑔 and 𝑔
is right orthogonal to 𝑓 , and we write 𝑔 ⟂ 𝑓 if lifts exist and are unique.

Given ℐ ⊆ mor 𭒞, we define the following subensembles of mor 𭒞:

⧄ℐ = {𝑓 ∈ mor 𭒞 | ∀𝑔 ∈ ℐ. 𝑓 ⧄ 𝑔}
ℐ⧄ = {𝑔 ∈ mor 𭒞 | ∀𝑓 ∈ ℐ. 𝑓 ⧄ 𝑔}
⊥ℐ = {𝑓 ∈ mor 𭒞 | ∀𝑔 ∈ ℐ. 𝑓 ⟂ 𝑔}
ℐ⊥ = {𝑔 ∈ mor 𭒞 | ∀𝑓 ∈ ℐ. 𝑓 ⟂ 𝑔}

Lemma a.2.2. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be morphisms in a locally small
category 𭒞. Consider the commutative diagram in Set shown below,

𭒞(𝑊 , 𝑋)

• 𭒞(𝑊 , 𝑌 )

𭒞(𝑍, 𝑋) 𭒞(𝑍, 𝑌 )

𝑔∗

𝑓∗

𝑔∗

𝑓∗

where the inner square is a pullback diagram.

(i) The dashed arrow is a surjection if and only if 𝑔 ⧄ 𝑓 .

(ii) The dashed arrow is a bijection if and only if 𝑔 ⟂ 𝑓 .

Proof. This is just a restatement of the definition. ■

Proposition a.2.3. Let 𭒞 be a category.

(i) If ℛ ⊆ mor 𭒞, then ⊥ℛ ⊆ ⧄ℛ.

(ii) If ℛ′ ⊆ ℛ ⊆ mor 𭒞, then ⧄ℛ′ ⊇ ⧄ℛ.

(iii) If ℛ′ ⊆ ℛ ⊆ mor 𭒞, then ⊥ℛ′ ⊇ ⊥ℛ.

Dually:
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(i′) If ℒ ⊆ mor 𭒞, then ℒ⊥ ⊆ ℒ⧄.

(ii′) If ℒ′ ⊆ ℒ ⊆ mor 𭒞, then ℒ′⧄ ⊇ ℒ⧄.

(iii′) If ℒ′ ⊆ ℒ ⊆ mor 𭒞, then ℒ′⊥ ⊇ ℒ⊥.

Moreover, we have the following antitone Galois connections:

ℒ ⊆ ⧄ℛ if and only if ℛ ⊆ ℒ⧄

ℒ ⊆ ⊥ℛ if and only if ℛ ⊆ ℒ⊥

Proof. Obvious. ⧫

Corollary a.2.4. We have the following identities:

⧄((⧄ℛ)⧄) = ⧄ℛ ⊥((⊥ℛ)⊥) = ⊥ℛ

(⧄(ℒ⧄))⧄ = ℒ⧄ (⊥(ℒ⊥))⊥ = ℒ⊥

Proof. This is a standard fact about (antitone) Galois connections. ■

Lemma a.2.5. Let 𝑓 : 𝑋 → 𝑌 be a morphism in a category 𭒞. The following
are equivalent:

(i) 𝑓 is an isomorphism.

(ii) 𝑓 is right orthogonal to any morphism in 𭒞.

(iii) 𝑓 has the right lifting property with respect to any morphism in 𭒞.

(iv) 𝑓 has the right lifting property with respect to itself.

Dually, the following are equivalent:

(i′) 𝑓 is an isomorphism.

(ii′) 𝑓 is left orthogonal to any morphism in 𭒞.

(iii′) 𝑓 has the left lifting property with respect to any morphism in 𭒞.

(iv′) 𝑓 has the left lifting property with respect to itself.
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Proof. (i) ⇒ (ii). Suppose 𝑟 : 𝑌 → 𝑋 is a morphism such that 𝑟 ∘ 𝑓 = id𝑋 .
Then, for any commutative square as below,

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

we have (𝑟 ∘ 𝑤) ∘ 𝑔 = 𝑟 ∘ 𝑓 ∘ 𝑧 = 𝑧; but if 𝑓 ∘ 𝑟 = id𝑌 as well, then 𝑓 ∘ (𝑟 ∘ 𝑤) = 𝑤;
thus 𝑟 ∘ 𝑤 : 𝑊 → 𝑋 is the required lift. It is clearly unique, as 𝑓 is monic.

(ii) ⇒ (iii), (iii) ⇒ (iv). Obvious.

(iv) ⇒ (i). Consider the following commutative square:

𝑋 𝑋

𝑌 𝑌

𝑓

id

𝑓

id

Since 𝑓 has the right lifting property with respect to itself, there exists a morph-
ism ℎ : 𝑌 → 𝑋 such that ℎ ∘ 𝑓 = id𝑋 and 𝑓 ∘ ℎ = id𝑌 . ■

Definition a.2.6. A weak factorisation system for a category 𭒞 is a pair (ℒ, ℛ)
of subclasses of mor 𭒞 satisfying these conditions:

• For each morphism 𝑓 in 𭒞 there exists a pair (𝑔, ℎ) with 𝑔 ∈ ℒ and ℎ ∈ ℛ
such that 𝑓 = ℎ ∘ 𝑔. Such a pair is a (ℒ, ℛ)-factorisation of 𝑓 .

• Amorphism is in ℒ if and only if it has the left lifting property with respect
to every morphism in ℛ, i.e. ℒ = ⧄ℛ.

• A morphism is in ℛ if and only if it has the right lifting property with
respect to every morphism in ℒ, i.e. ℛ = ℒ⧄.

An orthogonal factorisation system is defined like a weak factorisation system,
except for replacing ‘… has the left/right lifting property with respect to…’ with
‘… is left/right orthogonal to …’.

Remark a.2.7. Obviously, (ℒ, ℛ) is a weak (resp. orthogonal) factorisation sys-
tem for 𭒞 if and only if (ℛop, ℒop) is a weak (resp. orthogonal) factorisation
system for 𭒞op.
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Proposition a.2.8. Let (ℒ, ℛ) be a weak factorisation system on 𭒞. If either

• every morphism in ℛ is a monomorphism in 𭒞, or

• every morphism in ℒ is an epimorphism in 𭒞,

then (ℒ, ℛ) is an orthogonal factorisation system.

Proof. The two hypotheses are formally dual, so it is enough to check the first
case. Observe that, given a commutative diagram

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓ℎ

𝑤

where 𝑓 : 𝑋 → 𝑌 is amonomorphism, for anyℎ′ : 𝑊 → 𝑋 such that 𝑓 ∘ℎ′ = 𝑤,
we must have ℎ = ℎ′. Thus, for any monomorphism 𝑓 : 𝑋 → 𝑌 , 𝑔 ⧄ 𝑓 if and
only if 𝑔 ⟂ 𝑓 . Hence, ℒ = ⧄ℛ = ⊥ℛ. On the other hand, ℒ⊥ ⊆ ℒ⧄ = ℛ, so
ℛ = ℒ⊥ as well. ■

Definition a.2.9. A proper factorisation system on a category 𭒞 is an ortho-
gonal factorisation system (ℰ, ℳ) on 𭒞 such that every morphism in ℰ is an epi-
morphism and every morphism in ℳ is a monomorphism.

Example a.2.10. In Set, if ℰ is the class of surjective maps and ℳ is the class
of injective maps, then (ℰ, ℳ) is a proper factorisation system.

Lemma a.2.11. Let𝐴 be an object in a category 𭒞with a weak (resp. orthgonal)
factorisation system (ℒ, ℛ). Then the slice category 𭒞∕𝐴 has a weak (resp. or-
thogonal) factorisation system where a morphism is in the left or right class if
and only if it is so in 𭒞.

Proof. The projection 𭒞∕𝐴 → 𭒞 induces a bijection between solutions for lifting
problems in 𭒞∕𝐴 and solutions for the corresponding lifting problems in 𭒞. ■

Proposition a.2.12 (Closure properties). Let ℛ ⊆ mor 𭒞 and suppose either
ℒ = ⧄ℛ or ℒ = ⊥ℛ.
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(i) Given a pushout diagram in 𭒞 as below,

𝑍′ 𝑍

𝑊 ′ 𝑊

𝑔′

𝑖𝑍

𝑔

𝑖𝑊

if the morphism 𝑔′ is in ℒ, then 𝑔 is also in ℒ.

(ii) Let 𝐼 be a set. If 𝑔𝑖 : 𝑍𝑖 → 𝑊𝑖 is a morphism in ℒ for all 𝑖 in 𝐼 and the
coproduct ∐𝑖 𝑔𝑖 : ∐𝑖 𝑍𝑖 → ∐𝑖 𝑊𝑖 exists in 𭒞, then ∐𝑖 𝑔𝑖 is also in ℒ.

(iii) Given a commutative diagram of the form

𝑍 𝑍′ 𝑍

𝑊 ′ 𝑊 𝑊 ′

𝑔′

𝑖𝑍

id

𝑔

𝑟𝑍

𝑔′

id

𝑖𝑊 𝑟𝑊

if 𝑔 is in ℒ, then so is 𝑔′; in other words, ℒ is closed under retracts.

(iv) ℒ is closed under composition.

(v) Let 𝛾 be an ordinal and let 𝑍 : 𝛾 → 𭒞 be a colimit-preserving functor. We
write 𝑍𝛼 for 𝑍(𝛼), where 𝛼 < 𝛾 , and 𝑔𝛼,𝛽 : 𝑍𝛼 → 𝑍𝛽 for the morphism
𝑍(𝛼 → 𝛽), where 𝛼 < 𝛽 < 𝛾 . If 𝜆 is a colimiting cocone from 𝑍 to 𝑊
and each 𝑔𝛼,𝛽 is in ℒ, then each component 𝜆𝛼 : 𝑍𝛼 → 𝑊 is also in ℒ.

Proof. (i). Suppose 𝑓 is in ℛ, and consider the following commutative diagram:

𝑍′ 𝑍 𝑋

𝑊 ′ 𝑊 𝑌

𝑔′

𝑖𝑍

𝑔

𝑧

𝑓

𝑖𝑊 𝑤

There exists ℎ′ : 𝑊 ′ → 𝑋 such that ℎ′ ∘ 𝑔′ = 𝑧 ∘ 𝑖𝑍 and 𝑓 ∘ ℎ′ = 𝑤 ∘ 𝑖𝑊 . In
particular, there exists a unique morphism ℎ : 𝑊 → 𝑋 such that ℎ ∘ 𝑔 = 𝑧 and
ℎ ∘ 𝑖𝑊 = ℎ′, by the universal property of pullbacks. Thus 𝑓 ∘ ℎ ∘ 𝑖𝑊 = 𝑓 ∘ ℎ′ =
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𝑤 ∘ 𝑖𝑊 and 𝑓 ∘ ℎ ∘ 𝑔 = 𝑓 ∘ 𝑧 = 𝑤 ∘ 𝑔, but 𝑖𝑊 and 𝑔 are jointly epic, so 𝑓 ∘ ℎ = 𝑤.
This shows ℎ is the required lift, and ℎ is unique if ℎ′ is.

(ii). We may construct the required lift componentwise.

(iii). Suppose 𝑓 is in ℛ, and consider the following commutative diagram:

𝑍 𝑍′ 𝑍 𝑋

𝑊 ′ 𝑊 𝑊 ′ 𝑌

𝑔′

𝑖𝑍

𝑔

𝑟𝑍

𝑔′

𝑧

𝑓

𝑖𝑊 𝑟𝑊 𝑤

There exists ℎ : 𝑊 → 𝑋 such that ℎ ∘ 𝑔 = 𝑧 ∘ 𝑟𝑍 and 𝑓 ∘ ℎ = 𝑤 ∘ 𝑟𝑊 , and so for
ℎ′ = ℎ ∘ 𝑖𝑊 :

𝑓 ∘ ℎ′ = 𝑓 ∘ ℎ ∘ 𝑖𝑊 = 𝑤 ∘ 𝑟𝑊 ∘ 𝑖𝑊 = 𝑤
ℎ′ ∘ 𝑔′ = ℎ ∘ 𝑖𝑊 ∘ 𝑔′ = ℎ ∘ 𝑔 ∘ 𝑖𝑍 = 𝑧 ∘ 𝑟𝑍 ∘ 𝑖𝑍 = 𝑧

Thus ℎ′ : 𝑊 ′ → 𝑋 is the required lift, and ℎ′ is unique if ℎ is (because 𝑟𝑊 is
split epic).

(iv). Suppose 𝑔′ : 𝑍′ → 𝑍 and 𝑔 : 𝑍 → 𝑊 are in ℒ and 𝑓 : 𝑋 → 𝑌 is in ℛ.
Consider the following commutative diagram:

𝑍′ 𝑋

𝑍

𝑊 𝑌

𝑔′

𝑧′

𝑓

𝑔

𝑤

There must exist a morphism 𝑧 : 𝑍 → 𝑋 such that 𝑧 ∘ 𝑔′ = 𝑧′ and 𝑓 ∘ 𝑧′ = 𝑤 ∘ 𝑔,
and hence a morphism ℎ : 𝑊 → 𝑋 such that ℎ∘𝑔 = 𝑧 and 𝑓 ∘ℎ = 𝑤. Obviously,
ℎ ∘ (𝑔′ ∘ 𝑔) = 𝑧′, so ℎ is the required lift. Moreover, ℎ unique if ℒ = ⊥ℛ.

(v). We may assume without loss of generality that 𝛼 = 0, since any non-empty
terminal segment of 𝛾 is cofinal in 𝛾 . Suppose 𝑓 : 𝑋 → 𝑌 is in ℛ and consider

156



a.2. Factorisation systems

the following commutative diagram:

𝑍0 𝑋

𝑊 𝑌

𝜆0

𝑧0

𝑓

𝑤

For each 𝛼 < 𝛾 , given 𝑧𝛼 making the following diagram commute,

𝑍𝛼 𝑋

𝑍𝛼+1 𝑊 𝑌

𝑔𝛼,𝛼+1

𝑧𝛼

𝑓

𝜆𝛼+1 𝑤

choose a lift 𝑧𝛼+1 : 𝑍𝛼+1 → 𝑋; for each limit ordinal 𝛽 < 𝛾 , let 𝑧𝛽 : 𝑍𝛽 → 𝑋
be the unique morphism such that 𝑧𝛽 ∘ 𝑔𝛼,𝛽 = 𝑧𝛼 for all 𝛼 < 𝛽. (Such 𝑧𝛽 exist
and are unique because 𝑍𝛽 = lim−−→𝛼<𝛽

𝑍𝛼.) Note that the universal property of 𝑊
then guarantees that 𝑤 ∘ 𝜆𝛽 = 𝑓 ∘ 𝑧𝛽 .

Having constructed morphisms 𝑧𝛼 : 𝑍𝛼 → 𝑋 for all 𝛼 < 𝛾 as above, we
may now obtain ℎ : 𝑊 → 𝑋 as the unique morphism such that ℎ ∘ 𝜆𝛼 = 𝑧𝛼 for
all 𝛼 < 𝛾 , and again we automatically have 𝑓 ∘ ℎ = 𝑤. It is also clear that ℎ is
unique if ℒ = ⊥ℛ. ■

Proposition a.2.13 (Cancellation properties). Let ℛ ⊆ mor 𭒞.

(i) Let ℒ be either ⧄ℛ or ⊥ℛ, let 𝑒 : 𝐴 → 𝑍 be an epimorphism in 𭒞, and let
𝑔 : 𝑍 → 𝑊 be a morphism in 𭒞. If 𝑔 ∘ 𝑒 is in ℒ, then so is 𝑔.

(ii) Suppose (ℒ, ℛ) is an orthogonal factorisation system on ℛ, and let 𝑒 :
𝐴 → 𝑍 be in ℒ. Then, a morphism 𝑔 : 𝑍 → 𝑊 is in ℒ if and only 𝑔 ∘ 𝑒 is
in ℒ.

Dually, let ℒ ⊆ mor 𭒞.

(i′) Let ℛ be either ℒ⧄ or ℒ⊥, let 𝑚 : 𝑌 → 𝐵 be an monomorphism in 𭒞, and
let 𝑓 : 𝑋 → 𝑌 be a morphism in 𭒞. If 𝑚 ∘ 𝑓 is in ℛ, then so is 𝑓 .

(ii′) Suppose (ℒ, ℛ) is an orthogonal factorisation system on ℛ, and let 𝑚 :
𝑌 → 𝐵 be in ℒ. Then, a morphism 𝑓 : 𝑋 → 𝑌 is in ℒ if and only 𝑔 ∘ 𝑒 is
in ℒ.
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Proof. (i). The epimorphism 𝑒 : 𝐴 → 𝑍 induces a bijection between solutions
of lifting problems in 𭒞 of the form

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

and lifting problems of the form

𝐴 𝑋

𝑊 𝑌

𝑔∘𝑒

𝑧∘𝑒

𝑓

𝑤

so 𝑔 ⧄ 𝑓 (resp. 𝑔 ⟂ 𝑓 ) if and only if 𝑔 ∘ 𝑒 ⧄ 𝑓 (resp. 𝑔 ∘ 𝑒 ⟂ 𝑓 ).

(ii). By proposition a.2.12, we know 𝑔 ∘ 𝑒 is in ℒ if both 𝑔 and 𝑒 are in ℒ; the
converse remains to be shown. Let 𝑟 ∘ 𝑙 be an (ℒ, ℛ)-factorisation of 𝑔. If 𝑔 ∘ 𝑒
is in ℒ, then there exists a unique 𝑠 making the diagram below commute,

𝐴 𝑀

𝑊 𝑊

𝑔∘𝑒

𝑙∘𝑒

𝑟𝑠

id

so 𝑟 ∘ 𝑠 = id𝑊 , but then we also have

𝑟 ∘ (𝑠 ∘ 𝑟) = 𝑟
(𝑠 ∘ 𝑟) ∘ (𝑙 ∘ 𝑒) = 𝑠 ∘ (𝑔 ∘ 𝑒) = 𝑙 ∘ 𝑒

and 𝑙 ∘ 𝑒 ⟂ 𝑟, so we must have 𝑠 ∘ 𝑟 = id𝑀 . Hence, 𝑔 is also in ℒ. ■

Proposition a.2.14. Every orthogonal factorisation system is also a weak fac-
torisation system.

Proof. Let (ℒ, ℛ) be an orthogonal factorisation system on a category 𭒞. Pro-
position a.2.3 implies ℒ ⊆ ⧄ℛ and ℛ ⊆ ℒ⧄, so by duality it is enough to check
that ℒ ⊇ ⧄ℛ.
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Suppose 𝑔 : 𝑍 → 𝑊 is in ⧄ℛ, with (ℒ, ℛ)-factorisation 𝑔 = 𝑟 ∘ 𝑔′. Then
the diagram below commutes,

𝑍 𝑊 ′

𝑊 𝑊

𝑔

𝑔′

𝑟

id

so there must exist 𝑖 : 𝑊 → 𝑊 ′ such that 𝑟 ∘ 𝑖 = id𝑊 and 𝑖 ∘ 𝑔 = 𝑔′, and hence
we have the following commutative diagram:

𝑍 𝑍 𝑍

𝑊 𝑊 ′ 𝑊

𝑔

id

𝑔′

id

𝑔′

id

𝑖 𝑟

It follows from proposition a.2.12 that 𝑔 is also inℒ, soℒ ⊇ ⧄ℛ as required. ■

Definition a.2.15. A weak factorisation system (ℒ, ℛ) on a category 𭒞 is cofi-
brantly generated by a subensemble ℐ ⊆ mor 𭒞 if ℛ = ℐ⧄. Dually, (ℒ, ℛ) is
fibrantly generated by a subensemble ℱ ⊆ mor 𭒞 if ℒ = ⧄ℱ.

Remark a.2.16. Of course, (ℒ, ℛ) is always cofibrantly generated by ℒ. The
condition is most useful when (ℒ, ℛ) is cofibrantly generated by a (small) subset
of ℒ, but it is convenient to have the more general definition available.

Definition a.2.17. Let (ℒ, ℛ) be a weak factorisation system on a category 𭒞.
An extension of (ℒ, ℛ) along a functor 𝑖 : 𭒞 → 𭒞+ is a weak factorisation system
(ℒ+, ℛ+) on 𭒞+ with the following properties:

• A morphism 𝑓 : 𝑋 → 𝑌 in 𭒞 is in ℛ if and only if 𝑖𝑓 : 𝑖𝑋 → 𝑖𝑌 is in ℛ+.

• A morphism 𝑔 : 𝑍 → 𝑊 in 𭒞 is in ℒ if and only if 𝑖𝑔 : 𝑖𝑍 → 𝑖𝑊 is in
ℒ+.

Proposition a.2.18. Let 𭒞 be a full subcategory of a category 𭒞+, let (ℒ, ℛ) be a
weak factorisation system on 𭒞, and let (ℒ+, ℛ+) be a weak factorisation system
on 𭒞+.

(i) If ℒ ⊆ ℒ+, then ℛ ⊇ ℛ+ ∩ mor 𭒞.
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(ii) If (ℒ, ℛ) and (ℒ+, ℛ+) are both cofibrantly generated by the same en-
semble ℐ, then ℛ = ℛ+ ∩ mor 𭒞.

Dually:

(i′) If ℛ ⊆ ℛ+, then ℒ ⊇ ℒ+ ∩ mor 𭒞.

(ii′) If (ℒ, ℛ) and (ℒ+, ℛ+) are both fibrantly generated by the same ensemble
ℱ, then ℒ = ℒ+ ∩ mor 𭒞.

Moreover:

(iii) If ℒ ⊆ ℒ+ and ℛ ⊆ ℛ+, then (ℒ+, ℛ+) is an extension of (ℒ, ℛ).

Proof. Since 𭒞 is a full subcategory of 𭒞+, if 𝑔 : 𝑍 → 𝑊 and 𝑓 : 𝑋 → 𝑌 are
morphisms in 𭒞, then any lifting problem of the following form in 𭒞+ is already
in 𭒞,

𝑍 𝑋

𝑊 𝑌

𝑔 𝑓

and moreover any solution to the above lifting problem in 𭒞+ is also a solution
in 𭒞. Thus, 𝑔 ⧄ 𝑓 in 𭒞 if and only if 𝑔 ⧄ 𝑓 in 𭒞+.

(i). Suppose 𝑓 is in ℛ+ ∩ mor 𭒞. Then 𝑓 has the right lifting property in 𝐶+

with respect to every morphism in ℒ+, and in particular, 𝑓 has the right lifting
property in 𭒞 with respect to every morphism in ℒ; hence 𝑓 is in ℛ, and therefore
ℛ ⊇ ℛ+ ∩ mor 𭒞.

(ii). A morphism is in ℛ (resp. ℛ+) if and only if it has the right lifting property
in 𭒞 (resp. 𭒞+) with respect to every morphism in ℐ, so by our initial observation,
we must have ℛ = ℛ+ ∩ mor 𭒞.

(iii). Immediately follows from claims (i) and (i′). ■

Proposition a.2.19. Let (ℒ, ℛ) be a weak (resp. orthogonal) factorisation sys-
tem for a category 𭒞, and let (ℒ′, ℛ′) be a weak (resp. orthogonal) factorisation
system for a category 𭒞′. Given an adjunction

𝐹 ⊣ 𝑈 : 𭒞′ → 𭒞

the following are equivalent:
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(i) 𝐹 sends morphisms in ℒ to morphisms in ℒ′.

(ii) 𝑈 sends morphisms in ℛ′ to morphisms in ℛ.

Proof. The adjunction induces a bijection between solutions to the two lifting
problems shown below:

𝐹 𝑍 𝑋

𝐹 𝑊 𝑌

𝐹 𝑔 𝑓?

𝑍 𝑈𝑋

𝑊 𝑈𝑌

𝑔 𝑈𝑓?

Thus, 𝐹 𝑔 ⧄ 𝑓 (resp. 𝐹 𝑔 ⟂ 𝑓 ) if and only if 𝑔 ⧄ 𝑈𝑓 (resp. 𝑔 ⟂ 𝑈𝑓 ). ■

¶ a.2.20. Let 𝟚 be the category {0 → 1}, and let 𝟛 be {0 → 1 → 2}. Thus,
given a category 𭒞, the functor category [𝟚, 𭒞] is the category of arrows and
commutative squares in 𭒞. There are three embeddings 𝑑0, 𝑑1, 𝑑2 : 𝟚 → 𝟛:

𝑑0(0) = 1 𝑑1(0) = 0 𝑑2(0) = 0
𝑑0(1) = 2 𝑑1(1) = 2 𝑑2(1) = 1

These then induce (by precomposition) three functors 𝑑0, 𝑑1, 𝑑2 : [𝟛, 𭒞] → [𝟚, 𭒞].

Definition a.2.21. A functorial factorisation system on a category 𭒞 is a pair
of functors 𝐿, 𝑅 : [𝟚, 𭒞] → [𝟚, 𭒞] for which there exists a (necessarily unique)
functor 𝐹 : [𝟚, 𭒞] → [𝟛, 𭒞] satisfying the following equations:

𝑑2𝐹 = 𝐿 𝑑1𝐹 = id[𝟚,𭒞] 𝑑0𝐹 = 𝑅

A functorial weak (resp. orthogonal) factorisation system on𭒞 is a weak (resp.
orthogonal) factorisation system (ℒ, ℛ) together with a functorial factorisation
system (𝐿, 𝑅) such that 𝐿𝑓 ∈ ℒ and 𝑅𝑓 ∈ ℛ for all morphisms 𝑓 in 𭒞.

Lemma a.2.22. Let 𝐴 be an object in a category 𭒞 and let Σ𝐴 : 𭒞∕𝐴 → 𭒞 be the
projection from the slice category.

(i) For each functorial factorisation system (𝐿, 𝑅) on 𭒞, there exists a unique
functorial factorisation system (𝐿𝐴, 𝑅𝐴) on 𭒞∕𝐴 such that

[𝟚, Σ𝐴] ∘ 𝐿𝐴 = 𝐿 ∘ [𝟚, Σ𝐴] [𝟚, Σ𝐴] ∘ 𝑅𝐴 = 𝑅 ∘ [𝟚, Σ𝐴]

where [𝟚, Σ𝐴] : [𝟚, 𭒞∕𝐴] → [𝟚, 𭒞] is the evident induced functor.
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(ii) If (𝐿, 𝑅) is part of a functorial weak or orthogonal factorisation system
on 𭒞, then (𝐿𝐴, 𝑅𝐴) is compatible with the induced weak or orthogonal
factorisation system on 𭒞∕𝐴 as well.

Proof. Obvious. ⧫

Proposition a.2.23. Any orthogonal factorisation system can be extended to a
functorial one.

Proof. For each morphism 𝑓 in a category 𭒞 with an orthogonal factorisation
system (ℒ, ℛ), choose a factorisation 𝑓 = 𝑅𝑓 ∘ 𝐿𝑓 with 𝐿𝑓 ∈ ℒ and 𝑅𝑓 ∈ ℛ.
Given a commutative square in 𭒞, say

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

the lifting property ensures that the dashed arrow in the diagram below exists,

𝑍 𝑋

• •

𝑊 𝑌

𝐿𝑔

𝑧

𝐿𝑓

𝑅𝑔 𝑅𝑓

𝑤

and orthogonality ensures uniqueness and hence functoriality. ■

Corollary a.2.24. If (ℒ, ℛ) is an orthogonal factorisation system on a category
𭒞, then, for any category 𭒥, there exists an orthogonal factorisation system on
the functor category [𭒥, 𭒞] where a natural transformation is in the left (resp.
right) class if and only if all its components are in ℒ (resp. ℛ).

Proof. Obviously, every morphism in [𭒥, 𭒞] admits such a factorisation, since
(ℒ, ℛ)-factorisations in 𭒞 are functorial. By considering a commutative diagram
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in 𭒞 of the form below,

𝑍′ 𝑋′

𝑍 𝑋

𝑊 ′ 𝑌 ′

𝑊 𝑌

𝑔′

𝑓 ′

𝑔
𝑓

where 𝑓 and 𝑓 ′ are in ℛ while 𝑔 and 𝑔′ are in ℒ, using the fact that (ℰ, ℳ)
is an orthogonal factorisation system, one may show that lifting problems in
[𭒥, 𭒞] admit unique solutions, and that these solutions are moreover constructed
componentwise. Thus, (ℒ, ℛ) induces an orthogonal factorisation system on
[𭒥, 𭒞]. ■

The following characterisation of functorial orthogonal factorisation systems
is due to Grandis and Tholen [2006]:

Theorem a.2.25. Let (𝐿, 𝑅) be a functorial factorisation system on a category
𭒞. The following are equivalent:

(i) 𝐿 is the underlying endofunctor of an idempotent comonad on [𝟚, 𭒞] with
counit given by 𝜀𝑘 = (iddom 𝑘, 𝑅𝑘), and 𝑅 is the underlying endofunctor
of an idempotent monad on [𝟚, 𭒞] with unit given by 𝜂ℎ = (ℎ, idcodom ℎ).

(ii) For all morphisms ℎ in 𭒞, 𝑅𝐿ℎ and 𝐿𝑅ℎ are isomorphisms in 𭒞.

(iii) For any two morphisms in 𭒞, say ℎ and 𝑘, we have 𝐿𝑘 ⟂ 𝑅ℎ.

(iv) (ℒ, ℛ) is an orthogonal factorisation system on 𭒞 extending (𝐿, 𝑅), where:

ℒ = {𝑔 ∈ mor 𭒞 | 𝑅𝑔 is an isomorphism in 𭒞}
ℛ = {𝑓 ∈ mor 𭒞 | 𝐿𝑓 is an isomorphism in 𭒞}

(v) There exists an orthogonal factorisation system (ℒ, ℛ) extending (𝐿, 𝑅).

Proof. (i) ⇔ (ii). This is a standard fact about idempotent (co)monads.
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(ii) ⇒ (iii). Now, consider the following lifting problem:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

Since (𝐿, 𝑅) is a functorial factorisation system, we get a commutative diagram
of the form below,

𝑍 𝑋

𝑊 ′ 𝑋′

𝑊 𝑌

𝐿𝑔

𝑧

𝐿𝑓

𝑅𝑔

𝑡

𝑅𝑓

𝑤

but 𝑅𝑔 and 𝐿𝑓 are isomorphisms, so (𝐿𝑓)−1 ∘ 𝑡 ∘ (𝑅𝑔)−1 is the required lift
𝑊 → 𝑋. On the other hand, if 𝑠 : 𝑊 → 𝑋 is any morphism such that 𝑓 ∘ 𝑠 = 𝑤
and 𝑠 ∘ 𝑔 = 𝑧, then by taking (𝐿, 𝑅)-factorisations of the vertical arrows in the
following diagram,

𝑍 𝑊 𝑋 𝑋

𝑊 𝑊 𝑋 𝑌

𝑔

𝑔

id

𝑠

id

id

𝑓

id 𝑠 𝑓

we find it must be the case that 𝐿𝑓 ∘ 𝑠 ∘ 𝑅𝑔 = 𝑡, so we indeed have 𝑔 ⟂ 𝑓 .

(iii) ⇒ (iv). In particular, 𝑔 ⟂ 𝑅𝑔 and 𝐿𝑓 ⟂ 𝑓 , so there must exist morphisms 𝑖
and 𝑟 making the diagrams below commute:

𝑍 𝑊 ′

𝑊 𝑊

𝑔

𝐿𝑔

𝑅𝑔𝑖

id

𝑋 𝑋

𝑋′ 𝑌

𝐿𝑓

id

𝑓𝑟

𝑅𝑓

We then obtain the following equations,

(𝑖 ∘ 𝑅𝑔) ∘ 𝐿𝑔 = 𝐿𝑔 (𝐿𝑓 ∘ 𝑟) ∘ 𝐿𝑓 = 𝐿𝑓
𝑅𝑔 ∘ (𝑖 ∘ 𝑅𝑔) = 𝑅𝑔 𝑅𝑓 ∘ (𝐿𝑓 ∘ 𝑟) = 𝑅𝑓
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and since 𝐿𝑔 ⟂ 𝑅𝑔 and 𝐿𝑓 ⟂ 𝑅𝑓 , wemust have 𝑖∘𝑅𝑔 = id𝑊 ′ and 𝐿𝑓 ∘𝑟 = id𝑋′.
Thus, 𝑔 ∈ ℒ and 𝑓 ∈ ℛ, and the same argument now shows that ⊥ℛ ⊆ ℒ and
ℒ⊥ ⊆ ℛ.

It remains to be shown that ℒ ⊆ ⊥ℛ and ℛ ⊆ ℒ⊥. First, suppose 𝑔 ∈ ℒ and
𝑓 ∈ ℛ, and consider the following lifting problem:

𝑍 𝑋

𝑊 𝑌

𝑔

𝑧

𝑓

𝑤

With 𝑟 and 𝑖 as in the previous paragraph, we obtain a commutative diagram of
the form below,

𝑍 𝑍 𝑋 𝑋

𝑊 ′ 𝑋′

𝑊 𝑊 𝑌 𝑌

𝑔

id

𝐿𝑔

𝑧

𝐿𝑓

id

𝑓

𝑅𝑔

𝑡

𝑟

𝑅𝑓𝑖

id 𝑤 id

where the arrow 𝑡 is obtained by the functoriality of (𝐿, 𝑅)-factorisations. Thus,
𝑟 ∘ 𝑡 ∘ 𝑖 is the required lift 𝑊 → 𝑋, and it is unique, since 𝑅𝑔 and 𝐿𝑓 are
isomorphisms. (Recall the proof of (ii) ⇒ (iii).) We conclude that ℒ = ⊥ℛ and
ℛ = ℒ⊥.

(iv) ⇒ (v). Immediate.

(v) ⇒ (iii). If (ℒ, ℛ) is an orthogonal factorisation system on 𭒞 such that 𝐿𝑓 ∈ ℒ
and 𝑅𝑓 ∈ ℛ for all morphisms 𝑓 in 𭒞, then we must have 𝐿𝑘 ⟂ 𝑅ℎ for all ℎ
and 𝑘 in mor 𭒞, as required.

(iv) ⇒ (ii). Immediate. ■

Remark a.2.26. It is clear that a functorial factorisation system is associated
with at most one orthogonal factorisation system: indeed, if (ℒ′, ℛ′) is any or-
thogonal factorisation system extending a functorial factorisation system (𝐿, 𝑅),
and (ℒ, ℛ) is the induced orthogonal factorisation system as in the theorem, then
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each morphism in ℒ (resp. ℛ) is a retract of some morphism in in ℒ′ (resp. ℛ′);
but by proposition a.2.12, this implies ℒ ⊆ ℒ′ and ℛ ⊆ ℛ′, and applying pro-
position a.2.3, we also get ℒ ⊇ ℒ′ and ℛ ⊇ ℛ′.

Corollary a.2.27. If (ℒ, ℛ) is an orthogonal factorisation system on a category
𭒞, then:

(i) ℒ, considered as a full subcategory of [𝟚, 𭒞], is replete and coreflective.

(ii) ℒ is closed under all colimits in [𝟚, 𭒞].

(iii) If a diagram in ℒ has a limit in [𝟚, 𭒞], then it also has a limit in ℒ.

Dually:

(i′) ℛ, considered as a full subcategory of [𝟚, 𭒞], is replete and reflective.

(ii′) ℛ is closed under all limits in [𝟚, 𭒞].

(iii′) If a diagram in ℛ has a colimit in [𝟚, 𭒞], then it also has a colimit in ℛ.

Proof. Using proposition a.2.23 and theorem a.2.25, the above claims amount to
standard facts about the Eilenberg–Moore category for idempotent (co)monads.

■

There is a similar characterisation of functorial weak factorisation systems:

Theorem a.2.28. Let (𝐿, 𝑅) be a functorial factorisation system on a category
𭒞. The following are equivalent:

(i) For any two morphisms in 𭒞, say ℎ and 𝑘, 𝐿𝑘 ⧄ 𝑅ℎ.

(ii) (ℒ, ℛ) is an weak factorisation system on 𭒞 extending (𝐿, 𝑅), where:

ℒ = {𝑔 ∈ mor 𭒞 | ∃𝑖 ∈ mor 𭒞. 𝑖 ∘ 𝑔 = 𝐿𝑔 ∧ 𝑅𝑔 ∘ 𝑖 = idcodom 𝑔}
ℛ = {𝑓 ∈ mor 𭒞 | ∃𝑟 ∈ mor 𭒞. 𝑓 ∘ 𝑟 = 𝑅𝑓 ∧ 𝑟 ∘ 𝐿𝑓 = iddom 𝑓 }

(iii) There exists a weak factorisation system (ℒ, ℛ) extending (𝐿, 𝑅).

Proof. The proof is essentially the same as that of theorem a.2.25. ■

Remark a.2.29. As with orthogonal factorisation systems, there is at most one
weak factorisation system extending any functorial factorisation system.
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The two theorems above motivate the following definition:

Definition a.2.30. A algebraic factorisation system[3] on a category 𭒞 is a pair
(𝗟, 𝗥) satisfying the following conditions:

• 𝗟 = (𝐿, 𝜀, 𝛿) is a comonad on [𝟚, 𭒞], where 𝜀𝑘 = (iddom 𝑘, 𝑅𝑘).

• 𝗥 = (𝑅, 𝜂, 𝜇) is a monad on [𝟚, 𭒞], where 𝜂ℎ = (𝐿ℎ, idcodom ℎ).

• (𝐿, 𝑅) constitute a functorial factorisation system on 𭒞.

Corollary a.2.31. Any functorial orthogonal factorisation system extends to an
algebraic factorisation system in a unique way; conversely, an algebraic fac-
torisation system induces an orthogonal factorisation system if and only if the
underlying comonad and monad are both idempotent.

Proof. This follows from the definition above and theorem a.2.25. ■

Proposition a.2.32. Let (𝗟, 𝗥) be an algebraic factorisation system on a cat-
egory 𭒞.

(i) Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑍 → 𝑊 be objects in [𝟚, 𭒞]. If 𝛼 : 𝑅𝑓 → 𝑓
is a 𝗥-algebra structure and 𝛽 : 𝑔 → 𝐿𝑔 is a 𝗟-coalgebra structure, then
𝛼1 : 𝑌 → 𝑌 and 𝛽0 : 𝑍 → 𝑍 are identity morphisms, and we have the
following identities:

𝛼0 ∘ 𝐿𝑓 = id𝑋 𝑅𝑔 ∘ 𝛽1 = id𝑊

𝑓 ∘ 𝛼0 = 𝑅𝑓 𝛽1 ∘ 𝑔 = 𝐿𝑔

(ii) If 𝑓 admits a 𝗟-coalgebra structure and 𝑔 admits an 𝗥-algebra structure,
then 𝑓 ⧄ 𝑔.

(iii) There exists a (unique) weak factorisation system (ℒ, ℛ) on 𭒞 such that
𝐿𝑘 ∈ ℒ and 𝑅ℎ ∈ ℛ for all ℎ and 𝑘 in mor 𭒞.

Proof. (i). The claim follows from the 𝗟-coalgebra counitality axiom and the
𝗥-algebra unitality axiom:

𝛼 ∘ 𝜂𝑓 = id𝑓 𝜀𝑔 ∘ 𝛽 = id𝑔

[3] — or natural weak factorisation system in the sense of Grandis and Tholen [2006] and Garner
[2009].

167



A. Generalities

(ii). It then follows that the diagram below commutes,

𝑍 𝑍 𝑋 𝑋

𝑊 ′ 𝑋′

𝑊 𝑊 𝑌 𝑌

𝑔

id

𝐿𝑔

𝑧

𝐿𝑓

id

𝑓

𝑅𝑔

𝑡

𝛼0

𝑅𝑓
𝛽1

id 𝑤 id

where the arrow 𝑡 is obtained by the functoriality of (𝐿, 𝑅)-factorisations; clearly,
𝛼0 ∘ 𝑡 ∘ 𝛽1 is the required lift.

(iii). Finally, for any two morphisms in 𭒞, say ℎ and 𝑘, we simply note that
𝛿𝑘 : 𝐿𝑘 → 𝐿𝐿𝑘 is an 𝗟-coalgebra structure and 𝜇ℎ : 𝑅𝑅ℎ → 𝑅ℎ is an 𝗥-algebra
structure, so we may apply theorem a.2.28 to obtain the conclusion. ■

a.3 Relative categories

Prerequisites. § 0.1.
In this section we use the explicit universe convention.

Definition a.3.1. A relative category 𭒞 consists of a category und 𭒞 and a sub-
category weq 𭒞 such that ob und 𭒞 = ob weq 𭒞. We say und 𭒞 is the under-
lying category of 𭒞, and that the morphisms in weq 𭒞 are the weak equival-
ences in 𭒞. A relative subcategory of a relative category 𭒞 is a relative cat-
egory 𭒞′ such that und 𭒞′ is a subcategory of und 𭒞, and we further demand that
weq 𭒞′ = weq 𭒞 ∩ und 𭒞′.

Remark a.3.2. The subcategory weq 𭒞 is entirely determined by mor weq 𭒞, so
a relative category may equivalently be defined as a category equipped with a
distinguished subset of morphisms closed under composition and containing all
the identity morphisms.

For brevity, we will write ob 𭒞 for ob und 𭒞, mor 𭒞 for ob und 𭒞, and we may
occasionally abuse notation and write weq 𭒞 instead of mor weq 𭒞.
Remark a.3.3. Every category 𭒞 can be endowed with the structure of a rel-
ative category in two ways: we can make it into a minimal relative category
min 𭒞 by taking weq min 𭒞 to be the set of identity morphisms in 𭒞; or we could
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make it into a maximal relative category max 𭒞 by taking weq max 𭒞 = mor 𭒞.
We may also define the minimal saturated relative category min+ 𭒞 by taking
weq min+ 𭒞 to be the set of all isomorphisms in 𭒞.

Definition a.3.4. Given a relative category 𭒞, the opposite relative category
𭒞op is defined by und 𭒞op = (und 𭒞)op and weq 𭒞op = (weq 𭒞)op.

Definition a.3.5. Let 𭒞 and 𭒟 be relative categories. A relative functor 𭒞 → 𭒟
is a functor und 𭒞 → und 𭒟 that sends weak equivalences in 𭒞 to weak equi-
valences in 𭒟. The relative functor category [𭒞, 𭒟]h is the full subcategory
of [und 𭒞, und 𭒟] spanned by the relative functors, and the weak equivalences
in [𭒞, 𭒟]h are defined to be the natural transformations that are componentwise
weak equivalences in 𭒟.

Definition a.3.6. Let 𭒞 be a category and let 𭒲 ⊆ mor 𭒞. A localisation of 𭒞
away from 𭒲 is a category 𭒞[𭒲−1] equipped with a functor 𝛾 : 𭒞 → 𭒞[𭒲−1]
with the following universal property:

• Given a functor 𝐹 : 𭒞 → 𭒟 such that 𝐹 𝑓 is an isomorphism for all 𝑓 in
𭒲, there exists a unique functor 𝐹 : 𭒞[𭒲−1] → 𭒟 such that 𝐹 𝛾 = 𝐹 .

The functor 𝛾 : 𭒞 → Ho 𭒞 is called the localising functor.

Remark a.3.7. The universal property in the above definition is strict; as such,
𭒞[𭒲−1] is unique up to unique isomorphism. Nonetheless, 𭒞[𭒲−1] automatic-
ally has a 2-universal property: if 𝐹 , 𝐺 : 𭒞 → 𭒟 both factor through 𭒞[𭒲−1],
then so do all natural transformations 𝐹 ⇒ 𝐺.

Proposition a.3.8. If 𭒞 is a 𝐔-small category, then there exists a 𝐔-small cat-
egory with the universal property of 𭒞[𭒲−1].

Proof. Use the general adjoint functor theorem. □

Definition a.3.9. The homotopy category of a relative category 𭒞 is a localisa-
tion of und 𭒞 away from weq 𭒞 and is denoted Ho 𭒞. A semi-saturated relative
category is a relative category in which every isomorphism is a weak equival-
ence. A saturated relative category is a relative category 𭒞 such that the weak
equivalences in 𭒞 are precisely the ones that become isomorphisms in Ho 𭒞.

Remark a.3.10. Obviously, there is no loss of generality in considering semi-
saturated relative categories and their homotopy categories instead of localisa-
tions 𭒞[𭒲−1] for arbitrary subsets 𭒲 ⊆ mor 𭒞.
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Remark a.3.11. Clearly, every saturated relative category is semi-saturated, and
a minimal saturated relative category is indeed saturated in the sense above.

Definition a.3.12. Let 𭒞 be a category and let 𭒲 be a subset of mor 𭒞. The
2-out-of-3 property for 𭒲 says:

• Given any two morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍 in 𭒞, if any two of 𝑓 ,
𝑔, or 𝑔 ∘ 𝑓 are in 𭒲, then all of them are.

The 2-out-of-6 property for 𭒲 says:

• Given any three morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍, ℎ : 𝑌 → 𝑍 in 𭒞, if
both ℎ ∘ 𝑔 and 𝑔 ∘ 𝑓 are in 𭒲, then so too are 𝑓 , 𝑔, ℎ, and ℎ ∘ 𝑔 ∘ 𝑓 .

Lemma a.3.13. Let 𭒞 be a category and let 𭒲 ⊆ mor 𭒞.

(i) If 𭒲 has the 2-out-of-6 property, then it also has the 2-out-of-3 property.

(ii) The set of all isomorphisms in 𭒞 has the 2-out-of-6 property.

(iii) If 𝐹 : 𭒞′ → 𭒞 is a functor and 𭒲 has either the 2-out-of-3 property or the
2-out-of-6 property, then 𝐹 −1𭒲 has the same property.

Proof. (i). Consider the three cases 𝑓 = id, 𝑔 = id, ℎ = id in turn.

(ii). If ℎ∘𝑔 and 𝑔 ∘𝑓 are isomorphisms, then 𝑔 must be split epic and split monic;
thus 𝑔 itself is an isomorphism, hence so too are 𝑓 and ℎ.

(iii). Obvious. ■

Corollary a.3.14. If 𭒞 is a saturated relative category, thenweq 𭒞 has the 2-out-
of-6 property. ■

Proposition a.3.15. Let RelCat be the category of 𝐔-small relative categories
and relative functors, let SsRelCat be the full subcategory of semi-saturated rel-
ative categories, and let Cat be the category of 𝐔-small categories and functors.

(i) RelCat is a cartesian closed category, where the product of 𭒞 and𭒟 is the
cartesian product 𭒞 × 𭒟 with weak equivalences taken componentwise,
and the exponential of ℰ by 𭒟 is the relative functor category [𭒟, ℰ]h.

(ii) RelCat is a locally finitely presentable𝐔-category,[4] and the two functors
und, weq : RelCat → Cat are ℵ0-accessible

[5] and jointly conservative.

[4] See definition 0.2.22.
[5] See definition 0.2.18.
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(iii) SsRelCat is a locally finitely presentable 𝐔-category, and the inclusion
SsRelCat ↪ RelCat is ℵ0-accessible and has a left adjoint.

(iv) SsRelCat is an exponential ideal in RelCat.

(v) The full subcategory spanned by the minimal relative categories is an ex-
ponential ideal in RelCat.

(vi) The full subcategory spanned by the minimal saturated relative categories
is an exponential ideal in SsRelCat.

Proof. (i). This is straightforward from the definitions.

(ii). Obviously, a relative functor 𝐹 : 𭒞 → 𭒟 such that und 𝐹 : und 𭒞 → und 𭒟
and weq 𝐹 : weq 𭒞 → weq 𭒟 are both isomorphisms is itself an isomorphism,
so und, weq : RelCat → Cat are indeed jointly conservative.

It is also not hard to check that limits for all𝐔-small diagrams and colimits for
𝐔-small filtered diagrams in RelCat exist and can be computed componentwise
inCat, so (by theorem 0.2.26) it is enough to show thatRelCat is a ℵ0-accessible
𝐔-category. Clearly, a relative category 𭒞 such that und 𭒞 is finitely presentable
in Cat and weq 𭒞 is a finitely-generated subcategory of und 𭒞 is itself finitely
presentable in RelCat, so RelCat is indeed ℵ0-accessible.

(Alternatively, one may appeal to the sketchability theorem[6] and the fact
that a relative category is manifestly a model for a certain finite-limit sketch.)

(iii). It is clear that SsRelCat is closed inRelCat under limits for all 𝐔-small dia-
grams and colimits for all 𝐔-small filtered diagrams, and we know that RelCat
is a locally finitely presentable category, so (by proposition 0.2.21) it is enough
to construct a left adjoint for the inclusion SsRelCat ↪ RelCat. This may be
done using the general adjoint functor theorem.

(iv) – (vi). All straightforward. ■

Proposition a.3.16. Let RelCat be the category of 𝐔-small relative categories
and relative functors, let SsRelCat be the full subcategory of semi-saturated
relative categories and relative functors, and let Cat be the category of 𝐔-small

[6] See Proposition 1.51 in [LPAC] or Proposition 5.6.4 in [Borceux, 1994b].
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categories and functors. We have the following strings of adjoint functors:

min ⊣ und ⊣ max ⊣ weq : RelCat → Cat

Ho ⊣ min+ ⊣ und ⊣ max ⊣ weq : SsRelCat → Cat

The functors min, min+, and max are moreover fully faithful, and Ho preserves
finite products.

Proof. All but the last of the above claims are obvious; for the preservation of
finite products under Ho, we refer to proposition a.1.13. ■

Definition a.3.17. A zigzag type is a relative category 𝑇 where und 𝑇 is the free
category on an inhabited finite planar graph of the form

• • ⋯ • •

where the edges are arrows that point either left or right, and weq 𝑇 consists of
all identities and all composites of left-pointing arrows. A morphism of zigzag
types is a relative functor that maps the leftmost object to the leftmost object
and the rightmost object to the rightmost object. We write 𝐓 for the category of
zigzag types.[7]

A zigzag of type 𝑇 in a relative category 𭒞 is a relative functor 𝑇 → 𭒞. Given
objects 𝑋 and 𝑌 in 𭒞, we denote by 𭒞𝑇 (𝑋, 𝑌 ) the category whose objects are the
zigzags starting at 𝑋 and ending at 𝑌 and whose morphisms are commutative
diagrams in 𭒞 of the form

𝑋 • ⋯ • 𝑌

𝑋 • ⋯ • 𝑌

where the rows are zigzags of type 𝑇 and the unmarked columns are weak equi-
valences.

Example a.3.18. If 𝑓 : 𝑋 → 𝑌 is a weak equivalence in a relative category 𭒞,
then we have commutative diagrams

𝑋 𝑋 𝑋

𝑋 𝑌 𝑋

𝑓

𝑓 𝑓

𝑌 𝑋 𝑌

𝑌 𝑌 𝑌

𝑓

𝑓

𝑓

[7] Warning: This is the opposite of the category 𝐓 defined in [DHKS, § 34].
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and these correspond to morphisms of zigzags in 𭒞.

Remark a.3.19. It is clear that 𭒞𝑇 (𝑋, 𝑌 ) is a subcategory of the relative func-
tor category [𝑇 , 𭒞]h. Thus, if 𭒞 is a 𝐔-small relative category, precomposition
makes the assignment 𝑇 ↦ 𭒞𝑇 (𝑋, 𝑌 ) into a functor 𝐓op → Cat, which we de-
note by 𭒞∗(𝑋, 𝑌 ). A Grothendieck construction applied to this functor yields the
following 𝐔-small category 𭒞(𝐓)(𝑋, 𝑌 ):

• Its objects are pairs (𝑇 , 𝑓 ), where 𝑇 is a zigzag type and 𝑓 is a zigzag of
type 𝑇 in 𭒞.

• A morphism (𝑇 ′, 𝑓 ′) → (𝑇 , 𝑓 ) is a pair (𝛼, 𝛽) where 𝛼 : 𝑇 → 𝑇 ′ is a
morphism in 𝐓 and 𝛽 : 𝛼∗𝑓 ′ → 𝑓 is a morphism in 𭒞𝑇 (𝑋, 𝑌 ).

• The composite of a pair of morphisms (𝛼′, 𝛽′) : (𝑇 ″, 𝑓 ″) → (𝑇 ′, 𝑓 ′) and
(𝛼, 𝛽) : (𝑇 ′, 𝑓 ′) → (𝑇 , 𝑓 ) is given by (𝛼′ ∘ 𝛼, 𝛽 ∘ 𝛼∗𝛽′).

There is an evident projection functor 𭒞(𝐓)(𝑋, 𝑌 ) → 𝐓op, and by construction it
is a Grothendieck opfibration with a canonical splitting.

Lemma a.3.20. Given a commutative diagram of the form below in a relative
category 𭒞,

𝑋 𝑌

𝑋′ 𝑌 ′

𝑎

𝑓

𝑏

𝑓 ′

if 𝑎 and 𝑏 are weak equivalences in 𭒞, then we obtain the following morphisms
of zigzags:

𝑋 𝑋 𝑌 𝑌 ′

𝑋′ 𝑋′ 𝑌 ′ 𝑌 ′

𝑋′ 𝑋 𝑌 𝑌

𝑋′ 𝑋′ 𝑌 ′ 𝑌

𝑎

𝑓

𝑏

𝑏

𝑎 𝑓 ′

𝑎

𝑎 𝑓

𝑏

𝑓 ′ 𝑏
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In particular, 𝑋
𝑓
→ 𝑌

𝑏
→ 𝑌 ′ and 𝑋

𝑎
→ 𝑋′ 𝑓 ′

→ 𝑌 ′ are in the same connected

component of 𭒞(𝐓)(𝑋, 𝑌 ′); and 𝑋′ 𝑎
← 𝑋

𝑓
→ 𝑌 and 𝑋′ 𝑓 ′

→ 𝑌 ′ 𝑏
← 𝑌 are in the

same connected component of 𭒞(𝐓)(𝑋′, 𝑌 ). ■

Theorem a.3.21. Let 𝑋 and 𝑌 be objects in a relative category 𭒞.

(i) For each zigzag type 𝑇 , the map that sends an object in 𭒞𝑇 (𝑋, 𝑌 ) to the
corresponding composite in Ho 𭒞(𝑋, 𝑌 ) is a functor when the latter is re-
garded as a discrete category.

(ii) The functors described above constitute a jointly surjective cocone from
the diagram 𭒞∗(𝑋, 𝑌 ) to Ho 𭒞(𝑋, 𝑌 ).

(iii) The induced functor 𭒞(𝐓)(𝑋, 𝑌 ) → Ho 𭒞(𝑋, 𝑌 ) is surjective, and moreover
two objects in 𭒞(𝐓)(𝑋, 𝑌 ) become equal in Ho 𭒞 if and only if they are in
the same connected component.

Proof. All obvious except for the last part of claim (iii), for which we refer to
paragraphs 33.8 and 33.10 in [DHKS]. ■

a.4 Kan extensions

Prerequisites. § 0.1.
In this section we use the explicit universe convention.

Definition a.4.1. Let 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒞 → ℰ be two functors. A left Kan
extension (resp. right Kan extension) of 𝐺 along 𝐹 is an initial (resp. terminal)
object of the category (𝐺 ↓ 𝐹 ∗) (resp. (𝐹 ∗ ↓ 𝐺)) described below:

• The objects are pairs (𝐻, 𝛼) where 𝐻 is a functor 𭒟 → ℰ and 𝛼 is a natural
transformation of type 𝐺 ⇒ 𝐻𝐹 (resp. 𝐻𝐹 ⇒ 𝐺).

• The morphisms (𝐻 ′, 𝛼′) → (𝐻, 𝛼) are those natural transformations 𝛽 :
𝐻 ′ ⇒ 𝐻 such that 𝛽𝐹 ∙ 𝛼′ = 𝛼 (resp. 𝛼 ∙ 𝛽𝐹 = 𝛼′).

Remark a.4.2. Clearly, Kan extensions are unique up to unique isomorphism if
they exist. We write (Lan𝐹 𝐺, 𝜂) for the left Kan extension of 𝐺 along 𝐹 and say
𝜂 is the unit of Lan𝐹 𝐺; dually, we write (Ran𝐹 𝐺, 𝜀) for the right Kan extension
of 𝐺 along 𝐹 and say 𝜀 is the counit of Ran𝐹 𝐺.
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Proposition a.4.3. Let𝐔 be a pre-universe and let Set be the category of𝐔-sets.
For any two functors 𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒞 → Set, if 𭒟 is locally 𝐔-small, then
the following are equivalent:

(i) (Ran𝐹 𝐺, 𝜀) is a right Kan extension of 𝐺 along 𝐹 .

(ii) The maps (Ran𝐹 𝐺)(𝐷) → [𭒞,Set](𭒟(𝐷, 𝐹 ), 𝐺) defined by 𝑥 ↦ 𝜀 ∙ 𝐹 ∗𝜃𝑥,
where 𝜃𝑥 : 𭒟(𝐷, −) ⇒ 𝐺 is the unique natural transformation such that

(𝜃𝑥)𝐷(id𝐷) = 𝑥, are bijections that are natural in 𝐷.

Proof. This is a straightforward exercise in applying the Yoneda lemma to the
definition of right Kan extensions. ⧫

Definition a.4.4. Let 𝐹 : 𭒞 → 𭒟, 𝐺 : 𭒞 → ℰ, and 𝐿 : ℰ → ℱ be three functors.
We say 𝐿 preserves a left (resp. right) Kan extension (𝐻, 𝛼) of 𝐺 along 𝐹 if
(𝐿𝐻, 𝐿𝛼) is a left (resp. right) Kan extension of 𝐿𝐹 along 𝐺.

Let Set be the category of 𝐔-small sets, and suppose ℰ is locally 𝐔-small.
We say a left Kan extension (Lan𝐺 𝐹 , 𝜂) is pointwise if it is preserved by all
functors of the form ℰ(−, 𝐸) : ℰ → Setop.

Dually, we say a right Kan extension (Ran𝐺 𝐹 , 𝜀) is pointwise if it is pre-
served by all functors of the form ℰ(𝐸, −) : ℰ → Set.

If a Kan extension is preserved by all functors, then it is said to be absolute.

It is convenient at this juncture to introduce a concept borrowed from en-
riched category theory. The notation below follows [Kelly, 2005, § 3.1].

Definition a.4.5. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𭒞 be a locally 𝐔-small category. Given functors 𝑊 : 𭒥 → Set and 𝐴 : 𭒥 → 𭒞,
a 𝑊 -weighted limit of 𝐴 is an object {𝑊 , 𝐴}𭒥 in 𭒞 together with bijections

𭒞(𝐶, {𝑊 , 𝐴}𭒥) ≅ [𭒥,Set](𝑊 , 𭒞(𝐶, 𝐴))

that are natural in 𝐶 . We may also write lim←−−
𝑊 𝑗
𝑗:𭒥

𝐴𝑗 instead of {𝑊 , 𝐴}𭒥, if we

wish to use an explicit variable 𝑗.
Dually, given functors 𝑊 : 𭒥op → Set and 𝐴 : 𭒥 → 𭒞, a 𝑊 -weighted

colimit of 𝐴 is an object 𝑊 ⋆𭒥 𝐴 in 𭒞 together with bijections

𭒞(𝑊 ⋆𭒥 𝐴, 𝐶) ≅ [𭒥op,Set](𝑊 , 𭒞(𝐴, 𝐶))

that are natural in 𝐶 . We may also write lim−−→
𝑊 𝑗
𝑗:𭒥

𝐴𝑗 instead of 𝑊 ⋆𭒥 𝐴, if we wish

to use an explicit variable 𝑗.
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Remark a.4.6. Clearly, weighted limits and colimits are unique up to unique
isomorphism if they exist.

It is also not hard to spell out the above definition in elementary terms; for
example, one notes that to give a natural transformation 𝑊 ⇒ 𭒞(𝐶, 𝐴), one
must give a morphism 𝜆𝑗,𝑥 : 𝐶 → 𝐴𝑗 for each object 𝑗 in 𭒥 and each element
𝑥 of 𝑊 𝑗, and these are required to make various diagrams commute. This is
a 𝑊 -weighted cone from 𝐶 to 𝐴, and {𝑊 , 𝐴}𭒥 is an object equipped with a
universal 𝑊 -weighted cone to 𝐴. Similarly, one may define the notion of a
𝑊 -weighted cocone from 𝐴 to 𝐶 , and then 𝑊 ⋆𭒥 𝐴 is an object equipped with
a universal 𝑊 -weighted cocone from 𝐴. In particular, if 𝑊 𝑗 = 1 for all 𝑗, then
𝑊 -weighted limits and colimits reduce to ordinary limits and colimits.

The above discussion also shows that the concept of a weighted limit or
colimit (within a fixed category!) does not depend on 𝐔 in any essential way.

Lemma a.4.7. Let 𭒥 be a 𝐔-small category. Given functors 𝐹 , 𝐺 : 𭒥 → Set,
the 𝐹 -weighted limit of 𝐺 exists in Set, and we have bijections

{𝐹 , 𝐺}𭒥 ≅ [𭒥,Set](𝐹 , 𝐺)

that are natural in 𝐹 and 𝐺.

Proof. One simply has to check that this works. ⧫

Proposition a.4.8. Let𝐔 be a pre-universe, let Set be the category of𝐔-sets, and
let 𝐹 : 𭒞 → 𭒟 be any functor where 𭒞 and 𭒟 are locally 𝐔-small categories.

(i) For each weight 𝑊 : 𭒥 → Set and each diagram 𝐴 : 𭒥 → 𭒞, if the
weighted limits {𝑊 , 𝐴}𭒥 and {𝑊 , 𝐹 𝐴}𭒥 both exist, then there is a ca-
nonical comparison morphism

𝐹 {𝑊 , 𝐴}𭒥 → {𝑊 , 𝐹 𝐴}𭒥

corresponding to the natural maps

[𭒥,Set](𝑊 , 𭒞(𝐶, 𝐴)) → [𭒥,Set](𝑊 , 𭒟(𝐹 𝐶, 𝐹 𝐴))

induced by the functor 𝐹 .

(ii) For any object 𝐶 in 𭒞, the functor 𭒞(𝐶, −) : 𭒞 → Set preserves all
weighted limits.
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(iii) The functors 𭒞(𝐶, −) : 𭒞 → Set jointly reflect weighted limits.

(iv) If 𝐹 has a left adjoint, then 𝐹 preserves weighted limits.

Dually:

(i′) For each weight 𝑊 : 𭒥op → Set and each diagram 𝐴 : 𭒥 → 𭒞, if the
weighted colimits 𝑊 ⋆𭒥 𝐴 and 𝑊 ⋆𭒥 𝐹 𝐴 both exist, then there is a ca-
nonical comparison morphism

𝑊 ⋆𭒥 𝐹 𝐴 → 𝐹 (𝑊 ⋆𭒥 𝐴)

corresponding to the natural maps

[𭒥,Set](𝑊 , 𭒞(𝐴, 𝐶)) → [𭒥,Set](𝑊 , 𭒟(𝐹 𝐴, 𝐹 𝐶))

induced by the functor 𝐹 .

(ii′) For any object𝐶 in 𭒞, the functor 𭒞(−, 𝐶) : 𭒞op → Set sends any weighted
colimit in 𭒞 to the corresponding weighted limit in Set.

(iii′) The functors 𭒞(−, 𝐶) : 𭒞 → Setop jointly reflect weighted colimits.

(iv′) If 𝐹 has a right adjoint, then 𝐹 preserves weighted colimits.

Proof. All straightforward. ⧫

Definition a.4.9. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𭒟 be a locally 𝐔-small category. Given a functor 𝐹 : 𭒞 → 𭒟, the 𝐹 -nerve
functor N𝐹 : 𭒟 → [𭒞op,Set] is defined by

N𝐹 (𝐷)(𝐶) = 𭒟(𝐹 𝐶, 𝐷)

i.e. N𝐹 = 𝐹 ∗h•, where h• : 𭒟 → [𭒟op,Set] is the usual Yoneda embedding.

Definition a.4.10. Let 𝐹 : 𭒞 → 𭒟 be a functor and let 𝐷 be an object in 𭒟.
The tautological cocone to 𝐷 induced by 𝐹 is the cocone 𝜑 : 𝐹 𝑃𝐷 ⇒ Δ𝐷,
where 𝑃𝐷 : (𝐹 ↓ 𝐷) → 𭒞 is the projection functor sending an object (𝐶, 𝑓 ) in
the comma category (𝐹 ↓ 𝐷) to the object 𝐶 in 𭒞, and 𝜑(𝐶,𝑓 ) = 𝑓 .

Dually, the tautological cone from 𝐷 induced by 𝐹 is the cone 𝜑 : Δ𝐷 ⇒
𝐹 𝑃 𝐷, where 𝑃 𝐷 : (𝐷 ↓ 𝐹 ) → 𭒞 is the projection functor sending an object
(𝐶, 𝑓 ) in the comma category (𝐷 ↓ 𝐹 ) to the object 𝐶 in 𭒞, and 𝜑(𝐶,𝑓 ) = 𝑓 .
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Theorem a.4.11. Let 𭒞, 𭒟 and ℰ be locally 𝐔-small categories. Given functors
𝐹 : 𭒞 → 𭒟 and 𝐺 : 𭒞 → ℰ, the following are equivalent:

(i) (𝐻, 𝛼) is a pointwise right Kan extension of 𝐺 along 𝐹 .

(ii) For each object 𝑑 in 𭒟, the weighted limit {N𝐹 op
(𝑑), 𝐺}

𭒞 exists in ℰ, and
there are isomorphisms

𝐻𝑑 ≅ {N𝐹 op
(𝑑), 𝐺}

𭒞

natural in 𝑑, with 𝛼𝑐 : 𝐻𝐹 𝑐 → 𝐺𝑐 corresponding to the element id𝐹 𝑐 of
N𝐹 op

(𝐹 𝑐)(𝑐) = 𭒟(𝐹 𝑐, 𝐹 𝑐).

(iii) (Assuming 𭒞 is 𝐔-small.) For each object 𝑑 in 𭒟, if 𝑃 𝑑 : (𝑑 ↓ 𝐹 ) → 𭒞
is the projection sending (𝑐, 𝑓 ) in the comma category (𝑑 ↓ 𝐹 ) to 𝑐, and
𝜑 : Δ𝑑 ⇒ 𝐹 𝑃 𝑑 is the tautological cone in 𭒟, then the cone 𝛼𝑃 𝑑 ∙ 𝐻𝜑 :
Δ𝐻𝑑 ⇒ 𝐺𝑃 𝑑 is limiting; and for each 𝑔 : 𝑑 → 𝑑′ in 𭒟, the morphism
𝐻𝑔 : 𝐻𝑑 → 𝐻𝑑′ is the one induced by the functor (𝑑′ ↓ 𝐹 ) → (𝑑 ↓ 𝐹 )
sending (𝑐′, 𝑓 ′) to (𝑐′, 𝑓 ′ ∘ 𝑔). In particular, 𝛼𝑐 : 𝐻𝐹 𝑐 → 𝐺𝑐 must be
(equal to) the component of the limiting cone Δ𝐹 𝑐 ⇒ 𝐺𝑃 𝑑 at the object

(𝑐, id𝐹 𝑐) of (𝐹 𝑐 ↓ 𝐹 ).

In particular, if 𭒞 is a 𝐔-small category and ℰ is 𝐔-complete, then the right Kan
extension of 𝐺 along 𝐹 exists and is pointwise.

Dually, the following are equivalent:

(i′) (𝐻, 𝛼) is a pointwise left Kan extension of 𝐺 along 𝐹 .

(ii′) For each object 𝑑 in 𭒟, the weighted colimit N𝐹 (𝑑) ⋆𭒞 𝐺 exists in ℰ, and
there are isomorphisms

𝐻𝑑 ≅ N𝐹 (𝑑) ⋆𭒞 𝐺

natural in 𝑑, with 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐 corresponding to the element id𝐹 𝑐 of
N𝐹 (𝐹 𝑐)(𝑐) = 𭒟(𝐹 𝑐, 𝐹 𝑐).

(iii′) (Assuming 𭒞 is 𝐔-small.) For each object 𝑑 in 𭒟, if 𝑃𝑑 : (𝐹 ↓ 𝑑) → 𭒞
is the projection sending (𝑐, 𝑓 ) in the comma category (𝐹 ↓ 𝑑) to 𝑐, and
𝜑 : 𝐹 𝑃𝑑 ⇒ Δ𝑑 is the tautological cocone in𭒟, then the cocone𝐻𝜑∙𝛼𝑃𝑑 :
𝐺𝑃𝑑 ⇒ Δ𝐻𝑑 is colimiting; and for each 𝑔 : 𝑑 → 𝑑′ in 𭒟, the morphism
𝐻𝑔 : 𝐻𝑑 → 𝐻𝑑′ is the one induced by the functor (𝐹 ↓ 𝑑) → (𝐹 ↓ 𝑑′)
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sending (𝑐, 𝑓 ) to (𝑐, 𝑔 ∘ 𝑓 ). In particular, 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐 must be (equal
to) the component of the colimiting cocone 𝐺𝑃𝑑 ⇒ Δ𝐹 𝑐 at the object
(𝑐, id𝐹 𝑐) of (𝐹 ↓ 𝐹 𝑐).

In particular, if 𭒞 is a 𝐔-small category and ℰ is 𝐔-cocomplete, then the left Kan
extension of 𝐺 along 𝐹 exists and is pointwise.

Proof. (i) ⇔ (ii). This is just a matter of unwinding the definitions.

(i) ⇔ (iii). One first proves that the construction in (iii) does indeed define a
right Kan extension in the special case ℰ = Set; once this is done, showing that
(i) and (iii) are equivalent is simply a matter of applying the Yoneda lemma. See
[CWM, Ch. X, §§ 3 and 5]. □

Remark a.4.12. It is possible to extract an elementary characterisation of point-
wise Kan extensions from the results above, thereby showing that the property
of being pointwise does not depend on the choice of universe 𝐔.

Corollary a.4.13. Let 𝐹 : 𭒞 → 𭒟 be a functor. If 𭒞 is 𝐔-small and 𭒟 is locally
𝐔-small, then the functor 𝐹 ∗ : [𭒟,Set] → [𭒞,Set] has both a left adjoint Lan𝐹
and a right adjoint Ran𝐹 . ■

Corollary a.4.14. Let 𝐿 : ℰ → ℱ be a functor. With other notation as in the the-
orem, if (𝐻, 𝛼) is a pointwise right Kan extension of 𝐺 along 𝐹 , then (𝐿𝐻, 𝐿𝛼)
is a pointwise right Kan extension of 𝐿𝐺 along 𝐹 , provided either:

(i) 𝐿 preserves all weighted limits, or

(ii) 𝐿 preserves limits for 𝐔-small diagrams and 𭒞 is 𝐔-small.

Dually, if (𝐻, 𝛼) is a pointwise left Kan extension of 𝐺 along 𝐹 , then (𝐿𝐻, 𝐿𝛼)
is a pointwise left Kan extension of 𝐿𝐺 along 𝐹 , provided either:

(i′) 𝐿 preserves all weighted colimits, or

(ii′) 𝐿 preserves colimits for 𝐔-small diagrams and 𭒞 is 𝐔-small. ■

Corollary a.4.15. With notation as in the theorem, if 𝐹 is fully faithful and
(𝐻, 𝛼) is a pointwise right (resp. left) Kan extension of 𝐺 along 𝐹 , then 𝛼 :
𝐻𝐹 ⇒ 𝐺 (resp. 𝛼 : 𝐺 ⇒ 𝐻𝐹 ) is a natural isomorphism.
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Proof. If 𝐹 is fully faithful, then the comma category (𝐹 𝑐 ↓ 𝐹 ) (resp. (𝐹 ↓ 𝐹 𝑐))
has an initial (resp. terminal) object, namely (𝑐, id𝐹 𝑐), so the component 𝛼𝑐 :
𝐻𝐹 𝑐 → 𝐺𝑐 (resp. 𝛼𝑐 : 𝐺𝑐 → 𝐻𝐹 𝑐) must be an isomorphism. ■

Proposition a.4.16. Let 𭒞 and 𭒟 be any two categories, and let 𝐹 : 𭒞 → 𭒟 and
𝐺 : 𭒟 → 𭒞 be any two functors. The following are equivalent:

(i) 𝐹 ⊣ 𝐺, with unit 𝜂 : id𭒞 ⇒ 𝐺𝐹 and counit 𝜀 : 𝐹 𝐺 ⇒ id𭒟.

(ii) (𝐹 , 𝜀) is an absolute right Kan extension of id𭒟 along 𝐺.

(iii) (𝐹 , 𝜀) is a right Kan extension of id𭒟 along 𝐺 that is preserved by 𝐹 .

(iv) (𝐺, 𝜂) is an absolute left Kan extension of id𭒞 along 𝐹 .

(v) (𝐺, 𝜂) is a left Kan extension of id𭒞 along 𝐹 that is preserved by 𝐺.

Proof. See [CWM, Ch. X, § 7]. □

Proposition a.4.17.
(i) Right adjoints preserve all right Kan extensions.

(ii) Left adjoints preserve all left Kan extensions.

Proof. See Theorem 1 in [CWM, Ch. X, § 5]. □

Definition a.4.18. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𭒞 be a locally 𝐔-small category. A dense functor is a functor 𝐹 : ℬ → 𭒞
such that the 𝐹 -nerve functor N𝐹 : 𭒞 → [ℬop,Set] is fully faithful. A dense
subcategory of 𭒞 is a subcategory ℬ such that the inclusion ℬ ↪ 𭒞 is a dense
functor.

Dually, a codense functor is a functor 𝐹 : ℬ → 𭒞 such that the opposite
functor 𝐹 op : ℬop → 𭒞op is dense, and a codense subcategory of 𭒞 is a subcat-
egory ℬ such that the inclusion ℬ ↪ 𭒞 is a codense functor.

Example a.4.19. The Yoneda lemma implies id𭒞 : 𭒞 → 𭒞 is a dense and codense
functor.

One may extract an elementary definition for ‘(co)dense functor’ from the
following proposition:

Proposition a.4.20. With notation as in the definition, the following are equi-
valent:
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(i) 𝐹 : ℬ → 𭒞 is a dense functor.

(ii) For each object 𝐶 in 𭒞, the maps

𭒞(𝐶, 𝐶′) → [ℬop,Set](N𝐹 (𝐶), 𭒞(𝐹 , 𝐶′))

induced by N𝐹 : 𭒞 → [ℬop,Set] are natural bijections, exhibiting 𝐶 as a
weighted colimit N𝐹 (𝐶) ⋆ℬ 𝐹 in 𭒞.

(iii) For each object 𝐶 in 𭒞, the tautological cocone to 𝐶 induced by 𝐹 is a
colimiting cocone.

(iv) (id𭒞, id𝐹 ) is a pointwise left Kan extension of 𝐹 along 𝐹 .

Dually, the following are equivalent:

(i′) 𝐹 : ℬ → 𭒞 is a codense functor.

(ii′) For each object 𝐶 in 𭒞, the maps

𭒞(𝐶′, 𝐶) → [ℬ,Set](N𝐹 op
(𝐶), 𭒞(𝐶′, 𝐹 ))

induced by N𝐹 op
: 𭒞op → [ℬ,Set] are natural bijections, exhibiting 𝐶 as

a weighted limit {N𝐹 op
(𝐶), 𝐹 }

ℬ in 𭒞.

(iii′) For each object 𝐶 in 𭒞, the tautological cone from 𝐶 induced by 𝐹 is a
limiting cone.

(iv′) (id𭒞, id𝐹 ) is a pointwise right Kan extension of 𝐹 along 𝐹 .

Proof. (i) ⇔ (ii). The indicated maps are bijections for all 𝐶 and 𝐶′ if and only
if N𝐹 is fully faithful, by definition.

(ii) ⇔ (iii) ⇔ (iv). This is an application of theorem a.4.11. ■

Definition a.4.21. Let 𝐺 : 𭒟 → 𭒞 be a functor. A densely-defined partial left
adjoint for 𝐺 is a triple (𝐹 , 𝑖, 𝜂), where 𝐹 : ℬ → 𭒟 is a functor, 𝑖 : ℬ → 𭒞 is a
dense functor, and 𝜂 : 𝑖 ⇒ 𝐺𝐹 is a natural transformation such that the maps

𭒟(𝐹 𝐵, 𝐷) → 𭒞(𝑖𝐵, 𝐺𝐷)
𝑔 ↦ 𝐺𝑔 ∘ 𝜂𝐵

are bijections that are natural in 𝐵 and 𝐷.
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Dually, given a functor 𝐹 : 𭒞 → 𭒟, a codensely-defined partial right
adjoint for 𝐹 is a triple (𝐺, 𝑗, 𝜀), where 𝐺 : ℬ → 𭒞 is a functor, 𝑗 : ℬ → 𭒞 is a
codense functor, and 𝜀 : 𝐹 𝐺 ⇒ 𝑗 is a natural transformation such that the maps

𭒞(𝐶, 𝐺𝐵) → 𭒟(𝐹 𝐶, 𝑗𝐵)
𝑓 ↦ 𝜀𝐵 ∘ 𝐹 𝑓

are bijections that are natural in 𝐵 and 𝐶 .

Example a.4.22. The Yoneda embedding h• : ℬ → [ℬop,Set] has a densely-
defined partial left adjoint, namely (idℬ, h•, idh•).

Remark a.4.23. (𝐹 , id𭒞, 𝜂) is a densely-defined partial left adjoint for 𝐺 if and
only if 𝐹 is a left adjoint for 𝐺 in the usual sense, with 𝜂 being the adjunction
unit.

Proposition a.4.24. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets,
and let 𭒞 and 𭒟 be locally 𝐔-small categories. Given functors 𝐺 : 𭒟 → 𭒞,
𝐹 : ℬ → 𭒟, and 𝑖 : ℬ → 𭒞, the following are equivalent:

(i) (𝐹 , 𝑖, 𝜂) is a densely-defined partial left adjoint for 𝐺.

(ii) The functor 𝑖 : ℬ → 𭒞 is dense, and there exists a diagram

𭒟 [𭒟op,Set]

𭒞 [ℬop,Set]

𝐺

h•

(𝐹 op)∗

N𝑖

𝛼

where 𝛼 factors through 𝜂∗ : N𝐺𝐹 ⇒ N𝑖 and is a natural isomorphism.

(iii) The functor 𝑖 : ℬ → 𭒞 is dense, and the diagram

𭒟 [𭒟op,Set]

𭒞 [ℬop,Set]

𝐺

h•

(𝐹 op)∗

N𝑖

commutes up to natural isomorphism.
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Dually, given functors 𝐹 : 𭒞 → 𭒟, 𝐺 : ℬ → 𭒞, and 𝑗 : ℬ → 𭒟, the following
are equivalent:

(i′) (𝐺, 𝑗, 𝜀) is a codensely-defined partial right adjoint for 𝐹 .

(ii′) The functor 𝑗 : ℬ → 𭒟 is codense, and there exists a diagram

𭒞op [𭒞,Set]

𭒟op [ℬ,Set]

𝐹 op

h•

𝐺∗

N𝑗 op

𝛽

where 𝛽 factors through (𝜀op)∗ : N𝐹 op𝐺op
⇒ N𝑗 op

and is a natural iso-
morphism.

(iii′) The functor 𝑗 : ℬ → 𭒟 is codense, and the diagram

𭒞op [𭒞,Set]

𭒟op [ℬ,Set]

𝐹 op

h•

𝐺∗

N𝑗 op

commutes up to natural isomorphism.

Proof. (i) ⇒ (ii). This immediately follows from the definition.

(ii) ⇒ (iii). Obvious.

(iii) ⇒ (i). The displayed diagram commutes up to natural isomorphism pre-
cisely when there are bijections

𝛼𝐵,𝐷 : 𭒟(𝐹 𝐵, 𝐷) → 𭒞(𝑖𝐵, 𝐺𝐷)

that are natural in both 𝐵 and 𝐷. Taking 𝐷 = 𝐹 𝐵, let 𝜂𝐵 : 𝑖𝐵 → 𝐺𝐹 𝐵 be the
morphism corresponding to id𝐹 𝐵 : 𝐹 𝐵 → 𝐹 𝐵. Applying the Yoneda lemma,
we see that the natural bijection 𝛼𝐵,𝐷 must be the map 𝑔 ↦ 𝐺𝑔 ∘ 𝜂𝐵. ■

Corollary a.4.25. Let 𭒞 and 𭒟 be any two categories. If a functor 𝐺 : 𭒟 → 𭒞
has a densely-defined partial left adjoint, then 𝐺 preserves:

(i) limits for all diagrams in 𭒟,
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(ii) weighted limits, and

(iii) pointwise right Kan extensions.

Dually, if a functor 𝐹 : 𭒞 → 𭒟 has a codensely-defined partial right adjoint,
then 𝐹 preserves:

(i′) colimits for all diagrams in 𭒞,

(ii′) weighted colimts, and

(iii′) pointwise left Kan extensions.

Proof. Choose a universe 𝐔 such that the domain of 𝑖 : ℬ → 𭒞 is 𝐔-small and
both 𭒞 and 𭒟 are locally 𝐔-small, and consider the following diagram:

𭒟 [𭒟op,Set]

𭒞 [ℬop,Set]

𝐺

h•

(𝐹 op)∗

N𝑖

Since 𝑖 is dense, the 𝑖-nerve functor N𝑖 : 𭒞 → [ℬop,Set] is fully faithful. Corol-
lary a.4.13 implies (𝐹 op)∗ : [𭒟op,Set] → [ℬop,Set] is a right adjoint, and the
Yoneda embedding h• : 𭒟 → [𭒟op,Set] preserves all limits and weighted limits
(see proposition a.4.8), so we use the fact that N𝑖 reflects limits and weighted
limits to conclude that 𝐺 preserves them. We then apply corollary a.4.14. ■

a.5 Ends and coends

Prerequisites. §§ 0.1, a.4

In this section we use the explicit universe convention.

Definition a.5.1. Let 𝐹 , 𝐺 : 𭒞op × 𭒞 → 𭒟 be functors. A dinatural transform-
ation 𝛼 : 𝐹 ⬦→ 𝐺 is a family (𝛼𝐶 : 𝐹 (𝐶, 𝐶) → 𝐺(𝐶, 𝐶) | 𝐶 ∈ ob 𭒞) such that
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the diagram

𝐹 (𝐶, 𝐶) 𝐺(𝐶, 𝐶)

𝐹 (𝐶, 𝐶′) 𝐺(𝐶′, 𝐶)

𝐹 (𝐶′, 𝐶′) 𝐺(𝐶′, 𝐶′)

𝛼𝐶

𝐺(𝑓,id𝐶)𝐹 (id𝐶 ,𝑓)

𝐹 (𝑓 ,id𝐶′)

𝛼𝐶′

𝐺(id𝐶′,𝑓)

commutes for all morphisms 𝑓 : 𝐶′ → 𝐶 in 𭒞.

Example a.5.2. Let 𝐔 be a pre-universe, let 𭒞 be a locally 𝐔-small category, and
let Set be the category of 𝐔-sets. Consider the functor Hom𭒞 : 𭒞op × 𭒞 → Set
that sends a pair of objects in 𭒞 to their hom-set. For each natural number 𝑛, we
have an dinatural transformation Hom𭒞

⬦→ Hom𭒞 defined by 𝑒 ↦ 𝑒𝑛, where 𝑒𝑛

denotes the 𝑛-fold iterate of the endomorphism 𝑒.

Definition a.5.3. A wedge from an object 𝐷 in 𭒟 to a functor 𝐺 : 𭒞op × 𭒞 → 𭒟
is a dinatural transformation Δ𝐷

⬦
→ 𝐺, where Δ𝐷 : 𭒞op × 𭒞 → 𭒟 is the constant

functor with value 𝐷; dually, a cowedge from a functor 𝐹 : 𭒞op × 𭒞 → 𭒟 to an
object 𝐷 in 𭒟 is a dinatural transformation 𝐹

⬦
→ Δ𝐷.

Definition a.5.4. An end for a functor 𝐺 : 𭒞op × 𭒞 → 𭒟 is an object 𝐸 and a
wedge 𝜆 : Δ𝐸 ⬦→ 𝐺 with the following universal property:

• For each wedge 𝜑 : Δ𝐷
⬦
→ 𝐺, there is a unique morphism 𝑓 : 𝐷 → 𝐸 in

𭒟 such that 𝜑𝐶 = 𝜆𝐶 ∘ 𝑓 for all objects 𝐶 in 𭒞.

We write the following formula to mean that 𝐸 is an end for 𝐺:

𝐸 = ∫𝐶:𭒞
𝐺(𝐶, 𝐶)

Dually, a coend for a functor 𝐹 : 𭒞op × 𭒞 → 𭒟 is an object 𝐸 and a cowedge
𝜆 : 𝐹

⬦
→ Δ𝐸 with the following universal property:

• For each cowedge 𝜑 : 𝐹 ⬦→ Δ𝐷, there is a unique morphism 𝑓 : 𝐸 → 𝐷
in 𭒟 such that 𝜑𝐶 = 𝑓 ∘ 𝜆𝐶 for all objects 𝐶 in 𭒞.
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We write the following formula to mean that 𝐸 is a coend for 𝐹 :

𝐸 = ∫
𝐶:𭒞

𝐹 (𝐶, 𝐶)

Remark a.5.5. Let 𝐔 be a pre-universe, let 𝔻 be a 𝐔-small category, and let 𭒞
be a locally 𝐔-small category. Then, for all functors 𝐹 , 𝐺 : 𝔻 → 𭒞, we have a
bijection

[𝔻, 𭒞](𝐹 , 𝐺) ≅ ∫𝑑:𝔻
𭒞(𝐹 𝑑, 𝐺𝑑)

and this is natural in both 𝐹 and 𝐺. (The size restriction ensures that the LHS is
a 𝐔-set.) See also lemma a.4.7.

Proposition a.5.6. Let 𝐔 be a pre-universe and let 𝔻 be a 𝐔-small category. If
𭒞 is a 𝐔-complete category, then 𭒞 has ends for all functors 𝐴 : 𝔻op × 𝔻 → 𭒞.
Dually, if 𭒞 is a 𝐔-cocomplete category, then 𭒞 has coends for all functors 𝐴 :
𝔻op × 𝔻 → 𭒞.

Proof. It is clear from the definition that an end is a special kind of limit, and a
coend is a special kind of colimit. To make this precise, one can use Mac Lane’s
subdivision category 𭒞§: see [CWM, Ch. IX, § 5]. □

Proposition a.5.7. Let𝐔 be a pre-universe, let Set be the category of𝐔-sets, and
let 𝐹 : 𭒞 → 𭒟 be any functor where 𭒞 and 𭒟 are locally 𝐔-small categories.

(i) For any functor 𝐴 : 𭒥op × 𭒥 → 𭒞, if the ends ∫𭒥 𝐴 and ∫𭒥 𝐹 𝐴 both exist,
with 𝜆 being the universal wedge in 𭒞, then there is a canonical compar-
ison morphism

𝐹 ∫𭒥
𝐴 → ∫𭒥

𝐹 𝐴

induced by the wedge 𝐹 𝜆.

(ii) For any object 𝐶 in 𭒞, the functor 𭒞(𝐶, −) : 𭒞 → Set preserves all ends.

(iii) The functors 𭒞(𝐶, −) jointly reflect ends.

(iv) If 𝐹 has a left adjoint, then 𝐹 preserves ends.

Dually:

186



a.5. Ends and coends

(i′) For any functor 𝐴 : 𭒥op × 𭒥 → 𭒞, if the coends ∫𭒥 𝐴 and ∫𭒥 𝐹 𝐴 both
exist, with 𝜆 being the universal cowedge in 𭒞, then there is a canonical
comparison morphism

∫
𭒥

𝐹 𝐴 → 𝐹 ∫
𭒥

𝐴

induced by the cowedge 𝐹 𝜆.

(ii′) For any object 𝐶 in 𭒞, the functor 𭒞(−, 𝐶) : 𭒞 → Set sends any coend in
𭒞 to the corresponding end in Set.

(iii′) The functors 𭒞(−, 𝐶) : 𭒞 → Setop jointly reflect coends.

(iv′) If 𝐹 has a right adjoint, then 𝐹 preserves coends.

Proof. All straightforward. ⧫

Definition a.5.8. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𝟙 be the trivial category with ∗ as its only object. A tensored 𝐔-category
is a locally 𝐔-small category 𭒞 such that, for all weights 𝑊 : 𝟙 → Set and
all diagrams 𝐴 : 𝟙 → Set, a 𝑊 -weighted colimit for 𝐴 exists in 𭒞; if 𭒞 is a
tensored 𝐔-category, then we write 𝑋 ⊙ 𝐶 for the weighted colimit 𝑊 ⋆𝟙 𝐴,
where 𝑋 = 𝑊 (∗) and 𝐶 = 𝐴(∗).

Dually, a cotensored 𝐔-category is a locally 𝐔-small category 𭒞 such that,
for all weights 𝑊 : 𝟙 → Set and all diagrams 𝐴 : 𝟙 → Set, a 𝑊 -weighted limit
for 𝐴 exists in 𭒞; if 𭒞 is a cotensored 𝐔-category, then we write 𝑋 ⋔ 𝐶 for the
weighted limit {𝑊 , 𝐴}𝟙, where 𝑋 = 𝑊 (∗) and 𝐶 = 𝐴(∗).

Proposition a.5.9 (Tensor–hom–cotensor adjunction). Let 𝐔 be a pre-universe,
let Set be the category of 𝐔-sets, let 𭒞 be a locally 𝐔-small category.

(i) If 𭒞 is a tensored 𝐔-category, then the assignment (𝑋, 𝐶) ↦ 𝑋 ⊙ 𝐶 can
be extended to a functor Set×𭒞 → 𭒞 such that, for each object 𝐶 , we have
the following adjunction:

− ⊙ 𝐶 ⊣ 𭒞(𝐶, −) : 𭒞 → Set

(ii) If 𭒞 is a cotensored 𝐔-category, then the assignment (𝑋, 𝐶) ↦ 𝑋 ⋔ 𝐶 can
be extended to a functor Setop × 𭒞 → 𭒞 such that, for each object 𝐶 , the
functors − ⋔ 𝐶 : Setop → 𭒞 and 𭒞(−, 𝐶) : 𭒞op → Set are contravariantly
adjoint on the right.
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(iii) If 𭒞 is a tensored and cotensored𝐔-category, then for each set𝑋, we have
the following adjunction:

𝑋 ⊙ − ⊣ 𝑋 ⋔ − : 𭒞 → 𭒞

Proof. Claims (i) and (ii) are formally dual and are straightforward applications
of the parametrised adjunction theorem.[8] For claim (iii), simply observe that
we have bijections

𭒞(𝑋 ⊙ 𝐴, 𝐵) ≅ Set(𝑋, 𭒞(𝐴, 𝐵)) ≅ 𭒞(𝐴, 𝑋 ⋔ 𝐵)

and these are natural in 𝐴, 𝐵, and 𝑋. ■

Theorem a.5.10. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𭒞 be a locally 𝐔-small category. The following are equivalent:

(i) 𭒞 is a 𝐔-complete category.

(ii) 𭒞 is a cotensored 𝐔-category and, for all 𝐔-small categories 𝔻 and all
functors 𝐵 : 𝔻op × 𝔻 → 𭒞, an end for 𝐴 exists in 𭒞.

(iii) For all weights 𝑊 : 𝔻op → Set and all diagrams 𝐴 : 𝔻 → Set, 𭒞 has a
𝑊 -weighted limit for 𝐴, provided 𝔻 is a 𝐔-small category.

Dually, the following are equivalent:

(i′) 𭒞 is a 𝐔-cocomplete category.

(ii′) 𭒞 is a tensored 𝐔-category and, for all 𝐔-small categories 𝔻 and all func-
tors 𝐵 : 𝔻op × 𝔻 → 𭒞, a coend for 𝐴 exists in 𭒞.

(iii′) For all weights 𝑊 : 𝔻op → Set and all diagrams 𝐴 : 𝔻 → Set, 𭒞 has a
𝑊 -weighted colimit for 𝐴, provided 𝔻 is a 𝐔-small category.

Proof. (i) ⇒ (ii). It is clear that 𝑋 ⋔ 𝐶 is nothing more than an 𝑋-fold product
of copies of 𝐶 , so 𭒞 is certainly 𝐔-cotensored if it is 𝐔-complete, and proposi-
tion a.5.6 says 𭒞 also has the required ends in that case.

[8] See Theorem 3 in [CWM, Ch. IV, § 7].

188



a.5. Ends and coends

(ii) ⇒ (iii). We have the following natural bijections:

𭒞(𝐶, {𝑊 , 𝐴}𝔻) ≅ [𝔻,Set](𝑊 , 𭒞(𝐶, 𝐴))

≅ ∫𝑑:𝔻
Set(𝑊 𝑑, 𭒞(𝐶, 𝐴𝑑))

≅ ∫𝑑:𝔻
𭒞(𝐶, 𝑊 𝑑 ⋔ 𝐴𝑑)

≅ 𭒞(𝐶, ∫𝑑:𝔻
𝑊 𝑑 ⋔ 𝐴𝑑)

Thus, using the Yoneda lemma and assuming 𭒞 is a cotensored 𝐔-category, the
weighted limit {𝑊 , 𝐴}𝔻 exists if and only if the end ∫𝑑:𝔻 𝑊 𝑑 ⋔ 𝐴𝑑 exists.

(iii) ⇒ (i). Ordinary limits are a special case of weighted limits, as remarked in
a.4.6. ■

Proposition a.5.11. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets,
let 𭒞 be a locally 𝐔-small category, and let 𭒥 be any category. If 𭒞 is a tensored
𝐔-category and has weighted limits for all weights 𝑊 : 𭒥 → Set and diagrams
𝐴 : 𭒥 → 𭒞, then:

(i) (𝑊 , 𝐴) ↦ {𝑊 , 𝐴}𭒥 extends to a functor [𭒥,Set]op × 𭒞 → 𭒞.

(ii) For each diagram 𝐴 : 𭒥 → 𭒞, the functors {−, 𝐴}𭒥 : [𭒥,Set]op → 𭒞 and
𭒞(−, 𝐴) : 𭒞op → [𭒥,Set] are contravariantly adjoint on the right.

(iii) For each weight 𝑊 : 𭒥 → Set, we have the following adjunction:

𝑊 ⊙ − ⊣ {𝑊 , −}𭒥 : [𭒥, 𭒞] → 𭒞

Here, 𝑊 ⊙ 𝐶 : 𭒥 → 𭒞 is the diagram 𝑗 ↦ 𝑊 𝑗 ⊙ 𝐶 .

Dually, if 𭒞 is a cotensored𝐔-category and has weighted colimits for all weights
𝑊 : 𭒥op → Set and diagrams 𝐴 : 𭒥 → 𭒞, then:

(i′) (𝑊 , 𝐴) ↦ 𝑊 ⋆𭒥 𝐴 extends to a functor [𭒥op,Set] × 𭒞 → 𭒞.

(ii′) For each diagram 𝐴 : 𭒥 → 𭒞, we have the following adjunction:

− ⋆𭒥 𝐴 ⊣ 𭒞(𝐴, −) : 𭒞 → [𭒥op,Set]
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(iii′) For each weight 𝑊 : 𭒥op → Set, we have the following adjunction:

𝑊 ⋆𭒥 − ⊣ 𝑊 ⋔ − : 𭒞 → [𭒥, 𭒞]

Here, 𝑊 ⋔ 𝐶 : 𭒥 → 𭒞 is the diagram 𝑗 ↦ 𝑊 𝑗 ⋔ 𝐶 .

Proof. Claim (i) is straightforward, and for claims (ii) and (iii), observe that we
have bijections

𭒞(𝐶, {𝑊 , 𝐴}𭒥) ≅ [𭒥,Set](𝑊 , 𭒞(𝐶, 𝐴))

≅ ∫𝑗:𭒥
Set(𝑊 𝑗, 𭒞(𝐶, 𝐴𝑗))

≅ ∫𝑗:𭒥
𭒞(𝑊 𝑗 ⊙ 𝐶, 𝐴𝑗)

≅ [𭒥, 𭒞](𝑊 ⊙ 𝐶, 𝐴)

and these are natural in 𝑊 , 𝐴, and 𝐶 . ■

Lemma a.5.12. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets, and
let 𝕀 and 𝕁 be 𝐔-small categories. For all functors 𝐴 : 𝕀op × 𝕁op × 𝕀 × 𝕁 → Set:

(i) The assignment (𝑖′, 𝑖) ↦ ∫𝑗:𝕁 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) extends to a functor 𝕀op×𝕀 → Set.

(ii) There is a unique morphism 𝜃 making the diagram below commute for all
𝑖 and 𝑗,

∫𝑖′:𝕀 ∫𝑗′:𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑗′:𝕁

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

∫(𝑖′,𝑗′):𝕀×𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) 𝐴(𝑖, 𝑗, 𝑖, 𝑗)

𝜃

where the unlabelled arrows are the components of the respective univer-
sal wedges, and 𝜃 is moreover an isomorphism.
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(iii) There is a unique morphism 𝜎 making the diagram below commute for all
𝑖 and 𝑗,

∫𝑖′:𝕀 ∫𝑗′:𝕁
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑗′:𝕁

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

𝐴(𝑖, 𝑗, 𝑖, 𝑗)

∫𝑗′:𝕁 ∫𝑖′:𝕀
𝐴(𝑖′, 𝑗′, 𝑖′, 𝑗′) ∫𝑖′:𝕀

𝐴(𝑖, 𝑗′, 𝑖, 𝑗′)

𝜎

where the unmarked arrows are the components of the respective universal
wedges, and 𝜎 is moreover an isomorphism.

Proof. See [CWM, Ch. IX, § 8]. □

Theorem a.5.13 (Interchange law for ends and coends). Let 𭒞 be any category
and let 𝐴 : ℐop × 𭒥op × ℐ × 𭒥 → Set be any functor. If the end ∫𝑖:ℐ 𝐴(𝑖, 𝑗′, 𝑖, 𝑗)
exists in 𭒞 for all 𝑗′ and 𝑗 in 𭒥, and the end ∫𝑗:𭒥 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) exists in 𭒞 for all 𝑖′

and 𝑖 in ℐ, then the following are equivalent:

(i) The end ∫(𝑖,𝑗):ℐ×𭒥 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.

(ii) The iterated end ∫𝑖:ℐ ∫𝑗:𭒥 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.

(iii) The iterated end ∫𝑗:𭒥 ∫𝑖:ℐ 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.

In this case, we have a canonical isomorphism in 𭒞:

∫𝑖:ℐ ∫𝑗:𭒥
𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫𝑗:𭒥 ∫𝑖:ℐ

𝐴(𝑖, 𝑗, 𝑖, 𝑗)

Dually, if the coend∫𝑖:ℐ 𝐴(𝑖, 𝑗′, 𝑖, 𝑗) exists in 𭒞 for all 𝑗′ and 𝑗 in 𭒥, and the coend
∫𝑗:𭒥 𝐴(𝑖′, 𝑗, 𝑖, 𝑗) exists in 𭒞 for all 𝑖′ and 𝑖 in ℐ, then the following are equivalent:

(i) The coend ∫(𝑖,𝑗):ℐ×𭒥 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.

(ii) The iterated coend ∫𝑖:ℐ ∫𝑗:𭒥 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.

(iii) The iterated coend ∫𝑗:𭒥 ∫𝑖:ℐ 𝐴(𝑖, 𝑗, 𝑖, 𝑗) exists in 𭒞.
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In this case, we have a canonical isomorphism in 𭒞:

∫
𝑖:ℐ

∫
𝑗:𭒥

𝐴(𝑖, 𝑗, 𝑖, 𝑗) ≅ ∫
𝑗:𭒥

∫
𝑖:ℐ

𝐴(𝑖, 𝑗, 𝑖, 𝑗)

Proof. Choose a pre-universe 𝐔 such that ℐ and 𭒥 are 𝐔-small categories and 𭒞
is a locally 𝐔-small category, and use the Yoneda lemma to reduce the claims to
the previous lemma. ■

Proposition a.5.14. Let 𝐔 be a pre-universe, let Set be the category of 𝐔-sets,
and let 𭒞 and 𭒥 be locally 𝐔-small categories.

(i) For all 𝑗 in 𭒥 and all functors 𝐴 : 𭒥 → 𭒞, the Yoneda bijection

𭒞(𝐶, 𝐴𝑗) ≅ [𭒥,Set](h𝑗 , 𭒞(𝐶, 𝐴))

exhibits 𝐴𝑗 as the weighted limit {h𝑗 , 𝐴}
𭒥 in 𭒞.

(ii) If 𭒞 is a cotensored 𝐔-category, then the end ∫𝑗′:𭒥 𭒥(𝑗, 𝑗′) ⋔ 𝐴𝑗′ exists in
𭒞 and can be canonically identified with 𝐴𝑗.

(iii) For all functors 𝐻 : 𭒥op × 𭒥 → 𭒞, the weighted limit {Hom𭒥, 𝐻}
𭒥op×𭒥

exists in 𭒞 if and only if the end ∫𝑗:𭒥 𝐻(𝑗, 𝑗) exists in 𭒞, and there is a
canonical identification of the two.

Dually:

(i′) For all 𝑗 in 𭒥 and all functors 𝐴 : 𭒥 → 𭒞, the Yoneda bijection

𭒞(𝐴𝑗, 𝐶) ≅ [𭒥op,Set](h𝑗 , 𭒞(𝐴, 𝐶))

exhibits 𝐴𝑗 as the weighted colimit h𝑗 ⋆𭒥 𝐴 in 𭒞.

(ii′) If 𭒞 is a tensored 𝐔-category, then the coend ∫𝑗′:𭒥 𭒥(𝑗′, 𝑗) ⊙ 𝐴𝑗′ exists in
𭒞 and can be canonically identified with 𝐴𝑗.

(iii′) For all functors 𝐻 : 𭒥op × 𭒥 → 𭒞, the weighted colimit Hom𭒥op ⋆𭒥op×𭒥 𝐻
exists in 𭒞 if and only if the coend ∫𝑗:𭒥 𝐻(𝑗, 𝑗) exists in 𭒞, and there is a
canonical identification of the two.
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Proof. (i). This is an immediate consequence of the Yoneda lemma and the
definition of weighted limit.

(ii). Use the identification constructed in the proof of theorem a.5.10.

(iii). For all objects 𝐶 in 𭒞, using claim (ii) and the interchange law for ends
(theorem a.5.13), there are bijections

[𭒥op × 𭒥,Set](Hom𭒥, 𭒞(𝐶, 𝐻)) ≅ ∫(𝑗′,𝑗):𭒥op×𭒥
Set(𭒥(𝑗′, 𝑗), 𭒞(𝐻(𝑗′, 𝑗)))

≅ ∫𝑗:𭒥 ∫𝑗′:𭒥op

Set(𭒥(𝑗′, 𝑗), 𭒞(𝐻(𝑗′, 𝑗)))

≅ ∫𝑗:𭒥
𭒞(𝐶, 𝐻(𝑗, 𝑗))

and these are natural in 𝐶; now apply propositions a.4.8 and a.5.7. ■
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Higher generalities

b.1 Monoidal categories

Standard references for monoidal categories include [CWM, Ch. VII and Ch. XI]
and [Kelly, 2005, Ch. 1]. To fix notation, we will quickly review the main defin-
itions in the theory of monoidal categories.

Definition b.1.1. A strict monoidal category is a category 𭒞 together with an
object 𝐼 and a functor ⊗ : 𭒞 × 𭒞 → 𭒞 satisfying the following axioms:

• (Left unit). 𝐼 ⊗ (−) = id𭒞.

• (Right unit). (−) ⊗ 𝐼 = id𭒞.

• (Associativity). For all objects 𝑋, 𝑌 , and 𝑍 in 𭒞,

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 = 𝑋 ⊗ (𝑌 ⊗ 𝑍)

and similarly for morphisms in 𭒞.

𝐼 is called the monoidal unit, and ⊗ is called the monoidal product.

In short, a strict monoidal category is an internal monoid in the metacategory
of all categories.

Example b.1.2. For any category 𭒞, the endofunctor category [𭒞, 𭒞] is a strict
monoidal category with id𭒞 as the monoidal unit and endofunctor composition
as the monoidal product.
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Despite the above example, strict monoidal categories turn out to be less use-
ful than one might hope: not even Set equipped with the usual cartesian product
is a strict monoidal category.[1] The problem is in the equationswe have imposed
in the axioms above: in naturally-occurring examples, we do not get identities
but only natural isomorphisms. This observation led Bénabou [1963] to propose
the following notion instead:

Definition b.1.3. A monoidal category is a category 𭒞 together with an object
𝐼 , a functor (−) ⊗ (−) : 𭒞 × 𭒞 → 𭒞, and three natural isomorphisms 𝞴, 𝞺, and
𝞪,[2] of type

𝞴𝑋 : 𝐼 ⊗ 𝑋
≅
→ 𝑋

𝞺𝑋 : 𝑋 ⊗ 𝐼
≅
→ 𝑋

𝞪𝑋,𝑌 ,𝑍 : (𝑋 ⊗ 𝑌 ) ⊗ 𝑍
≅
→ 𝑋 ⊗ (𝑌 ⊗ 𝑍)

such that the following diagrams commute for all choices of objects in 𭒞:

(𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍))

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍) 𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

𝞪𝑊 ,𝑋⊗𝑌 ,𝑍

𝞪𝑊 ⊗𝑋,𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗id𝑍

id𝑊 ⊗𝞪𝑋,𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗𝑍

(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌 )

𝑋 ⊗ 𝑌
𝞺𝑋⊗id𝑌

𝞪𝑋,𝐼,𝑌

𝞴𝑋⊗id𝑌

The natural isomorphisms 𝞴, 𝞺, and 𝞪 are called, respectively, the left unitor,
right unitor, and associator of the monoidal category 𭒞.

[1] In fact, even if we identify all isomorphic objects, there is still a problem: see the closing remarks
in [CWM, Ch. VII, § 1].

[2] Beware: Mac Lane [CWM, Ch. VII] uses the opposite convention for 𝞪.
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Remark b.1.4. Since 𝞴, 𝞺, and 𝞪 are natural isomorphisms, a monoidal structure
on 𭒞 induces a monoidal structure on 𭒞op. Less obviously, we can define a mon-
oidal category 𭒞rev whose underlying category is the same as 𭒞, but 𝑋 ⊗rev 𝑌 =
𝑌 ⊗ 𝑋, 𝞴rev = 𝞺, 𝞺rev = 𝞴, and 𝞪 rev = 𝞪−1.

¶ b.1.5. A fairly non-trivial theorem of Mac Lane [1963] and Kelly [1964]
essentially states that these two axioms are enough to prove that “all diagrams
involving only 𝞴, 𝞺, and 𝞪 commute”. For example, using the pentagon axiom
and the triangle axiom, we may derive

(𝐼 ⊗ 𝑋) ⊗ 𝑌 𝐼 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ 𝑌
𝞴𝑋⊗id𝑌

𝞪𝐼,𝑋,𝑌

𝞴𝑋⊗𝑌

from which the equation (!) below can be obtained:

𝞴𝐼 = 𝞺𝐼

Definition b.1.6. Let 𭒞 and 𭒟 be monoidal categories. A lax monoidal functor
𭒞 → 𭒟 consists of a functor 𝐹 : 𭒞 → 𭒟 of the underlying categories, together
with a morphism 𝞰 : 𝐼𭒟 → 𝐹 𝐼𭒞 in 𭒟 and a natural transformation 𝞵 of type
𝐹 (−) ⊗𭒟 𝐹 (−) → 𝐹 (− ⊗𭒞 −) making these diagrams commute:

𝐼𭒟 ⊗𭒟 𝐹 𝑋 𝐹 𝐼𭒞 ⊗𭒟 𝐹 𝑋

𝐹 𝑋 𝐹 (𝐼𭒞 ⊗𭒞 𝑋)

𝞴𝐹 𝑋

𝞰⊗𭒟id𝐹 𝑋

𝞵𝐼𭒞,𝑋

𝐹 𝞴𝑋

𝐹 𝑋 ⊗𭒟 𝐼𭒟 𝐹 𝑋 ⊗𭒟 𝐹 𝐼𭒞

𝐹 𝑋 𝐹 (𝑋 ⊗𭒞 𝐼𭒞)

𝞺𝐹 𝑋

id𝐹 𝑋⊗𭒟𝞰

𝞵𝑋,𝐼𭒞

𝐹 𝞺𝑋

(𝐹 𝑋 ⊗𭒟 𝐹 𝑌 ) ⊗𭒟 𝐹 𝑍 𝐹 𝑋 ⊗𭒟 (𝐹 𝑌 ⊗𭒟 𝐹 𝑍)

𝐹 (𝑋 ⊗𭒞 𝑌 ) ⊗𭒟 𝐹 𝑍 𝐹 𝑋 ⊗𭒟 𝐹 (𝑌 ⊗𭒞 𝑍)

𝐹 ((𝑋 ⊗𭒞 𝑌 ) ⊗𭒞 𝑍) 𝐹 (𝑋 ⊗𭒞 (𝑌 ⊗𭒞 𝑍))

𝞵𝑋,𝑌 ⊗𭒟id𝐹 𝑍

𝞪𝐹 𝑋,𝐹 𝑌 ,𝐹 𝑍

id𝐹 𝑋⊗𭒟𝞵𝑌 ,𝑍

𝞵𝑋⊗𭒞𝑌 ,𝑍 𝞵𝑋,𝑌 ⊗𭒞𝑍

𝐹 𝞪𝑋,𝑌 ,𝑍

An oplax monoidal functor 𭒞 → 𭒟 is a lax monoidal functor 𭒞op → 𭒟op.
A strong monoidal functor is a lax monoidal functor such that 𝞰 and 𝞵 are
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isomorphisms. A strict monoidal functor is a lax monoidal functor such that 𝞰
and 𝞵 are identities.

Definition b.1.7. Let 𭒞 and 𭒟 be monoidal categories and let 𝐹 , 𝐹 ′ : 𭒞 → 𭒟 be
lax monoidal functors. A monoidal natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′ is a
natural transformation making the following diagrams commute:

𝐼𭒟 𝐹 𝐼𭒞

𝐼𭒟 𝐹 ′𝐼𭒞

id

𝞰

𝜑𝐼𭒞

𝞰′

𝐹 𝑋 ⊗𭒟 𝐹 𝑌 𝐹 (𝑋 ⊗𭒞 𝑌 )

𝐹 ′𝑋 ⊗𭒟 𝐹 ′𝑌 𝐹 ′(𝑋 ⊗𭒞 𝑌 )

𝜑𝑋⊗𭒟𝜑𝑌

𝞵𝑋,𝑌

𝜑𝑋⊗𭒞𝑌

𝞵′
𝑋,𝑌

Remark b.1.8. Note that if 𭒞 and 𭒟 are both strict monoidal categories, then the
diagrams above simplify to more familiar ones:

𝐹 𝑋 𝐹 𝐼𭒞 ⊗𭒟 𝐹 𝑋

𝐹 𝑋
id𝐹 𝑋

𝞰⊗𭒟id𝐹 𝑋

𝞵𝐼𭒞,𝑋

𝐹 𝑋 𝐹 𝑋 ⊗𭒟 𝐹 𝐼𭒞

𝐹 𝑋
id𝐹 𝑋

id𝐹 𝑋⊗𭒟𝞰

𝞵𝑋,𝐼𭒞

𝐹 𝑋 ⊗𭒟 𝐹 𝑌 ⊗𭒟 𝐹 𝑍

𝐹 (𝑋 ⊗𭒞 𝑌 ) ⊗𭒟 𝐹 𝑍 𝐹 𝑋 ⊗𭒟 𝐹 (𝑌 ⊗𭒞 𝑍)

𝐹 (𝑋 ⊗𭒞 𝑌 ⊗𭒞 𝑍)

𝞵𝑋,𝑌 ⊗𭒟id𝐹 𝑍 id𝐹 𝑋⊗𭒟𝞵𝑌 ,𝑍

𝞵𝑋⊗𭒞𝑌 ,𝑍 𝞵𝑋,𝑌 ⊗𭒞𝑍

Thus, we see one reason for defining lax monoidal functors as we have done: if
𝟙 is the terminal category, then a lax monoidal functor 𝟙 → 𭒟 is the same thing
as an internal monoid[3] in 𭒟, and a monoidal natural transformation of such lax
monoidal functors is the same thing as a homomorphism of internal monoids.

Many natural examples of monoidal categories have a “commutative” mon-
oidal product. For example, the cartesian product in any category satisfies 𝑋 ×
𝑌 ≅ 𝑌 × 𝑋. As usual, to do anything useful, we must demand not only the

[3] — in the monoidal category sense, of course.
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b.1. Monoidal categories

existence of such isomorphisms but also that they be natural and coherent in the
following sense:

Definition b.1.9. A braided monoidal category is a monoidal category 𭒞 to-
gether with a natural isomorphism 𝞬 of type

𝞬𝑋,𝑌 : 𝑋 ⊗ 𝑌
≅
→ 𝑌 ⊗ 𝑋

such that the following diagrams commute for all choices of objects in 𭒞:

𝑋 ⊗ (𝑌 ⊗ 𝑍)

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍 (𝑌 ⊗ 𝑍) ⊗ 𝑋

(𝑌 ⊗ 𝑋) ⊗ 𝑍 𝑌 ⊗ (𝑍 ⊗ 𝑋)

𝑌 ⊗ (𝑋 ⊗ 𝑍)

𝞬𝑋,𝑌 ⊗𝑍

𝞬𝑋,𝑌 ⊗id𝑍

𝞪𝑋,𝑌 ,𝑍

𝞪𝑌 ,𝑍,𝑋

𝞪𝑌 ,𝑋,𝑍 id𝑌 ⊗𝞬𝑋,𝑍

(𝑋 ⊗ 𝑌 ) ⊗ 𝑍

𝑋 ⊗ (𝑌 ⊗ 𝑍) 𝑍 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ (𝑍 ⊗ 𝑌 ) (𝑍 ⊗ 𝑋) ⊗ 𝑌

(𝑋 ⊗ 𝑍) ⊗ 𝑌

𝞬𝑋⊗𝑌 ,𝑍

id𝑋⊗𝞬𝑌 ,𝑍

𝞪−1
𝑋,𝑌 ,𝑍

𝞪−1
𝑌 ,𝑍,𝑋

𝞪−1
𝑌 ,𝑋,𝑍

𝞬𝑋,𝑍⊗id𝑌

𝐼 ⊗ 𝑋 𝑋 ⊗ 𝐼

𝑋
𝞴𝑋

𝞬𝐼,𝑋

𝞺𝑋

The natural isomorphism 𝞬 is called the braiding of 𭒞. A symmetric monoidal
category is a braided monoidal category 𭒞 satisfying the following additional
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axiom:

𝞬 ∙ 𝞬 = id𭒞

A braided / symmetric strict monoidal category is a braided / symmetric mon-
oidal category that is strict as a monoidal category.

There is a coherence theorem for braided and symmetric monoidal categories
as well, but in the braided case it is somewhat subtle compared to the coherence
theorem for monoidal categories – we cannot be so cavalier as to say that “all
diagrams commute” in a braided monoidal category. Instead, just as before,
every braided / symmetric monoidal category is equivalent to a strict one via
functors respecting the various structural isomorphisms.

Definition b.1.10. Let 𭒞 and 𭒟 be braided monoidal categories. A lax / oplax /
strong / strict braided monoidal functor 𭒞 → 𭒟 is a lax / oplax / strong / strict
monoidal functor 𝐹 : 𭒞 → 𭒟 making the diagram below commute:

𝐹 𝑋 ⊗𭒟 𝐹 𝑌 𝐹 (𝑋 ⊗𭒞 𝑌 )

𝐹 𝑌 ⊗𭒟 𝐹 𝑋 𝐹 (𝑌 ⊗𭒞 𝑋)

𝞬𝐹 𝑋,𝐹 𝑌

𝞵𝑋,𝑌

𝐹 𝞬𝑋,𝑌

𝞵𝑌 ,𝑋

Remark b.1.11. The appropriate notion of natural transformation for lax braided
monoidal functors is precisely that of a monoidal natural transformation: we
need not impose any extra conditions.

Here is an example of an equation that does not necessarily hold in a braided
monoidal category, even though they have the same domain and codomain:

𝞬𝑋,𝑌
?
= 𝞬−1

𝑌 ,𝑋

Indeed, if it were true, then every braided monoidal category would be a sym-
metric monoidal category! On the other hand, in a symmetric strict monoidal
category, it is true that any two composites of braiding operations with the same
domain and codomain are equal – provided each object is identified with a dif-
ferent letter, so that we do not get absurdities like this:

𝞬𝑋,𝑋
?
= id𝑋⊗𝑋
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b.1. Monoidal categories

A similar restriction applies to our claim that “all diagrams commute” in a mon-
oidal category, so it is not unreasonable to say the same is true in a symmetric
monoidal category.

We pause briefly to indicate an important special case of a symmetric mon-
oidal category.

Definition b.1.12. A cartesian monoidal category is a category with products
for all finite families of objects, and a cartesian monoidal functor is a functor
between cartesian monoidal categories that preserves all finite products.

Proposition b.1.13.

(i) A category with all finite products is automatically a symmetric monoidal
category, with the terminal object 1 as its monoidal unit and the cartesian
product × as the monoidal product.

(ii) If 𭒞 and 𭒟 are two categories with finite products regarded as symmetric
monoidal categories, then every functor 𭒞 → 𭒟 can be equipped with a
canonical oplax braided monoidal functor structure.

(iii) A cartesian monoidal functor is canonically equipped with the structure
of a strong braided monoidal functor.

Proof. (i). The verification of the axioms is straightforward and left to the reader
as an exercise.

(ii). Let 𝐹 : 𭒞 → 𭒟 be a functor. The universal property of the terminal object
gives a unique morphism 𝞮 : 𝐹 1 → 1 in 𭒟, and the universal property of binary
products gives a canonical morphism 𝞭𝑋,𝑌 : 𝐹 (𝑋 × 𝑌 ) → 𝐹 𝑋 × 𝐹 𝑌 . It can be
shown that the diagrams below commute,

𝐹 (1𭒞 ×𭒞 𝑋) 𝐹 1𭒞 ×𭒟 𝐹 𝑋

𝐹 𝑋 1𭒟 ×𭒟 𝐹 𝑋

𝐹 𝞴𝑋

𝞭1𭒞,𝑋

𝞮×𭒟id𝐹 𝑋

𝞴𝐹 𝑋

𝐹 (𝑋 ×𭒞 1𭒞) 𝐹 𝑋 ×𭒟 𝐹 1𭒞

𝐹 𝑋 𝐹 𝑋 ×𭒟 1𭒟

𝐹 𝞺𝑋

𝞭𝑋,1𭒞

id𝐹 𝑋×𭒟𝞮

𝞺𝐹 𝑋
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𝐹 ((𝑋 ×𭒞 𝑌 ) ×𭒞 𝑍) 𝐹 (𝑋 ×𭒞 (𝑌 ×𭒞 𝑍))

𝐹 (𝑋 ×𭒞 𝑌 ) ×𭒟 𝐹 𝑍 𝐹 𝑋 ×𭒟 𝐹 (𝑌 ×𭒞 𝑍)

(𝐹 𝑋 ×𭒟 𝐹 𝑌 ) ×𭒟 𝐹 𝑍 𝐹 𝑋 ×𭒟 (𝐹 𝑌 ×𭒟 𝐹 𝑍)

𝞭𝑋×𭒞𝑌 ,𝑍

𝐹 𝞪𝑋,𝑌 ,𝑍

𝞭𝑋,𝑌 ×𭒞𝑍

𝞭𝑋,𝑌 ×𭒟id𝐹 𝑍 id𝐹 𝑋×𭒟𝞭𝑌 ,𝑍

𝞪𝐹 𝑋,𝐹 𝑌 ,𝐹 𝑍

𝐹 (𝑋 ×𭒞 𝑌 ) 𝐹 𝑋 ×𭒟 𝐹 𝑌

𝐹 (𝑌 ⊗𭒞 𝑋) 𝐹 𝑌 ⊗𭒟 𝐹 𝑋

𝐹 𝞬𝑋,𝑌

𝞭𝑋,𝑌

𝞬𝐹 𝑋,𝐹 𝑌

𝞭𝑌 ,𝑋

making 𝐹 into an oplax braided monoidal functor 𭒞 → 𭒟.

(iii). A functor is cartesian monoidal precisely if 𝞮 and 𝞭 as defined above are
isomorphisms. ◊

Definition b.1.14. Let 𝑌 and 𝑍 be objects in a monoidal category 𭒞.

• A right internal hom object for 𝑌 and 𝑍 is an objectHom(𝑌 , 𝑍) in 𭒞 to-
gether with a morphism ev𝑌 ,𝑍 : Hom(𝑌 , 𝑍) ⊗ 𝑌 → 𝑍 having the follow-
ing universal property: for all morphisms 𝑓 : 𝑋 ⊗ 𝑌 → 𝑍 in 𭒞, there is a
unique morphism ̃𝑓 : 𝑋 → Hom(𝑌 , 𝑍) in 𭒞 such that ev𝑌 ,𝑍 ∘ ( ̃𝑓 ⊗ id𝑌 ) =
𝑓 ; equivalently, Hom(𝑌 , 𝑍) is an object in 𭒞 equipped with bijections

𭒞(𝑋 ⊗ 𝑌 , 𝑍) ≅ 𭒞(𝑋,Hom(𝑌 , 𝑍))

that are natural for each object 𝑋 in 𭒞. We may also write [𝑌 , 𝑍] or 𝑌 ⊸𝑍
for a right internal hom object for 𝑌 and 𝑍.

• A left internal hom object for 𝑌 and 𝑍 is a right internal hom object
𝑌 ⋔ 𝑍 in the reverse monoidal structure on 𭒞; equivalently, 𝑌 ⋔ 𝑍 is an
object equipped with bijections

𭒞(𝑌 ⊗ 𝑋, 𝑍) ≅ 𭒞(𝑋, 𝑌 ⋔ 𝑍)

that are natural for each object 𝑋 in 𭒞. We may also write 𝑍𝑌 or 𝑍 ⟜ 𝑌
for a left internal hom object for 𝑌 and 𝑍.
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b.1. Monoidal categories

• A right-closed monoidal category is a monoidal category that has right
internal hom object for all pairs of objects.

• A left-closed monoidal category is a monoidal category that has left in-
ternal hom objects for all pairs of objects.

• A biclosed monoidal category is a monoidal category that is both left-
closed and right-closed.

Note that in a symmetric monoidal category, 𝑌 ⋔𝑍 andHom(𝑌 , 𝑍) are naturally
isomorphic if they exist; a closed symmetric monoidal category is a symmetric
monoidal category that is biclosed.

Proposition b.1.15. Let 𭒞 be a right-closed monoidal category.

(i) The assignment (𝑌 , 𝑍) ↦ Hom(𝑌 , 𝑍) extends to a functor 𭒞op × 𭒞 → 𭒞
making the bijection

𭒞(𝑋 ⊗ 𝑌 , 𝑍) ≅ 𭒞(𝑋,Hom(𝑌 , 𝑍))

natural in 𝑋, 𝑌 , and 𝑍.

(ii) For each object 𝑌 , we have an adjunction

(−) ⊗ 𝑌 ⊣ Hom(𝑌 , −) : 𭒞 → 𭒞

whose counit is ev𝑌 ,− : Hom(𝑌 , −) ⊗ 𝑌 ⇒ id𭒞.

(iii) If 𝐼 is the monoidal unit of 𭒞, then there is a bijection

𭒞(𝑌 , 𝑍) ≅ 𭒞(𝐼,Hom(𝑌 , 𝑍))

that is natural in 𝑌 and 𝑍.

Proof. (i). This is a straightforward example of an adjunctionwith a parameter.[4]

(ii). This is clear from the definition of Hom(𝑌 , 𝑍) and ev𝑌 ,−.

(iii). The left unitor 𝞴𝑌 : 𝑌
≅
→ 𝐼 ⊗ 𝑌 induces the required bijection. ■

Remark b.1.16. A cartesian monoidal category is a closed symmetric monoidal
category if and only if it is a cartesian closed category (definition a.1.3).

[4] See [CWM, Ch. IV, § 7].
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B. Higher generalities

b.2 Categories with actions

Prerequisites. § b.1.

Definition b.2.1. Let 𭒱 be a monoidal category. A left 𭒱-action on a category
𭒞 is a strong monoidal functor 𭒱 → [𭒞, 𭒞], where [𭒞, 𭒞] is regarded as a strict
monoidal category under composition. Similarly, a right 𭒱-action on 𭒞 is a
strong monoidal functor 𭒱 → [𭒞, 𭒞]rev.

Remark b.2.2. We can unfold the above definition somewhat by taking the left
exponential transpose of the strong monoidal functor 𭒱 → [𭒞, 𭒞]: let ⊘ be the
corresponding functor 𭒱 × 𭒞 → 𭒞. Since the original functor was strong mon-
oidal, we get a natural isomorphism 𝞰 : id𭒞 ⇒ 𝐼 ⊘(−) and a natural isomorphism
𝞵𝑋,𝑌 : 𝑋 ⊘ (𝑌 ⊘ (−)) ⇒ (𝑋 ⊗ 𝑌 ) ⊘ (−) for each pair of objects 𝑋 and 𝑌 in 𭒱;
these moreover satisfy the following coherence laws:

𝑋 ⊘ (−) 𝐼 ⊘ (𝑋 ⊘ (−))

𝑋 ⊘ (−) (𝐼 ⊗ 𝑋) ⊘ (−)

id

𝞰∙(𝑋⊘(−))

𝞵𝐼,𝑋

𝞴𝑋⊘id

𝑋 ⊘ (−) 𝑋 ⊘ (𝐼 ⊘ (−))

𝑋 ⊘ (−) (𝑋 ⊗ 𝐼) ⊘ (−)

id

(𝑋⊘(−))∙𝞰

𝞵𝑋,𝐼

𝞺𝑋⊘id

𝑊 ⊘ (𝑋 ⊘ (𝑌 ⊘ (−)))

(𝑊 ⊗ 𝑋) ⊘ (𝑌 ⊘ (−)) 𝑊 ⊘ ((𝑋 ⊗ 𝑌 ) ⊘ (−))

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊘ (−) (𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊘ (−)

𝞵𝑊 ,𝑋∙(𝑌 ⊘(−)) id𝑊 ⊘𝞵𝑋,𝑌

𝞵𝑊 ⊗𝑋,𝑌 𝞵𝑊 ,𝑋⊗𝑌

𝞪𝑊 ,𝑋,𝑌 ⊘id

Conversely, any functor ⊘ : 𭒱 × 𭒞 → 𭒞 equipped with such a collection of
natural isomorphisms defines a left 𭒱-action on 𭒞.

Proposition b.2.3 (Bénabou). For any monoidal category 𭒞, there is a faithful
strong monoidal functor 𝐹 : 𭒞 → [𭒞, 𭒞] defined by the following data:

𝐹 𝑋 = 𝑋 ⊗ (−)
𝞰 = 𝞴−1

(𝞵𝑋,𝑌 )𝑍 = 𝞪−1
𝑋,𝑌 ,𝑍
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In particular, this defines a left 𭒞-action on 𭒞, called the left regular represent-
ation of 𭒞.

Proof. 𝐹 is clearly a faithful functor. In this case, the strong monoidal functor
axioms become the following diagrams:

𝑋 ⊗ 𝑌 𝐼 ⊗ (𝑋 ⊗ 𝑌 )

𝑋 ⊗ 𝑌 (𝐼 ⊗ 𝑋) ⊗ 𝑌

id

𝞴−1
𝑋⊗𝑌

𝞪−1
𝐼,𝑋,𝑌

𝞴𝑋⊗id𝑌

𝑋 ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌 )

𝑋 ⊗ 𝑌 (𝑋 ⊗ 𝐼) ⊗ 𝑌

id

id𝑋⊗𝞴−1
𝑌

𝞪−1
𝑋,𝐼,𝑌

𝞺𝑋⊗id𝑌

𝑊 ⊗ (𝑋 ⊗ (𝑌 ⊗ 𝑍))

(𝑊 ⊗ 𝑋) ⊗ (𝑌 ⊗ 𝑍) 𝑊 ⊗ ((𝑋 ⊗ 𝑌 ) ⊗ 𝑍)

((𝑊 ⊗ 𝑋) ⊗ 𝑌 ) ⊗ 𝑍 (𝑊 ⊗ (𝑋 ⊗ 𝑌 )) ⊗ 𝑍

𝞪−1
𝑊 ,𝑋,𝑌 ⊗𝑍 id𝑊 ⊗𝞪−1

𝑋,𝑌 ,𝑍

𝞪−1
𝑊 ⊗𝑋,𝑌 ,𝑍 𝞪−1

𝑊 ,𝑋⊗𝑌 ,𝑍

𝞪𝑊 ,𝑋,𝑌 ⊗id𝑍

The left square commutes by the coherence theorem, while the right square and
the pentagon are seen to be immediate consequences of the triangle and pentagon
axioms, respectively. ■

Proposition b.2.4. Let 𭒱 be a monoidal category and let 𭒞 be a category.

• If ⊘ : 𭒱 × 𭒞 → 𭒞 defines a left 𭒱-action on 𭒞 such that, for each object
𝑋 in 𭒱, the endofunctor 𝑋 ⊘ (−) has a right adjoint (−) ⟜ 𝑋, then the
functor ⟜ : 𭒞 × 𭒱op → 𭒞 defines a right 𭒱op-action on 𭒞.

• If ⦸ : 𭒞 × 𭒱 → 𭒞 defines a right 𭒱-action on 𭒞 such that, for each object
𝑋 in 𭒱, the endofunctor (−) ⦸ 𝑋 has a right adjoint 𝑋 ⊸ (−), then the
functor ⊸ : 𭒱op × 𭒞 → 𭒞 defines a left 𭒱op-action on 𭒞.

• If ⟜ : 𭒞 × 𭒱op → 𭒞 defines a right 𭒱op-action on 𭒞 such that, for each
object 𝑋 in 𭒱, the endofunctor 𝑋 ⟜ (−) has a left adjoint 𝑋 ⊘ (−), then
the functor ⊘ : 𭒱 × 𭒞 → 𭒞 defines a left 𭒱-action on 𭒞.

• If ⊸ : 𭒱op × 𭒞 → 𭒞 defines a left 𭒱op-action on 𭒞 such that, for each
object 𝑋 in 𭒱, the endofunctor 𝑋 ⊸ (−) has a left adjoint (−) ⦸ 𝑋, then
the functor ⦸ : 𭒞 × 𭒱 → 𭒞 defines a right 𭒱-action on 𭒞.
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Proof. The four statements are related by applying (−)op and (−)rev at the ap-
propriate points, so it suffices to prove the first claim.

First, note that ⟜ is indeed a functor 𭒞 × 𭒱op → 𭒞, by the parameter theorem
for adjunctions.[5] Let ev𝑋,𝐴 : 𝑋 ⊘ (𝐴 ⟜ 𝑋) → 𝐴 denote the component of
the counit of the adjunction 𝑋 ⊘ (−) ⊣ (−) ⟜ 𝑋 at an object 𝐴 in 𭒞. For each
pair of objects 𝑋 and 𝑌 in 𭒱 and each object 𝐴 in 𭒞, we define the morphism

(𝞭𝑋,𝑌 )𝐴 : 𝐴 ⟜ (𝑋 ⊗ 𝑌 ) → (𝐴 ⟜ 𝑋) ⟜ 𝑌 to be the right adjoint transpose of
ev𝑋⊗𝑌 ,𝐴 ∘ (𝞵𝑋,𝑌 )(𝐴⟜𝑋)⟜𝑌 , and for each 𝐴, we define 𝞮𝐴 : 𝐴 ⟜ 𝐼 → 𝐴 to be the
composite ev𝐼,𝐴 ∘ 𝞰𝐴⟜𝐼 . These are clearly natural in 𝐴, and it is straightforward
to check that 𝞭𝑋,𝑌 is also natural in 𝑋 and 𝑌 . One may then use the calculus of
mates to show that 𝞮 and 𝞭𝑋,𝑌 are natural isomorphisms and that they satisfy the
axioms for making the right exponential transpose of ⟜ : 𭒞 × 𭒱op → 𭒞 into a
strong monoidal functor 𭒱op → [𭒞, 𭒞]rev, i.e. a right 𭒱op-action on 𭒞. ■

Example b.2.5. 𭒱 is a left-closed (resp. right-closed) monoidal category if and
only if the left (resp. right) self-action of 𭒱 has a parametrised right adjoint as in
the proposition, and the right adjoint right (resp. left) 𭒱op-action so obtained is
precisely a left (resp. right) internal hom functor.

Definition b.2.6. Let 𭒱 be a monoidal category and let 𭒞 be a category.

• A right 𭒱-hom system for 𭒞 consists of a left 𭒱-action ⊘ : 𭒱 × 𭒞 → 𭒞, a
functor 𭒞 : 𭒞op × 𭒞 → 𭒱, and a right 𭒱op-action ⟜ : 𭒞 × 𭒱op → 𭒱 together
with natural bijections of the types below,

𭒱(𝑋, 𭒞(𝐴, 𝐵)) ≅ 𭒞(𝐴, 𝐵 ⟜ 𝑋)
𭒞(𝑋 ⊘ 𝐴, 𝐵) ≅ 𭒞(𝐴, 𝐵 ⟜ 𝑋)
𭒞(𝑋 ⊘ 𝐴, 𝐵) ≅ 𭒱(𝑋, 𭒞(𝐴, 𝐵))

where 𝑋 varies over the objects in 𭒱, and 𝐴 and 𝐵 vary over the objects in
𭒞, such that the cyclic composition of the three bijections is the identity.

• A left 𭒱-hom system for 𭒞 consists of a right 𭒱-action ⦸ : 𭒞 × 𭒱 → 𭒞, a
functor 𭒞 : 𭒞op × 𭒞 → 𭒱, and a left 𭒱op-action ⊸ : 𭒱op × 𭒞 → 𭒱, together

[5] See [CWM, Ch. IV, § 7].
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with natural bijections of the types below,

𭒱(𝑋, 𭒞(𝐴, 𝐵)) ≅ 𭒞(𝐴, 𝑋 ⊸ 𝐵)
𭒞(𝐴 ⦸ 𝑋, 𝐵) ≅ 𭒞(𝐴, 𝑋 ⊸ 𝐵)
𭒞(𝐴 ⦸ 𝑋, 𝐵) ≅ 𭒱(𝑋, 𭒞(𝐴, 𝐵))

where 𝑋 varies over the objects in 𭒱, and 𝐴 and 𝐵 vary over the objects in
𭒞, such that the cyclic composition of the three bijections is the identity.

Example b.2.7. If 𭒱 is a biclosed monoidal category with right internal hom
functor Hom and left internal hom functor ⋔, then (⊗, ⋔,Hom) is a left 𭒱-hom
system for 𭒱:

𭒱(𝑌 , 𝑋 ⋔ 𝑍) ≅ 𭒱(𝑋,Hom(𝑌 , 𝑍))
𭒱(𝑋 ⊗ 𝑌 , 𝑍) ≅ 𭒱(𝑋,Hom(𝑌 , 𝑍))
𭒱(𝑋 ⊗ 𝑌 , 𝑍) ≅ 𭒱(𝑌 , 𝑋 ⋔ 𝑍)

Example b.2.8. If 𭒞 is a locally small category that has products and copro-
ducts for all small families of objects, then 𭒞 admits a left Set-action and a right
Setop-action that are related by the following adjunctions:

Set(𝑋, 𭒞(𝐴, 𝐵)) ≅ 𭒞(𝐴, 𝐵 ⟜ 𝑋)
𭒞(𝑋 ⊘ 𝐴, 𝐵) ≅ 𭒞(𝐴, 𝐵 ⟜ 𝑋)
𭒞(𝑋 ⊘ 𝐴, 𝐵) ≅ Set(𝑋, 𭒞(𝐴, 𝐵))

(The adjointness claim was checked in proposition a.5.9, and the coherence laws
are straightforwardly verified.) Thus, (⊘, 𭒞, ⟜) is a right Set-hom system for 𭒞.

Theorem b.2.9. Let 𭒱 be a monoidal category and let 𭒞 be a category.

(i) If ⊘ is a left 𭒱-action on 𭒞 and 𭒞 : 𭒞op × 𭒞 → 𭒞 is a functor with natural
bijections of the form below,

𭒞(𝑋 ⊘ 𝐴, 𝐵) ≅ 𭒱(𝑋, 𭒞(𝐴, 𝐵))

then 𭒞 is the hom functor of a 𭒱-enriched category 𭒞 whose underlying
ordinary category is isomorphic to 𭒞.
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(ii) If ⟜ is a right 𭒱op-action on 𭒞 and 𭒞 : 𭒞op × 𭒞 → 𭒞 is a functor with
natural bijections of the form below,

𭒞(𝐴, 𝐵 ⟜ 𝑋) ≅ 𭒱(𝑋, 𭒞(𝐴, 𝐵))

then 𭒞 is the hom functor of a 𭒱-enriched category 𭒞 whose underlying
ordinary category is isomorphic to 𭒞.

Proof. (i). The natural isomorphism 𝐴 ≅ 𝐼 ⊘ 𝐴 induces a family of bijections

𭒞(𝐴, 𝐵) ≅ 𭒱(𝐼, 𭒞(𝐴, 𝐵))

natural in 𝐴 and 𝐵, so we have a morphism 𝑒𝐴 : 𝐼 → 𭒞(𝐴, 𝐴) in 𭒱 for every
object 𝐴 in 𭒞 corresponding to id𝐴 : 𝐴 → 𝐴 in 𭒞. Let ev𝐴,𝐵 : 𭒞(𝐴, 𝐵) ⊘ 𝐴 → 𝐵
be the component at 𝐵 of the counit of the adjunction (−) ⊘ 𝐴 ⊣ 𭒞(𝐴, −), and
define 𝑐𝐴,𝐵,𝐶 : 𭒞(𝐵, 𝐶) ⊗ 𭒞(𝐴, 𝐵) → 𭒞(𝐴, 𝐶) to be the right adjoint transpose of
the following morphism in 𭒞:

ev𝐵,𝐶 ∘ (id𭒞(𝐵,𝐶) ⊘ ev𝐴,𝐵) ∘ (𝞵𭒞(𝐵,𝐶),𭒞(𝐴,𝐵))
−1
𝐴 : (𭒞(𝐵, 𝐶) ⊗ 𭒞(𝐴, 𝐵)) ⊘ 𝐴 → 𝐶

By definition, the left adjoint transpose of 𝑒𝐵 is 𝞰−1
𝐵 , so the left and right unit

axioms are satisfied:

𝑐𝐴,𝐵,𝐵 ∘ (𝑒𝐵 ⊗ id𭒞(𝐴,𝐵)) = 𝞴𭒞(𝐴,𝐵)

𝑐𝐵,𝐵,𝐶 ∘ (id𭒞(𝐵,𝐶) ⊗ 𝑒𝐵) = 𝞺𭒞(𝐵,𝐶)

One may similarly verify the associativity axiom:

𝑐𝐴,𝐵,𝐷 ∘ (𝑐𝐵,𝐶,𝐷 ⊗ id𭒞(𝐴,𝐵)) = 𝑐𝐴,𝐶,𝐷 ∘ (id𭒞(𝐶,𝐷) ⊗ 𝑐𝐴,𝐵,𝐶) ∘ 𝞪𭒞(𝐶,𝐷),𭒞(𝐵,𝐶),𭒞(𝐴,𝐵)

(ii). By duality and symmetry, ⟜ induces a left 𭒱rev-action on 𭒞op, so we may
construct a 𭒱rev-enriched category 𭒞op using claim (i) and thence a 𭒱-enriched
category 𭒞 = (𭒞op)

op. ■

Definition b.2.10. Let 𭒱 be a monoidal category, and let 𭒞 and 𭒟 be categor-
ies with left 𭒱-actions. A 𭒱-strength for a functor 𝐹 : 𭒞 → 𭒟 is a natural
transformation 𝜎 : (−) ⊘ 𝐹 (−) ⇒ 𝐹 (− ⊘ −) making these diagrams commute:

𝐹 𝐴

𝐼 ⊘ 𝐹 𝐴 𝐹 (𝐼 ⊘ 𝐴)

𝞰𝐹 𝐴 𝐹 𝞰𝐴

𝜎𝐼,𝐴
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𝑋 ⊘ (𝑌 ⊘ 𝐹 𝐴)

𝑋 ⊘ 𝐹 (𝑌 ⊘ 𝐴) (𝑋 ⊗ 𝑌 ) ⊘ 𝐹 𝐴

𝐹 (𝑋 ⊘ (𝑌 ⊘ 𝐴)) 𝐹 ((𝑋 ⊗ 𝑌 ) ⊘ 𝐴)

id𝑋⊘𝜎𝑌 ,𝐴 (𝞵𝑋,𝑌 )𝐴

𝜎𝑋,𝑌 ⊘𝐴 𝜎𝑋⊗𝑌 ,𝐴

𝐹 (𝞵𝑋,𝑌 )𝐴

A 𭒱-strong functor is a functor equipped with a 𭒱-strength.

Definition b.2.11. Let 𭒱 be a monoidal category, let 𭒞 and 𭒟 be categories with
left 𭒱-actions, and let 𝐹 , 𝐹 ′ : 𭒞 → 𭒟 be functors with 𭒱-strengths 𝜎 and 𝜎′

respectively. A 𭒱-strong natural transformation 𝜑 : 𝐹 ⇒ 𝐹 ′ is a natural
transformation making the following diagram commute:

𝑋 ⊘ 𝐹 𝐴 𝐹 (𝑋 ⊘ 𝐴)

𝑋 ⊘ 𝐹 ′𝐴 𝐹 ′(𝑋 ⊘ 𝐴)

id𝑋⊘𝜑𝐴

𝜎𝑋,𝐴

𝜑𝑋⊘𝐴

𝜎′
𝑋,𝐴
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Index

2-out-of-3 property, 170
2-out-of-6 property, 170

accessible category, 13
classification theorem, 15

accessible extension, 27, 29, 30
accessible functor, 15
action

— on a category, 204
adjoint

densely-defined partial —, 181
adjoint functor theorem

accessible —, 21, 29
adjunction

derived —, see derived adjunction
Frobenius —, 143

ℵ-number, 7
anodyne extension, 62
arity class, 8

classification theorem, 8

Beck–Chevalley condition, 25

cardinal, 7
classification theorem, 7
regular —, 8
strongly inaccessible —, 9

cartesian closed category, 139

cartesian closed functor, 140

category

finite —, 8

locally small —, 2

small —, 2, 8

category with weak equivalences, 71

cell complex, 35

relative —, 35

class, 2

classification theorem

— for accessible categories, 15

— for arity classes, 8

— for cardinalities, 7

— for locally presentable categor-
ies, 17

— for well-ordered sets, 5

cocomplete category, 3

codegeneracy operator, 49

codense functor, 180

coend, 185

coface operator, 49

cofibrant

— object, 100

— replacement, 103

— replacement functor, 103

cofibration, 37, 100

— in the Reedymodel structure, 123
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— of categories, see isocofibration
— of groupoids, see isocofibration
— of simplicial sets, 60

cofinal
— subset of a poset, 8

colimit
weighted —, 175

compact object, 11
compact–open topology, 150
compactly-generatedHausdorff space, 53,

150
complete category, 3
connected components, 56
cosimplicial identities, 50
coskeleton

— of a simplicial set, 58
cotensored category, 187
cowedge, 185
cylinder object, 105

deformable adjunction, 85
deformable functor, 78
deformation retract

— for a functor, 78, 118
2-category of —, 83

degeneracy operator, 51
dense functor, 180
dependent product, 148
dependent sum, 147
derived adjunction, 85, 118
derived functor

total —, 96, 118
dinatural transformation, 184
directed preorder, 10

edge
— of a simplicial set, 52

end, 185
equivalence

— in a model category, 112

— in a relative category, 72
exponential ideal, 144
exponential object, see also cartesian closed

category

face operator, 51
factorisation system

algebraic —, 45, 167
cofibrantly-generated —, 40, 159
extension of —, 43, 159
fibrantly-generated —, 159
functorial —, 40, 161
orthogonal —, 153, 162, 163
proper —, 154
weak —, 153, 166

fibrant
— object, 100
— replacement, 103
— replacement functor, 103

fibration, 100
— in the Reedymodel structure, 123
— of categories, see isofibration
— of groupoids, see isofibration
— of simplicial sets, seeKan fibra-

tion
filtered category, 10
functor

monoidal —, 197
fundamental category, 55

— of a Kan complex, 60
fundamental groupoid, 57

— of a Kan complex, 61

geometric realisation
— of a simplicial set, 53

hom system, 206
homotopical approximation

— for a functor, 92, 96, 118
— for a natural transformation, 93
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homotopical category, 71
slice —, 72

homotopical equivalence, 74
homotopical functor, 71
homotopical Kan extension, 78

absolute —, 78
homotopically contractible, 76
homotopically initial object, 74
homotopically terminal object, 74
homotopy

intrinsic —, 65
left —, 105
right —, 105
weak —, 72

homotopy category, 111, 169
— of a model category, 106, 111
— of simplicial sets, 69

homotopy equivalence
— in a model category, 106, 112
— of simplicial sets, 70

homotopy inverse
— in a model category, 106, 110
— in simplicial sets, 70

homotopy type, 66
horn, 60

ind-completion, 14
ind-object, 14
injective model structure, 119

combinatorial —, 127
Reedy —, 124

injective morphism, 37
internal hom object, 202
isocofibration, 133
isofibration, 133

Kan complex, 60
Kan extension, 174

absolute —, 175
pointwise —, 175, 178

Kan fibration, 60
trivial —, 62

lifting property, 150
limit

weighted —, 175
localisation, 169
locally presentable category, 16

classification theorem, 17

mate, 24
model category, 99

cartesian —, 133
cofibrantly-generated —, 125
combinatorial —, 127
DHK —, 100
monoidal —, 132
opposite —, 101
slice —, 103

model structure
canonical — for categories, 133
canonical — for groupoids, 137
injective—, see injectivemodel struc-

ture
Kan–Quillen —, 64
projective —, see projective model

structure
Reedy —, see Reedy model struc-

ture
trivial —, 101

monoidal category, 196
braided —, 199
cartesian —, 201
closed —, 202
strict —, 195
symmetric —, 199

monoidal functor
braided —, 200
cartesian —, 201

monoidal natural transformation, 198

219



Index

nerve
— functor, 177
— of a category, 55

ordinal, 4
orthogonality, 150

path object, 105
pre-universe, 1
projective model structure, 119

cofibrantly-generated —, 126
Reedy —, 124

quasi-inverse, 72
Quillen adjunction, 116, 118

— of two variables, 130
Quillen equivalence

— condition for relative categories,
91

— of model categories, 117
Quillen functor, 116

rank
— of a set, 6

Reedy model structure, 124
relative category, 168

maximal —, 168
minimal —, 168
opposite —, 169
saturated —, 71, 169
semi-saturated —, 169

relative equivalence, see homotopical equi-
valence

relative functor, 168, 169

set, 2
ΣΠ-category, 148
simplex

— of a simplicial set, 52
simplex category, 49
simplicial identities, 51

simplicial object, 49
simplicial set, 51

discrete —, 56
singular set, 53
skeleton

— of a simplicial set, 58
small object argument

admissible for —, 39
Garner’s —, 45
Quillen’s —, 40

standard simplex
— as a simplicial set, 52
— as a topological space, 53

strong functor, 208
strong natural transformation, 209

tautological cocone, 177, 180
tautological cone, 180
tensored category, 187
transitive set, 5
trivial cofibration

— of simplicial sets, see anodyne
extension

truncation
— of a simplicial set, 57

universe, 1
universe convention, 4

vertex
— of a simplicial set, 52

weak equivalence, 72, 100
— in the Reedymodel structure, 123
— of simplicial sets, 63
natural —, 74

wedge, 185
well-ordered set

classification theorem, 5
Whitehead property, 73
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zigzag, 172
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