Notes on homotopical algebra

Z.L. Low

18th March 2013

Preface

These notes are intended as a kind of annotated index to the various standard references in homotopical algebra: the focus is on definitions and statements of results, not proofs.

Contents

Foundations I
o.i. Set theory I
o.2. Accessibility and ind-completions IO
o.3. Change of universe 23
Simplicial sets 35
I.I. Basics 35
I.2. Nerves, skeletons, and coskeletons 41
I.3. The Kan-Quillen model structure 46
Homotopical categories 5I
2.I. Basics 5I
2.2. Homotopical Kan extensions 52
Model categories 55
3.I. Basics 55
3.2. Left and right homotopy 59
3.3. The homotopy category 64
Generalities 67
A.I. Factorisation systems 67
A.2. Relative categories 74
A.3. Kan extensions 80
A.4. Ends and coends 90
Bibliography 99
Index 103
$-0-$

Foundations

0.I Set theory

In category theory it is often convenient to invoke a certain set-theoretic device commonly known as a 'Grothendieck universe', but we shall say simply 'universe', so as to simplify exposition and proofs by eliminating various circumlocutions involving cardinal bounds, proper classes etc.

Definition o.r.I. A pre-universe is a set \mathbf{U} satisfying these axioms:
I. If $x \in y$ and $y \in \mathbf{U}$, then $x \in \mathbf{U}$.
2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.
4. If $x \in \mathbf{U}$ and $f: x \rightarrow \mathbf{U}$ is a map, then $\bigcup_{i \in x} f(i) \in \mathbf{U}$.

A universe is a pre-universe \mathbf{U} with this additional property:
5. $\omega \in \mathbf{U}$, where ω is the set of all finite (von Neumann) ordinals.

Example 0.1.2. The empty set is a pre-universe, and with very mild assumptions, so is the set $\mathbf{H F}$ of all hereditarily finite sets.

II 0.I.3. The notion of universe makes sense in any material set theory, but their existence must be postulated. We adopt the following:

- Grothendieck-Verdier universe axiom. For each set x, there exists a universe \mathbf{U} with $x \in \mathbf{U}$.

For definiteness, we may take our base theory to be Mac Lane set theory, which is a weak subsystem of Zermelo-Fraenkel set theory with choice (ZFC). Readers interested in the details of Mac Lane set theory are referred to [Mathias, 2001], but in practice as long as one is working at all times inside some universe, one may as well be working in ZFC. Indeed:

Proposition 0.1.4. With the assumptions of Mac Lane set theory, any universe is a transitive model of ZFC.

Proof. Let \mathbf{U} be a universe. By definition, \mathbf{U} is a transitive set containing pairs, power sets, unions, and ω, so the axioms of extensionality, empty set, pairs, power sets, unions, choice, and infinity are all automatically satisfied. We must show that the axiom schemas of separation and replacement are also satisfied, and in fact it is enough to check that replacement is valid; but this is straightforward using axioms 2 and 4 .

Definition 0.1.5. Let \mathbf{U} be a pre-universe. A U-set is a member of \mathbf{U}, a \mathbf{U}-class is a subset of \mathbf{U}, and a proper \mathbf{U}-class is a \mathbf{U}-class that is not a \mathbf{U}-set.

Lemma 0.1.6. A \mathbf{U}-class X is a \mathbf{U}-set if and only if there exists a \mathbf{U}-class Y such that $X \in Y$.

Proposition 0.1.7. If \mathbf{U} is a universe, then the collection of \mathbf{U}-classes is a transitive model of Morse-Kelley class-set theory (MK), and so is a transitive model of von Neumann-Bernays-Gödel class-set theory (NBG) in particular.

Definition 0.1.8. A U-small category is a category \mathbb{C} such that ob \mathbb{C} and mor \mathbb{C} are \mathbf{U}-sets. A locally \mathbf{U}-small category is a category \mathcal{D} satisfying these conditions:

- ob \mathcal{D} and mor \mathcal{D} are \mathbf{U}-classes, and
- for all objects x and y in \mathcal{D}, the hom-set $\mathcal{D}(x, y)$ is a \mathbf{U}-set.

An essentially \mathbf{U}-small category is a category \mathcal{D} for which there exist a \mathbf{U}-small category \mathbb{C} and a functor $\mathbb{C} \rightarrow \mathcal{D}$ that is fully faithful and essentially surjective on objects.

Proposition 0.I.9. If \mathbb{C} is a \mathbf{U}-small category and \mathcal{D} is a locally \mathbf{U}-small category, then the functor category $[\mathbb{C}, \mathcal{D}]$ is locally \mathbf{U}-small.

Proof. Strictly speaking, this depends on the set-theoretic implementation of ordered pairs, categories, functors, etc., but at the very least $[\mathbb{C}, \mathcal{D}]$ should be isomorphic to a locally \mathbf{U}-small category.

In the context of $[\mathbb{C}, \mathcal{D}]$, we may regard functors $\mathbb{C} \rightarrow \mathcal{D}$ as being the pair consisting of the graph of the object map ob $\mathbb{C} \rightarrow$ ob \mathcal{D} and the graph of the morphism map mor $\mathbb{C} \rightarrow \operatorname{mor} \mathcal{D}$, and these are \mathbf{U}-sets by the \mathbf{U}-replacement axiom. Similarly, if F and G are objects in $[\mathbb{C}, \mathcal{D}]$, then we may regard a natural transformation $\alpha: F \Rightarrow G$ as being the triple (F, G, A), where A is the set of all pairs $\left(c, \alpha_{c}\right)$.

One complication introduced by having multiple universes concerns the existence of (co)limits.

Theorem 0.1.10 (Freyd). Let \mathcal{C} be a category and let κ be a cardinal such that $|\operatorname{mor} \mathcal{C}| \leq \kappa$. If \mathcal{C} has products for families of size κ, then any two parallel morphisms in \mathcal{C} must be equal.

Proof. Suppose, for a contradiction, that $f, g: X \rightarrow Y$ are distinct morphisms in \mathcal{C}. Let Z be the product of κ-many copies of Y in \mathcal{C}. The universal property of products implies there are at least 2^{K}-many distinct morphisms $X \rightarrow Z$; but $\mathcal{C}(X, Z) \subseteq \operatorname{mor} \mathcal{C}$, so this is an absurdity.

Definition 0.I.I I. Let \mathbf{U} be a pre-universe. A U-complete (resp. U-cocomplete) category is a category C with the following property:

- For all \mathbf{U}-small categories \mathbb{D} and all diagrams $A: \mathbb{D} \rightarrow \mathcal{C}$, a limit (resp. colimit) of A exists in C.

We may instead say \mathcal{C} has all finite limits (resp. finite colimits) in the special case $\mathbf{U}=\mathbf{H F}$.

Proposition 0.1.12. Let \mathcal{C} be a category and let \mathbf{U} be a non-empty pre-universe. The following are equivalent:
(i) \mathcal{C} is \mathbf{U}-complete.
(ii) \mathcal{C} has all finite limits and products for all families of objects indexed by a \mathbf{U}-set.
(iii) For each \mathbf{U}-small category \mathbb{D}, there exists an adjunction

$$
\Delta \dashv \lim _{\leftrightarrows}:[\mathbb{D}, C] \rightarrow C
$$

where ΔX is the constant functor with value X.
Dually, the following are equivalent:
(i') C is \mathbf{U}-cocomplete.
(ii') C has all finite colimits and coproducts for all families of objects indexed by a \mathbf{U}-set.
(iii') For each \mathbf{U}-small category \mathbb{D}, there exists an adjunction

$$
\lim _{\rightarrow \mathbb{D}} \dashv \Delta: C \rightarrow[\mathbb{D}, C]
$$

where ΔX is the constant functor with value X.
Proof. This is a standard result; but we remark that we do require a sufficiently powerful form of the axiom of choice to pass from (ii) to (iii).

II o.I.I3. In the explicit universe convention, the words 'set', 'class', etc. have their usual meanings, and in the implicit universe convention, these instead abbreviate ' \mathbf{U}-set', ' \mathbf{U}-class', etc. for a fixed (but arbitrary) universe \mathbf{U}. However, the word 'category' always refers to a category that is contained in some universe, which may or may not be \mathbf{U}. In all subsequent chapters, the implicit universe convention should be assumed unless otherwise stated.

We now recall some definitions and results about ordinal and cardinal numbers. Readers familiar with axiomatic set theory may wish to skip ahead.

Definition o.I.I4. A von Neumann ordinal is a set α with the following properties:

- If $x \in y$ and $y \in \alpha$, then $x \in \alpha$.
- The binary relation \in is strict total ordering of α.
- If S is a subset of α such that

$$
-\varnothing \in S
$$

- If $\beta \in S$ and $\beta \cup\{\beta\} \in \alpha$, then $\beta \cup\{\beta\} \in S$.
- If $T \subseteq S$, then $\bigcup T \in S$.
then $S=\alpha$.

We identify 0 with the von Neumann ordinal \varnothing, and by induction, we identify the natural number $n+1$ with the von Neumann ordinal $\{0, \ldots, n\}$.

Proposition 0.I.I5.

(i) If α is a von Neumann ordinal, then every member of α is an initial segment of α and is in particular a von Neumann ordinal.
(ii) If α is a von Neumann ordinal, so is $\alpha \cup\{\alpha\}$. (This is usually denoted by $\alpha+1$ and called the successor of α.)
(iii) The union of a set S of von Neumann ordinals is another von Neumann ordinal. (This is usually denoted by $\sup S$ and called the supremum of S.)
(iv) If \mathbf{U} is a pre-universe and $\kappa(\mathbf{U})$ is the set of von Neumann ordinals in \mathbf{U}, then $\kappa(\mathbf{U}) a$ von Neumann ordinal, but $\kappa(\mathbf{U}) \notin \mathbf{U}$.

Proof. Claims (i) - (iii) are all easy, and claim (iv) is Burali-Forti's paradox.

Theorem o.I.I6 (Classification of well-orderings).
(i) In Zermelo-Fraenkel set theory, every well-ordered set is isomorphic to a unique von Neumann ordinal.
(ii) In Mac Lane set theory, if \mathbf{U} is a pre-universe and X is a well-ordered set in \mathbf{U}, then X is isomorphic to a unique von Neumann ordinal in \mathbf{U}.

Proof. Claim (i) is a standard result in axiomatic set theory, and claim (ii) is an obvious corollary.

Definition 0.I.17. A transitive set is a set T such that, given $x \in y$, if $y \in T$, then $x \in T$ as well. The transitive closure of a set X is a set $\operatorname{tcl}(X)$ such that, for all transitive sets T with $X \subseteq T$, we have $\operatorname{tcl}(X) \subseteq T$ as well.

Lemma o.i.I8. In Mac Lane set theory, every set has a unique transitive closure.

Proof. One of the axioms of Mac Lane set theory states that every set X is a member of some transitive set T, and so $X \subseteq T$. Clearly, the intersection of any family of transitive sets containing X is again a transitive set containing X, so $\operatorname{tcl}(X)$ exists and is unique so long as there is at least one transitive set containing X.

Definition o.i.19. A partial rank function from a transitive set T to a wellordered set W is a partial function $\rho: T \rightarrow W$ with these properties:

- If $\varnothing \in T$, then $\rho(\varnothing)$ is the least element of W.
- If $y \in T$ and $\rho(x)$ is defined for all $x \in y$, then

$$
\rho(y)=\min \{w \in W \mid \forall x \in y . \rho(x)<w\}
$$

provided the RHS is defined.

- Otherwise $\rho(y)$ is undefined.

A total rank function is a partial rank function that is defined on its entire domain. The rank of a set X, if it exists, the least von Neumann ordinal $\operatorname{rank}(X)$ for which there exists a total rank function $\operatorname{tcl}(X) \rightarrow \operatorname{rank}(X)$.

Proposition 0.1.20. In Mac Lane set theory:
(i) If T is a transitive set and W is a well-ordered set, then there is a unique partial rank function $\rho: T \rightarrow W$.
(ii) If \mathbf{U} is a pre-universe and $x \in \mathbf{U}$, then $\operatorname{rank}(x)$ can be defined by a Δ_{0}-formula with \mathbf{U} as a parameter, and for each von Neumann ordinal α in \mathbf{U}, the set

$$
\mathbf{V}_{\alpha}=\{x \in \mathbf{U} \mid \operatorname{rank}(x)<\alpha\}
$$

is a \mathbf{U}-set.
(iii) Assuming the Grothendieck-Verdier universe axiom, $\operatorname{rank}(x)$ is defined for all x.

Proof. (i). This is a straightforward application of well-founded induction.
(ii). \mathbf{U} is a transitive set and the set $\kappa(\mathbf{U})$ of all von Neumann ordinals in \mathbf{U} is well-ordered by inclusion, so by claim (i) there is a partial rank function ρ :
$\mathbf{U} \rightarrow \kappa(\mathbf{U})$. ZFC proves that every set has a rank, so ρ must in fact be a total rank function; hence, for any $x \in \mathbf{U}, \operatorname{rank}(x)$ is defined. It is clear that ρ can be defined by a Δ_{0}-formula with only \mathbf{U} as a parameter, and the rest of the claim follows.
(iii). Obvious, assuming claim (ii).

Definition 0.I.2I. Two sets are equinumerous if there exists a bijection between them. A cardinality class in a pre-universe \mathbf{U} is an equivalence class under the relation of equinumerosity.

Definition 0.I.22. An \aleph-number is an infinite von Neumann ordinal κ such that, for any von Neumann ordinal λ such that κ and λ are equinumerous, we have $\kappa \subseteq \lambda$.

Example 0.1.23. The first infinite von Neumann ordinal, i.e. $\omega=\{0,1,2, \ldots\}$, is the \aleph-number \aleph_{0}.

Theorem 0.I. 24 (Classification of cardinalities).
(i) In Zermelo-Fraenkel set theory, for every well-ordered infinite set X, there exists a unique \aleph-number κ such that X and κ are equinumerous.
(ii) In Zermelo-Fraenkel set theory with the axiom of choice, the same is true for any infinite set whatsoever.
(iii) In Mac Lane set theory, if \mathbf{U} is a universe and X is an infinite set in \mathbf{U}, then there exists a unique \aleph-number κ in the cardinality class of X.
(iv) In Mac Lane set theory with the Grothendieck-Verdier universe axiom, if \mathbf{U} is a pre-universe and κ is an \aleph-number not in \mathbf{U}, then the cardinality of \mathbf{U} is at most κ.

Proof. Claim (i) is a standard fact, whence claims (ii) and (iii), by the wellordering theorem. Claim (iv) can be proven using axiom 4 for pre-universes.

If 0.1.25. Henceforth, we identify the cardinality class of a finite set with the unique von Neumann ordinal contained in that class, and similarly we identify the cardinality class of an infinite set with the unique \aleph-number in that class. These are the cardinal numbers.

Definition 0.1.26. A cofinal subset of a partially-ordered set X is a subset $Y \subseteq X$ such that, for all x in X, there exists some y in Y such that $x \leq y$. A regular cardinal number is an \aleph-number κ such that any cofinal subset of κ has cardinality equal to κ. A singular cardinal number is an \aleph-number that is not regular.

The following helps to motivate the definition of regular cardinal numbers.
Definition 0.1.27. Let \mathbf{U} be a pre-universe. An arity class in \mathbf{U} is a \mathbf{U}-class K of cardinal numbers satisfying the following conditions:

- $1 \in K$.
- If $\kappa \in K$ and $\lambda: \kappa \rightarrow K$ is a function, then the cardinal sum $\sum_{\alpha \in \kappa} \lambda(\alpha)$ is also in K.
- If $\kappa \in K$ and $\lambda: \kappa \rightarrow \mathbf{U}$ is a function such that each $\lambda(\alpha)$ is a cardinal number and $\sum_{\alpha \in \kappa} \lambda(\alpha) \in K$, then $\lambda(\alpha) \in K$ as well.

Theorem 0.1.28 (Classification of arity classes). In Mac Lane set theory, if K is an arity class in a pre-universe \mathbf{U}, then K must be either

- $\{1\}$, or
- $\{0,1\}$, or
- of the form $\{\lambda \in \mathbf{U} \mid \lambda$ is a cardinal number and $\lambda<\kappa\}$ for some regular cardinal number κ (possibly not in \mathbf{U}).

Proof. The notion of arity class and this result are due to Shulman [2012].
Definition 0.1.29. Let κ be a regular cardinal number. A κ-small category is a category \mathbb{C} such that mor \mathbb{C} has cardinality less than κ. A finite category is an \aleph_{0}-small category, i.e. a category \mathbb{C} such that mor \mathbb{C} is finite. A finite diagram (resp. κ-small diagram, \mathbf{U}-small diagram) in a category \mathcal{C} is a functor $\mathbb{D} \rightarrow \mathcal{C}$ where \mathbb{D} is a finite (resp. κ-small, \mathbf{U}-small) category.

Theorem 0.1.30. Let \mathbf{U} be a pre-universe, and let \mathbf{U}^{+}be a universe with $\mathbf{U} \in \mathbf{U}^{+}$. Let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let $\mathbf{S e t}^{+}$be the category of \mathbf{U}^{+}-sets.
(i) If $X: \mathbb{D} \rightarrow$ Set is a \mathbf{U}-small diagram, then there exist a limit and a colimit for X in Set.
(ii) The inclusion $\mathbf{S e t} \hookrightarrow$ Set $^{+}$is fully faithful and preserves limits and colimits for all \mathbf{U}-small diagrams.

Proof. One can construct products, equalisers, coproducts, coequalisers, and hom-sets in a completely explicit way, making the preservation properties obvious.

Corollary 0.1.3I. The inclusion $\mathbf{S e t} \hookrightarrow \mathbf{S e t}^{+}$reflects limits and colimits for all \mathbf{U}-small diagrams.

Corollary 0.1.32. For any \mathbf{U}-small category \mathbb{C} :
(i) The functor category $[\mathbb{C}, \mathbf{S e t}]$ is \mathbf{U}-complete and \mathbf{U}-cocomplete, with limits and colimits for \mathbf{U}-small diagrams computed componentwise in $\mathbf{S e t}$.
(ii) The inclusion $[\mathbb{C}$, Set $] \hookrightarrow\left[\mathbb{C}\right.$, Set $\left.^{+}\right]$is fully faithful and both preserves and reflects limits and colimits for all \mathbf{U}-small diagrams.

Definition 0.1.33. An strongly inaccessible cardinal number is a regular cardinal number κ such that, for all sets X of cardinality less than κ, the power set $\mathscr{P}(X)$ is also of cardinality less than κ.

Example 0.1.34. \aleph_{0} is a strongly inaccessible cardinal number and is the only one that can be proven to exist in ZFC. It is more conventional to exclude \aleph_{0} from the definition of strongly inaccessible cardinal number by demanding that they be uncountable.

Proposition 0.1.35. In Mac Lane set theory:
(i) If \mathbf{U} is a non-empty pre-universe, then there exists a strongly inaccessible cardinal number κ such that the members of \mathbf{U} are all the sets of rank less than κ. Moreover, this κ is the rank and the cardinality of \mathbf{U}.
(ii) If \mathbf{U} is a universe and κ is a strongly inaccessible cardinal number such that $\kappa \in \mathbf{U}$, then there exists $a \mathbf{U}$-set \mathbf{V}_{κ} whose members are all the sets of rank less than κ, and \mathbf{V}_{κ} is a pre-universe.
(iii) If \mathbf{U} and \mathbf{U}^{\prime} are pre-universes, then either $\mathbf{U} \subseteq \mathbf{U}^{\prime}$ or $\mathbf{U}^{\prime} \subseteq \mathbf{U}$; and if $\mathbf{U} \varsubsetneqq \mathbf{U}^{\prime}$, then $\mathbf{U} \in \mathbf{U}^{\prime}$.

Proof. (i). Let κ be the set of all von Neumann ordinals in \mathbf{U}; this exists by Δ_{0}-separation applied to \mathbf{U}. Since \mathbf{U} is closed under power sets and internallyindexed unions, κ must be a strongly inaccessible cardinal.

We can construct the set all of \mathbf{U}-sets of rank less than κ using transfinite recursion on κ as follows: starting with $\mathbf{V}_{0}=\varnothing$, for each von Neumann ordinal α less than κ, we set $\mathbf{V}_{\alpha+1}=\mathscr{P}\left(\mathbf{V}_{\alpha}\right)$, and for each ordinal λ that is not a successor, we set $\mathbf{V}_{\lambda}=\bigcup_{\alpha<\lambda} \mathbf{V}_{\alpha}$. The well-foundedness of \in (restricted to \mathbf{U}) implies that in fact this must be all of \mathbf{U}.

Clearly, every set of rank less than κ is in fact a \mathbf{U}-set, and \mathbf{U} is itself a set of rank κ. The cardinality of \mathbf{U} is also κ, since κ is a regular cardinal number and any cardinal number less than κ is a member of \mathbf{U}.
(ii). We may construct \mathbf{V}_{κ} using the same method as in (i). By construction \mathbf{V}_{κ} satisfies axiom I; since κ is infinite, \mathbf{V}_{κ} satisfies axioms 2 and 3 ; and since κ is strongly inaccessible, \mathbf{V}_{κ} satisfies axiom 4. Thus \mathbf{V}_{κ} is a pre-universe.
(iii). Again, let κ be the rank of \mathbf{U}. If $\kappa \in \mathbf{U}^{\prime}$ then we can show by transfinite induction that $\mathbf{V}_{\kappa} \in \mathbf{U}^{\prime}$ and so $\mathbf{U} \varsubsetneqq \mathbf{U}^{\prime}$; else we must have $\mathbf{U}^{\prime} \subseteq \mathbf{V}_{\kappa}=\mathbf{U}$.

0.2 Accessibility and ind-completions

Prerequisites. § o.I.
A classical technology for controlling size problems in category theory, due to Gabriel and Ulmer [1971], is the notion of accessibility. Though we make use of universes, accessibility remains important and is a crucial tool in verifying the stability of various universal constructions when one passes from one universe to a larger one.

Definition 0.2.I. Let κ be a regular cardinal. A κ-filtered category is a category \mathcal{J} satisfying these conditions:

- \mathcal{J} is inhabited, i.e. there exists an object in \mathcal{J}.
- If λ is a cardinal number strictly less than κ and S is a subset of ob \mathcal{J} of cardinality λ, then there exist an object j and arrows $f_{i}: i \rightarrow j$ for each object i in S.
- If $f, g: i \rightarrow j$ are a pair of parallel arrows in \mathcal{J}, then there exist an object k and an arrow $h: j \rightarrow k$ such that $h \circ f=h \circ g$.

A κ-directed preorder is a preordered set that is κ-filtered when considered as a category; note that the third condition is then vacuous. A κ-filtered diagram (resp. κ-directed diagram) in a category \mathcal{C} is a functor $\mathbb{D} \rightarrow \mathcal{C}$ such that \mathbb{D} is a κ-filtered category (resp. κ-directed preorder). It is conventional to omit mention of κ when $\kappa=\aleph_{0}$.

Example 0.2.2. The category with one object $*$ and only one non-trivial arrow f is filtered if and only if $f=f \circ f$.

Example 0.2.3. Let X be any set. The set of all finite subsets of X, partially ordered by inclusion, is a directed preorder. More generally, if κ is any regular cardinal, then the set of all subsets of X with cardinality strictly less than κ is a κ-directed preorder.

Theorem 0.2.4. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let κ be any regular cardinal. Given a \mathbf{U}-small category \mathbb{D}, the following are equivalent:
(i) \mathbb{D} is а κ-filtered category.
(ii) The functor $\lim _{\longrightarrow \mathbb{D}}:[\mathbb{D}, \mathbf{S e t}] \rightarrow \mathbf{S e t}$ preserves limits for all diagrams that are both κ-small and \mathbf{U}-small.

Proof. The claim (i) \Rightarrow (ii) is very well known, and the converse is an exercise in using the Yoneda lemma and manipulating limits and colimits for diagrams of representable functors.

Definition 0.2.5. Let κ be a regular cardinal in a universe \mathbf{U}^{+}and let \mathbf{U} be a pre-universe with $\mathbf{U} \subseteq \mathbf{U}^{+}$. A ($\left.\kappa, \mathbf{U}\right)$-compact object in a locally \mathbf{U}^{+}-small category \mathcal{C} is an object A such that the representable functor $\mathcal{C}(A,-): \mathcal{C} \rightarrow$ Set $^{+}$ preserves colimits for all \mathbf{U}-small κ-filtered diagrams. A κ-compact object is one that is (κ, \mathbf{U})-compact for all pre-universes \mathbf{U}.

Though the above definition is stated using a pre-universe \mathbf{U} contained in a universe \mathbf{U}^{+}, the following lemma shows there is no dependence on \mathbf{U}^{+}.

Lemma 0.2.6. Let A be an object in a locally \mathbf{U}^{+}-small category \mathcal{C}. The following are equivalent:
(i) A is $a(\kappa, \mathbf{U})$-compact object in \mathcal{C}.
(ii) For all \mathbf{U}-small κ-filtered diagrams $B: \mathbb{D} \rightarrow \mathcal{C}$, if $\lambda: B \Rightarrow \Delta C$ is a colimiting cocone, then for any morphism $f: A \rightarrow C$, there exist an object i in \mathbb{D} and a morphism $f^{\prime}: A \rightarrow B i$ in \mathcal{C} such that $f=\lambda_{i} \circ f^{\prime}$; and moreover if $f=\lambda_{j} \circ f^{\prime \prime}$ for some morphism $f^{\prime \prime}: A \rightarrow B j$ in \mathcal{C}, then there exists an object k and a pair of arrows $g: i \rightarrow k, h: i \rightarrow k$ in \mathbb{D} such that $B g \circ f^{\prime}=B h \circ f^{\prime \prime}$.

Proof. Use the explicit description of $\underset{\rightarrow}{\lim } \mathcal{D}(A, B)$ as a filtered colimit of sets; see Definition I.I in [LPAC], or Proposition 5.I. 3 in [Borceux, 1994b].

Corollary 0.2.7. Let $\boldsymbol{B}: \mathbb{D} \rightarrow \mathcal{C}$ be a \mathbf{U}-small κ-filtered diagram, and let λ : $B \Rightarrow \Delta C$ be a colimiting cocone in \mathcal{C}. If C is a (κ, \mathbf{U})-compact object in \mathcal{C}, then for some object i in $\mathbb{D}, \lambda_{i}: B i \rightarrow C$ is a split epimorphism.

Lemma 0.2.8. Let A be an object in a category \mathcal{C}.
(i) If \mathbf{U} is a pre-universe contained in a universe \mathbf{U}^{+}and κ is a regular cardinal such that A is $\left(\kappa, \mathbf{U}^{+}\right)$-compact, then A is (κ, \mathbf{U})-compact as well.
(ii) If κ is a regular cardinal such that A is (κ, \mathbf{U})-compact and λ is any regular cardinal such that $\kappa \leq \lambda$, then A is also (λ, \mathbf{U})-compact.

Proof. Obvious.
Lemma 0.2.9. Let λ be a regular cardinal in a universe \mathbf{U}^{+}, and let \mathbf{U} be a pre-universe with $\mathbf{U} \subseteq \mathbf{U}^{+}$. If $\boldsymbol{B}: \mathbb{D} \rightarrow \mathcal{C}$ is a λ-small diagram of (λ, \mathbf{U})-compact objects in a locally \mathbf{U}^{+}-small category, then the colimit $\lim _{\longrightarrow \mathbb{D}} B$, if it exists, is a (λ, \mathbf{U})-compact object in \mathcal{C}.

Proof. Use theorem 0.2.4 and the fact that $\mathcal{C}(-, C): \mathcal{C}^{\mathrm{op}} \rightarrow \mathbf{S e t}^{+}$maps colimits in \mathcal{C} to limits in $\mathbf{S e t}^{+}$.

Corollary 0.2.10. A retract of a (λ, \mathbf{U})-compact object is also $a(\kappa, \mathbf{U})$-compact object.

Proof. Suppose $r: A \rightarrow B$ and $s: B \rightarrow A$ are morphisms in C such that $r \circ s=\mathrm{id}_{B}$. Then $e=s \circ r$ is an idempotent morphism and the diagram below

$$
A \xrightarrow[e]{\stackrel{\mathrm{id}_{A}}{\longrightarrow}} A \xrightarrow{r} B
$$

is a (split) coequaliser diagram in \mathcal{C}, so B is (λ, \mathbf{U})-compact if A is.

Proposition 0.2.II. Let \mathbf{U} be a pre-universe and let $\mathbf{S e t}$ be the category of \mathbf{U}-sets. For any \mathbf{U}-set A, the following are equivalent:
(i) A has cardinality less than κ.
(ii) The representable functor $\operatorname{Set}(A,-)$: $\mathbf{S e t} \rightarrow \mathbf{S e t}$ preserves colimits for all \mathbf{U}-small κ-filtered diagrams.
(iii) The representable functor $\operatorname{Set}(A,-):$ Set $\rightarrow \mathbf{S e t}$ preserves colimits for all \mathbf{U}-small κ-directed diagrams.

Proof. The claim (i) \Rightarrow (ii) follows from the theorem, and (ii) \Rightarrow (iii) is obvious. To see (iii) \Rightarrow (i), we may use corollary 0.2 .7 and the fact that every set is the directed union of its subsets of cardinality at most κ.

Corollary 0.2.12. A set is κ-compact if and only if its cardinality is $<\kappa$.
Definition 0.2.13. Let κ be a regular cardinal in a universe \mathbf{U}. A κ-accessible \mathbf{U}-category is a locally \mathbf{U}-small category \mathcal{C} satisfying the following conditions:

- \mathcal{C} has colimits for all \mathbf{U}-small κ-filtered diagrams.
- There exists a \mathbf{U}-set \mathcal{G} whose members are (κ, \mathbf{U})-compact objects in \mathcal{C} such that, for every object B in \mathcal{C}, there exists a \mathbf{U}-small κ-filtered diagram of objects in \mathcal{G} with B as its colimit in \mathcal{C}.

We write $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ for the full subcategory of \mathcal{C} spanned by the (κ, \mathbf{U})-compact objects.

Example 0.2.I4. The category of \mathbf{U}-sets is a κ-accessible \mathbf{U}-category for any regular cardinal κ in \mathbf{U}.

Remark 0.2.15. Lemma 0.2.9 implies that, for each object A in an accessible \mathbf{U}-category, there exists a regular cardinal λ in \mathbf{U} such that A is (λ, \mathbf{U})-compact.

Theorem 0.2.16. Let \mathcal{C} be a locally \mathbf{U}-small category, and let κ be a regular cardinal in \mathbf{U}. There exist a locally \mathbf{U}-small category $\mathbf{I n d}_{\mathbf{U}}^{K}(\mathcal{C})$ and a functor $\gamma: \mathcal{C} \rightarrow \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ with the following properties:
(i) The objects of $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ are \mathbf{U}-small κ-filtered diagrams $B: \mathbb{D} \rightarrow \mathcal{C}$, and γ sends an object C in \mathcal{C} to the corresponding trivial diagram $\mathbb{1} \rightarrow \mathcal{C}$ with value C.
(ii) The functor $\gamma: \mathcal{C} \rightarrow \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ is fully faithful, injective on objects, preserves all limits that exist in \mathcal{C}, and preserves all κ-small colimits that exist in \mathcal{C}.
(iii) $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ has colimits for all \mathbf{U}-small κ-filtered diagrams.
(iv) For every object C in \mathcal{C}, the object γC is ($\kappa, \mathbf{U})$-compact in $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$, and for each \mathbf{U}-small κ-filtered diagram $B: \mathbb{D} \rightarrow \mathcal{C}$, there is a canonical colimiting cocone $\gamma B \Rightarrow \Delta B$ in $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(\mathcal{C})$.
(v) If \mathcal{D} is a category with colimits for all \mathbf{U}-small κ-filtered diagrams, then for each functor $F: \mathcal{C} \rightarrow \mathcal{D}$, there exists a functor $\bar{F}: \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C}) \rightarrow \mathcal{D}$ that preserves colimits for all \mathbf{U}-small κ-filtered diagrams in $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ such that $\gamma \bar{F}=F$, and given any functor $\bar{G}: \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C}) \rightarrow \mathcal{D}$ whatsoever, the induced map $\operatorname{Nat}(\bar{F}, \bar{G}) \rightarrow \operatorname{Nat}(F, \gamma \bar{G})$ is a bijection.

The category $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ is called the free (κ, \mathbf{U})-ind-completion of \mathcal{C}, or the category of (κ, \mathbf{U})-ind-objects in \mathcal{C}.

Proof. If $B: \mathbb{D} \rightarrow \mathcal{C}$ and $B^{\prime}: \mathbb{D}^{\prime} \rightarrow \mathcal{C}$ are two \mathbf{U}-small κ-filtered diagrams, then properties (ii) and (iii) together imply that

$$
\operatorname{Hom}\left(\boldsymbol{B}^{\prime}, \boldsymbol{B}\right) \cong \underset{\mathbb{D}^{\prime}}{\lim } \underset{\mathbb{D}}{\lim } \mathcal{C}\left(\boldsymbol{B}^{\prime}, B\right)
$$

and so, taking the RHS as the definition of the LHS, we need only find a suitable notion of composition to make $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ into a locally \mathbf{U}-small category. However, we observe that, if $\mathrm{N}: \mathcal{C} \rightarrow\left[\mathcal{C}^{\mathrm{op}}, \mathbf{S e t}\right]$ is the Yoneda embedding, then

$$
\operatorname{Hom}\left(\underset{\mathbb{D}^{\prime}}{\lim } N B^{\prime}, \underset{\mathbb{D}}{\lim } N B\right) \cong \underset{\mathbb{D}^{\prime}}{\lim } \underset{\mathbb{D}}{\lim } C\left(B^{\prime}, B\right)
$$

and, assuming property (v), the Yoneda embedding $\mathrm{N}: \mathcal{C} \rightarrow\left[\mathcal{C}^{\mathrm{op}}\right.$, Set $]$ must extend along γ to a functor $\overline{\mathrm{N}}: \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C}) \rightarrow\left[\mathcal{C}^{\text {op }}, \mathbf{S e t}\right]$ that preserves colimits for \mathbf{U}-small κ-filtered diagram, so, in consideration of properties (i) and (iv), we may as well define the composition in $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ so that $\overline{\mathrm{N}}$ becomes fully faithful. This completes the definition of $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ as a category.

It remains to be shown that $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ actually has properties (ii), (iii), (iv), and (v); see Corollary 6.4.I4 in [Borceux, 1994a] and Theorem 2.26 in [LPAC]. Note that the fact that γ preserves colimits for κ-small diagrams essentially follows from theorem 0.2.4.

Proposition 0.2.17. Let \mathbb{B} be $a \mathbf{U}$-small category and let κ be a regular cardinal in \mathbf{U}.
(i) $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is а κ-accessible \mathbf{U}-category.
(ii) Every (κ, \mathbf{U})-compact object in $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a retract of an object of the form $\gamma \boldsymbol{B}$, where $\gamma: \mathbb{B} \rightarrow \operatorname{Ind}_{\mathbf{U}}^{K}(\mathbb{B})$ is the canonical embedding.
(iii) $\mathbf{K}_{\kappa}^{\mathbf{U}}\left(\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})\right)$ is an essentially \mathbf{U}-small category.

Proof. (i). This claim more-or-less follows from the properties of $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ explained in the previous theorem.
(ii). Use corollary 0.2.Io.
(iii). Since \mathbb{B} is \mathbf{U}-small and $\mathbf{I n d}_{\mathbf{U}}^{K}(\mathbb{B})$ is locally \mathbf{U}-small, claim (ii) implies that $\mathbf{K}_{\kappa}^{\mathbf{U}}\left(\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})\right)$ must be essentially \mathbf{U}-small.

Definition 0.2.18. Let κ be a regular cardinal in a universe \mathbf{U}. A (κ, \mathbf{U})-accessible functor is a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ such that

- \mathcal{C} is a κ-accessible \mathbf{U}-category, and
- F preserves all colimits for \mathbf{U}-small κ-filtered diagrams.

We write $\operatorname{Acc}_{\kappa}^{\mathbf{U}}(\mathcal{C}, \mathcal{D})$ for the full subcategory of the functor category $[\mathcal{C}, \mathcal{D}]$ spanned by the (κ, \mathbf{U})-accessible functors. An accessible functor is a functor that is (κ, \mathbf{U})-accessible functor for some regular cardinal κ in some universe \mathbf{U}.

Theorem 0.2.19 (Classification of accessible categories). Let κ be a regular cardinal in a universe \mathbf{U}, and let \mathcal{C} be a locally \mathbf{U}-small category. The following are equivalent:
(i) \mathcal{C} is a к-accessible \mathbf{U}-category.
(ii) The inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C}) \hookrightarrow \mathcal{C}$ extends along the embedding $\gamma: \mathcal{C} \rightarrow \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathcal{C})$ to a (κ, \mathbf{U})-accessible functor $\mathbf{I n d}_{\mathbf{U}}^{\kappa}\left(\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C})\right) \rightarrow \mathcal{C}$ that is fully faithful and essentially surjective on objects.
(iii) There exist a \mathbf{U}-small category \mathbb{B} and a functor $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \rightarrow \mathcal{C}$ that is fully faithful and essentially surjective on objects.

Proof. See Theorem 2.26 in [LPAC], or Theorem 5.35 in [Borceux, 1994b].
Corollary 0.2.20. If C is a κ-accessible \mathbf{U}-category and \mathcal{D} is any category, then:
(i) The restriction $\mathbf{A c c}_{\kappa}^{\mathbf{U}}(\mathcal{C}, \mathcal{D}) \rightarrow\left[\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C}), \mathcal{D}\right]$ is fully faithful and surjective on objects.
(ii) In particular, if \mathcal{D} is also locally \mathbf{U}-small, then $\operatorname{Acc}_{\kappa}^{\mathbf{U}}(\mathcal{C}, \mathcal{D})$ is equivalent to a locally \mathbf{U}-small category.
(iii) If \mathcal{D} has colimits for all \mathbf{U}-small κ-filtered diagrams, then the inclusion $\boldsymbol{A c c}_{\kappa}^{\mathrm{U}}(\mathcal{C}, \mathcal{D}) \hookrightarrow[\mathcal{C}, \mathcal{D}]$ has a left adjoint.

Definition 0.2.2I. Let κ be a regular cardinal in a universe U. A locally κ presentable \mathbf{U}-category is a κ-accessible \mathbf{U}-category that is also \mathbf{U}-cocomplete. A locally presentable U-category is one that is a locally κ-presentable U-category for some regular cardinal κ in \mathbf{U}, and we often say 'locally finitely presentable' instead of 'locally \aleph_{0}-presentable'.

Example 0.2.22. The category of \mathbf{U}-sets is a locally κ-presentable \mathbf{U}-category for any regular cardinal κ in \mathbf{U}.

Lemma 0.2.23. Let \mathcal{C} be a locally к-presentable \mathbf{U}-category.
(i) For any regular cardinal λ in \mathbf{U}, if $\kappa \leq \lambda$, then \mathcal{C} is a locally λ-presentable U-category.
(ii) With λ as above, if $F: \mathcal{C} \rightarrow \mathcal{D}$ is a (κ, \mathbf{U})-accessible functor, then it is also $a(\lambda, \mathbf{U})$-accessible functor.
(iii) If \mathbf{U}^{+}is any universe with $\mathbf{U} \in \mathbf{U}^{+}$, and \mathcal{C} is a locally κ-presentable \mathbf{U}^{+}-category, then \mathcal{C} must be a preorder.

Proof. (i). See the remark after Theorem I. 20 in [LPAC], or Propositions 5.3.2 and 5.2.3 in [Borceux, 1994b].
(ii). A λ-filtered diagram is certainly κ-filtered, so if F preserves colimits for all \mathbf{U}-small κ-filtered diagrams in \mathcal{C}, it must also preserve colimits for all \mathbf{U}-small λ-filtered diagrams.
(iii). This is a corollary of theorem o.I.Io.

Corollary 0.2.24. A category \mathcal{C} is a locally presentable \mathbf{U}-category for at most one universe \mathbf{U}, provided \mathcal{C} is not a preorder.

Proof. Use proposition 0.I. 35 together with the above lemma.
Theorem 0.2.25 (Classification of locally presentable categories). Let κ be a regular cardinal in a universe \mathbf{U}, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let \mathcal{C} be a locally \mathbf{U}-small category. The following are equivalent:
(i) \mathcal{C} is a locally κ-presentable \mathbf{U}-category.
(ii) There exist a \mathbf{U}-small category \mathbb{B} that has colimits for κ-small diagrams and a functor $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \rightarrow \mathcal{C}$ that is fully faithful and essentially surjective on objects.
(iii) The restricted Yoneda embedding $\mathcal{C} \rightarrow\left[\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})^{\mathrm{op}}, \mathbf{S e t}\right]$ is fully faithful, (κ, \mathbf{U})-accessible, and has a left adjoint.
(iv) There exists a \mathbf{U}-small category \mathbb{A} and a fully faithful (κ, \mathbf{U})-accessible functor $R: \mathcal{C} \rightarrow[\mathbb{A}, \mathbf{S e t}]$ such that \mathbb{A} has limits for all κ-small diagrams, R has a left adjoint, and R is essentially surjective onto the full subcategory of functors $\mathbb{A} \rightarrow \mathbf{S e t}$ that preserve finite limits.
(v) There exists a \mathbf{U}-small category \mathbb{A} and a fully faithful (κ, \mathbf{U})-accessible functor $R: C \rightarrow[A, S e t]$ such that R has a left adjoint.
(vi) C is a к-accessible \mathbf{U}-category and is \mathbf{U}-complete.

Proof. See Proposition I.27, Corollary I.28, Theorem I.46, and Corollary 2.47 in [LPAC], or Theorems 5.2.7 and 5.5.8 in [Borceux, 1994b].

Remark 0.2.26. If \mathcal{C} is equivalent to $\operatorname{Ind}_{\mathbf{U}}^{\mathcal{K}}(\mathbb{B})$ for some \mathbf{U}-small category \mathbb{B} that has limits for all κ-small diagrams, then \mathbb{B} must be equivalent to $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C})$ by proposition 0.2 .17 . In other words, every locally κ-presentable \mathbf{U}-category is, up to equivalence, the (κ, \mathbf{U})-ind-completion of an essentially unique \mathbf{U}-small κ-complete category.

Example 0.2.27. Obviously, for any U-small category A, the functor category [A, Set] is locally finitely presentable. More generally, one may show that for any κ-ary algebraic theory \mathbb{T}, possibly many-sorted, the category of \mathbb{T}-algebras in \mathbf{U} is a locally κ-presentable \mathbf{U}-category. The above theorem can also be used to
show that Cat, the category of \mathbf{U}-small categories, is a locally finitely presentable U-small category.

Corollary 0.2.28. Let \mathcal{C} be a locally κ-presentable \mathbf{U}-category. For any \mathbf{U}-small κ-filtered diagram $\mathbb{D}, \underline{\lim }_{\mathbb{D}}:[\mathbb{D}, C] \rightarrow \mathcal{C}$ preserves κ-small limits.

Proof. The claim is certainly true when $\mathcal{C}=[\mathbb{A}$, Set $]$, by theorem 0.2.4. In general, choose a (κ, \mathbf{U})-accessible fully faithful functor $R: \mathcal{C} \rightarrow[\mathrm{A}, \mathbf{S e t}]$ with a left adjoint, and simply note that R creates limits for all \mathbf{U}-small diagrams as well as colimits for all \mathbf{U}-small κ-filtered diagrams.

Proposition 0.2.29. If \mathcal{C} is a locally κ-presentable \mathbf{U}-category and \mathbb{D} is any \mathbf{U}-small category, then the functor category $[\mathbb{D}, \mathcal{C}]$ is also a locally κ-presentable category.

Proof. This can be proven using the classification theorem by noting that the 2 -functor [$\mathbb{D},-]$ preserves reflective subcategories, but see also Corollary I. 54 in [LPAC].

It is commonplace to say ' λ-presentable object' instead of ' λ-compact object', especially in algebraic contexts. The following proposition justifies the alternative terminology:

Proposition 0.2.30. Let \mathcal{C} be a locally κ-presentable \mathbf{U}-category, and let λ be a regular cardinal in \mathbf{U} with $\lambda \geq \kappa$. If \mathcal{H} is a small full subcategory of \mathcal{C} such that

- every (κ, \mathbf{U})-compact object in \mathcal{C} is isomorphic to an object in \mathcal{H}, and
- \mathcal{H} is closed in \mathcal{C} under colimits for λ-small diagrams,
then every (λ, \mathbf{U})-compact object in \mathcal{C} is isomorphic to an object in \mathcal{H}. In particular, $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ is the smallest replete full subcategory of \mathcal{C} containing $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ and closed in \mathcal{C} under colimits for λ-small diagrams.
TODO: Simplify this argument.

Proof. Let C be any (λ, \mathbf{U})-compact object in C. Clearly, the comma category $(\mathcal{H} \downarrow C)$ is a \mathbf{U}-small λ-filtered category. Let $\mathcal{G}=\mathcal{H} \cap \mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$. One can show that $(\mathcal{G} \downarrow C)$ is a cofinal subcategory in $(\mathcal{H} \downarrow C)$, and the classification theorem (0.2.25) plus proposition A.3.20 implies that the tautological cocone on the diagram $(\mathcal{G} \downarrow C) \rightarrow \mathcal{C}$ is colimiting, so the tautological cocone on the diagram $(\mathcal{H} \downarrow C) \rightarrow \mathcal{C}$ is also colimiting. Now, by corollary o.2.7, C is a retract of an
object in \mathcal{H}, and hence C must be isomorphic to an object in \mathcal{H}, because \mathcal{H} is closed under coequalisers.

For the final claim, note that $\mathbf{K}_{\lambda}^{\mathrm{U}}(\mathcal{C})$ is certainly a replete full subcategory of \mathcal{C} and contained in any replete full subcategory containing $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C})$ and closed in \mathcal{C} under colimits for λ-small diagrams, so we just have to show that $\mathbf{K}_{\lambda}^{\mathrm{U}}(\mathcal{C})$ is also closed in \mathcal{C} under colimits for λ-small diagrams; for this, we simply appeal to lemma o.2.9.

Proposition 0.2.3I. Let \mathcal{C} be a locally κ-presentable \mathbf{U}-category and let \mathbb{D} be a μ-small category in \mathbf{U}. The (λ, \mathbf{U})-compact objects in $[\mathbb{D}, C]$ are precisely the diagrams $\mathbb{D} \rightarrow \mathcal{C}$ that are componentwise (λ, \mathbf{U})-compact, so long as $\lambda \geq$ $\max \{\kappa, \mu\}$.

Proof. First, note that Mac Lane's subdivision category ${ }^{[1]} \mathbb{D}^{\S}$ is also μ-small, so $[\mathbb{D}, C](A, B)$ is computed as the limit of a μ-small diagram of hom-sets. More precisely, using end notation, ${ }^{[2]}$

$$
[\mathbb{D}, C](A, B) \cong \int_{d: \mathbb{D}} \mathcal{C}(A d, B d)
$$

and so if A is componentwise (λ, \mathbf{U})-compact, then $[\mathbb{D}, C](A,-)$ preserves colimits for \mathbf{U}-small λ-filtered diagrams, hence A is itself (λ, \mathbf{U})-compact.

Now, suppose A is a (λ, \mathbf{U})-compact object in $[\mathbb{D}, \mathcal{C}]$. Let d be an object in \mathbb{D}, let $d^{*}:[\mathbb{D}, \mathcal{C}] \rightarrow \mathcal{C}$ be evaluation at d, and let $d_{*}: \mathcal{C} \rightarrow[\mathbb{D}, \mathcal{C}]$ be the right adjoint, which is explicitly given by

$$
\left(d_{*} C\right)\left(d^{\prime}\right)=\mathbb{D}\left(d^{\prime}, d\right) \pitchfork C
$$

where \pitchfork is defined by following adjunction:

$$
\operatorname{Set}\left(X, \mathcal{C}\left(C, C^{\prime}\right)\right) \cong \mathcal{C}\left(C, X \pitchfork C^{\prime}\right)
$$

The unit $\eta_{A}: A \rightarrow d_{*} d^{*} A$ is constructed using the universal property of \pitchfork in the obvious way, and the counit $\varepsilon_{C}: d^{*} d_{*} C \rightarrow C$ is the projection $\mathbb{D}(d, d) \pitchfork C \rightarrow C$ corresponding to $\mathrm{id}_{d} \in \mathbb{D}(d, d)$. Since \mathcal{C} is a locally λ-presentable \mathbf{U}-category, there exist a \mathbf{U}-small λ-filtered diagram $B: \rrbracket \rightarrow \mathcal{C}$ consisting of (λ, \mathbf{U})-compact objects in \mathcal{C} and a colimiting cocone $\alpha: B \Rightarrow \Delta d^{*} A$, and since each $\mathbb{D}\left(d^{\prime}, d\right)$

[^0]has cardinality less than μ, the cocone $d_{*} \alpha: d_{*} B \Rightarrow \Delta d_{*} d^{*} A$ is also colimiting, by corollary 0.2.28. Lemma 0.2.6 then implies $\eta_{A}: A \rightarrow d_{*} d^{*} A$ factors through $d_{*} \alpha_{j}: d_{*}(B j) \rightarrow d_{*} d^{*} A$ for some j in \rrbracket, say
$$
\eta_{A}=d_{*} \alpha_{j} \circ \sigma
$$
for some $\sigma: A \rightarrow d_{*} B j$. But then, by the triangle identity,
$$
\mathrm{id}_{A d}=\varepsilon_{A d} \circ d^{*} \eta_{A}=\varepsilon_{A d} \circ d^{*} d_{*} \alpha_{j} \circ d^{*} \sigma=\alpha_{j} \circ \varepsilon_{B j} \circ d^{*} \sigma
$$
and so $\alpha_{j}: B j \rightarrow A d$ is a split epimorphism, hence $A d$ is a (λ, \mathbf{U})-compact object, by corollary 0.2.Io.

Remark 0.2.32. The claim in the above proposition can fail if $\mu>\lambda \geq \kappa$. For example, we could take $\mathcal{C}=$ Set, with \mathbb{D} being the ordinal ω considered as a category; then the terminal object in $[\mathbb{D}, \mathbf{S e t}]$ is componentwise finite, but is not itself an \aleph_{0}-compact object in Set.

Lemma 0.2.33. Let κ and λ be regular cardinals in a universe \mathbf{U}, with $\kappa \leq \lambda$.
(i) If \mathcal{D} is a locally λ-presentable \mathbf{U}-category, \mathcal{C} is a locally \mathbf{U}-small category, and $G: \mathcal{D} \rightarrow \mathcal{C}$ is a (λ, \mathbf{U})-accessible functor that preserves limits for all \mathbf{U}-small diagrams in \mathcal{C}, then, for any (κ, \mathbf{U})-compact object C in \mathcal{C}, the comma category $(C \downarrow G)$ has an initial object.
(ii) If C is a locally κ-presentable \mathbf{U}-category, \mathcal{D} is a locally \mathbf{U}-small category, and $F: \mathcal{C} \rightarrow \mathcal{D}$ is a functor that preserves colimits for all \mathbf{U}-small diagrams in \mathcal{C}, then, for any object D in \mathcal{D}, the comma category $(F \downarrow D)$ has a terminal object.

Proof. (i). Let \mathcal{F} be the full subcategory of $(C \downarrow G)$ spanned by those (D, g) where D is a (λ, \mathbf{U})-compact object in \mathcal{D}. G preserves colimits for all \mathbf{U}-small λ-filtered diagrams, so, by lemma o.2.6, \mathcal{F} must be a weakly initial family in $(C \downarrow G)$. Proposition 0.2.17 implies \mathcal{F} is an essentially \mathbf{U}-small category, and since \mathcal{D} has limits for all \mathbf{U}-small diagrams and G preserves them, $(C \downarrow G)$ is also U-complete. Thus, the inclusion $\mathcal{F} \hookrightarrow(C \downarrow G)$ has a limit, and it can be shown that this is an initial object in $(C \downarrow G) .{ }^{[3]}$

[^1](ii). Let \mathcal{G} be the full subcategory of $(F \downarrow D)$ spanned by those (C, f) where C is a (κ, \mathbf{U})-compact object in \mathcal{C}; note that proposition 0.2.17 implies \mathcal{G} is an essentially \mathbf{U}-small category. Since \mathcal{C} has colimits for all \mathbf{U}-small diagrams and F preserves them, $(F \downarrow D)$ is also \mathbf{U}-cocomplete. ${ }^{[4]}$ Let (C, f) be a colimit for the inclusion $\mathcal{G} \hookrightarrow(F \downarrow D)$. It is not hard to check that (C, f) is a weakly terminal object in $(F \downarrow D)$, so the formal dual of Freyd's initial object lemma ${ }^{[5]}$ gives us a terminal object in $(F \downarrow D)$; explicitly, it may be constructed as the joint coequaliser of all the endomorphisms of (C, f).

Theorem 0.2.34 (Accessible adjoint functor theorem). Let κ and λ be regular cardinals in a universe \mathbf{U}, with $\kappa \leq \lambda$, let \mathcal{C} be a locally κ-presentable \mathbf{U}-category, and let \mathcal{D} be a locally λ-presentable \mathbf{U}-category.

Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the following are equivalent:
(i) F has a right adjoint $G: \mathcal{D} \rightarrow \mathcal{C}$, and G is a (λ, \mathbf{U})-accessible functor.
(ii) F preserves colimits for all \mathbf{U}-small diagrams and sends (κ, \mathbf{U})-compact objects in \mathcal{C} to (λ, \mathbf{U})-compact objects in \mathcal{D}.
(iii) F has a right adjoint and sends ($\kappa, \mathbf{U})$-compact objects in \mathcal{C} to (λ, \mathbf{U})-compact objects in \mathcal{D}.

On the other hand, given a functor $G: \mathcal{D} \rightarrow \mathcal{C}$, the following are equivalent:
(iv) G has a left adjoint $F: \mathcal{C} \rightarrow \mathcal{D}$, and F sends (κ, \mathbf{U})-compact objects in \mathcal{C} to (λ, \mathbf{U})-compact objects in \mathcal{D}.
(v) G is $a(\lambda, \mathbf{U})$-accessible functor and preserves limits for all \mathbf{U}-small diagrams.
(vi) G is a (λ, \mathbf{U})-accessible functor and there exist a functor $F_{0}: \mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C}) \rightarrow \mathcal{D}$ and hom-set bijections

$$
\mathcal{C}(C, G D) \cong \mathcal{D}\left(F_{0} C, D\right)
$$

natural in D for each (κ, \mathbf{U})-compact object C in \mathcal{C}, where D varies in \mathcal{D}.

[^2]Proof. We will need to refer back to the details of the proof of this theorem later, so here is a sketch of the constructions involved.
(i) \Rightarrow (ii). If F is a left adjoint, then F certainly preserves colimits for all \mathbf{U}-small diagrams. Given a (κ, \mathbf{U})-compact object C in \mathcal{C} and a \mathbf{U}-small λ-filtered diagram $B: J \rightarrow \mathcal{D}$, observe that

$$
\begin{aligned}
\mathcal{D}(F C, \underset{\jmath}{\lim B}) \cong C(C, G \underset{\jmath}{\lim B}) \cong \mathcal{C}(& C, \underset{\jmath}{\lim G B)} \\
& \cong \underset{\jmath}{\lim } \mathcal{C}(C, G B) \cong \underset{\jmath}{\lim } \mathcal{C}(F C, B)
\end{aligned}
$$

and thus $F C$ is indeed a (λ, \mathbf{U})-compact object in \mathcal{D}.
(ii) \Rightarrow (iii). It is enough to show that, for each object D in \mathcal{D}, the comma category $(F \downarrow D)$ has a terminal object $\left(G D, \varepsilon_{D}\right) ;{ }^{[6]}$ but this was done in the previous lemma.
(iii) \Rightarrow (i). Given a (κ, \mathbf{U})-compact object C in \mathcal{C} and a \mathbf{U}-small λ-filtered diagram $B: J \rightarrow \mathcal{D}$, observe that

$$
\begin{aligned}
C(C, G \underset{\lrcorner}{\lim B}) \cong \mathcal{D}(F C, \underset{\lrcorner}{\lim B}) & \cong \underset{\longrightarrow}{\lim } C(F C, B) \\
& \cong \underset{\lrcorner}{\lim } C(C, G B) \cong C(C, \underset{\lrcorner}{\lim G B})
\end{aligned}
$$

because $F C$ is a (λ, \mathbf{U})-compact object in \mathcal{D}; but theorem 0.2 .25 says the restricted Yoneda embedding $\mathcal{C} \rightarrow\left[\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})^{\mathrm{op}}, \mathbf{S e t}\right]$ is fully faithful, so this is enough to conclude that G preserves colimits for \mathbf{U}-small λ-filtered diagrams.
(iv) $\Rightarrow(\mathrm{v})$. If G is a right adjoint, then G certainly preserves colimits for all \mathbf{U}-small diagrams; the rest of the claim is subsumed by (iii) \Rightarrow (i).
(v) \Rightarrow (vi). It is enough to show that, for each (κ, \mathbf{U})-compact object C in \mathcal{C}, the comma category $(C \downarrow G)$ has an initial object $\left(F_{0} C, \eta_{C}\right)$; but this was done in the previous lemma. It is clear how to make F_{0} into a functor $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C}) \rightarrow \mathcal{D}$.
(vi) \Rightarrow (iv). We use theorems 0.2.I6 and 0.2.25 to extend $F_{0}: \mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C}) \rightarrow \mathcal{D}$ along the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C}) \hookrightarrow \mathcal{C}$ to get (κ, \mathbf{U})-accessible functor $F: \mathcal{C} \rightarrow \mathcal{D}$. We then

[^3]observe that, for any \mathbf{U}-small κ-filtered diagram $A: \mathbb{\square} \mathcal{C}$ of (κ, \mathbf{U})-compact objects in \mathcal{C},
\[

$$
\begin{aligned}
C\left(\underset{\square}{\lim A, G D) \cong} \underset{\square}{\lim _{\longleftrightarrow}} \mathcal{C}(A, G D) \cong\right. & \lim _{\longleftrightarrow} C\left(F_{0} A, D\right) \\
& \cong C(\underset{\square}{\lim } F A, D) \cong C(F \underset{\square}{\lim } A, D)
\end{aligned}
$$
\]

is a series of bijections natural in D, where D varies in \mathcal{D}; but \mathcal{C} is a locally κ-presentable \mathbf{U}-category, so this is enough to show that F is a left adjoint of G. The remainder of the claim is a corollary of (i) \Rightarrow (ii).

Corollary 0.2.35. Let \mathcal{C} and \mathcal{D} be locally presentable \mathbf{U}-categories. If a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ has a left adjoint, then there exists a regular cardinal μ in \mathbf{U} such that G is a (μ, \mathbf{U})-accessible functor.

Proof. Suppose \mathcal{C} is a locally κ-presentable \mathbf{U}-category, \mathcal{D} is a locally λ-presentable \mathbf{U}-category, and $F: \mathcal{C} \rightarrow \mathcal{D}$ is a left adjoint for G. Since $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C})$ is an essentially \mathbf{U}-small category, recalling lemma 0.2 .8 , there certainly exists a regular cardinal μ in \mathbf{U} such that $\mu \geq \lambda$ and F sends (κ, \mathbf{U})-compact objects in \mathcal{C} to (μ, \mathbf{U})-compact objects in \mathcal{D}. The above theorem, plus lemma o.2.23, implies G is an (μ, \mathbf{U})-accessible functor.

0.3 Change of universe

Prerequisites. §§ о.I, o.2, А.3.
Having introduced universes into our ontology, it becomes necessary to ask whether an object with some universal property retains that property when we enlarge the universe. Though it sounds inconceivable, there do exist examples of badly-behaved constructions that are not stable under change-of-universe; for example, Waterhouse [1975] defined a functor $F:$ CRing \rightarrow Set $^{+}$, where CRing is the category of commutative rings in a universe \mathbf{U} and $\mathbf{S e t}^{+}$is the category of \mathbf{U}^{+}-sets for some universe \mathbf{U}^{+}with $\mathbf{U} \in \mathbf{U}^{+}$, such that the value of F at any given commutative ring in \mathbf{U} does not depend on \mathbf{U}, and yet the value of the fpqc sheaf associated with F at the field \mathbb{Q} depends on the size of \mathbf{U}.

Many of the universal properties of interest concern adjunctions, so that is where we begin.

Definition 0.3.I. Let $F \dashv G: \mathcal{D} \rightarrow \mathcal{C}$ and $F^{\prime} \dashv G^{\prime}: \mathcal{D}^{\prime} \rightarrow \mathcal{C}^{\prime}$ be adjunctions, and let $H: C \rightarrow \mathcal{C}^{\prime}$ and $K: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ be functors. The mate of a natural transformation $\alpha: H G \Rightarrow G^{\prime} K$ is the natural transformation

$$
\varepsilon^{\prime} K F \bullet F^{\prime} \alpha F \bullet F^{\prime} H \eta: F^{\prime} H \Rightarrow K F
$$

where $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow G F$ is the unit of $F \dashv G$ and $\varepsilon: F^{\prime} G^{\prime} \Rightarrow \mathrm{id}_{\mathcal{D}}$ is the counit of $F^{\prime} \dashv G^{\prime}$; dually, the mate of a natural transformation $\beta: F^{\prime} H \Rightarrow K F$ is the natural transformation

$$
G^{\prime} K \varepsilon \bullet G^{\prime} \beta G \bullet \eta^{\prime} H G: H G \Rightarrow G^{\prime} K
$$

where $\eta^{\prime}: \mathrm{id}_{C^{\prime}} \Rightarrow G^{\prime} F^{\prime}$ is the unit of $F^{\prime} \dashv G^{\prime}$ and $\varepsilon: F G \Rightarrow \mathrm{id}_{\mathcal{D}}$ is the counit of $F \dashv G$.

Lemma 0.3.2. In the above notation, the two mates constructions constitute a mutually inverse pair of bijections

$$
\operatorname{Nat}\left(F^{\prime} H, K F\right) \cong \operatorname{Nat}\left(H G, G^{\prime} K\right)
$$

and moreover, given a further adjunction $F^{\prime \prime} \dashv G^{\prime \prime}: \mathcal{C}^{\prime \prime} \rightarrow \mathcal{D}^{\prime \prime}$ and functors $H^{\prime}: \mathcal{C}^{\prime} \rightarrow \mathcal{C}^{\prime \prime}$ and $K^{\prime}: \mathcal{D}^{\prime} \rightarrow \mathcal{D}^{\prime \prime}$, if $\alpha: H G \Rightarrow G^{\prime} K$ and $\alpha^{\prime}: H^{\prime} G^{\prime} \Rightarrow G^{\prime \prime} K^{\prime}$ have mates $\beta: F^{\prime} H \Rightarrow K F$ and $\beta^{\prime}: F^{\prime \prime} H^{\prime} \Rightarrow K^{\prime} F^{\prime}$ respectively, then the composite natural transformation $\alpha^{\prime} K \bullet H^{\prime} \alpha: H^{\prime} H G \Rightarrow H^{\prime \prime} K^{\prime} K$ has mate $K^{\prime} \beta \bullet \beta^{\prime} H: F^{\prime \prime} H^{\prime} H \Rightarrow K^{\prime} K F$.

Proof. This is an exercise in using the triangle identities for adjunctions.
Definition 0.3.3. Given a diagram of the form

where $\alpha: H G \Rightarrow G^{\prime} K$ is a natural isomorphism, $F \dashv G$ and $F^{\prime} \dashv G^{\prime}$, we say the diagram satisfies the left Beck-Chevalley condition if the mate of α is also a natural isomorphism. Dually, given a diagram of the form

where $\beta: F^{\prime} H \Rightarrow K F$ is a natural isomorphism, $F \dashv G$ and $F^{\prime} \dashv G^{\prime}$, we say the diagram satisfies the right Beck-Chevalley condition if the mate of β is also a natural isomorphism.

Remark 0.3.4. Unfortunately, the Beck-Chevalley conditions are not vacuous. For example, consider the following (strictly!) commutative diagram of forgetful functors:

The mate of the trivial natural transformation in the above diagram is the group homomorphism $\mathbb{Z} X \rightarrow \mathbb{Z}[X]$ that sends a generator in $\mathbb{Z} X$ to the corresponding generator in $\mathbb{Z}[X]$; clearly, this is never an isomorphism. However, this is unsurprising: we do not expect the additive group of free commutative ring generated by X to be naturally isomorphic to the free abelian group generated by X.

Example 0.3.5. Let \mathcal{C} be a category with pullbacks, and suppose

is a pullback square in \mathcal{C}. Let $\Sigma_{f}: \mathcal{C}_{/ X} \rightarrow \mathcal{C}_{/ Y}$ etc. be the functor that sends an object $p: E \rightarrow X$ in $\mathcal{C}_{/ X}$ to the object $f \circ p: E \rightarrow Y$ in $\mathcal{C}_{/ Y}$, and consider the induced (strictly!) commutative diagram of functors:

Since \mathcal{C} has pullbacks, Σ_{g} and Σ_{f} have right adjoints, and the pullback pasting lemma then implies that the above square satisfies the right Beck-Chevalley condition.

Lemma 0.3.6. Given a diagram of the form

where $\alpha: H G \Rightarrow G^{\prime} K$ is a natural isomorphism, $F \dashv G$ and $F^{\prime} \dashv G^{\prime}$, the diagram satisfies the left Beck-Chevalley condition if and only if, for every object C in \mathcal{C}, the functor $(C \downarrow G) \rightarrow\left(H C \downarrow G^{\prime}\right)$ sending an object (D, f) in the comma category $(C \downarrow G)$ to the object $\left(K D, \alpha_{D} \circ H f\right)$ in $\left(H C \downarrow G^{\prime}\right)$ preserves initial objects.

Proof. We know $\left(F C, \eta_{C}\right)$ is an initial object of $(C \downarrow G)$ and $\left(F^{\prime} H C, \eta_{H C}^{\prime}\right)$ is an initial object of ($H C \downarrow G^{\prime}$), so there is a unique morphism $\beta_{C}: F^{\prime} H C \rightarrow K F C$ such that $G^{\prime} \beta_{C} \circ \eta_{H C}^{\prime}=\alpha_{F C} \circ H \eta_{C}$. However, we observe that

$$
\begin{aligned}
\beta_{C} & =\beta_{C} \circ \varepsilon_{F^{\prime} H C}^{\prime} \circ F^{\prime} \eta_{H C}^{\prime} \\
& =\varepsilon_{K F C}^{\prime} \circ F^{\prime} G^{\prime} \beta_{C} \circ F^{\prime} \eta_{H C}^{\prime} \\
& =\varepsilon_{K F C}^{\prime} \circ F^{\prime} \alpha_{F C} \circ F^{\prime} H \eta_{C}
\end{aligned}
$$

so β_{C} is precisely the component at C of the mate of α. Thus β_{C} is an isomorphism for all C if and only if the Beck-Chevalley condition holds.

Definition 0.3.7. Let κ be a regular cardinal in a universe \mathbf{U}, and let \mathbf{U}^{+}be a universe with $\mathbf{U} \subseteq \mathbf{U}^{+}$. A $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension is a (κ, \mathbf{U})-accessible functor $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$such that

- \mathcal{C} is a κ-accessible U-category,
- \mathcal{C}^{+}is a κ-accessible \mathbf{U}^{+}-category,
- i sends (κ, \mathbf{U})-compact objects in \mathcal{C} to $\left(\kappa, \mathbf{U}^{+}\right)$-compact objects in \mathcal{C}^{+}, and
- the functor $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C}) \rightarrow \mathbf{K}_{\kappa}^{\mathbf{U}}\left(\mathcal{C}^{+}\right)$so induced by i is fully faithful and essentially surjective on objects.

Remark o.3.8. Let \mathbb{B} be a \mathbf{U}-small category in which idempotents split. Then the (κ, \mathbf{U})-accessible functor $\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \rightarrow \mathbf{I n d}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^{+}: \mathbb{B} \rightarrow \mathbf{I n d}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ along $\gamma: \mathbb{B} \rightarrow \mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-extension, by proposition 0.2.17. The classification theorem (0.2.19) implies all examples of ($\kappa, \mathbf{U}, \mathbf{U}^{+}$)-accessible extensions are essentially of this form.

Proposition 0.3.9. Let $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$be a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension.
(i) \mathcal{C} is a locally κ-presentable \mathbf{U}-category if and only if \mathcal{C}^{+}is a locally κ-presentable \mathbf{U}^{+}-category.
(ii) The functor $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is fully faithful.
(iii) If $B: \rrbracket \rightarrow \mathcal{C}$ is any diagram (not necessarily \mathbf{U}-small) and \mathcal{C} has a limit for B, then i preserves this limit.

Proof. (i). If \mathcal{C} is a locally κ-presentable \mathbf{U}-category, then $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ has colimits for all κ-small diagrams, so $\mathbf{K}_{\kappa}^{\mathrm{U}^{+}}\left(\mathcal{C}^{+}\right)$also has colimits for all κ-small diagrams. The classification theorem (o.2.19) then implies \mathcal{C}^{+}is a locally κ-presentable \mathbf{U}^{+}-category. Reversing this argument proves the converse.
(ii). Let $A: \llbracket \rightarrow \mathcal{C}$ and $B: \rrbracket \rightarrow \mathcal{C}$ be two \mathbf{U}-small κ-filtered diagrams of (κ, \mathbf{U})-compact objects in \mathcal{C}. Then,

$$
\begin{aligned}
& \cong C^{+}(\underset{\|}{\lim } i A \underset{\jmath}{\lim } B) \cong C^{+}(i \underset{\Omega}{\lim } A, i \underset{\jmath}{i \lim } B)
\end{aligned}
$$

because i is (κ, \mathbf{U})-accessible and is fully faithful on the subcategory $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C})$, and therefore $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$itself is fully faithful. Note that this hinges crucially on theorem o.i.30.
(iii). Let $B: \rrbracket \rightarrow \mathcal{C}$ be any diagram. We observe that, for any (κ, \mathbf{U})-compact object C in \mathcal{C},

$$
\begin{aligned}
\mathcal{C}^{+}\left(i C, i \lim _{\leftrightarrows} B\right) & \cong C(C, \underset{J}{\lim B}) & & \text { because } i \text { is fully faithful } \\
& \cong \lim _{\leftrightarrows} C(C, B) & & \text { by definition of limit } \\
& \cong \lim _{\leftrightarrows} C^{+}(i C, i B) & & \text { because } i \text { is fully faithful }
\end{aligned}
$$

but we know the restricted Yoneda embedding $\mathcal{C}^{+} \rightarrow\left[\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})^{\text {op }}\right.$, Set $\left.^{+}\right]$is fully faithful, so this is enough to conclude that $i \lim _{\longleftarrow} B$ is the limit of $i B$ in C^{+}.

Remark 0.3.Io. Similar methods show that any fully faithful functor $\mathcal{C} \rightarrow \mathcal{C}^{+}$satisfying the four bulleted conditions in the definition above is necessarily (κ, \mathbf{U}) accessible.

Lemma 0.3.1I. Let \mathbf{U} and \mathbf{U}^{+}be universes, with $\mathbf{U} \in \mathbf{U}^{+}$, and let κ be a regular cardinal in U. Suppose:

- \mathcal{C} and \mathcal{D} are locally κ-presentable \mathbf{U}-categories.
- C^{+}and D^{+}are locally κ-presentable \mathbf{U}^{+}-categories.
- $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$and $j: \mathcal{D} \rightarrow \mathcal{D}^{+}$are ($\kappa, \mathbf{U}, \mathbf{U}^{+}$)-accessible extensions.

Given a strictly commutative diagram of the form below,

where G is (κ, \mathbf{U})-accessible, G^{+}is $\left(\kappa, \mathbf{U}^{+}\right)$-accessible, if both have left adjoints, then the diagram satisfies the left Beck-Chevalley condition.

Proof. Let C be a (κ, \mathbf{U})-compact object in \mathcal{C}. Inspecting the proof of theorem 0.2.34, we see that the functor $(C \downarrow G) \rightarrow\left(i C \downarrow G^{+}\right)$induced by j preserves initial objects. As in the proof of lemma 0.3.6, this implies the component at C of the left Beck-Chevalley natural transformation $F^{+} i \Rightarrow j F$ is an isomorphism; but \mathcal{C} is generated by $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ and the functors F, F^{+}, i, j all preserve colimits for \mathbf{U}-small κ-filtered diagrams, so in fact $F^{+} i \Rightarrow j F$ is a natural isomorphism.

Proposition 0.3.12. If $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension and \mathcal{C} is a locally к-presentable \mathbf{U}-category, then i preserves colimits for all \mathbf{U}-small diagrams in \mathcal{C}.

Proof. It is well-known that a functor preserves colimits for all U-small diagrams if and only if it preserves coequalisers for all parallel pairs and coproducts for all \mathbf{U}-small families, but coproducts for \mathbf{U}-small families can be constructed in a uniform way using coproducts for κ-small families and colimits for \mathbf{U}-small κ-filtered diagrams. It is therefore enough to show that $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$preserves all colimits for κ-small diagrams, since i is already (κ, \mathbf{U})-accessible.

Let \mathbb{D} be a κ-small category. Recalling proposition o.I.I2, our problem amounts to showing that the diagram

satisfies the left Beck-Chevalley condition. It is clear that i_{*} is fully faithful. Colimits for \mathbf{U}-small diagrams in $[\mathbb{D}, \mathcal{C}]$ and in $\left[\mathbb{D}, \mathcal{C}^{+}\right]$are computed componentwise, so Δ and i_{*} are certainly (κ, \mathbf{U})-accessible, and Δ^{+}is (κ, \mathbf{U}^{+})-accessible. Using proposition 0.2.3I, we see that i_{*} is also a ($\kappa, \mathbf{U}, \mathbf{U}^{+}$)-accessible extension, so we apply the lemma above to conclude that the left Beck-Chevalley condition is satisfied.

Theorem 0.3.13 (Stability of accessible adjoint functors). Let \mathbf{U} and \mathbf{U}^{+}be universes, with $\mathbf{U} \in \mathbf{U}^{+}$, and let κ and λ be regular cardinals in \mathbf{U}, with $\kappa \leq \lambda$. Suppose:

- \mathcal{C} is a locally κ-presentable \mathbf{U}-category.
- \mathcal{D} is a locally λ-presentable \mathbf{U}-category.
- \mathcal{C}^{+}is a locally κ-presentable \mathbf{U}^{+}-category.
- D^{+}is a locally λ-presentable \mathbf{U}^{+}-category.

Let $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$be a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension and let $j: \mathcal{D} \rightarrow \mathcal{D}^{+}$be a fully faithful functor.
(i) Given a strictly commutative diagram of the form below,

where G is (λ, \mathbf{U})-accessible and G^{+}is $\left(\lambda, \mathbf{U}^{+}\right)$-accessible, if both have left adjoints and j is $a\left(\lambda, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension, then the diagram satisfies the left Beck-Chevalley condition.
(ii) Given a strictly commutative diagram of the form below,

if both F and F^{+}have right adjoints, then the diagram satisfies the right Beck-Chevalley condition.

Proof. (i). The proof is essentially the same as lemma 0.3.II, though we have to use proposition 0.3.12 to ensure that j preserves colimits for all \mathbf{U}-small κ-filtered diagrams in \mathcal{C}.
(ii). Let D be any object in \mathcal{D}. Inspecting the proof of theorem 0.2.34, we see that our hypotheses, plus the fact that i preserves colimits for all \mathbf{U}-small diagrams in \mathcal{C}, imply that the functor $(F \downarrow D) \rightarrow\left(F^{+} \downarrow j D\right)$ induced by i preserves terminal objects. Thus lemma 0.3.6 implies that the diagram satisfies the right Beck-Chevalley condition.

Theorem 0.3.14. If $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension and \mathcal{C} is a locally κ-presentable \mathbf{U}-category, then:
(i) If λ is a regular cardinal and $\kappa \leq \lambda \in \mathbf{U}$, then $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is also a $\left(\lambda, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension.
(ii) If μ is the cardinality of \mathbf{U}, then $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$factors through the inclusion $\mathbf{K}_{\mu}^{\mathrm{U}^{+}}\left(\mathcal{C}^{+}\right) \hookrightarrow \mathcal{C}^{+}$as functor $\mathcal{C} \rightarrow \mathbf{K}_{\mu}^{\mathrm{U}^{+}}\left(\mathcal{C}^{+}\right)$that is (fully faithful and) essentially surjective on objects.
(iii) The $\left(\mu, \mathbf{U}^{+}\right)$-accessible functor $\mathbf{I n d}_{\mathbf{U}^{+}}^{\mu}(\mathcal{C}) \rightarrow \mathcal{C}^{+}$induced by $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is fully faithful and essentially surjective on objects.

Proof. (i). Since $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is a (κ, \mathbf{U})-accessible functor, it is certainly also (λ, \mathbf{U})-accessible, by lemma 0.2.23. It is therefore enough to show that i restricts to a functor $\mathbf{K}_{\kappa}^{\mathbf{U}}(\mathcal{C}) \rightarrow \mathbf{K}_{\kappa}^{\mathbf{U}^{+}}\left(\mathcal{C}^{+}\right)$that is (fully faithful and) essentially surjective on objects.

Proposition o.2.30 says $\mathbf{K}_{\lambda}^{\mathrm{U}}(\mathcal{C})$ is the smallest replete full subcategory of \mathcal{C} that contains $\mathbf{K}_{\kappa}^{\mathrm{U}}(\mathcal{C})$ and is closed in \mathcal{C} under colimits for λ-small diagrams, therefore the replete closure of the image of $\mathbf{K}_{\lambda}^{\mathrm{U}}(\mathcal{C})$ must be the smallest replete full
subcategory of \mathcal{C}^{+}that contains $\mathbf{K}_{\kappa}^{\mathrm{U}^{+}}\left(\mathcal{C}^{+}\right)$and is closed in \mathcal{C}^{+}under colimits for λ-small diagrams, since i is fully faithful and preserves colimits for all \mathbf{U}-small diagrams. This proves the claim.
(ii). Since every object in \mathcal{C} is (λ, \mathbf{U})-compact for some regular cardinal $\lambda<\mu$, claim (i) implies that the image of $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$is contained in $\mathbf{K}_{\mu}^{\mathrm{U}^{+}}(\mathcal{C})$. To show i is essentially surjective onto $\mathbf{K}_{\mu}^{\mathrm{U}^{+}}(\mathcal{C})$, we simply have to observe that the inaccessibility of μ (proposition o.I.35) and proposition 0.2.30 imply that, for C^{\prime} any $\left(\mu, \mathbf{U}^{+}\right)$-compact object in \mathcal{C}^{+}, there exists a regular cardinal $\lambda<\mu$ such that C^{\prime} is also a $\left(\lambda, \mathbf{U}^{+}\right)$-compact object, which reduces the question to claim (i).
(iii). This is an immediate corollary of claim (ii) and the classification theorem (o.2.19) applied to \mathcal{C}^{+}, considered as a (μ, \mathbf{U}^{+})-accessible category.

Remark 0.3.15. Although the fact $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$that preserves limits and colimits for all \mathbf{U}-small diagrams in \mathcal{C} is a formal consequence of the theorem above (via e.g. corollary A.3.25), it is not clear whether the theorem can be proven without already knowing this.

Corollary 0.3.16. If \mathbb{B} is a \mathbf{U}-small category and has colimits for all κ-small diagrams, and μ is the cardinality of \mathbf{U}, then the canonical $\left(\mu, \mathbf{U}^{+}\right)$-accessible functor $\mathbf{I n d}_{\mathbf{U}^{+}}^{\mu}\left(\mathbf{I n d}_{\mathbf{U}}^{\kappa}(\mathbb{B})\right) \rightarrow \mathbf{I n d}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ is fully faithful and essentially surjective on objects.

Theorem 0.3.17 (Stability of pointwise Kan extensions). Let $F: \mathcal{A} \rightarrow \mathcal{C}$ and $G: \mathcal{A} \rightarrow \mathcal{D}$ be functors, and let $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$and $j: \mathcal{D} \rightarrow \mathcal{D}^{+}$be fully faithful functors. Consider the following (not necessarily commutative) diagram:

(i) If H^{+}is a pointwise right Kan extension of $j G$ along $i F$, and $\mathrm{H}^{+} i \cong j H$, then H is a pointwise right Kan extension of G along F.
(ii) Suppose $j H$ is a pointwise right Kan extension of $j G$ along F. If H^{+}is a pointwise right Kan extension of $j H$ along i, then the counit $H^{+} i \Rightarrow j H$ is a natural isomorphism, and H^{+}is also a pointwise right Kan extension of $j G$ along iF; conversely, if H^{+}is a pointwise right Kan extension of $j G$ along $i F$, then it is also a pointwise right Kan extension of $j H$ along i.
(iii) If \mathbf{U} is a pre-universe such that \mathcal{A} is \mathbf{U}-small and j preserves limits for all \mathbf{U}-small diagrams, and H is a pointwise right Kan extension of G along F, then a pointwise right Kan extension of $j G$ along $i F$ can be computed as a pointwise right Kan extension of $j H$ along i (if either one exists).

Dually:

(i') If H^{+}is a pointwise left Kan extension of $j G$ along $i F$, and $H^{+} i \cong j H$, then H is a pointwise left Kan extension of G along F.
(ii') If $j H$ is a pointwise left Kan extension of $j G$ along F, and H^{+}is a pointwise left Kan extension of $j H$ along i, then the unit $j H \Rightarrow H^{+}$i is a natural isomorphism, and H^{+}is also a pointwise left Kan extension of $j G$ along $i F$.
(iii') If \mathbf{U} is a pre-universe such that \mathcal{A} is \mathbf{U}-small and j preserves limits for all \mathbf{U}-small diagrams, and H is a pointwise right Kan extension of G along F, then a pointwise right Kan extension of $j G$ along $i F$ can be computed as a pointwise right Kan extension of $j H$ along i (if either one exists).

Proof. (i). Theorem A.3.I I gives an explicit description of $H^{+}: C^{+} \rightarrow D^{+}$as a weighted limit:

$$
H^{+}\left(C^{\prime}\right) \cong\left\{C^{+}\left(C^{\prime}, i F\right), j G\right\}^{\mathcal{A}}
$$

Since i is fully faithful, the weights $\mathcal{C}(C, F)$ and $\mathcal{C}^{+}(i C, i F)$ are naturally isomorphic, hence,

$$
j H(C) \cong H^{+}(i C) \cong\left\{C^{+}(i C, i F), j G\right\}^{\mathcal{A}} \cong\{C(C, F), j G\}^{\mathcal{A}}
$$

but, since j is fully faithful, j reflects all weighted limits, therefore H must be a pointwise right Kan extension of G along F.
(ii). Let \mathbf{U}^{+}be a pre-universe such that $\mathcal{A}, \mathcal{C}, \mathcal{D}, \mathcal{C}^{+}, \mathcal{D}^{+}$are all locally \mathbf{U}^{+}-small categories, and let $\mathbf{S e t}^{+}$be the category of \mathbf{U}^{+}-sets. Using the interchange law
(theorem A.4.I3) and propositions A.4.7 and A.4.I4, we obtain the following natural bijections:

$$
\begin{aligned}
\mathcal{D}^{+}\left(D^{\prime}, H^{+}\left(C^{\prime}\right)\right) & \cong \mathcal{D}^{+}\left(D^{\prime},\left\{C^{+}\left(C^{\prime}, i\right), j H\right\}^{C}\right) \\
& \cong \int_{C: C} \operatorname{Set}^{+}\left(\mathcal{C}^{+}\left(C^{\prime}, i C\right), \mathcal{D}^{+}\left(D^{\prime}, j H C\right)\right) \\
& \cong \int_{C: C} \operatorname{Set}^{+}\left(C^{+}\left(C^{\prime}, i C\right), \mathcal{D}^{+}\left(D^{\prime},\{C(C, F), j G\}^{\mathcal{A}}\right)\right) \\
& \cong \int_{C: C} \int_{A: \mathcal{A}} \operatorname{Set}^{+}\left(C^{+}\left(C^{\prime}, i C\right), \operatorname{Set}^{+}\left(\mathcal{C}(C, F A), \mathcal{D}^{+}\left(D^{\prime}, j G A\right)\right)\right) \\
& \cong \int_{C: C} \int_{A: \mathcal{A}} \operatorname{Set}^{+}\left(\mathcal{C}(C, F A), \operatorname{Set}^{+}\left(\mathcal{C}^{+}\left(C^{\prime}, i C\right), \mathcal{D}^{+}\left(D^{\prime}, j G A\right)\right)\right) \\
& \cong \int_{A: \mathcal{A}} \int_{C: C} \operatorname{Set}^{+}\left(\mathcal{C}(C, F A), \operatorname{Set}^{+}\left(C^{+}\left(C^{\prime}, i C\right), \mathcal{D}^{+}\left(D^{\prime}, j G A\right)\right)\right) \\
& \cong \int_{A: \mathcal{A}} \operatorname{Set}^{+}\left(\mathcal{C}^{+}\left(C^{\prime}, i F A\right), D^{+}\left(D^{\prime}, j G A\right)\right) \\
& \cong \mathcal{D}^{+}\left(D^{\prime},\left\{C^{+}\left(C^{\prime}, i F\right), j G\right\}^{\mathcal{A}}\right)
\end{aligned}
$$

Thus, H^{+}is a pointwise right Kan extension of $j G$ along $i F$ if and only if H^{+}is a pointwise right Kan extension of $j H$ along i. The fact that the counit $H^{+} i \Rightarrow j H$ is a natural isomorphism is just corollary A.3.I 5 .
(iii). Apply corollary A.3.I4 to claim (ii).

Corollary 0.3.18. Let \mathbf{U} and \mathbf{U}^{+}be universes, with $\mathbf{U} \in \mathbf{U}^{+}$, and let κ and λ be regular cardinals in \mathbf{U}. Suppose:

- C is a locally к-presentable \mathbf{U}-category.
- \mathcal{D} is a locally λ-presentable \mathbf{U}-category.
- \mathcal{C}^{+}is a locally κ-presentable \mathbf{U}^{+}-category.
- D^{+}is a locally λ-presentable \mathbf{U}^{+}-category.

Let $F: \mathcal{A} \rightarrow \mathcal{C}$ and $G: \mathcal{A} \rightarrow \mathcal{D}$ be functors, let $i: \mathcal{C} \rightarrow \mathcal{C}^{+}$be a $\left(\kappa, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension, and let $j: \mathcal{D} \rightarrow \mathcal{D}^{+}$be a $\left(\lambda, \mathbf{U}, \mathbf{U}^{+}\right)$-accessible extension.

Consider the following (not necessarily commutative) diagram:

(i) If H is a pointwise right Kan extension of G along F, then $j H$ is a pointwise right Kan extension of $j G$ along F, and if H^{+}is a pointwise right Kan extension of $j H$ along i, then H^{+}is also a pointwise right Kan extension of $j G$ along $i F$.
(ii) Assuming \mathcal{A} is \mathbf{U}-small, if H is a pointwise left Kan extension of G along F, then $j H$ is a pointwise left Kan extension of $j G$ along F, and if H^{+}is a pointwise left Kan extension of $j H$ along i, then H^{+}is also a pointwise left Kan extension of $j G$ along $i F$.

Proof. Use the theorem and the fact that i and j preserve limits for all diagrams and colimits for \mathbf{U}-small diagrams.

- I -

Simplicial Sets

Simplicial sets, like simplicial complexes, are combinatorial models for spaces built up by gluing standard n-simplices together; unlike simplicial complexes, an n-simplex in a simplicial set need not be uniquely determined by its vertices. It is for this reason that simplicial sets were once known by the unwieldy name 'complete semi-simplicial (c.s.s.) complex'.

In the 1960s, it was discovered that one can mimic the definitions and constructions of classical homotopy theory by combinatorial means using simplicial sets, and that the resulting theory is moreover equivalent to the classical theory in a natural, functorial way. More recently, it has been shown that the homotopy theory of simplicial sets is universal in a precise sense, ${ }^{[1]}$ so it seems fitting that we begin here.

I.I Basics

Definition I.I.I. The simplex category is the category $\boldsymbol{\Delta}$ whose objects are the positive finite ordinals and whose morphisms are the monotone maps. We use the geometer's convention: $[n]$ denotes the ordinal $\{0,1, \ldots, n\}$.

Definition I.I.2. A simplicial object in a category \mathcal{C} is a functor $\boldsymbol{\Delta}^{\mathrm{op}} \rightarrow \mathcal{C}$, and a morphism of simplicial objects in \mathcal{C} is a natural transformation of such functors. The category of simplicial objects in \mathcal{C} is the functor category [$\Delta^{\mathrm{op}}, \mathcal{C}$] and is denoted by $\mathbf{s} C$.

[^4]Definition 1.1.3. The coface maps in $\boldsymbol{\Delta}$ are the morphisms $\delta_{n}^{i}:[n-1] \rightarrow[n]$, where δ_{n}^{i} is the unique injective monotone map that misses i; and the codegeneracy maps in Δ are the morphisms $\sigma_{n}^{i}:[n+1] \rightarrow[n]$, where σ_{n}^{i} is the unique surjective monotone map with $\sigma_{n}^{i}(i)=\sigma_{n}^{i}(i+1)=i$.

Theorem I.I. 4 (Cosimplicial identities). The following equations hold in $\boldsymbol{\Delta}$:

$$
\begin{aligned}
\delta_{n+1}^{j+1} \circ \delta_{n}^{i} & =\delta_{n+1}^{i} \circ \delta_{n}^{j} & & \text { if } 0 \leq i \leq j \leq n \\
\sigma_{n}^{j} \circ \sigma_{n+1}^{i} & =\sigma_{n}^{i} \circ \sigma_{n+1}^{j+1} & & \text { if } 0 \leq i \leq j \leq n \\
\sigma_{n+1}^{j+1} \circ \delta_{n+1}^{i} & =\delta_{n}^{i} \circ \sigma_{n}^{j} & & \text { if } 0 \leq i \leq j \leq n \\
\delta_{n}^{j+1} \circ \sigma_{n}^{i} & =\sigma_{n+1}^{i} \circ \delta_{n+1}^{j+2} & & \text { if } 0 \leq i<j<n \\
\sigma_{n}^{i} \circ \delta_{n}^{i} & =\text { id } & & \text { if } 0 \leq i \leq n \\
\sigma_{n}^{i+1} \circ \delta_{n}^{i} & =\text { id } & & \text { if } 0 \leq i<n
\end{aligned}
$$

Equivalently, the following diagrams commute:

Moreover, every morphism $[n] \rightarrow[m]$ in $\boldsymbol{\Delta}$ is uniquely a composite of the form

$$
\delta_{m}^{j_{1}} \circ \cdots \circ \delta_{k}^{j_{m-k}} \circ \sigma_{k}^{i_{n-k}} \circ \cdots \circ \sigma_{n}^{i_{1}}
$$

where $k \leq \min \{n, m\}$, and

$$
\begin{gathered}
0 \leq i_{n-k} \leq \cdots \leq i_{1} \leq n \\
0 \leq j_{m-k} \leq \cdots \leq j_{1} \leq m
\end{gathered}
$$

The category Δ is uniquely characterised by these properties.
Proof. See [May, 1967, § 2], [GZ, Ch. II, § 2], or [Weibel, 1994, § 8.1].
Definition I.I.5. Let A be a simplicial object in a category \mathcal{C}. A face operator for A is a morphism of the form $A\left(\delta_{n}^{i}\right): A([n]) \rightarrow A([n-1])$, and a degeneracy operator for A is a morphism of the form $A\left(\sigma_{n}^{i}\right): A([n]) \rightarrow A([n+1])$. For brevity, we will usually write A_{n} instead of $A([n]), d_{i}^{n}$ instead of $A\left(\delta_{n}^{i}\right)$, and s_{i}^{n} instead of $A\left(\sigma_{n}^{i}\right)$.

Corollary I.I.6 (Simplicial identities). The face and degeneracy operators of a simplicial object satisfy the formal duals of the equations in theorem I.I.4.

Corollary 1.I.7. A simplicial object A is uniquely determined by the sequence of objects $A_{0}, A_{1}, A_{2}, \ldots$ together with the face and degeneracy operators. Conversely, any sequence of objects equipped with face and degeneracy operators satisfying the simplicial identities defined a simplicial object.

Definition I.I.8. A simplicial set is a simplicial object in Set, and the category of simplicial sets is denoted by sSet.

Lemma i.I.9.

(i) Limits (resp. colimits) in sSet are constructed degreewise: a cone (resp. cocone) in sSet over a diagram is limiting (resp. colimiting) if and only if it is so in every degree.
(ii) A morphism of sSet is monic (resp. epic) if and only if it is degreewise injective (resp. surjective).

Proof. These are standard facts about functor categories.
Definition I.I.IO. The standard n-simplex in sSet, denoted by Δ^{n}, is the representable presheaf $\boldsymbol{\Delta}(-,[n])$.

Theorem I.I.II. Let $\Delta^{\bullet}: \Delta \rightarrow$ sSet be the functor $[n] \mapsto \Delta^{n}$.
(i) For any simplicial set X, the map $\boldsymbol{\operatorname { S S e t }}\left(\Delta^{n}, X\right) \rightarrow X_{n}$ defined by $f \mapsto$ $f_{n}\left(\mathrm{id}_{[n]}\right)$ is a bijection and is moreover natural in $[n]$ and X.
(ii) sSet has limits and colimits for all small diagrams, every epimorphism is effective, and for all morphisms $f: X \rightarrow Y$ in $\mathbf{s S e t}$, the pullback functor $f^{*}:$ sSet $_{/ Y} \rightarrow$ sSet $_{/ X}$ preserves colimits.
(iii) $\Delta^{\bullet}: \Delta \rightarrow \mathbf{s S e t}$ is a dense functor, i.e. for any simplicial set X, the tautological cocone ${ }^{[1]}$ from the canonical diagram $\left(\Delta^{\bullet} \downarrow X\right) \rightarrow \mathbf{s S e t}$ to X is colimiting.
(iv) Let \mathcal{E} be a locally small category with colimits for all small diagrams. If $F: \mathbf{s S e t} \rightarrow \mathcal{E}$ is a functor that preserves small colimits, then it is left adjoint to the functor $\mathcal{E} \rightarrow \mathbf{s S e t}$ defined by $E \mapsto \mathcal{E}\left(F \Delta^{\bullet}, E\right)$.
(v) With \mathcal{E} as above, the functor $F \mapsto F \Delta^{\bullet}$ from the category of colimitpreserving functors $\mathbf{s S e t} \rightarrow \mathcal{E}$ to the category of all functors $\boldsymbol{\Delta} \rightarrow \mathcal{E}$ is fully faithful and essentially surjective on objects.

Proof. Claim (i) is just the Yoneda lemma, claim (ii) follows from the lemma above, and claims (iii)-(v) are just facts about dense functors, pointwise left Kan extensions, weighted colimits: see proposition A.3.20, theorem A.3.I I, and proposition A.4.II.

II I.I.I2. An element of X_{n} is often called an n-simplex of X; in particular, an element of X_{0} is a vertex of X and an element of X_{1} is an edge of X. This is justified by statement (i) in the above theorem.

[^5]Corollary I.I.I3. There exists an adjunction

$$
\pi_{0} \dashv \text { disc }: \text { Set } \rightarrow \mathbf{s S e t}
$$

such that $\pi_{0} \Delta^{n}=1$ for all n, and this adjunction is unique up to unique isomorphism. Explicitly, we may take

$$
(\operatorname{disc} Y)_{n}=Y
$$

for all n, with id_{Y} for all the face and degeneracy operators. The functor disc is moreover fully faithful and exhibits Set as a reflective subcategory of sSet.

Definition I.I.I4. The set of connected components of a simplicial set X is the set $\pi_{0} X$, and a discrete simplicial set is one that is isomorphic to disc Y for some set Y.

II I.I.15. We will usually not distinguish between Y and disc Y notationally.
Definition I.I.I6. The standard n-simplex in Top, denoted by $\left|\Delta^{n}\right|$, is the topological space

$$
\left|\Delta^{n}\right|=\left\{\left(x_{0}, \ldots, x_{n}\right) \in[0,1]^{n+1} \mid x_{0}+\cdots+x_{n}=1\right\}
$$

where $[0,1]$ is the closed unit interval with the standard metric. The functor $\left|\Delta^{\bullet}\right|: \Delta \rightarrow$ Top sends $[n]$ to $\left|\Delta^{n}\right|$ and is defined on morphisms by linearly interpolating the obvious map of vertices.

Corollary I.I.I7. There exists an adjunction
extending the functor $\left|\Delta^{\bullet}\right|: \Delta \rightarrow$ Top defined above, and this adjunction is unique up to unique isomorphism. Explicitly, we may take

$$
\mathrm{S}(Y)_{n}=\mathbf{T o p}\left(\left|\Delta^{n}\right|, Y\right)
$$

with the evident face and degeneracy operators induced by the coface and codegeneracy maps in $\boldsymbol{\Delta}$.

Definition I.I.I8. The geometric realisation of a simplicial set X is the topological space $|X|$, and the singular set of a topological space Y is the simplicial set $\mathrm{S}(Y)$.

Remark i.I.i9. The geometric realisation $|X|$ is stable under universe enlargement, by theorem 0.3.17.

Definition I.I.20. Let \mathcal{C} be a category with binary products, and let Y and Z be objects in C. An exponential object for Y and Z is an object Z^{Y} in C and a morphism $^{\mathrm{ev}_{Y, Z}}: Z^{Y} \times Y \rightarrow Z$ with the following universal property:

- For all morphisms $f: X \times Y \rightarrow Z$ in \mathcal{C}, there exists a unique morphism $\bar{f}: X \rightarrow Z^{Y}$ such that $\mathrm{ev}_{Y, Z} \circ\left(\bar{f} \times \mathrm{id}_{Y}\right)=f$.

A cartesian closed category is a category with all finite products and exponential objects for all pairs of objects.

Proposition I.I.2I. Let CGHaus be the category of compactly-generated Hausdorff spaces ${ }^{[2]}$ and continuous maps.
(i) sSet is a cartesian closed category, with exponential objects given by the formula below:

$$
Z^{Y}=\operatorname{sSet}\left(\Delta^{\bullet} \times Y, Z\right)
$$

(ii) If Y is a locally compact Hausdorff space, then for all topological spaces Z, the set of all continuous maps $Y \rightarrow Z$, equipped with the compactopen topology, is an exponential object Z^{Y} in Top.
(iii) CGHaus is a cartesian closed category.

Proof. Claim (i) can be verified by direct calculation, claim (ii) follows from Theorems 46.Io and 46.1 I in [Munkres, 2000], and claim (iii) is proved in [GZ, Ch. III, § 2].

Theorem I.I.22.

(i) The topological standard n-simplex $\left|\Delta^{n}\right|$ is a compact Hausdorff space.
(ii) For any simplicial set X, the geometric realisation $|X|$ is a compactlygenerated Hausdorff space.
(iii) The previously-constructed adjunction $|-| \dashv \mathrm{S}: \mathbf{T o p} \rightarrow$ sSet restricts to an adjunction between CGHaus and sSet, and moreover the functor

[^6]Proof. Claim (i) is a standard fact, while claims (ii) and (iii) are proven in [GZ, Ch. III, § 3].

1. 2 Nerves, skeletons, and coskeletons

Prerequisites. § I.I.
Proposition I.2.I. Let N : Cat \rightarrow sSet be the functor defined by the formula

$$
\mathrm{N}(\mathbb{C})_{n}=\operatorname{Fun}([n], \mathbb{C})
$$

where $[n]$ here denotes the preorder category $\{0 \rightarrow \cdots \rightarrow n\}$.
(i) $\mathrm{N}:$ Cat $\rightarrow \mathbf{s S e t}$ has a left adjoint $\tau_{1}: \mathbf{s S e t} \rightarrow \mathbf{C a t}$ such that $\tau_{1} \Delta^{n}=[n]$.
(ii) The functor N is fully faithful and exhibits $\mathbf{C a t}$ as a reflective subcategory of sSet.
(iii) The canonical morphism $\mathrm{N}([\mathbb{C}, \mathbb{D}]) \rightarrow \mathrm{N}(\mathbb{D})^{\mathrm{N}(\mathbb{C})}$ is a natural isomorphism.
(iv) The functor τ_{1} preserves finite products.

Proof. (i). Apply theorem i.I.II.
(ii). A functor is entirely determined by its action on objects, arrows, and composable strings of arrows, so N is fully faithful.
(iii). N preserves binary products, so we have the following natural bijections:

$$
\begin{aligned}
\operatorname{set}\left(\Delta^{n}, \mathrm{~N}([\mathbb{C}, \mathbb{D}])\right) & \cong \operatorname{Fun}([n],[\mathbb{C}, \mathbb{D}]) \\
& \cong \operatorname{Fun}([n] \times \mathbb{C}, \mathbb{D}) \\
& \cong \operatorname{sSet}(\mathrm{N}([n] \times \mathbb{C}), \mathrm{N}(\mathbb{D})) \\
& \cong \operatorname{sSet}(\mathrm{N}([n]) \times \mathrm{N}(\mathbb{C}), \mathrm{N}(\mathbb{D})) \\
& \cong \operatorname{sSet}\left(\mathrm{N}([n]), \mathrm{N}(\mathbb{D})^{\mathrm{N}(\mathbb{C})}\right) \\
& \cong \operatorname{sSet}\left(\Delta^{n}, \mathrm{~N}(\mathbb{D})^{\mathrm{N}(\mathbb{C})}\right)
\end{aligned}
$$

Thus, by the Yoneda lemma, the canonical morphism $N([\mathbb{C}, \mathbb{D}]) \rightarrow N(\mathbb{D})^{N(\mathbb{C})}$ is an isomorphism.
(iv). It is clear that τ_{1} preserves terminal objects. Let X and Y be simplicial sets. We wish to show that the canonical morphism $\tau_{1}(X \times Y) \rightarrow \tau_{1} X \times \tau_{1} Y$ is an isomorphism; but since τ_{1} is a left adjoint and both sSet and Cat are cartesian closed, it is enough to check the claim for $Y=\Delta^{n}$, because sSet is generated under colimits by $\left\{\Delta^{n} \mid n \in \mathbb{N}\right\}$. We have the following natural bijections:

$$
\begin{aligned}
\operatorname{Fun}\left(\tau_{1}\left(X \times \Delta^{n}\right), \mathbb{C}\right) & \cong \operatorname{sSet}\left(X \times \Delta^{n}, \mathrm{~N}(\mathbb{C})\right) \\
& \cong \operatorname{sSet}\left(X, \mathrm{~N}(\mathbb{C})^{\Delta^{n}}\right) \\
& \cong \operatorname{sSet}(X, \mathrm{~N}([[n], \mathbb{C}])) \\
& \cong \operatorname{Fun}\left(\tau_{1} X,[[n], \mathbb{C}]\right) \\
& \cong \operatorname{Fun}\left(\tau_{1} X \times[n], \mathbb{C}\right) \\
& \cong \operatorname{Fun}\left(\tau_{1} X \times \tau_{1} \Delta^{n}, \mathbb{C}\right)
\end{aligned}
$$

The claim follows by the Yoneda lemma.
Definition 1.2.2. The fundamental category of a simplicial set X is the small category $\tau_{1} X$, and the nerve of a small category \mathbb{C} is the simplicial set $\mathrm{N}(\mathbb{C})$.

Remark 1.2.3. Given a simplicial set X, the fundamental category $\tau_{1} X$ admits the following presentation by generators and relations: the objects are the vertices of X, and the arrows are generated by the edges of X, modulo the relation $d_{0}(x) \circ d_{2}(x)=d_{1}(x)$ for all 2 -simplices x in X. This shows that $\tau_{1} X$ is stable under universe enlargement.

Proposition 1.2.4. Let $\mathrm{N}: \mathbf{G r p d} \rightarrow \mathbf{s S e t}$ be the functor defined by the formula

$$
\mathrm{N}(\mathbb{G})_{n}=\operatorname{Fun}(\mathbf{I}[n], \mathbb{G})
$$

where $\mathbf{I}[n]$ here denotes the groupoid obtained by freely inverting the arrows in the preorder category [n].
(i) For any groupoid \mathbb{G}, the nerve $\mathrm{N}(\mathbb{G})$ is the same (up to isomorphism) whether computed for \mathbb{G} as a groupoid or \mathbb{G} as a category.
(ii) $\mathrm{N}: \mathbf{G r p d} \rightarrow \mathbf{s S e t}$ has a left adjoint $\pi_{1}: \mathbf{s S e t} \rightarrow \mathbf{G r p d}$ such that $\pi_{1} \Delta^{n}=$ I $n n]$.
(iii) The functor N is fully faithful and exhibits $\mathbf{G r p d}$ as a reflective subcategory of sSet.
(iv) The canonical morphism $\mathrm{N}([\mathbb{G}, \mathbb{H}]) \rightarrow \mathrm{N}(\mathbb{H})^{\mathrm{N}(\mathbb{G})}$ is a natural isomorphism.
(v) The functor π_{1} preserves finite products.

Proof. (i). By the universal property of $\mathbf{I}[n]$, there is a natural bijection

$$
\operatorname{Fun}(\mathbf{I}[n], \mathbb{G}) \cong \operatorname{Fun}([n], \mathbb{G})
$$

for all groupoids \mathbb{G}, so the two nerve constructions do indeed agree.
(ii) - (v). These are proven in exactly the same way as in proposition I.2.I.

Definition I.2.5. The fundamental groupoid of a simplicial set X is the small groupoid $\pi_{1} X$.

Remark 1.2.6. Given a simplicial set X, the fundamental groupoid $\pi_{1} X$ admits a presentation of the same kind as the fundamental category $\tau_{1} X$, and in fact $\pi_{1} X$ is isomorphic to the groupoid obtained by freely inverting the arrows in $\tau_{1} X$:

$$
\operatorname{Fun}\left(\pi_{1} X, \mathbb{G}\right) \cong \operatorname{sSet}(X, \mathrm{~N}(\mathbb{G})) \cong \operatorname{Fun}\left(\tau_{1} X, \mathbb{G}\right)
$$

This shows that $\pi_{1} X$ is stable under universe enlargement.
Definition 1.2.7. Let n be a natural number, and let $\boldsymbol{\Delta}_{\leq n}$ be the full subcategory of $\boldsymbol{\Delta}$ spanned by the objects $[0], \ldots,[n]$. An n-truncated simplicial set is a functor $\boldsymbol{\Delta}_{\leq n}{ }^{\text {op }} \rightarrow$ Set, and we write $\mathbf{s S e t} t_{n}$ for the category of n-truncated simplicial sets. The brutal n-truncation of a simplicial set X is the n-truncated simplicial set $X_{\leq n}$ defined by the evident reduct:

$$
X_{\leq n}([m])=X([m])
$$

Proposition 1.2.8. Let n be a natural number, and let $j: \boldsymbol{\Delta}_{\leq n} \rightarrow \boldsymbol{\Delta}$ be the inclusion.
(i) The functor $j^{*}: \mathbf{s S e t} \rightarrow \mathbf{s S e t}_{\leq n}$ has a left adjoint $\operatorname{Lan}_{j}: \mathbf{S S e t}_{\leq n} \rightarrow \mathbf{s S e t}$.
(ii) The unit $\mathrm{id} \Rightarrow j^{*} \mathrm{Lan}_{j}$ is a natural isomorphism.
(iii) $\mathrm{Lan}_{j}: \mathbf{s S e t}_{\leq n} \rightarrow \mathbf{s S e t}$ is a fully faithful functor.
(i') The functor $j^{*}: \mathbf{s S e t} \rightarrow \mathbf{S S e t} t_{\leq n}$ has a right adjoint $\operatorname{Ran}_{j}: \mathbf{s S e t}_{\leq n} \rightarrow \mathbf{s S e t}$.
(ii') The counit $j^{*} \operatorname{Ran}_{j} \Rightarrow \mathrm{id}$ is a natural isomorphism.
(iii') $\operatorname{Ran}_{j}: \mathbf{s S e t}_{\leq n} \rightarrow \mathbf{s S e t}$ is a fully faithful functor.
Proof. (i) and (i'). Use theorem A.3.I I.
(ii) and (ii'). The inclusion $j: \boldsymbol{\Delta}_{\leq n} \rightarrow \boldsymbol{\Delta}$ is fully faithful, so the unit id $\Rightarrow j^{*} \operatorname{Lan}_{j}$ and the counit $j^{*} \operatorname{Ran}_{j} \Rightarrow$ id are natural isomorphisms, by corollary A.3.I5.
(iii) and (iii'). It is a well-known fact that the unit (resp. counit) of an adjunction is a natural isomorphism if and only if the left (resp. right) adjoint is fully faithful. ${ }^{[1]}$

Definition 1.2.9. For each natural number n, with notation as above, let sk_{n} : sSet \rightarrow sSet be the composite $\operatorname{Lan}_{j} j^{*}$, and let $\operatorname{cosk}_{n}:$ sSet \rightarrow sSet be the composite $\operatorname{Ran}_{j} j^{*}$. The n-skeleton of a simplicial set X is the simplicial set $\operatorname{sk}_{n}(X)$, and the n-coskeleton of a simplicial set is the simplicial set $\operatorname{cosk}_{n}(X)$. A n-skeletal simplicial set is one that is isomorphic to the n-skeleton of some simplicial set, and an n-coskeletal simplicial set is one that is isomorphic to the n-coskeleton of some simplicial set.

Remark I.2.IO. In the special case $n=0, \mathrm{Lan}_{j}$ may be identified with the functor disc : Set $\rightarrow \mathbf{s S e t}$ defined in corollary I.I.I3. Thus, o-skeletal simplicial sets are precisely the discrete simplicial sets. On the other hand, given a set $X, \operatorname{Ran}_{j} X$ can be identified with the simplicial set whose m-simplices are $(m+1)$-tuples of elements of X, with face and degeneracy maps induced by the appropriate projections.

Proposition I.2.II. Let n be a natural number.
(i) The full subcategory of n-skeletal simplicial sets is a coreflective subcategory of SSet , with coreflector sk_{n}.
(ii) sk_{n} is the underlying endofunctor of an idempotent comonad on $\mathbf{s S e t}$.
(iii) A simplicial set X is n-skeletal if and only if the counit $\mathrm{sk}_{n}(X) \rightarrow X$ is an isomorphism.
(iv) If $m \geq n$, then any n-skeletal simplicial set is also m-skeletal.

[^7](i') The full subcategory of n-coskeletal simplicial sets is a reflective subcategory of SSet, with reflector cosk_{n}.
(ii') cosk_{n} is the underlying endofunctor of an idempotent monad on sSet.
(iii') A simplicial set X is n-coskeletal if and only if the unit $X \rightarrow \operatorname{cosk}_{n}(X)$ is an isomorphism.
(iv') If $m \geq n$, then any n-coskeletal simplicial set is also m-coskeletal.
Proof. All straightforward from the definitions.
Proposition I.2.I2. Let n be a natural number, and let X be a simplicial set.
(i) We have the following adjunction:
$$
\mathrm{sk}_{n} \dashv \operatorname{cosk}_{n}: \mathbf{s S e t} \rightarrow \mathbf{s S e t}
$$
(ii) The counit $\operatorname{sk}_{n}(X) \rightarrow X$ is a monomorphism, and X is n-skeletal if and only if all m-simplices of X are degenerate for $m>n$.
(iii) X is n-coskeletal if and only if, for all natural numbers m, the map
$$
X_{m} \cong \operatorname{sSet}\left(\Delta^{m}, X\right) \rightarrow \operatorname{sSet}\left(\operatorname{sk}_{n}\left(\Delta^{m}\right), X\right)
$$
induced by the counit $\mathrm{sk}_{n}\left(\Delta^{m}\right) \rightarrow \Delta^{m}$ is a bijection.
Proof. (i). Immediate from the definition of sk_{n} and cosk_{n}.
(ii). The most straightforward way of seeing this is to construct $\mathrm{sk}_{n}(X)$ explicitly as the smallest simplicial subset of X containing all of its n-simplices.
(iii). Apply the Yoneda lemma in conjunction with claim (i).

Example 1.2.13. For any small category \mathbb{C}, the nerve $N(\mathbb{C})$ is a 2 -coskeletal simplicial set: by definition, an m-simplex of $\mathrm{N}(\mathbb{C})$ is just a functor $[m] \rightarrow \mathbb{C}$, but the property of being a functor can be detected by only inspecting the vertices, edges, and 2-cells.

Proposition I.2.I4. Let Y and Z be simplicial sets.
(i) If Z is a n-coskeletal simplicial set, then the exponential object Z^{Y} is also n-coskeletal.
(ii) The morphism $\mathrm{N}\left(\left[\tau_{1} Y, \mathbb{C}\right]\right) \rightarrow \mathrm{N}(\mathbb{C})^{Y}$ defined by the formula

$$
f \mapsto(y \mapsto f(y))
$$

is natural in Y and \mathbb{C}, and is moreover an isomorphism. In particular, if Z is isomorphic to the nerve of some small category, then so is Z^{Y}.

Proof. (i). As before, let $j^{*}: \mathbf{s S e t} \rightarrow \mathbf{s S e t}_{\leq n}$ be the brutal n-truncation functor, and let $\operatorname{Ran}_{j}: \mathbf{s S e t}_{\leq n} \rightarrow \mathbf{s S e t}$ be its right adjoint. We will make use of the fact that $\mathbf{s S e t}_{\leq n}$ is also a cartesian closed category. Clearly, j^{*} preserves binary products, and so we have the following natural bijections:

$$
\begin{aligned}
\operatorname{sSet}\left(X, \operatorname{Ran}_{j}\left(\left(j^{*} Z\right)^{j^{*} Y}\right)\right) & \cong \operatorname{sSet}_{\leq n}\left(j^{*} X,\left(j^{*} Z\right)^{j^{*} Y}\right) \\
& \cong \operatorname{sSet}_{\leq n}\left(j^{*} X \times j^{*} Y, j^{*} Z\right) \\
& \cong \operatorname{sSet}_{\leq n}\left(j^{*}(X \times Y), j^{*} Z\right) \\
& \cong \operatorname{sSet}\left(X \times Y, \operatorname{cosk}_{n}(Z)\right) \\
& \cong \operatorname{sSet}(X \times Y, Z) \\
& \cong \operatorname{sSet}\left(X, Z^{Y}\right)
\end{aligned}
$$

Thus, by the Yoneda lemma, we have an isomorphism $\operatorname{Ran}_{j}\left(\left(j^{*} Z\right)^{j^{*} Y}\right) \cong Z^{Y}$, provided Z is n-coskeletal.
(ii). More precisely, the natural morphism $\mathrm{N}\left(\left[\tau_{1} Y, \mathbb{C}\right]\right) \rightarrow \mathrm{N}(\mathbb{C})^{Y}$ is the one obtained by chasing the following natural bijections:

$$
\begin{aligned}
\operatorname{sSet}\left(X, \mathrm{~N}\left(\left[\tau_{1} Y, \mathbb{C}\right]\right)\right) & \cong \operatorname{Fun}\left(\tau_{1} X,\left[\tau_{1} Y, \mathbb{C}\right]\right) \\
& \cong \operatorname{Fun}\left(\tau_{1} X \times \tau_{1} Y, \mathbb{C}\right) \\
& \cong \operatorname{Fun}\left(\tau_{1}(X \times Y), \mathbb{C}\right) \\
& \cong \operatorname{sSet}(X \times Y, \mathrm{~N}(\mathbb{C})) \\
& \cong \operatorname{sSet}\left(X, \mathrm{~N}(\mathbb{C})^{Y}\right)
\end{aligned}
$$

Here we have used the fact that $\tau_{1}:$ sSet \rightarrow Cat preserves binary products (proposition I.2.I). Applying the Yoneda lemma then proves the claim.

I. 3 The Kan-Quillen model structure

Prerequisites. §§ I.I, A.I.

In [1967], Quillen constructed an axiomatic framework for doing homotopy theory in abstract categories, which he called 'closed model categories', and showed that sSet can be endowed with a model structure such that the resulting homotopy theory is equivalent in a strong sense to the homotopy theory of topological spaces.

Definition 1.3.I. A horn is a simplicial subset of the form $\Lambda_{k}^{n} \subseteq \Delta^{n}$, where Λ_{k}^{n} is the union of the images of $\delta_{n}^{0}, \ldots, \delta_{n}^{k-1}, \delta_{n}^{k+1}, \ldots, \delta_{n}^{n}: \Delta^{n-1} \rightarrow \Delta^{n}$ in sSet. In other words, Λ_{k}^{n} is the union of all the faces of Δ^{n} that include the k-th vertex. The boundary of Δ^{n} is the simplicial subset $\partial \Delta^{n} \subseteq \Delta^{n}$ generated by the images of $\delta_{n}^{0}, \ldots, \delta_{n}^{n}: \Delta^{n-1} \rightarrow \Delta^{n}$.

Remark I.3.2. The boundary $\partial \Delta^{n}$ may be identified with $\mathrm{sk}_{n-1} \Delta^{n}$.
Definition 1.3.3. A cofibration in sSet is a monomorphism. A Kan fibration is a morphism $f: X \rightarrow Y$ in sSet that has the right lifting property with respect to the horn inclusions $\Lambda_{k}^{n} \hookrightarrow \Delta^{n}$, where $n \geq 1$ and $0 \leq k \leq n$. A Kan complex is a simplicial set X such that the unique morphism $X \rightarrow 1$ is a Kan fibration.

Proposition 1.3.4.

(i) There exists a functorial weak factorisation system on sSet such that the right class is the class of all Kan fibrations, and every morphism in the left class is a monomorphism (but not vice versa).
(ii) There exists a functorial weak factorisation system on sSet such that the left class is the class of all monomorphisms, and every morphism in the right class is a Kan fibration (but not vice versa).

Proof. Each claim can be proven by a suitable small object argument. See Theorems 3.I.I and 3.I.2 in [Joyal and Tierney, 2008] as well as Theorem 2.I.I4 in [Hovey, 1999].

Definition 1.3.5. An anodyne extension, or trivial cofibration in sSet, is a cofibration that has the left lifting property with respect to all Kan fibrations. A trivial Kan fibration is a Kan fibration that has the right lifting property with respect to all cofibrations.

Proposition 1.3.6. Let $i: Z \rightarrow W$ be a cofibration in sSet and let $p: X \rightarrow Y$ be a Kan fibration. Suppose we have a commutative diagram

where the square in the lower right is a pullback square.
(i) The unique morphism $X^{W} \rightarrow L(i, p)$ making the diagram commute is a Kan fibration.
(ii) If $i: Z \rightarrow W$ is an anodyne extension, then $X^{W} \rightarrow L(i, p)$ is a trivial Kan fibration.
(iii) If $p: Z \rightarrow W$ is a trivial Kan fibration, then so is $X^{W} \rightarrow L(i, p)$.

Proof. (i). See Theorem 3.3.I in [Hovey, 1999], or Proposition 5.2 in [GJ, Ch. I].
(ii) and (iii). See Proposition II. 5 in [GJ, Ch. I]; for a purely combinatorial proof, see Theorem 3.2.I in [Joyal and Tierney, 2008].

Corollary 1.3.7.

(i) If $p: X \rightarrow Y$ is a Kan fibration, then for all simplicial sets W, the morphism $p^{W}: X^{W} \rightarrow Y^{W}$ is also a Kan fibration.
(ii) If $i: Z \rightarrow W$ is a cofibration and X is a Kan complex, then the morphism $X^{i}: X^{W} \rightarrow X^{Z}$ is a Kan fibration.
(iii) If W is any simplicial set and X is a Kan complex, then X^{W} is also a Kan complex.

Proof. (i). Take $Z=\varnothing$; noting that the canonical morphism $\varnothing \rightarrow W$ is a cofibration, and that $p^{\varnothing}: X^{\varnothing} \rightarrow Y^{\varnothing}$ is an isomorphism, the proposition above then implies $p^{W}: X^{W} \rightarrow Y^{W}$ is a Kan fibration.
(ii). Take $Y=1$; since $1^{W} \rightarrow 1^{Z}$ is an isomorphism, the proposition above implies $X^{i}: X^{W} \rightarrow X^{Z}$ is a Kan fibration.
(iii). Noting that X^{\varnothing} is a terminal object in sSet, we apply claim (ii) to the case $Z=\varnothing$ to obtain the desired conclusion.

The following combinatorial definition of weak homotopy equivalence is due to Joyal and Tierney [2008].

Definition I.3.8. A weak homotopy equivalence of simplicial sets is a morphism $f: W \rightarrow Z$ such that, for every Kan complex K, the induced map

$$
\pi_{0}\left(K^{f}\right): \pi_{0}\left(K^{Z}\right) \rightarrow \pi_{0}\left(K^{W}\right)
$$

is a bijection of sets.

Proposition 1.3.9.

(i) A Kan fibration $p: X \rightarrow Y$ is trivial if and only if it is a weak homotopy equivalence.
(ii) A cofibration $i: Z \rightarrow W$ is an anodyne extension if and only if it is a weak homotopy equivalence.

Proof. See Propositions 3.4.I and 3.4.2 in [Joyal and Tierney, 2008].
In summary, we have:
Theorem 1.3.I0. sSet, regarded as a sSet-enriched category via its cartesian closed structure, is a simplicial model category where

- the cofibrations are the monomorphisms in sSet,
- the fibrations are the Kan fibrations, and
- the weak equivalences are the weak homotopy equivalences.

This is the Kan-Quillen model structure on simplicial sets.
Proof. We know sSet has limits and colimits for all small diagrams, so it satisfies axioms CM1 and SM0. Using the definition of weak homotopy equivalence given above, the class of weak homotopy equivalences has the 2 -out-of- 6 property by lemma A.2.13, hence axiom CM2 is satisfied. Proposition I.3.4 plus
theorem 3.I. 4 then shows that the announced cofibrations, fibrations, and weak equivalences do indeed form a closed model structure on sSet.

Finally, we note that proposition I.3.6 is precisely the condition required by axiom SM7.

Homotopical categories

2.I Basics

Prerequisites. § A.2.
Definition 2.I.I. A relative category C is a category with weak equivalences if weq \mathcal{C} has the 2-out-of-3 property, and it is a homotopical category if weq \mathcal{C} has the 2 -out-of- 6 property. A homotopical functor is a relative functor between homotopical categories.

Example 2.1.2. Any saturated relative category is automatically a homotopical category, by corollary A.2.I4. In particular, any minimal saturated relative category is a homotopical category. On the other hand, any maximal relative category is obviously a homotopical category.

Remark 2.I.3. A relative category \mathcal{C} is a category with weak equivalences or a homotopical category if and only if the opposite relative category C^{op} is.

Lemma 2.1.4. Let A be an object in a homotopical category (resp. category with weak equivalences) \mathcal{C}. Then the slice category $\mathcal{C}_{/ A}$ is also a homotopical category (resp. category with weak equivalences) if we declare a morphism in $\mathcal{C}_{/ A}$ to be a weak equivalence if and only if it is a weak equivalence in \mathcal{C}.

Proof. Use lemma A.2.I3 on the projection functor $\mathcal{C}_{/ A} \rightarrow \mathcal{C}$.
Definition 2.1.5. Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be two (not necessarily relative) functors between relative categories. A natural weak equivalence $\alpha: F \Rightarrow G$ is a natural transformation such that $\alpha_{C}: F C \rightarrow G C$ is a weak equivalence in \mathcal{D} for
all objects C in \mathcal{C}, and we say F and G are naturally weakly equivalent if they can be connected by a zigzag of natural weak equivalences.

Remark 2.I.6. If F and G are relative functors, then this is precisely the notion of weak equivalence in the relative functor category $[\mathcal{C}, \mathcal{D}]_{\mathrm{h}}$. Although the definition above applies to all functors, if $H: \mathcal{D} \rightarrow \mathcal{E}$ is a functor, then the natural transformation $H \alpha: H F \Rightarrow H G$ is only guaranteed to be a natural weak equivalence if we assume H is a relative functor.

Definition 2.1.7. A homotopical equivalence is a relative functor $F: \mathcal{C} \rightarrow \mathcal{D}$ for which there exists a relative functor $G: \mathcal{D} \rightarrow \mathcal{C}$ such that $G F$ is naturally weakly equivalent to $\mathrm{id}_{\mathcal{C}}$ and $F G$ is naturally weakly equivalent to $\mathrm{id}_{\mathcal{D}}$. Such a G is said to be a homotopical inverse of F.

Proposition 2.1.8. If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a homotopical equivalence of relative categories with homotopical inverse $G: \mathcal{D} \rightarrow \mathcal{C}$, then $\mathrm{Ho} F:$ Но $\mathcal{C} \rightarrow$ Но \mathcal{D} is an equivalence of categories, with quasi-inverse $\operatorname{Ho} G: \operatorname{Ho} \mathcal{D} \rightarrow \mathrm{Ho} C$.

2.2 Homotopical Kan extensions

Prerequisites. § 2.I.

Definition 2.2.I. Let \mathcal{C} be a homotopical category. A homotopically initial object in C is an object A for which there exists a zigzag of natural transformations of the form

$$
\Delta A \longrightarrow F \xrightarrow{\alpha} G \longrightarrow \operatorname{id}_{C}
$$

where $\Delta A: \mathcal{C} \rightarrow \mathcal{C}$ is the constant functor with value $A, \alpha_{A}: F A \rightarrow G A$ is a weak equivalence in \mathcal{C}, and the unmarked lines denote (possibly trivial) zigzags of natural weak equivalences. Dually, a homotopically terminal object in \mathcal{C} is a homotopically initial object in $\mathcal{C}^{\mathrm{op}}$.

Proposition 2.2.2. Let \mathcal{C} be a homotopical category. If A is a homotopically initial (resp. homotopically terminal) object in \mathcal{C}, then:
(i) Any object in \mathcal{C} weakly equivalent to A is also a homotopically initial (resp. homotopically terminal) object in \mathcal{C}.
(ii) A is an initial (resp. terminal) object in $\mathrm{Ho} \mathcal{C}$.
(iii) If C is a minimal homotopical category, then A is an initial (resp. terminal) object in \mathcal{C} as well.

Conversely, any initial (resp. terminal) object in \mathcal{C} is also homotopically initial (resp. homotopically terminal).

Proof. Obvious. (This is Proposition 38.3 in [DHKS].)
Definition 2.2.3. A homotopically contractible category is a homotopical category \mathcal{C} such that the unique (homotopical) functor $\mathcal{C} \rightarrow \mathbb{1}$ is a homotopical equivalence, where $\mathbb{1}$ is the trivial category with only one object.

Proposition 2.2.4. Let \mathcal{C} be a homotopical category. The following are equivalent:
(i) \mathcal{C} is homotopically contractible.
(ii) \mathcal{C} is inhabited, and for every object A in \mathcal{C}, the constant functor ΔA is naturally weakly equivalent to id_{C}.
(iii) There exists an object A in \mathcal{C} such that ΔA and id_{C} are naturally weakly equivalent.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].)
Proposition 2.2.5. Let \mathcal{C} be a homotopically contractible category.
(i) Every morphism in \mathcal{C} is a weak equivalence.
(ii) The unique functor $\operatorname{Ho} \mathcal{C} \rightarrow \mathbb{1}$ is an equivalence of categories.
(iii) If \mathcal{C} is a minimal homotopical category, then $\mathcal{C} \rightarrow \mathbb{1}$ is also an equivalence of categories.
(iv) The opposite homotopical category $\mathcal{C}^{\mathrm{op}}$ and the homotopical functor category $[\mathcal{D}, \mathcal{C}]_{\mathrm{h}}$ (for any homotopical category \mathcal{D}) are also homotopically contractible.
(v) Every object in C is both homotopically initial and homotopically terminal.

Proof. Obvious. (This is paragraph 37.6 in [DHKS].)

Proposition 2.2.6. Let \mathcal{C} be a homotopical category. If \mathcal{D} is the full homotopical subcategory of \mathcal{C} spanned by the homotopically initial (or homotopically terminal) objects, then \mathcal{D} is homotopically contractible.

Proof. See paragraph 38.5 in [DHKS].
Definition 2.2.7. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{C} \rightarrow \mathcal{E}$ be two (not necessarily homotopical) functors between homotopical categories. A homotopical left Kan extension (resp. homotopical right Kan extension) of G along F is a homotopically initial (resp. homotopically terminal) object of the relative category $\left(G \downarrow F^{*}\right)_{\mathrm{h}}$ (resp. $\left.\left(F^{*} \downarrow G\right)_{\mathrm{h}}\right)$ described below:

- The objects are pairs (H, α) where H is a homotopical functor $\mathcal{D} \rightarrow \mathcal{E}$ and α is a natural transformation of type $G \Rightarrow H F$ (resp. $H F \Rightarrow G$).
- The morphisms $\left(H^{\prime}, \alpha^{\prime}\right) \rightarrow(H, \alpha)$ are those natural transformations β : $H^{\prime} \Rightarrow H$ such that $\beta F \bullet \alpha^{\prime}=\alpha$ (resp. $\alpha \bullet \beta F=\alpha^{\prime}$).
- The weak equivalences are the natural weak equivalences.

Model Categories

3.I Basics

Prerequisites. §§ 2.I, A.I.
In [1967], Quillen introduced the notion of a 'closed model category' (but we shall say simply 'model category') for homotopy theory, so as to formalise the similarities between the homotopy theory of spaces and homological algebra. The idea was that, to do homotopy theory, one really only needed to know which morphisms are cofibrations, which are weak equivalences, and which are fibrations.

Definition 3.i.I. A model category is a locally small category \mathcal{M} equipped with three subclasses $\mathcal{C}, \mathcal{W}, \mathcal{F}$ of mor \mathcal{M} satisfying the following axioms: ${ }^{[1]}$

- CM1. \mathcal{M} has finite limits and finite colimits.
- CM2. \mathcal{W} has the 2-out-of-3 property.
- CM3. \mathcal{C}, \mathcal{W}, and \mathcal{F} are closed under retracts.
- CM4. Given a commutative diagram

[^8]where i is in \mathcal{C} and p is in \mathcal{F}, if at least one of i or p is also in \mathcal{W}, then there exists a morphism $B \rightarrow X$ making the evident triangles commute.

- CM5. Any morphism f in \mathcal{M} may be factored in two ways:
- $f=p \circ i$ where i is in $\mathcal{C} \cap \mathcal{W}$ and p is in \mathcal{F}, and
- $f=q \circ j$, where j is in \mathcal{C} and q is in $\mathcal{W} \cap \mathcal{F}$.

The triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is said to be a model structure on \mathcal{M}. Given such a model structure on \mathcal{M},

- a cofibration is a morphism in \mathcal{C},
- a weak equivalence is a morphism in \mathcal{W},
- a fibration is a morphism in \mathcal{F},
- a trivial cofibration (or acyclic cofibration) is a morphism in $\mathcal{C} \cap \mathcal{W}$, and
- a trivial fibration (or acyclic fibration) is a morphism in $\mathcal{W} \cap \mathcal{F}$;
- a cofibrant object is an object X such that the unique morphism $0 \rightarrow X$ is a cofibration, and
- a fibrant object is an object X such that the unique morphism $X \rightarrow 1$ is a fibration.
- a cofibrant-fibrant object is an object that is both cofibrant and fibrant.

Remark 3.I.2. The above presentation of the axioms is due to Quillen [1969], and is the one used in [DS] and [GJ]; however, [DHKS], [Hirschhorn, 2003], and [Hovey, 1999] use a variant definition that replaces axioms CM1 and CM5 with stronger ones:

- CM1*. \mathcal{M} is complete and cocomplete.
- CM5*. The $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$-factorisations can be chosen functorially in the sense of definition A.I.9.

Note also that Hovey [1999] considers the functorial factorisations to be a structure rather than a property.

Remark 3.I.3. Let \mathcal{M} be a category with finite limits and finite colimits. Then, $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a model structure on \mathcal{M} if and only if ($\mathcal{F}^{\text {op }}, \mathfrak{W}^{\text {op }}, \mathcal{C}^{\text {op }}$) is a model structure on $\mathcal{M}^{\mathrm{op}}$.

Theorem 3.1.4. Let \mathcal{M} be a locally small category and let $\mathcal{C}, \mathcal{W}, \mathcal{F}$ be subclasses of $\operatorname{mor} \mathcal{M}$. Assuming \mathcal{M} has finite limits and finite colimits, the following are equivalent:
(i) $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ is a model structure for \mathcal{M}.
(ii) \mathcal{M} is a saturated homotopical category with $\operatorname{weq} \mathcal{M}=\mathcal{W}$, and both $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ are weak factorisation systems for \mathcal{M}.
(iii) $(\mathcal{M}, \mathcal{W})$ is a category with weak equivalences (as in definition 2.I.I), and both $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ are weak factorisation systems for \mathcal{M}.

Proof. (i) \Rightarrow (ii). The fact that we have two weak factorisation systems follows from Lemma I.I in [GJ, Ch. II] or Proposition 7.2.3 in [Hirschhorn, 2003]; and the saturation property follows from Theorems i.io and I.II in [GJ, Ch. II], or Theorem 8.3.Io in [Hirschhorn, 2003].
(ii) \Rightarrow (iii). Obvious.
(iii) \Rightarrow (i). Use proposition A.I.7.

Lemma 3.I.5. Let A be an object in a model category \mathcal{M}. Then the slice category $\mathcal{M}_{/ A}$ has the slice model structure, where a morphism in $\mathcal{M}_{/ A}$ is a cofibration, weak equivalence, or fibration if it is so in \mathcal{M}.

Proof. Use lemmas 2.I.4 and A.I.6, plus the fact that $\mathcal{M}_{/ A}$ has finite limits and finite colimits if \mathcal{M} does.

Definition 3.1.6. A left Quillen functor is a functor $F: \mathcal{M} \rightarrow \mathcal{N}$ between model categories that has a right adjoint and preserves cofibrations and trivial cofibrations; dually, a right Quillen functor is a functor $G: \mathcal{N} \rightarrow \mathcal{M}$ between model categories that has a left adjoint and preserves fibrations and trivial fibrations. A Quillen adjunction is an adjunction

$$
F \dashv G: \mathcal{M} \rightarrow \mathcal{N}
$$

where \mathcal{M} and \mathcal{N} are model categories, such that F is a left Quillen functor and G is a right Quillen functor. A Quillen equivalence is a Quillen adjunction as above satisfying this additional condition:

- Given a cofibrant object A in \mathcal{N} and fibrant object X in \mathcal{M}, a morphism $F A \rightarrow X$ is a weak equivalence in \mathcal{M} if and only if its adjoint transpose $A \rightarrow G X$ is a weak equivalence in \mathcal{N}.

Proposition 3.1.7. Let $F \dashv G: \mathcal{M} \rightarrow \mathcal{N}$ be an adjunction between model categories. The following are equivalent:
(i) $F \dashv G$ is a Quillen adjunction.
(ii) F is a left Quillen functor.
(iii) G is a right Quillen functor.
(iv) F preserves cofibrations and G preserves fibrations.
(v) F preserves trivial cofibrations and G preserves trivial fibrations.

Proof. Use proposition A.I.8.
Lemma 3.I. 8 (Kenneth S. Brown). Let \mathcal{M} be a model category and let \mathcal{C} be a category with weak equivalences. If $F: \mathcal{M} \rightarrow \mathcal{C}$ sends trivial cofibrations (resp. trivial fibrations) in \mathcal{M} to weak equivalences in \mathcal{C}, then F preserves all weak equivalences between cofibrant (resp. fibrant) objects.

Proof. See Lemma 9.9 in [DS], Lemma 7.7.I in [Hirschhorn, 2003], or Lemma I4.5 in [DHKS].

Corollary 3.1.9. Let $F \dashv G: \mathcal{M} \rightarrow \mathcal{N}$ be a Quillen adjunction.
(i) If A and B are cofibrantobjects in \mathcal{N} and $f: A \rightarrow B$ is a weak equivalence in \mathcal{N}, then $F f$ is a weak equivalence in \mathcal{M}.
(ii) If X and Y are fibrant objects in \mathcal{M} and $g: X \rightarrow Y$ is a weak equivalence in \mathcal{M}, then $G g$ is a weak equivalence in \mathcal{N}.

Proposition 3.1.IO (Dugger). Let $F \dashv G$ be an adjunction between [strong???] model categories. The following are equivalent:
(i) $F \dashv G$ is a Quillen adjunction.
(ii) F preserves cofibrations between cofibrant objects and all trivial cofibrations.
(iii) G preserves fibrations between fibrant objects and all trivial fibrations.

Proof. This is Proposition 8.5.4 in [Hirschhorn, 2003].
Definition 3.I.II. Let X be an object in a model category \mathcal{M}.

- A cofibrant replacement for X is a pair (\tilde{X}, p) where \tilde{X} is a cofibrant object in \mathcal{M} and p is a weak equivalence $\tilde{X} \rightarrow X$.
- A fibrant replacement for X is a pair (\hat{X}, i) where \hat{X} is a fibrant object in \mathcal{M} and i is a weak equivalence $X \rightarrow \hat{X}$.
- A fibrant cofibrant replacement for X is a cofibrant replacement (\tilde{X}, p) where $p: \tilde{X} \rightarrow X$ is a trivial fibration.
- A cofibrant fibrant replacement for X is a fibrant replacement (\hat{X}, i) where $i: X \rightarrow \hat{X}$ is a trivial cofibration.

Remark 3.i.12. Note that a fibrant cofibrant replacement for X is precisely a cofibrant replacement for X that is fibrant as an object in $\mathcal{M}_{/ X}$, and a cofibrant fibrant replacement for X is precisely a fibrant replacement for X that is cofibrant as an object in ${ }^{X /} \mathcal{M}$.

Moreover, if X is fibrant and (\tilde{X}, p) is a fibrant cofibrant replacement for X, then \tilde{X} is both fibrant and cofibrant in \mathcal{M}, and if X is cofibrant and (\hat{X}, i) is a cofibrant fibrant replacement for X, then \hat{X} is both cofibrant and fibrant in \mathcal{M}.

Proposition 3.1.I3. Any object in a model category has both a fibrant cofibrant replacement and a cofibrant fibrant replacement.

Proof. Use axiom CM5.

3.2 Left and right homotopy

Prerequisites. §3.I.

Definition 3.2.I. Let X be an object in a model category \mathcal{M}. A cylinder object for X is a quadruple $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$, where $\operatorname{Cyl}(X)$ is an object in \mathcal{M}, p : $\operatorname{Cyl}(X) \rightarrow X$ is a weak equivalence, and $i_{0}, i_{1}: X \rightarrow \operatorname{Cyl}(X)$ are sections of p such that the morphism $\left[i_{0}, i_{1}\right]: X+X \rightarrow \operatorname{Cyl}(X)$ is a cofibration. Dually, a path object for X is a quadruple $\left(\operatorname{Path}(X), i, p_{0}, p_{1}\right)$, where $\operatorname{Path}(X)$ is an object in $\mathcal{M}, i: X \rightarrow \operatorname{Path}(X)$ is a weak equivalence, and $p_{0}, p_{1}: \operatorname{Path}(X) \rightarrow X$ are retractions of i such that the morphism $\left\langle p_{0}, p_{1}\right\rangle: \operatorname{Path}(X) \rightarrow X \times X$ is a fibration.

Proposition 3.2.2. Let X be an object in a model category \mathcal{M}.
(i) There exists a cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ for X, where the morphism $p: \operatorname{Cyl}(X) \rightarrow X$ is a trivial fibration.
(ii) There exists a path object $\left(\operatorname{Path}(X), i, p_{0}, p_{1}\right)$ for X, where the morphism $i: X \rightarrow \operatorname{Path}(X)$ is a trivial cofibration.

Proof. Use axioms CM1 and CM5.
Definition 3.2.3. Let $f_{0}, f_{1}: X \rightarrow Y$ be a parallel pair of morphisms in a model category \mathcal{M}. A left homotopy from f_{0} to f_{1} with respect to a cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ is a morphism $H: \operatorname{Cyl}(X) \rightarrow Y$ such that $H \circ i_{0}=f_{0}$ and $H \circ i_{1}=f_{1}$. Dually, a right homotopy from f_{0} to f_{1} with respect to a path object $\left(\operatorname{Path}(Y), i, p_{0}, p_{1}\right)$ is a morphism $H: X \rightarrow \operatorname{Path}(Y)$ such that $p_{0} \circ H=f_{0}$ and $p_{1} \circ H=f_{1}$. We say f_{0} and f_{1} are left homotopic if there exists a left homotopy from f_{0} to f_{1} with respect to some cylinder object for X, and we say f_{0} and f_{1} are right homotopic if there exists a right homotopy from f_{0} to f_{1} with respect to some path object for Y.

Remark 3.2.4. If f_{0} and f_{1} are either left homotopic or right homotopic, then they must represent the same morphism in $\mathrm{Ho} \mathcal{M}$. For definiteness, let us write $\gamma: \mathcal{M} \rightarrow \operatorname{Ho} \mathcal{M}$ for the universal functor, and suppose $H: \operatorname{Cyl}(X) \rightarrow Y$ is a left homotopy from f_{0} to f_{1}. Since i_{0} and i_{1} are both sections of the weak equivalence $p: \operatorname{Cyl}(X) \rightarrow X$, we must have $\gamma i_{0}=(\gamma p)^{-1}=\gamma i_{1}$; but $f_{0}=H \circ i_{0}$ and $f_{1}=H \circ i_{1}$, so indeed $\gamma f_{0}=\gamma f_{1}$. This is one of the reasons for calling Ho \mathcal{M} the homotopy category of \mathcal{M}.

However, it is not quite true that $\gamma f_{0}=\gamma f_{1}$ if and only if f_{0} and f_{1} are either left homotopic or right homotopic; this only happens in special cases. In general, being left/right homotopic fails to even be an equivalence relation.

Lemma 3.2.5. Let $f_{0}, f_{1}: X \rightarrow Y$ be a parallel pair of morphisms in a model category \mathcal{M}.
(i) Given any cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ for $X, f_{0} \circ p: \operatorname{Cyl}(X) \rightarrow Y$ is a left homotopy from f_{0} to itself.
(ii) Given any path object $\left(\operatorname{Path}(Y), i, p_{0}, p_{1}\right)$ for $Y, i \circ f_{0}: X \rightarrow \operatorname{Path}(Y)$ is a right homotopy from f_{0} to itself.
(iii) If $H: \operatorname{Cyl}(X) \rightarrow Y$ is a left homotopy from f_{0} to f_{1} with respect to a cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ for X, then the same H is a left homotopy from f_{1} to f_{0} for the cylinder object $\left(\operatorname{Cyl}(X), i_{1}, i_{0}, p\right)$.
(iv) If $H: X \rightarrow \operatorname{Path}(Y)$ is a right homotopy from f_{0} to f_{1} with respect to a path object $\left(\operatorname{Path}(Y), i, p_{0}, p_{1}\right)$ for Y, then the same H is a right homotopy from f_{1} to f_{0} for the path object $\left(\operatorname{Path}(Y), i, p_{1}, p_{0}\right)$.

Proof. Obvious.

Lemma 3.2.6. Let X be a cofibrant object in a model category \mathcal{M}. Given two cylinder objects for X, say $\left(\operatorname{Cyl}(X)^{\prime}, i_{0}^{\prime}, i_{1}^{\prime}, p^{\prime}\right)$ and $\left(\operatorname{Cyl}(X)^{\prime \prime}, i_{0}^{\prime \prime}, i_{1}^{\prime \prime}, p^{\prime \prime}\right)$, there exists a third cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ such that the diagram below commutes,

and the diamond is a pushout diagram.
Dually, if Y is a fibrant object in \mathcal{M}, and we have two path objects for Y, say $\left(\operatorname{Path}(Y)^{\prime}, i^{\prime}, p_{0}^{\prime}, p_{1}^{\prime}\right)$ and $\left(\operatorname{Path}(Y)^{\prime \prime}, i^{\prime \prime}, p_{0}^{\prime \prime}, p_{1}^{\prime \prime}\right)$, then there exists a third path
object $\left(\operatorname{Path}(Y), i, p_{0}, p_{1}\right)$ such that the diagram below commutes,

and the diamond is a pullback diagram.
Proof. See Lemma I. 5 in [GJ, Ch. II], or Lemma 7.4.2 in [Hirschhorn, 2003].

Corollary 3.2.7. Let $f_{0}, f_{1}, f_{2}: X \rightarrow Y$ be three parallel morphisms in a model category \mathcal{M}.
(i) If f_{0} and f_{1} are left homotopic, and f_{1} and f_{2} are left homotopic, then f_{0} and f_{2} are also left homotopic.
(ii) If f_{0} and f_{1} are right homotopic, and f_{1} and f_{2} are right homotopic, then f_{0} and f_{2} are also right homotopic.

Lemma 3.2.8. Let $f_{0}, f_{1}: X \rightarrow Y$ be a parallel pair of morphisms in a model category \mathcal{M}.
(i) If X is cofibrant, and f_{0} and f_{1} are left homotopic, given any path object $\left(\operatorname{Path}(Y), i, p_{0}, p_{1}\right)$ for Y, there is a right homotopy $H: X \rightarrow \operatorname{Path}(Y)$ from f_{0} to f_{1}.
(ii) If Y is fibrant, and f_{0} and f_{1} are right homotopic, given any cylinder object $\left(\operatorname{Cyl}(X), i_{0}, i_{1}, p\right)$ for X, there is a left homotopy $H: \operatorname{Cyl}(X) \rightarrow Y$ from f_{0} to f_{1}.

Proof. See Proposition I. 8 in [GJ, Ch. II], or Proposition 7.4.7 in [Hirschhorn, 2003].

Proposition 3.2.9. Let X and Y be objects in a model category \mathcal{M}.
(i) If X is cofibrant, then being left homotopic is an equivalence relation on the hom-set $\mathcal{M}(X, Y)$.
(ii) If Y is fibrant, then being right homotopic is an equivalence relation on the hom-set $\mathcal{M}(X, Y)$.
(iii) If X is cofibrant and Y is fibrant, then these two equivalence relations on $\mathcal{M}(X, Y)$ coincide.

Proof. Use the preceding lemmas.
Lemma 3.2.10. Let $f_{0}, f_{1}: X \rightarrow Y$ be a parallel pair of morphisms in a model category \mathcal{M}.
(i) If f_{0} and f_{1} are right homotopic and $g: W \rightarrow X$ is any morphism in \mathcal{M}, then $f_{0} \circ g$ and $f_{1} \circ g$ are also right homotopic.
(ii) If f_{0} and f_{1} are left homotopic and $g: Y \rightarrow Z$ is any morphism in \mathcal{M}, then $g \circ f_{0}$ and $g \circ f_{1}$ are also left homotopic.

Proof. Obvious.
Corollary 3.2.1I. Let \mathcal{M} be a model category, and let $\mathcal{M}_{\mathrm{cf}}$ be the full subcategory spanned by the cofibrant-fibrant objects. Then the equivalence relation induced by homotopy is a congruence on $\mathcal{M}_{\mathrm{cf}}$; in particular, there exist a locally small category \mathcal{M}^{\prime} and a full functor $\mathcal{M}_{\mathrm{cf}} \rightarrow \mathcal{M}^{\prime}$ with these properties:

- The objects of \mathcal{M}^{\prime} are those of $\mathcal{M}_{\mathrm{cf}}$.
- The hom-set $\mathcal{M}^{\prime}(X, Y)$ is $\mathcal{M}(X, Y)$ modulo homotopy.
- The functor $\mathcal{M}_{\mathrm{cf}} \rightarrow \mathcal{M}^{\prime}$ sends each morphism in \mathcal{M}^{\prime} to its homotopy class.

The next result is a version of Whitehead's theorem; however, this is a purely formal consequence of the model category axioms and has no real content, unlike the original theorem.

Proposition 3.2.12. Let X and Y be cofibrant-fibrant objects in a model category \mathcal{M}. If $f: X \rightarrow Y$ is a weak equivalence, then f has a homotopy inverse in \mathcal{M}, i.e. a morphism $g: Y \rightarrow X$ such that $g \circ f$ and id_{X} are homotopic, and $f \circ g$ and id_{Y} are homotopic.

Proof. See Theorem i.io in [GJ, Ch. II], or Theorem 7.5.Io in [Hirschhorn, 2003].

Corollary 3.2.13. Let W, X, Y, Z be cofibrant-fibrant objects in a model category \mathcal{M}, and let $f_{0}, f_{1}: X \rightarrow Y$ be a parallel pair of morphisms.
(i) If $g: W \rightarrow X$ is a weak equivalence such that $f_{0} \circ g$ and $f_{1} \circ g$ are homotopic, then f_{0} and f_{1} are homotopic.
(ii) If $g: Y \rightarrow Z$ is a weak equivalence such that $g \circ f_{0}$ and $g \circ f_{1}$ are homotopic, then f_{0} and f_{1} are homotopic.

Proof. Use a homotopy inverse to cancel g.

3.3 The homotopy category

Prerequisites. §§ 3.1, 3.2, A.2.
Definition 3.3.I. The Quillen homotopy category (or, more simply, homotopy category) of a model category \mathcal{M} is the category $\operatorname{Ho} \mathcal{M}$ obtained by freely inverting the weak equivalences in \mathcal{M}, as in definition A.2.9.

Theorem 3.3.2. Let \mathcal{M} be a model category and let $\gamma: \mathcal{M} \rightarrow$ Ho \mathcal{M} be the universal functor.
(i) Ho \mathcal{M} is equivalent to the locally small category \mathcal{M}^{\prime} defined in corollary 3.2.II, and \mathcal{M} is a saturated homotopical category.
(ii) If X and Y are cofibrant-fibrant objects in \mathcal{M}, then the hom-class map $\mathcal{M}(X, Y) \rightarrow$ Ho $\mathcal{M}(X, Y)$ induced by γ is surjective; and moreover for any parallel pair $f_{0}, f_{1}: X \rightarrow Y$ in \mathcal{M}, we have $\gamma f_{0}=\gamma f_{1}$ if and only if f_{0} and f_{1} are homotopic.
(iii) For any two objects X and Y in \mathcal{M}, every morphism $X \rightarrow Y$ in Ho \mathcal{M} can be represented as a zigzag of the form

$$
X \stackrel{p}{\longleftrightarrow} \tilde{X} \longrightarrow \hat{Y} \stackrel{i}{\longleftarrow} Y
$$

where (\tilde{X}, p) is any cofibrant replacement for X and (\hat{Y}, i) is any fibrant replacement for Y.

Proof. (i). This is Theorem I.I I in [GJ, Ch. II], or Proposition 5.8 in [DS].
(ii). Implied by claim (i).
(iii). Using claim (ii), every morphism $X \rightarrow Y$ in Ho \mathcal{M} can be represented as a zigzag of the form

where $\left(R \tilde{X}, i^{\prime}\right)$ is a cofibrant fibrant replacement for \tilde{X} and $\left(Q \hat{Y}, p^{\prime}\right)$ is a fibrant cofibrant replacement for \hat{Y}; but such a zigzag is manifestly equivalent to the zigzag

$$
X \stackrel{p}{\longleftarrow} \tilde{X} \xrightarrow{f} \hat{Y} \stackrel{i}{\longleftarrow} Y
$$

where $f=p^{\prime} \circ f^{\prime} \circ i^{\prime}$.
Corollary 3.3.3. Let \mathcal{M} be a model category and let $\gamma: \mathcal{M} \rightarrow$ Ho \mathcal{M} be the universal functor. If X is a cofibrant object in \mathcal{M} and Y is a fibrant object in \mathcal{M}, then the hom-class map $\mathcal{M}(X, Y) \rightarrow$ Ho $\mathcal{M}(X, Y)$ induced by γ is surjective; and moreover for any parallel pair $f_{0}, f_{1}: X \rightarrow Y$ in \mathcal{M}, we have $\gamma f_{0}=\gamma f_{1}$ if and only if f_{0} and f_{1} are homotopic.

Proof. As noted in remark 3.2.4, if $f_{0}, f_{1}: X \rightarrow Y$ are homotopic, then we must have $\gamma f_{0}=\gamma f_{1}$. Conversely, suppose $\gamma f_{0}=\gamma f_{1}$ with X cofibrant and Y fibrant. Let $\left(R X, i^{\prime}\right)$ be a cofibrant fibrant replacement for X and $\left(Q Y, p^{\prime}\right)$ be a fibrant cofibrant replacement for Y. Then, there exists morphisms $f_{0}^{\prime}, f_{1}^{\prime}: R X \rightarrow Q Y$ such that $f_{0}=p^{\prime} \circ f_{0}^{\prime} \circ i^{\prime}$ and $f_{1}=p^{\prime} \circ f_{1}^{\prime} \circ i^{\prime}$. Since $i^{\prime}: X \rightarrow R X$ and $p^{\prime}: Q Y \rightarrow Y$ are weak equivalences, we must have $\gamma f_{0}^{\prime}=\gamma f_{1}^{\prime}$ in Ho \mathcal{M}. The theorem then implies f_{0}^{\prime} and f_{1}^{\prime} are homotopic; thus f_{0} and f_{1} are also homotopic, by lemmas 3.2.8 and 3.2.Io.

Generalities

A.I Factorisation systems

Definition A.I.I. Let $f: X \rightarrow Y$ and $g: Z \rightarrow W$ be morphisms in a category C. Given a commutative square in \mathcal{C},

a lift is a morphism $h: W \rightarrow X$ such that $f \circ h=w$ and $h \circ g=z$.
We say g has the left lifting property with respect to f and f has the right lifting property with respect to g if every commutative square in C of the form above has a lift; and we say f is left orthogonal to g and g is right orthogonal to f if lifts exist and are unique.

Lemma A.I.2. Let $f: X \rightarrow Y$ and $g: Z \rightarrow W$ be morphisms in a locally small category \mathcal{C}. Consider the commutative diagram in $\mathbf{S e t}$ shown below,

A. Generalities

where the inner square is a pullback diagram.
(i) The dashed arrow is a surjection if and only ifg has the left lifting property with respect to f.
(ii) The dashed arrow is a bijection if and only if g is left orthogonal to f.

Proof. This is just a restatement of the definition.
Lemma A.I.3. Let $f: X \rightarrow Y$ be a morphism in a category \mathcal{C}. The following are equivalent:
(i) f is an isomorphism.
(ii) f is right orthogonal to any morphism in \mathcal{C}.
(iii) f has the right lifting property with respect to any morphism in \mathcal{C}.
(iv) f has the right lifting property with respect to itself.

Dually, the following are equivalent:
(i') f is an isomorphism.
(ii') f is left orthogonal to any morphism in \mathcal{C}.
(iii') f has the left lifting property with respect to any morphism in \mathcal{C}.
(iv') f has the left lifting property with respect to itself.
Proof. (i) \Rightarrow (ii). Suppose $r: Y \rightarrow X$ is a morphism such that $r \circ f=\mathrm{id}_{X}$. Then, for any commutative square as below,

we have $(r \circ w) \circ g=r \circ f \circ z=z$; but if $f \circ r=\operatorname{id}_{Y}$ as well, then $f \circ(r \circ w)=w$; thus $r \circ w: W \rightarrow X$ is the required lift. It is clearly unique, as f is monic.
(ii) \Rightarrow (iii), (iii) \Rightarrow (iv). Obvious.
(iv) \Rightarrow (i). Consider the following commutative square:

Since f has the right lifting property with respect to itself, there exists a morphism $h: Y \rightarrow X$ such that $h \circ f=\mathrm{id}_{X}$ and $f \circ h=\mathrm{id}_{Y}$.

Definition A.I.4. A weak factorisation system for a category \mathcal{C} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{C} satisfying these conditions:

- For each morphism f in \mathcal{C} there exists a pair (g, h) with $g \in \mathcal{L}$ and $h \in \mathcal{R}$ such that $f=h \circ g$. Such a pair is a $(\mathcal{L}, \mathcal{R})$-factorisation of f.
- A morphism is in \mathcal{L} if and only if it has the left lifting property with respect to every morphism in \mathcal{R}.
- A morphism is in \mathcal{R} if and only if it has the right lifting property with respect to every morphism in \mathcal{L}.

An orthogonal factorisation system is the same thing as a weak factorisation system, except for replacing '.. has the left/right lifting property with respect to ...' with '... is left/right orthogonal to ...'.

Remark A.I.5. Obviously, $(\mathcal{L}, \mathcal{R})$ is a weak (resp. orthogonal) factorisation system for \mathcal{C} if and only if ($\mathcal{R}^{\mathrm{op}}, \mathcal{L}^{\mathrm{op}}$) is a weak (resp. orthogonal) factorisation system for $\mathcal{C}^{\text {op }}$.

Lemma A.I.6. Let A be an object in a category \mathcal{C} with a weak (resp. orthgonal) factorisation system $(\mathcal{L}, \mathcal{R})$. Then the slice category $\mathcal{C}_{/ A}$ has a weak (resp. orthogonal) factorisation system where a morphism is in the left or right class if and only if it is so in \mathcal{C}.

Proof. The projection $\mathcal{C}_{/ A} \rightarrow C$ induces a bijection between solutions for lifting problems in $\mathcal{C}_{/ A}$ and solutions for the corresponding lifting problems in \mathcal{C}.

Proposition A.I.7. Let $(\mathcal{L}, \mathcal{R})$ be a weak or orthogonal factorisation system for a category C.

A. Generalities

(i) Given a pullback diagram in \mathcal{C} as below,

if the morphism f is in \mathcal{R}, then f^{\prime} is also in \mathcal{R}.
(ii) Let I be a set. If $f_{i}: X_{i} \rightarrow Y_{i}$ is a morphism in \mathcal{R} for all i in I and the product $\prod_{i} f_{i}: \prod_{i} X_{i} \rightarrow \prod_{i} Y_{i}$ exists in \mathcal{C}, then $\prod_{i} f_{i}$ is also in \mathcal{R}.
(iii) Given a commutative diagram of the form

where $r_{X} \circ i_{X}=\mathrm{id}_{X^{\prime}}$, and $r_{Y} \circ i_{Y}=\mathrm{id}_{Y^{\prime}}$, if f is in \mathcal{R}, then so is f^{\prime}; in other words, \mathcal{R} is closed under retracts.
(iv) \mathcal{L} is closed under composition.
(v) Let γ be an ordinal and let $Z: \gamma \rightarrow \mathcal{C}$ be a functor that preserves sequential colimits. We write Z_{α} for $Z(\alpha)$, where $\alpha<\gamma$, and $g_{\alpha, \beta}: Z_{\alpha} \rightarrow Z_{\beta}$ for the morphism $Z(\alpha \rightarrow \beta)$, where $\alpha<\beta<\gamma$. If λ is a colimiting cocone from Z to W and each $g_{\alpha, \beta}$ is in \mathcal{L}, then each component $\lambda_{\alpha}: Z_{\alpha} \rightarrow W$ is also in \mathcal{L}.

Proof. (i). Suppose g is in \mathcal{L} and consider the following commutative diagram:

There exists $h: Z \rightarrow X$ such that $h \circ g=p \circ z$ and $f \circ h=q \circ w$. In particular, there exists a unique morphism $h^{\prime}: Z \rightarrow X^{\prime}$ such that $f^{\prime} \circ h^{\prime}=w$ and $p \circ h^{\prime}=h$, by the universal property of pullbacks. Thus $p \circ h^{\prime} \circ g=h \circ g=p \circ z$ and
$f^{\prime} \circ h^{\prime} \circ g=w \circ g=f^{\prime} \circ z$, but p and f^{\prime} are jointly monic, so $h^{\prime} \circ g=z$. Thus we have the required lift, and h^{\prime} is unique if h is.
(ii). We may construct the required lift componentwise.
(iii). Suppose g is in \mathcal{L} and consider the following commutative diagram:

There exists $h: Z \rightarrow X$ such that $h \circ g=i_{X} \circ z$ and $f \circ h=i_{Y} \circ w$, and so for $h^{\prime}=r_{X} \circ h:$

$$
\begin{gathered}
h^{\prime} \circ g=r_{X} \circ i_{X} \circ z=z \\
f^{\prime} \circ h^{\prime}=f^{\prime} \circ r_{X} \circ h=r_{Y} \circ f \circ h=r_{Y} \circ i_{Y} \circ w=w
\end{gathered}
$$

Thus $h^{\prime}: Z \rightarrow X^{\prime}$ is the required lift, and h^{\prime} is unique if h is (because i_{X} is split monic).
(iv). Suppose $g^{\prime}: Z^{\prime} \rightarrow Z$ and $g: Z \rightarrow W$ are in \mathcal{L} and $f: X \rightarrow Y$ is in \mathcal{R}. Consider the following commutative diagram:

There must exist a morphism $z: Z \rightarrow X$ such that $z \circ g^{\prime}=z^{\prime}$ and $f \circ z^{\prime}=w \circ g$, and hence a morphism $h: W \rightarrow X$ such that $h \circ g=z$ and $f \circ h=w$. Obviously, $h \circ\left(g^{\prime} \circ g\right)=z^{\prime}$, so h is the required lift and is moreover unique if $(\mathcal{L}, \mathcal{R})$ is an orthogonal factorisation system.
(v). We may assume without loss of generality that $\alpha=0$, since any non-empty terminal segment of γ is cofinal in γ. Suppose $f: X \rightarrow Y$ is in \mathcal{R} and consider

A. Generalities

the following commutative diagram:

For each $\alpha<\gamma$, given z_{α} making the following diagram commute,

choose a lift $z_{\alpha+1}: Z_{\alpha+1} \rightarrow X$; for each limit ordinal $\beta<\gamma$, let $z_{\beta}: Z_{\beta} \rightarrow X$ be the unique morphism such that $z_{\beta} \circ g_{\alpha, \beta}=z_{\alpha}$ for all $\alpha<\beta$. (Such z_{β} exist and are unique because $Z_{\beta}=\lim _{\rightarrow \alpha<\beta} Z_{\alpha}$.) Note that the universal property of W then guarantees that $w \circ \lambda_{\beta}=f \circ z_{\beta}$.

Having constructed morphisms $z_{\alpha}: Z_{\alpha} \rightarrow X$ for all $\alpha<\gamma$ as above, we may now obtain $h: W \rightarrow X$ as the unique morphism such that $h \circ \lambda_{\alpha}=z_{\alpha}$ for all $\alpha<\gamma$, and again we automatically have $f \circ h=w$. It is also clear that h is unique if $(\mathcal{L}, \mathcal{R})$ is an orthogonal factorisation system.

Proposition A.I.8. Let $(\mathcal{L}, \mathcal{R})$ be a weak (resp. orthogonal) factorisation system for a category \mathcal{C}, and let $\left(\mathcal{L}^{\prime}, \mathcal{R}^{\prime}\right)$ be a weak (resp. orthogonal) factorisation system for a category \mathcal{C}^{\prime}. Given an adjunction

$$
F \dashv U: \mathcal{C}^{\prime} \rightarrow \mathcal{C}
$$

the following are equivalent:
(i) F sends morphisms in \mathcal{L} to morphisms in \mathcal{L}^{\prime}.
(ii) U sends morphisms in \mathcal{R}^{\prime} to morphisms in \mathcal{R}.

Proof. The adjunction induces a bijection between solutions to the two lifting problems shown below:

Thus, $F g$ has the left lifting property (resp. is left orthogonal) with respect to f if and only if $U f$ has the right lifting property (resp. is right orthogonal) with respect to g.

Definition A.I.9. A functorial factorisation system on a category \mathcal{C} is a pair of functors $L, R:[2, C] \rightarrow[2, \mathcal{C}]$ satisfying the following equations:

$$
\operatorname{dom} \circ L=\operatorname{dom} \quad \operatorname{codom} \circ L=\operatorname{dom} \circ R \quad \operatorname{codom} \circ R=\operatorname{codom}
$$

Here, dom and codom are considered as functors $[2, \mathcal{C}] \rightarrow \mathcal{C}$. A functorial weak (resp. orthogonal) factorisation system on \mathcal{C} is a weak (resp. orthogonal) factorisation system $(\mathcal{L}, \mathcal{R})$ together with a functorial factorisation system (L, R) such that $L f \in \mathcal{L}$ and $R f \in \mathcal{R}$ for all morphisms f in \mathcal{C}.

Proposition A.I.IO. Any orthogonal factorisation system can be extended to a functorial one.

Proof. For each morphism f in a category \mathcal{C} with an orthogonal factorisation system $(\mathcal{L}, \mathcal{R})$, choose a factorisation $f=R f \circ L f$ with $L f \in \mathcal{L}$ and $R f \in \mathcal{R}$. Given a commutative square in \mathcal{C}, say

the lifting property ensures that the dashed arrow in the diagram below exists,

and orthogonality ensures uniqueness and hence functoriality.
Proposition A.I.II. Let A be an object in a category \mathcal{C} and let $\Sigma_{A}: \mathcal{C}_{/ A} \rightarrow \mathcal{C}$ be the projection from the slice category.
(i) For each functorial factorisation system (L, R) on \mathcal{C}, there exists a unique functorial factorisation system $\left(L_{A}, R_{A}\right)$ on $\mathcal{C}_{/ A}$ such that

$$
\left[2, \Sigma_{A}\right] \circ L_{A}=L \circ\left[2, \Sigma_{A}\right] \quad\left[2, \Sigma_{A}\right] \circ R_{A}=R \circ\left[2, \Sigma_{A}\right]
$$

where $\left[2, \Sigma_{A}\right]:\left[2, C_{/ A}\right] \rightarrow[2, C]$ is the evident induced functor.
(ii) If (L, R) is part of a functorial weak or orthogonal factorisation system on \mathcal{C}, then $\left(L_{A}, R_{A}\right)$ is compatible with the induced weak or orthogonal factorisation system on $\mathcal{C}_{/ A}$ as well.

Proof. Obvious.

A. 2 Relative categories

Prerequisites. § o. I.
In this section we use the explicit universe convention.
Definition A.2.I. A relative category \mathcal{C} consists of a category und \mathcal{C} and a subcategory weq \mathcal{C} such that ob und $\mathcal{C}=$ ob weq \mathcal{C}. We say und \mathcal{C} is the underlying category of \mathcal{C}, and that the morphisms in weq \mathcal{C} are the weak equivalences in \mathcal{C}.

Remark A.2.2. The subcategory weq \mathcal{C} is entirely determined by mor weq \mathcal{C}, so a relative category may equivalently be defined as a category equipped with a distinguished subset of morphisms closed under composition and containing all the identity morphisms.

For brevity, we will write ob \mathcal{C} for ob und \mathcal{C}, $\operatorname{mor} \mathcal{C}$ for ob und \mathcal{C}, and we may occasionally abuse notation and write weq \mathcal{C} instead of mor weq \mathcal{C}.

Remark A.2.3. Every category \mathcal{C} can be endowed with the structure of a relative category in two ways: we can make it into a minimal relative category $\min \mathcal{C}$ by taking weq $\min \mathcal{C}$ to be the set of identity morphisms in \mathcal{C}; or we could make it into a maximal relative category $\max \mathcal{C}$ by taking weq $\max \mathcal{C}=\operatorname{mor} \mathcal{C}$. We may also define the minimal saturated relative category $\min ^{+} \mathcal{C}$ by taking weq $\min ^{+} \mathcal{C}$ to be the set of all isomorphisms in \mathcal{C}.

Definition A.2.4. Given a relative category \mathcal{C}, the opposite relative category $\mathcal{C}^{\mathrm{op}}$ is defined by und $\mathcal{C}^{\mathrm{op}}=(\text { und } \mathcal{C})^{\mathrm{op}}$ and weq $\mathcal{C}^{\mathrm{op}}=(\text { weq } \mathcal{C})^{\mathrm{op}}$.

Definition a.2.5. Let \mathcal{C} and \mathcal{D} be relative categories. A relative functor $\mathcal{C} \rightarrow \mathcal{D}$ is a functor und $\mathcal{C} \rightarrow$ und \mathcal{D} that sends weak equivalences in \mathcal{C} to weak equivalences in \mathcal{D}. The relative functor category $[\mathcal{C}, \mathcal{D}]_{\mathrm{h}}$ is the full subcategory of [und \mathcal{C}, und \mathcal{D}] spanned by the relative functors, and the weak equivalences in $[\mathcal{C}, \mathcal{D}]_{\mathrm{h}}$ are defined to be the natural transformations that are componentwise weak equivalences in \mathcal{D}.

Definition a.2.6. Let \mathcal{C} be a category and let $\mathcal{W} \subseteq \operatorname{mor} \mathcal{C}$. A localisation of \mathcal{C} away from \mathcal{W} is a category $\mathcal{C}\left[\mathcal{W}^{-1}\right]$ equipped with a functor $\gamma: \mathcal{C} \rightarrow \mathcal{C}\left[\mathcal{W}^{-1}\right]$ with the following universal property:

- Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ such that $F f$ is an isomorphism for all f in \mathcal{W}, there exists a unique functor $\bar{F}: \mathcal{C}\left[\mathcal{W}^{-1}\right] \rightarrow \mathcal{D}$ such that $\bar{F} \gamma=F$.

Remark A.2.7. The universal property in the above definition is strict; as such, $c\left[\mathcal{W}^{-1}\right]$ is unique up to unique isomorphism. Nonetheless, $\mathcal{C}\left[\mathcal{W}^{-1}\right]$ automatically has a 2-universal property: if $F, G: \mathcal{C} \rightarrow \mathcal{D}$ both factor through $\mathcal{C}\left[\mathcal{W}^{-1}\right]$, then so do all natural transformations $F \Rightarrow G$.

Proposition A.2.8. If \mathcal{C} is a \mathbf{U}-small category, then there exists a \mathbf{U}-small category with the universal property of $\mathcal{C}\left[\mathcal{W}^{-1}\right]$.

Proof. Use the accessible adjoint functor theorem (0.2.34).
Definition A.2.9. The homotopy category of a relative category \mathcal{C} is a localisation of und \mathcal{C} away from weq \mathcal{C} and is denoted $\mathrm{Ho} \mathcal{C}$. A semi-saturated relative category is a relative category in which every isomorphism is a weak equivalence. A saturated relative category is a relative category \mathcal{C} such that the weak equivalences in \mathcal{C} are precisely the ones that become isomorphisms in $\mathrm{Ho} \mathcal{C}$.

Remark a.2.Io. Obviously, there is no loss of generality in considering semisaturated relative categories and their homotopy categories instead of localisations $\mathcal{C}\left[\mathcal{W}^{-1}\right]$ for arbitrary subsets $\mathcal{W} \subseteq$ mor \mathcal{C}.

Remark A.2.I i. Clearly, every saturated relative category is semi-saturated, and a minimal saturated relative category is indeed saturated in the sense above.

Definition A.2.12. Let \mathcal{C} be a category and let \mathcal{W} be a subset of mor \mathcal{C}. The 2-out-of-3 property for \mathcal{W} says:

- Given any two morphisms $f: X \rightarrow Y, g: Y \rightarrow Z$ in \mathcal{C}, if any two of f, g, or $g \circ f$ are in \mathcal{W}, then all of them are.

The 2-out-of-6 property for \mathcal{W} says:

- Given any three morphisms $f: X \rightarrow Y, g: Y \rightarrow Z, h: Y \rightarrow Z$ in \mathcal{C}, if both $h \circ g$ and $g \circ f$ are in \mathcal{W}, then so too are f, g, h, and $h \circ g \circ f$.

Lemma a.2.13. Let \mathcal{C} be a category and let $\mathcal{W} \subseteq \operatorname{mor} \mathcal{C}$.
(i) If \mathcal{W} has the 2-out-of-6 property, then it also has the 2-out-of-3 property.
(ii) The set of all isomorphisms in \mathcal{C} has the 2-out-of-6 property.
(iii) If $F: \mathcal{C}^{\prime} \rightarrow \mathcal{C}$ is a functor and \mathcal{W} has either the 2-out-of-3 property or the 2-out-of-6 property, then $F^{-1} \mathcal{W}$ has the same property.

Proof. (i). Consider the three cases $f=\mathrm{id}, g=\mathrm{id}, h=\mathrm{id}$ in turn.
(ii). If $h \circ g$ and $g \circ f$ are isomorphisms, then g must be split epic and split monic; thus g itself is an isomorphism, hence so too are f and h.
(iii). Obvious.

Corollary A.2.I4. If C is a saturated relative category, then weq \mathcal{C} has the 2 -out-of-6 property.

Lemma A.2.15. Let $\mathbf{R e l C a t}$ be the category of \mathbf{U}-small relative categories and relative functors, let $\mathbf{S s R e l C a t}$ be the full subcategory of semi-saturated relative categories, and let $\mathbf{C a t}$ be the category of \mathbf{U}-small categories and functors.
(i) RelCat has finite products and is cartesian closed, where the product of \mathcal{C} and \mathcal{D} is the cartesian product $\mathcal{C} \times \mathcal{D}$ with weak equivalences taken componentwise, and the exponential of \mathcal{E} by \mathcal{D} is the relative functor category $[\mathcal{D}, \mathcal{E}]_{\mathrm{h}}$; moreover, SsRelCat is closed under finite products in RelCat, and if \mathcal{E} is semi-saturated, then so is $[\mathcal{D}, \mathcal{E}]_{\mathrm{h}}$.
(ii) If \mathcal{D} is an ordinary category and \mathcal{E} is a relative category, then the inclusion

$$
\text { und }[\min \mathcal{D}, \mathcal{E}]_{\mathrm{h}} \hookrightarrow[\mathcal{D} \text {, und } \mathcal{E}]
$$

is an isomorphism of ordinary categories, natural in \mathcal{D} and \mathcal{E}; and if \mathcal{E} is moreover semi-saturated, then the inclusion

$$
\text { und }\left[\min ^{+} \mathcal{D}, \mathcal{E}\right]_{\mathrm{h}} \hookrightarrow[\mathcal{D}, \text { und } \mathcal{E}]
$$

is also an isomorphism of ordinary categories, natural in \mathcal{D} and \mathcal{E}.
(iii) If \mathcal{D} is a relative category and \mathcal{E} is an ordinary category, then the canonical relative functor

$$
\min ^{+}[\operatorname{Ho} \mathcal{D}, \mathcal{E}] \rightarrow\left[\mathcal{D}, \min ^{+} \mathcal{E}\right]_{\mathrm{h}}
$$

is an isomorphism of relative categories, natural in \mathcal{D} and \mathcal{E}; in particular, the \mathbf{U}-small minimal saturated relative categories form an exponential ideal in RelCat.
(iv) The functors min : Cat \rightarrow RelCat and $\min ^{+}:$Cat \rightarrow SsRelCat are cartesian closed functors, i.e. they preserves finite products, and the canonical relative functors

$$
\begin{gathered}
\min [\mathcal{D}, \mathcal{E}] \rightarrow[\min \mathcal{D}, \min \mathcal{E}]_{\mathrm{h}} \\
\min ^{+}[\mathcal{D}, \mathcal{E}] \rightarrow\left[\min ^{+} \mathcal{D}, \min ^{+} \mathcal{E}\right]_{\mathrm{h}}
\end{gathered}
$$

are isomorphisms of relative categories, natural in \mathcal{D} and \mathcal{E}.
(v) If \mathcal{C} and \mathcal{D} are relative categories, then the canonical functor

$$
\mathrm{Ho}(\mathcal{C} \times \mathcal{D}) \rightarrow \mathrm{Ho}(\mathcal{C}) \times \mathrm{Ho}(\mathcal{D})
$$

is an isomorphism of ordinary categories, natural in \mathcal{C} and \mathcal{D}.
Proof. Claims (i) - (iv) are straightforward from the definitions. For claim (v), we simply observe that we have a chain of isomorphisms

$$
\begin{aligned}
\operatorname{Fun}(\operatorname{Ho}(\mathcal{C}) \times \operatorname{Ho}(\mathcal{D}), \mathcal{E}) & \cong \operatorname{Fun}(\operatorname{Ho} \mathcal{C},[\operatorname{Ho} \mathcal{D}, \mathcal{E}]) \\
& \cong \operatorname{RelFun}\left(\mathcal{C}, \min ^{+}[\operatorname{Ho} \mathcal{D}, \mathcal{E}]\right) \\
& \cong \operatorname{RelFun}\left(\mathcal{C},\left[\mathcal{D}, \min ^{+} \mathcal{E}\right]_{\mathrm{h}}\right) \\
& \cong \operatorname{RelFun}\left(\mathcal{C} \times \mathcal{D}, \min ^{+} \mathcal{E}\right) \\
& \cong \operatorname{Fun}(\operatorname{Ho}(\mathcal{C} \times \mathcal{D}), \mathcal{E})
\end{aligned}
$$

natural in \mathcal{C}, \mathcal{D}, and \mathcal{E}, so by taking $\mathcal{E}=\operatorname{Ho}(\mathcal{C}) \times \operatorname{Ho}(\mathcal{D})$ and $\mathcal{E}=\operatorname{Ho}(\mathcal{C} \times \mathcal{D})$ in turn, we see that Ho preserves binary products.

Proposition A.2.16. Let $\mathbf{S s R e l C a}$ be the category of \mathbf{U}-small semi-saturated relative categories and relative functors, and let $\mathbf{C a t}$ be the category of \mathbf{U}-small categories and functors. There is then a string of adjoint functors

$$
\text { Ho } \dashv \min ^{+} \dashv \text { und } \dashv \max \dashv \text { weq }: \text { SsRelCat } \rightarrow \text { Cat }
$$

where Ho sends a relative category to its homotopy category, $\min ^{+}$makes an ordinary category into a minimal saturated relative category, und sends a relative category to its underlying category, max makes an ordinary category into a
maximal relative category, and weq sends a relative category to its subcategory of weak equivalences. Moreover, both $\min ^{+}$and \max are fully faithful, and Ho preserves finite products.

Proof. Obvious.
Definition a.2.17. A zigzag type is a relative category T where und T is the free category on an inhabited finite planar graph of the form
where the edges are arrows that point either left or right, and weq T consists of all identities and all composites of left-pointing arrows. A morphism of zigzag types is a relative functor that maps the leftmost object to the leftmost object and the rightmost object to the rightmost object. We write \mathbf{T} for the category of zigzag types. ${ }^{[1]}$

A zigzag of type T in a relative category \mathcal{C} is a relative functor $T \rightarrow \mathcal{C}$. Given objects X and Y in C, we denote by $C^{T}(X, Y)$ the category whose objects are the zigzags starting at X and ending at Y and whose morphisms are commutative diagrams in \mathcal{C} of the form

where the rows are zigzags of type T and the unmarked columns are weak equivalences.

Remark A.2.I8. It is clear that $\mathcal{C}^{T}(X, Y)$ is a subcategory of the relative functor category $[T, C]_{\mathrm{h}}$. Thus, if \mathcal{C} is a \mathbf{U}-small relative category, precomposition makes the assignment $T \mapsto \mathcal{C}^{T}(X, Y)$ into a functor $\mathbf{T}^{\mathrm{op}} \rightarrow \mathbf{C a t}$, which we denote by $C^{*}(X, Y)$. The Grothendieck construction applied to this functor yields the following \mathbf{U}-small category $\mathcal{C}^{(\mathbf{T})}(X, Y)$:

- Its objects are pairs (T, f), where T is a zigzag type and f is a zigzag of type T in \mathcal{C}.

[^9]- A morphism $\left(T^{\prime}, f^{\prime}\right) \rightarrow(T, f)$ is a pair (α, β) where $\alpha: T^{\prime} \rightarrow T$ is a morphism in \mathbf{T} and $\beta: f^{\prime} \rightarrow \alpha^{*} f$ is a morphism in $C^{T^{\prime}}(X, Y)$.
- The composite of a pair of morphisms $\left(\alpha^{\prime}, \beta^{\prime}\right):\left(T^{\prime \prime}, f^{\prime \prime}\right) \rightarrow\left(T^{\prime}, f^{\prime}\right)$ and $(\alpha, \beta):\left(T^{\prime}, f^{\prime}\right) \rightarrow(T, f)$ is given by $\left(\alpha \circ \alpha^{\prime}, \alpha^{\prime *} \beta \circ \beta^{\prime}\right)$.

There is an evident projection functor $\mathcal{C}^{(\mathbf{T})}(X, Y) \rightarrow \mathbf{T}$, and by construction it is a Grothendieck fibration with a canonical splitting.

Example A.2.19. If $f: X \rightarrow Y$ is a weak equivalence in a relative category \mathcal{C}, then we have commutative diagrams

and these correspond to morphisms of zigzags in \mathcal{C}.
Theorem A.2.20. Let X and Y be objects in a relative category \mathcal{C}.
(i) For each zigzag type T, the map that sends an object in $\mathcal{C}^{T}(X, Y)$ to the corresponding composite in $\operatorname{Ho} \mathcal{C}(X, Y)$ is a functor when the latter is regarded as a discrete category.
(ii) The functors described above constitute a jointly surjective cocone from the diagram $\mathcal{C}^{*}(X, Y)$ to $\mathrm{Ho} \mathcal{C}(X, Y)$.
(iii) The induced functor $\mathcal{C}^{(\mathbf{T})}(X, Y) \rightarrow \mathrm{Ho} \mathcal{C}(X, Y)$ is surjective, and moreover two objects in $\mathcal{C}^{(\mathbf{T})}(X, Y)$ become equal in $\mathrm{Ho} C$ if and only if they are in the same connected component.

Proof. All obvious except for the last part of claim (iii), for which we refer to paragraphs 33.8 and 33.Io in [DHKS].

Definition A.2.2I. Two objects in a relative category are weakly equivalent if they can be connected by a zigzag of weak equivalences.

Remark A.2.22. If X and Y are weakly equivalent in a relative category \mathcal{C}, then they are isomorphic in Ho C.

A. Generalities

A. 3 Kan extensions

Prerequisites. § o.I.
In this section we use the explicit universe convention.
Definition A.3.I. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{C} \rightarrow \mathcal{E}$ be two functors. A left Kan extension (resp. right Kan extension) of G along F is an initial (resp. terminal) object of the category $\left(G \downarrow F^{*}\right)$ (resp. $\left(F^{*} \downarrow G\right)$) described below:

- The objects are pairs (H, α) where H is a functor $\mathcal{D} \rightarrow \mathcal{E}$ and α is a natural transformation of type $G \Rightarrow H F$ (resp. $H F \Rightarrow G$).
- The morphisms $\left(H^{\prime}, \alpha^{\prime}\right) \rightarrow(H, \alpha)$ are those natural transformations β : $H^{\prime} \Rightarrow H$ such that $\beta F \bullet \alpha^{\prime}=\alpha$ (resp. $\alpha \bullet \beta F=\alpha^{\prime}$).

Remark A.3.2. Clearly, Kan extensions are unique up to unique isomorphism if they exist. We write $\left(\operatorname{Lan}_{F} G, \eta\right)$ for the left Kan extension of G along F and say η is the unit of $\operatorname{Lan}_{F} G$; dually, we write $\left(\operatorname{Ran}_{F} G, \varepsilon\right)$ for the right Kan extension of G along F and say ε is the counit of $\operatorname{Ran}_{F} G$.

Proposition A.3.3. Let \mathbf{U} be a pre-universe and let $\mathbf{S e t}$ be the category of \mathbf{U}-sets. For any two functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{C} \rightarrow \mathbf{S e t}$, if \mathcal{D} is locally \mathbf{U}-small, then the following are equivalent:
(i) $\left(\operatorname{Ran}_{F} G, \varepsilon\right)$ is a right Kan extension of G along F.
(ii) The maps $\left(\operatorname{Ran}_{F} G\right)(D) \rightarrow[\mathcal{C}, \operatorname{Set}](\mathcal{D}(D, F), G)$ defined by $x \mapsto \varepsilon \bullet F^{*} \theta_{x}$, where $\theta_{x}: \mathcal{D}(D,-) \Rightarrow G$ is the unique natural transformation such that $\left(\theta_{x}\right)_{D}\left(\mathrm{id}_{D}\right)=x$, are bijections that are natural in D.

Proof. This is a straightforward exercise in applying the Yoneda lemma to the definition of right Kan extensions.

Definition A.3.4. Let $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{C} \rightarrow \mathcal{E}$, and $L: \mathcal{E} \rightarrow \mathcal{F}$ be three functors. We say L preserves a left (resp. right) Kan extension (H, α) of G along F if ($L H, L \alpha$) is a left (resp. right) Kan extension of $L F$ along G.

Let Set be the category of \mathbf{U}-small sets, and suppose \mathcal{E} is locally \mathbf{U}-small. We say a left Kan extension $\left(\operatorname{Lan}_{G} F, \eta\right)$ is pointwise if it is preserved by all functors of the form $\mathcal{E}(-, E): \mathcal{E} \rightarrow \mathbf{S e t}^{\mathrm{op}}$.

Dually, we say a right Kan extension $\left(\operatorname{Ran}_{G} F, \varepsilon\right)$ is pointwise if it is preserved by all functors of the form $\mathcal{E}(E,-): \mathcal{E} \rightarrow$ Set.

If a Kan extension is preserved by all functors, then it is said to be absolute.
It is convenient at this juncture to introduce a concept borrowed from enriched category theory. The notation below follows [Kelly, 2005, § 3.1].

Definition A.3.5. Let \mathbf{U} be a pre-universe, let Set be the category of \mathbf{U}-sets, and let \mathcal{C} be a locally \mathbf{U}-small category. Given functors $W: \mathcal{J} \rightarrow$ Set and $A: \mathcal{J} \rightarrow \mathcal{C}$, a W-weighted limit of A is an object $\{W, A\}^{\mathcal{J}}$ in \mathcal{C} together with bijections

$$
\mathcal{C}\left(C,\{W, A\}^{\mathcal{J}}\right) \cong[\mathcal{J}, \operatorname{Set}](W, \mathcal{C}(C, A))
$$

that are natural in C. We may also write $\lim _{\lim _{j: \mathcal{J}}{ }^{j}} A j$ instead of $\{W, A\}^{\mathcal{J}}$, if we wish to use an explicit variable j.

Dually, given functors $W: \mathcal{J}^{\text {op }} \rightarrow$ Set and $A: \mathcal{J} \rightarrow \mathcal{C}$, a W-weighted colimit of A is an object $W \star_{J} A$ in \mathcal{C} together with bijections

$$
C\left(W \star_{\mathcal{J}} A, C\right) \cong\left[\mathcal{J}^{\mathrm{op}}, \operatorname{Set}\right](W, C(A, C))
$$

that are natural in C. We may also write $\lim _{\rightarrow j: \mathcal{J}}^{W j} A j$ instead of $W \star{ }_{J} A$, if we wish to use an explicit variable j.

Remark A.3.6. Clearly, weighted limits and colimits are unique up to unique isomorphism if they exist.

It is also not hard to spell out the above definition in elementary terms; for example, one notes that to give a natural transformation $W \Rightarrow \mathcal{C}(C, A)$, one must give a morphism $\lambda_{j, x}: C \rightarrow A j$ for each object j in \mathcal{J} and each element x of $W j$, and these are required to make various diagrams commute. This is a W-weighted cone from C to A, and $\{W, A\}^{\mathcal{J}}$ is an object equipped with a universal W-weighted cone to A. Similarly, one may define the notion of a W-weighted cocone from A to C, and then $W \star_{J} A$ is an object equipped with a universal W-weighted cocone from A. In particular, if $W j=1$ for all j, then W-weighted limits and colimits reduce to ordinary limits and colimits.

The above discussion also shows that the concept of a weighted limit or colimit (within a fixed category!) does not depend on \mathbf{U} in any essential way.

Lemma A.3.7. Let \mathcal{J} be a \mathbf{U}-small category. Given functors $F, G: \mathcal{J} \rightarrow$ Set, the F-weighted limit of G exists in $\mathbf{S e t}$, and we have bijections

$$
\{F, G\}^{\mathcal{J}} \cong[\mathcal{J}, \operatorname{Set}](F, G)
$$

A. Generalities

that are natural in F and G.
Proof. One simply has to check that this works.
Proposition A.3.8. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be any functor where \mathcal{C} and \mathcal{D} are locally \mathbf{U}-small categories.
(i) For each weight $W: \mathcal{J} \rightarrow$ Set and each diagram $A: \mathcal{J} \rightarrow \mathcal{C}$, if the weighted limits $\{W, A\}^{\mathcal{J}}$ and $\{W, F A\}^{\mathcal{J}}$ both exist, then there is a canonical comparison morphism

$$
F\{W, A\}^{\mathcal{J}} \rightarrow\{W, F A\}^{\mathcal{J}}
$$

corresponding to the natural maps

$$
[\mathcal{J}, \operatorname{Set}](W, \mathcal{C}(C, A)) \rightarrow[\mathcal{J}, \operatorname{Set}](W, \mathcal{D}(F C, F A))
$$

induced by the functor F.
(ii) For any object C in \mathcal{C}, the functor $\mathcal{C}(C,-): \mathcal{C} \rightarrow$ Set preserves all weighted limits.
(iii) The functors $\mathcal{C}(C,-): \mathcal{C} \rightarrow$ Set jointly reflect weighted limits.
(iv) If F has a left adjoint, then F preserves weighted limits.

Dually:
(i') For each weight $W: \mathcal{J}^{\mathrm{op}} \rightarrow$ Set and each diagram $A: \mathcal{J} \rightarrow \mathcal{C}$, if the weighted colimits $W \star_{J} A$ and $W \star_{J} F A$ both exist, then there is a canonical comparison morphism

$$
W \star_{J} F A \rightarrow F\left(W \star_{J} A\right)
$$

corresponding to the natural maps

$$
[\mathcal{J}, \operatorname{Set}](W, \mathcal{C}(A, C)) \rightarrow[\mathcal{J}, \operatorname{Set}](W, \mathcal{D}(F A, F C))
$$

induced by the functor F.
(ii') For any object C in \mathcal{C}, the functor $\mathcal{C}(-, C): \mathcal{C}^{\mathrm{op}} \rightarrow$ Set sends any weighted colimit in C to the corresponding weighted limit in $\mathbf{S e t}$.
(iii') The functors $\mathcal{C}(-, C): \mathcal{C} \rightarrow \mathbf{S e t}^{\mathrm{op}}$ jointly reflect weighted colimits.
(iv') If F has a right adjoint, then F preserves weighted colimits.
Proof. All straightforward.
Definition A.3.9. Let \mathbf{U} be a pre-universe, let Set be the category of \mathbf{U}-sets, and let \mathcal{D} be a locally \mathbf{U}-small category. Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, the F-nerve functor $\mathrm{N}^{F}: \mathcal{D} \rightarrow\left[\mathcal{C}^{\text {op }}, \mathbf{S e t}\right]$ is defined by

$$
\mathrm{N}^{F}(D)(C)=\mathcal{D}(F C, D)
$$

i.e. $\mathrm{N}^{F}=F^{*} \ell_{\bullet}$, where $h_{\bullet}: \mathcal{D} \rightarrow\left[\mathcal{D}^{\mathrm{op}}\right.$, Set $]$ is the usual Yoneda embedding.

Definition A.3.Io. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor and let D be an object in \mathcal{D}. The tautological cocone to D induced by F is the cocone $\varphi: F P_{D} \Rightarrow \Delta D$, where $P_{D}:(F \downarrow D) \rightarrow C$ is the projection functor sending an object (C, f) in the comma category $(F \downarrow D)$ to the object C in \mathcal{C}, and $\varphi_{(C, f)}=f$.

Dually, the tautological cone from D induced by F is the cone $\varphi: \Delta D \Rightarrow$ $F P^{D}$, where $P^{D}:(D \downarrow F) \rightarrow C$ is the projection functor sending an object (C, f) in the comma category $(D \downarrow F)$ to the object C in \mathcal{C}, and $\varphi_{(C, f)}=f$.

Theorem A.3.II. Let \mathcal{C}, \mathcal{D} and \mathcal{E} be locally \mathbf{U}-small categories. Given functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{C} \rightarrow \mathcal{E}$, the following are equivalent:
(i) (H, α) is a pointwise right Kan extension of G along F.
 there are isomorphisms

$$
H d \cong\left\{\mathrm{~N}^{F^{\mathrm{op}}}(d), G\right\}^{c}
$$

natural in d, with $\alpha_{c}: H F c \rightarrow$ Gc corresponding to the element $\mathrm{id}_{F c}$ of $\mathrm{N}^{F^{\mathrm{op}}}(F c)(c)=\mathcal{D}(F c, F c)$.
(iii) (Assuming \mathcal{C} is \mathbf{U}-small.) For each object d in \mathcal{D}, if $P^{d}:(d \downarrow F) \rightarrow \mathcal{C}$ is the projection sending (c, f) in the comma category $(d \downarrow F)$ to c, and $\varphi: \Delta d \Rightarrow F P^{d}$ is the tautological cone in \mathcal{D}, then the cone $\alpha P^{d} \bullet H \varphi:$ $\Delta H d \Rightarrow G P^{d}$ is limiting; and for each $g: d \rightarrow d^{\prime}$ in \mathcal{D}, the morphism $H g: H d \rightarrow H d^{\prime}$ is the one induced by the functor $\left(d^{\prime} \downarrow F\right) \rightarrow(d \downarrow F)$ sending $\left(c^{\prime}, f^{\prime}\right)$ to $\left(c^{\prime}, f^{\prime} \circ g\right)$. In particular, $\alpha_{c}: H F c \rightarrow$ Gc must be (equal to) the component of the limiting cone $\Delta F c \Rightarrow G P^{d}$ at the object $\left(c, \mathrm{id}_{F c}\right)$ of $(F c \downarrow F)$.

A. Generalities

In particular, if \mathcal{C} is a \mathbf{U}-small category and \mathcal{E} is \mathbf{U}-complete, then the right Kan extension of G along F exists and is pointwise.

Dually, the following are equivalent:
(i') (H, α) is a pointwise left Kan extension of G along F.
(ii') For each object d in \mathcal{D}, the weighted colimit $\mathrm{N}^{F}(d) \star_{c} G$ exists in \mathcal{E}, and there are isomorphisms

$$
H d \cong \mathrm{~N}^{F}(d) \star_{c} G
$$

natural in d, with $\alpha_{c}: G c \rightarrow H F c$ corresponding to the element $\operatorname{id}_{F c}$ of $\mathrm{N}^{F}(F c)(c)=\mathcal{D}(F c, F c)$.
(iii') (Assuming \mathcal{C} is \mathbf{U}-small.) For each object d in \mathcal{D}, if $P_{d}:(F \downarrow d) \rightarrow \mathcal{C}$ is the projection sending (c, f) in the comma category $(F \downarrow d)$ to c, and $\varphi: F P_{d} \Rightarrow \Delta d$ is the tautological cocone in \mathcal{D}, then the cocone $H \varphi \bullet \alpha P_{d}$: $G P_{d} \Rightarrow \Delta H d$ is colimiting; and for each $g: d \rightarrow d^{\prime}$ in \mathcal{D}, the morphism $H g: H d \rightarrow H d^{\prime}$ is the one induced by the functor $(F \downarrow d) \rightarrow\left(F \downarrow d^{\prime}\right)$ sending (c, f) to $(c, g \circ f)$. In particular, $\alpha_{c}: G c \rightarrow H F c$ must be (equal to) the component of the colimiting cocone $G P_{d} \Rightarrow \Delta F c$ at the object $\left(c, \mathrm{id}_{F c}\right)$ of $(F \downarrow F c)$.

In particular, if \mathcal{C} is a \mathbf{U}-small category and \mathcal{E} is \mathbf{U}-cocomplete, then the left Kan extension of G along F exists and is pointwise.

Proof. (i) \Leftrightarrow (ii). This is just a matter of unwinding the definitions.
(i) \Leftrightarrow (iii). One first proves that the construction in (iii) does indeed define a right Kan extension in the special case $\mathcal{E}=$ Set; once this is done, showing that (i) and (iii) are equivalent is simply a matter of applying the Yoneda lemma. See [CWM, Ch. X, §§ 3 and 5].

Remark A.3.I2. It is possible to extract an elementary characterisation of pointwise Kan extensions from the results above, thereby showing that the property of being pointwise does not depend on the choice of universe \mathbf{U}.

Corollary A.3.13. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. If \mathcal{C} is \mathbf{U}-small and \mathcal{D} is locally \mathbf{U}-small, then the functor $F^{*}:[\mathcal{D}$, Set $] \rightarrow[\mathcal{C}$, Set $]$ has both a left adjoint Lan_{F} and a right adjoint Ran_{F}.

Corollary A.3.14. Let $L: \mathcal{E} \rightarrow \mathcal{F}$ be a functor. With other notation as in the theorem, if (H, α) is a pointwise right Kan extension of G along F, then $(L H, L \alpha)$ is a pointwise right Kan extension of $L G$ along F, provided either:
(i) L preserves all weighted limits, or
(ii) L preserves limits for \mathbf{U}-small diagrams and \mathcal{C} is \mathbf{U}-small.

Dually, if (H, α) is a pointwise left Kan extension of G along F, then $(L H, L \alpha)$ is a pointwise left Kan extension of $L G$ along F, provided either:
(i') L preserves all weighted colimits, or
(ii') L preserves colimits for \mathbf{U}-small diagrams and \mathcal{C} is \mathbf{U}-small.
Corollary a.3.15. With notation as in the theorem, if F is fully faithful and (H, α) is a pointwise right (resp. left) Kan extension of G along F, then α : $H F \Rightarrow G(r e s p . \alpha: G \Rightarrow H F)$ is a natural isomorphism.

Proof. If F is fully faithful, then the comma category $(F c \downarrow F)$ (resp. ($F \downarrow F c$)) has an initial (resp. terminal) object, namely $\left(c, \mathrm{id}_{F c}\right)$, so the component α_{c} : $H F c \rightarrow G c$ (resp. $\alpha_{c}: G c \rightarrow H F c$) must be an isomorphism.

Proposition A.3.16. Let \mathcal{C} and \mathcal{D} be any two categories, and let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ be any two functors. The following are equivalent:
(i) $F \dashv G$, with unit $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow G F$ and counit $\varepsilon: F G \Rightarrow \mathrm{id}_{\mathcal{D}}$.
(ii) (F, ε) is an absolute right Kan extension of $\mathrm{id}_{\mathcal{D}}$ along G.
(iii) (F, ε) is a right Kan extension of id_{D} along G that is preserved by F.
(iv) (G, η) is an absolute left Kan extension of id_{C} along F.
(v) (G, η) is a left Kan extension of id_{C} along F that is preserved by G.

Proof. See [CWM, Ch. X, § 7].

Proposition A.3.17.

(i) Right adjoints preserve all right Kan extensions.
(ii) Left adjoints preserve all left Kan extensions.

Proof. See Theorem I in [CWM, Ch. X, § 5].
Definition A.3.I8. Let \mathbf{U} be a pre-universe, let Set be the category of \mathbf{U}-sets, and let \mathcal{C} be a locally \mathbf{U}-small category. A dense functor is a functor $F: \mathcal{B} \rightarrow \mathcal{C}$ such that the F-nerve functor $\mathrm{N}^{F}: \mathcal{C} \rightarrow\left[\mathcal{B}^{\text {op }}, \mathbf{S e t}\right]$ is fully faithful. A dense subcategory of \mathcal{C} is a subcategory \mathcal{B} such that the inclusion $\mathcal{B} \hookrightarrow \mathcal{C}$ is a dense functor.

Dually, a codense functor is a functor $F: \mathcal{B} \rightarrow \mathcal{C}$ such that the opposite functor $F^{\mathrm{op}}: \mathcal{B}^{\mathrm{op}} \rightarrow \mathcal{C}^{\mathrm{op}}$ is dense, and a codense subcategory of \mathcal{C} is a subcategory \mathcal{B} such that the inclusion $\mathcal{B} \hookrightarrow \mathcal{C}$ is a codense functor.

Example A.3.19. The Yoneda lemma implies $\mathrm{id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$ is a dense and codense functor.

One may extract an elementary definition for '(co)dense functor' from the following proposition:

Proposition A.3.20. With notation as in the definition, the following are equivalent:
(i) $F: \mathcal{B} \rightarrow \mathcal{C}$ is a dense functor.
(ii) For each object \boldsymbol{C} in \mathcal{C}, the maps

$$
\mathcal{C}\left(C, C^{\prime}\right) \rightarrow\left[\mathcal{B}^{\mathrm{op}}, \operatorname{Set}\right]\left(\mathrm{N}^{F}(C), \mathcal{C}\left(F, C^{\prime}\right)\right)
$$

induced by $\mathrm{N}^{F}: \mathcal{C} \rightarrow\left[\mathcal{B}^{\mathrm{op}}\right.$, Set $]$ are natural bijections, exhibiting C as a weighted colimit $\mathrm{N}^{F}(C) \star_{B} F$ in C.
(iii) For each object C in \mathcal{C}, the tautological cocone to C induced by F is a colimiting cocone.
(iv) $\left(\mathrm{id}_{C}, \mathrm{id}_{F}\right)$ is a pointwise left Kan extension of F along F.

Dually, the following are equivalent:
(i') $F: \mathcal{B} \rightarrow \mathcal{C}$ is a codense functor.
(ii') For each object C in \mathcal{C}, the maps

$$
\mathcal{C}\left(C^{\prime}, C\right) \rightarrow[\mathcal{B}, \operatorname{Set}]\left(\mathrm{N}^{F^{\mathrm{op}}}(C), \mathcal{C}\left(C^{\prime}, F\right)\right)
$$

induced by $\mathrm{N}^{F^{\mathrm{op}}}: \mathcal{C}^{\mathrm{op}} \rightarrow[\mathcal{B}$, Set $]$ are natural bijections, exhibiting C as a weighted limit $\left\{\mathrm{N}^{F^{\mathrm{op}}}(C), F\right\}^{B}$ in C.
(iii') For each object C in \mathcal{C}, the tautological cone from C induced by F is a limiting cone.
(iv') $\left(\mathrm{id}_{C}, \mathrm{id}_{F}\right)$ is a pointwise right Kan extension of F along F.
Proof. (i) \Leftrightarrow (ii). The indicated maps are bijections for all C and C^{\prime} if and only if N^{F} is fully faithful, by definition.
(ii) \Leftrightarrow (iii) \Leftrightarrow (iv). This is an application of theorem A.3.I I.

Definition A.3.2I. Let $G: \mathcal{D} \rightarrow \mathcal{C}$ be a functor. A densely-defined partial left adjoint for G is a triple (F, i, η), where $F: \mathcal{B} \rightarrow \mathcal{D}$ is a functor, $i: \mathcal{B} \rightarrow \mathcal{C}$ is a dense functor, and $\eta: i \Rightarrow G F$ is a natural transformation such that the maps

$$
\begin{aligned}
\mathcal{D}(F B, D) & \rightarrow \mathcal{C}(i B, G D) \\
g & \mapsto G g \circ \eta_{B}
\end{aligned}
$$

are bijections that are natural in B and D.
Dually, given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$, a codensely-defined partial right adjoint for F is a triple (G, j, ε), where $G: \mathcal{B} \rightarrow \mathcal{C}$ is a functor, $j: \mathcal{B} \rightarrow \mathcal{C}$ is a codense functor, and $\varepsilon: F G \Rightarrow j$ is a natural transformation such that the maps

$$
\begin{aligned}
\mathcal{C}(C, G B) & \rightarrow \mathcal{D}(F C, j B) \\
f & \mapsto \varepsilon_{B} \circ F f
\end{aligned}
$$

are bijections that are natural in B and C.
Example A.3.22. The Yoneda embedding $h_{\bullet}: \mathcal{B} \rightarrow\left[\mathcal{B}^{\text {op }}\right.$, Set $]$ has a denselydefined partial left adjoint, namely ($\mathrm{id}_{\mathcal{B}}, \hbar_{\bullet}, \mathrm{id}_{\kappa_{\bullet}}$).

Remark A.3.23. $\left(F, \mathrm{id}_{C}, \eta\right)$ is a densely-defined partial left adjoint for G if and only if F is a left adjoint for G in the usual sense, with η being the adjunction unit.

Proposition A.3.24. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let \mathcal{C} and \mathcal{D} be locally \mathbf{U}-small categories. Given functors $G: \mathcal{D} \rightarrow \mathcal{C}$, $F: \mathcal{B} \rightarrow \mathcal{D}$, and $i: \mathcal{B} \rightarrow \mathcal{C}$, the following are equivalent:
(i) (F, i, η) is a densely-defined partial left adjoint for G.

A. Generalities

(ii) The functor $i: \mathcal{B} \rightarrow \mathcal{C}$ is dense, and there exists a diagram

where α factors through $\eta^{*}: \mathrm{N}^{G F} \Rightarrow \mathrm{~N}^{i}$ and is a natural isomorphism.
(iii) The functor $i: \mathcal{B} \rightarrow \mathcal{C}$ is dense, and the diagram

commutes up to natural isomorphism.
Dually, given functors $F: \mathcal{C} \rightarrow \mathcal{D}, G: \mathcal{B} \rightarrow \mathcal{C}$, and $j: \mathcal{B} \rightarrow \mathcal{D}$, the following are equivalent:
(i') (G, j, ε) is a codensely-defined partial right adjoint for F.
(ii') The functor $j: \mathcal{B} \rightarrow \mathcal{D}$ is codense, and there exists a diagram

where β factors through $\left(\varepsilon^{\mathrm{op}}\right)^{*}: \mathrm{N}^{F^{\mathrm{op}} G^{\mathrm{op}}} \Rightarrow \mathrm{N}^{\mathrm{j}}{ }^{\mathrm{op}}$ and is a natural isomorphism.
(iii') The functor $j: \mathcal{B} \rightarrow \mathcal{D}$ is codense, and the diagram

commutes up to natural isomorphism.

Proof. (i) \Rightarrow (ii). This immediately follows from the definition.
(ii) \Rightarrow (iii). Obvious.
(iii) \Rightarrow (i). The displayed diagram commutes up to natural isomorphism precisely when there are bijections

$$
\alpha_{B, D}: \mathcal{D}(F B, D) \rightarrow \mathcal{C}(i B, G D)
$$

that are natural in both B and D. Taking $D=F B$, let $\eta_{B}: i B \rightarrow G F B$ be the morphism corresponding to $\mathrm{id}_{F B}: F B \rightarrow F B$. Applying the Yoneda lemma, we see that the natural bijection $\alpha_{B, D}$ must be the map $g \mapsto G g \circ \eta_{B}$.
Corollary A.3.25. Let \mathcal{C} and \mathcal{D} be any two categories. If a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ has a densely-defined partial left adjoint, then G preserves:
(i) limits for all diagrams in \mathcal{D},
(ii) weighted limits, and
(iii) pointwise right Kan extensions.

Dually, if a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ has a codensely-defined partial right adjoint, then F preserves:
(i') colimits for all diagrams in \mathcal{C},
(ii') weighted colimts, and
(iii') pointwise left Kan extensions.
Proof. Choose a universe \mathbf{U} such that the domain of $i: \mathcal{B} \rightarrow \mathcal{C}$ is \mathbf{U}-small and both \mathcal{C} and \mathcal{D} are locally \mathbf{U}-small, and consider the following diagram:

Since i is dense, the i-nerve functor $\mathrm{N}^{i}: \mathcal{C} \rightarrow\left[\mathcal{B}^{\text {op }}, \mathbf{S e t}\right]$ is fully faithful. Corollary A.3.13 implies $\left(F^{\text {op }}\right)^{*}:\left[\mathcal{D}^{\text {op }}\right.$, Set $] \rightarrow\left[\mathcal{B}^{\text {op }}\right.$, Set $]$ is a right adjoint, and the Yoneda embedding ${h_{\bullet}}_{\bullet}: \mathcal{D} \rightarrow\left[\mathcal{D}^{\text {op }}\right.$, Set $]$ preserves all limits and weighted limits (see proposition A.3.8), so we use the fact that N^{i} reflects limits and weighted limits to conclude that G preserves them. We then apply corollary A.3.I4.

A. 4 Ends and coends

Prerequisites. §§ 0.I, A. 3
In this section we use the explicit universe convention.
Definition A.4.I. Let $F, G: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ be functors. A dinatural transformation $\alpha: F \xrightarrow{\diamond} G$ is a family $\left(\alpha_{C}: F(C, C) \rightarrow G(C, C) \mid C \in \mathrm{ob} C\right)$ such that the diagram

commutes for all morphisms $f: C^{\prime} \rightarrow C$ in \mathcal{C}.
Example A.4.2. Let \mathbf{U} be a pre-universe, let \mathcal{C} be a locally \mathbf{U}-small category, and let Set be the category of \mathbf{U}-sets. Consider the functor $\mathrm{Hom}_{\mathcal{C}}: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow$ Set that sends a pair of objects in \mathcal{C} to their hom-set. For each natural number n, we have an dinatural transformation $\operatorname{Hom}_{c} \xrightarrow{\diamond} \operatorname{Hom}_{c}$ defined by $e \mapsto e^{n}$, where e^{n} denotes the n-fold iterate of the endomorphism e.

Definition a.4.3. A wedge from an object D in \mathcal{D} to a functor $G: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ is a dinatural transformation $\Delta D \xrightarrow{\diamond} G$, where $\Delta D: C^{\text {op }} \times C \rightarrow \mathcal{D}$ is the constant functor with value D; dually, a cowedge from a functor $F: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ to an object D in \mathcal{D} is a dinatural transformation $F \xrightarrow{\diamond} \Delta D$.

Definition A.4.4. An end for a functor $G: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ is an object E and a wedge $\lambda: \Delta E \xrightarrow{\diamond} G$ with the following universal property:

- For each wedge $\varphi: \Delta D \xrightarrow{\diamond} G$, there is a unique morphism $f: D \rightarrow E$ in \mathcal{D} such that $\varphi_{C}=\lambda_{C} \circ f$ for all objects C in \mathcal{C}.

We write the following formula to mean that E is an end for G :

$$
E=\int_{C: C} G(C, C)
$$

Dually, a coend for a functor $F: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{D}$ is an object E and a cowedge $\lambda: F \stackrel{\diamond}{\rightarrow} \Delta E$ with the following universal property:

- For each cowedge $\varphi: F \xrightarrow{\diamond} \Delta D$, there is a unique morphism $f: E \rightarrow D$ in \mathcal{D} such that $\varphi_{C}=f \circ \lambda_{C}$ for all objects C in \mathcal{C}.

We write the following formula to mean that E is a coend for F :

$$
E=\int^{C: C} F(C, C)
$$

Remark A.4.5. Let \mathbf{U} be a pre-universe, let \mathbb{D} be a \mathbf{U}-small category, and let \mathcal{C} be a locally \mathbf{U}-small category. Then, for all functors $F, G: \mathbb{D} \rightarrow \mathcal{C}$, we have a bijection

$$
[\mathbb{D}, C](F, G) \cong \int_{d: \mathbb{D}} \mathcal{C}(F d, G d)
$$

and this is natural in both F and G. (The size restriction ensures that the LHS is a U-set.) See also

Proposition A.4.6. Let \mathbf{U} be a pre-universe and let \mathbb{D} be a \mathbf{U}-small category. If \mathcal{C} is a \mathbf{U}-complete category, then \mathcal{C} has ends for all functors $A: \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \rightarrow \mathcal{C}$. Dually, if \mathcal{C} is a \mathbf{U}-cocomplete category, then \mathcal{C} has coends for all functors A : $\mathbb{D}^{\mathrm{op}} \times \mathbb{D} \rightarrow C$.

Proof. It is clear from the definition that an end is a special kind of limit, and a coend is a special kind of colimit. To make this precise, one can use Mac Lane's subdivision category \mathcal{C}^{\S} : see [CWM, Ch. IX, § 5].

Proposition A.4.7. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be any functor where \mathcal{C} and \mathcal{D} are locally \mathbf{U}-small categories.
(i) For any functor $A: \mathcal{J}^{\mathrm{op}} \times \mathcal{J} \rightarrow \mathcal{C}$, if the ends $\int_{\mathcal{J}} A$ and $\int_{\mathcal{J}} F A$ both exist, with λ being the universal wedge in C, then there is a canonical comparison morphism

$$
F \int_{\mathcal{J}} A \rightarrow \int_{\mathcal{J}} F A
$$

induced by the wedge $F \lambda$.
(ii) For any object C in \mathcal{C}, the functor $\mathcal{C}(C,-): \mathcal{C} \rightarrow$ Set preserves all ends.
(iii) The functors $\mathcal{C}(C,-)$ jointly reflect ends.
(iv) If F has a left adjoint, then F preserves ends.

Dually:

(i') For any functor $A: \mathcal{J}^{\mathrm{op}} \times \mathcal{J} \rightarrow \mathcal{C}$, if the coends $\int^{\mathcal{J}} A$ and $\int^{\mathcal{J}} F A$ both exist, with λ being the universal cowedge in \mathcal{C}, then there is a canonical comparison morphism

$$
\int^{\mathcal{J}} F A \rightarrow F \int^{\mathcal{J}} A
$$

induced by the cowedge $F \lambda$.
(ii') For any object C in \mathcal{C}, the functor $\mathcal{C}(-, C): \mathcal{C} \rightarrow$ Set sends any coend in \mathcal{C} to the corresponding end in Set.
(iii') The functors $\mathcal{C}(-, C): \mathcal{C} \rightarrow$ Set $^{\text {op }}$ jointly reflect coends.
(iv') If F has a right adjoint, then F preserves coends.
Proof. All straightforward.
Definition a.4.8. Let \mathbf{U} be a pre-universe, let Set be the category of \mathbf{U}-sets, and let $\mathbb{1}$ be the trivial category with $*$ as its only object. A tensored U-category is a locally \mathbf{U}-small category \mathcal{C} such that, for all weights $W: \mathbb{1} \rightarrow$ Set and all diagrams $A: \mathbb{1} \rightarrow$ Set, a W-weighted colimit for A exists in \mathcal{C}; if \mathcal{C} is a tensored U-category, then we write $X \odot C$ for the weighted colimit $W \star_{1} A$, where $X=W(*)$ and $C=A(*)$.

Dually, a cotensored U-category is a locally \mathbf{U}-small category \mathcal{C} such that, for all weights $W: \mathbb{1} \rightarrow$ Set and all diagrams $A: \mathbb{1} \rightarrow$ Set, a W-weighted limit for A exists in \mathcal{C}; if \mathcal{C} is a cotensored \mathbf{U}-category, then we write $X \pitchfork C$ for the weighted limit $\{W, A\}^{\mathbb{1}}$, where $X=W(*)$ and $C=A(*)$.

Proposition A.4.9 (Tensor-hom-cotensor adjunction). Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, let \mathcal{C} be a locally \mathbf{U}-small category.
(i) If \mathcal{C} is a tensored \mathbf{U}-category, then the assignment $(X, C) \mapsto X \odot C$ can be extended to a functor $\operatorname{Set} \times \mathcal{C} \rightarrow \mathcal{C}$ such that, for each object C, we have the following adjunction:

$$
-\odot C \dashv \mathcal{C}(C,-): \mathcal{C} \rightarrow \text { Set }
$$

(ii) If C is a cotensored \mathbf{U}-category, then the assignment $(X, C) \mapsto X \pitchfork C$ can be extended to a functor $\mathbf{S e t}{ }^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C}$ such that, for each object C, the functors $-\pitchfork C: \mathbf{S e t}^{\mathrm{op}} \rightarrow \mathcal{C}$ and $\mathcal{C}(-, C): \mathcal{C}^{\mathrm{op}} \rightarrow \mathbf{S e t}$ are contravariantly adjoint on the right.
(iii) If C is a tensored and cotensored \mathbf{U}-category, then for each set X, we have the following adjunction:

$$
X \odot-\dashv X \pitchfork-: \mathcal{C} \rightarrow \mathcal{C}
$$

Proof. Claims (i) and (ii) are formally dual and are straightforward applications of the parametrised adjunction theorem. ${ }^{[1]}$ For claim (iii), simply observe that we have bijections

$$
\mathcal{C}(X \odot A, B) \cong \operatorname{Set}(X, C(A, B)) \cong \mathcal{C}(A, X \pitchfork B)
$$

and these are natural in A, B, and X.
Theorem A.4.IO. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let \mathcal{C} be a locally \mathbf{U}-small category. The following are equivalent:
(i) C is a \mathbf{U}-complete category.
(ii) \mathcal{C} is a cotensored \mathbf{U}-category and, for all \mathbf{U}-small categories \mathbb{D} and all functors $B: \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \rightarrow \mathcal{C}$, an end for A exists in \mathcal{C}.
(iii) For all weights $W: \mathbb{D}^{\mathrm{op}} \rightarrow$ Set and all diagrams $A: \mathbb{D} \rightarrow$ Set, C has a W-weighted limit for A, provided \mathbb{D} is a \mathbf{U}-small category.

Dually, the following are equivalent:
(i') C is a \mathbf{U}-cocomplete category.
(ii') C is a tensored \mathbf{U}-category and, for all \mathbf{U}-small categories \mathbb{D} and all functors $B: \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \rightarrow \mathcal{C}$, a coend for A exists in C.
(iii') For all weights $W: \mathbb{D}^{\mathrm{op}} \rightarrow \mathbf{S e t}$ and all diagrams $A: \mathbb{D} \rightarrow \mathbf{S e t}, \mathcal{C}$ has a W-weighted colimit for A, provided \mathbb{D} is a \mathbf{U}-small category.

[^10]
A. Generalities

Proof. (i) \Rightarrow (ii). It is clear that $X \pitchfork C$ is nothing more than an X-fold product of copies of C, so \mathcal{C} is certainly \mathbf{U}-cotensored if it is \mathbf{U}-complete, and proposition A.4.6 says C also has the required ends in that case.
(ii) \Rightarrow (iii). We have the following natural bijections:

$$
\begin{aligned}
C\left(C,\{W, A\}^{\mathbb{D}}\right) & \cong[\mathbb{D}, \operatorname{Set}](W, \mathcal{C}(C, A)) \\
& \cong \int_{d: \mathbb{D}} \operatorname{Set}(W d, C(C, A d)) \\
& \cong \int_{d: \mathbb{D}} C(C, W d \pitchfork A d) \\
& \cong C\left(C, \int_{d: \mathbb{D}} W d \pitchfork A d\right)
\end{aligned}
$$

Thus, using the Yoneda lemma and assuming \mathcal{C} is a cotensored \mathbf{U}-category, the weighted limit $\{W, A\}^{\mathbb{D}}$ exists if and only if the end $\int_{d: \mathbb{D}} W d \pitchfork A d$ exists.
(iii) \Rightarrow (i). Ordinary limits are a special case of weighted limits, as remarked in A.3.6.

Proposition A.4.II. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, let \mathcal{C} be a locally \mathbf{U}-small category, and let \mathcal{J} be any category. If \mathcal{C} is a tensored \mathbf{U}-category and has weighted limits for all weights $W: \mathcal{J} \rightarrow \mathbf{S e t}$ and diagrams $A: \mathcal{J} \rightarrow \mathcal{C}$, then:
(i) $(W, A) \mapsto\{W, A\}^{\mathcal{J}}$ extends to a functor $[\mathcal{J}, \text { Set }]^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C}$.
(ii) For each diagram $A: \mathcal{J} \rightarrow \mathcal{C}$, the functors $\{-, A\}^{\mathcal{J}}:[\mathcal{J} \text {, Set }]^{\mathrm{pp}} \rightarrow \mathcal{C}$ and $\mathcal{C}(-, A): \mathcal{C}^{\mathrm{op}} \rightarrow[\mathcal{J}$, Set $]$ are contravariantly adjoint on the right.
(iii) For each weight $W: \mathcal{J} \rightarrow$ Set, we have the following adjunction:

$$
W \odot-\dashv\{W,-\}^{\mathcal{J}}:[\mathcal{J}, \mathcal{C}] \rightarrow \mathcal{C}
$$

Here, $W \odot C: \mathcal{J} \rightarrow C$ is the diagram $j \mapsto W j \odot C$.
Dually, if C is a cotensored \mathbf{U}-category and has weighted colimits for all weights $W: \mathcal{J}^{\mathrm{p}} \rightarrow$ Set and diagrams $A: \mathcal{J} \rightarrow \mathcal{C}$, then:
(i') $(W, A) \mapsto W \star_{J} A$ extends to a functor $\left[\mathcal{J}^{\mathrm{op}}, \mathrm{Set}\right] \times \mathcal{C} \rightarrow \mathcal{C}$.
(ii') For each diagram $A: \mathcal{J} \rightarrow \mathcal{C}$, we have the following adjunction:

$$
-\star_{J} A \dashv \mathcal{C}(A,-): \mathcal{C} \rightarrow\left[\mathcal{J}^{\mathrm{op}}, \text { Set }\right]
$$

(iii') For each weight $W: \mathcal{J}^{\text {pp }} \rightarrow$ Set, we have the following adjunction:

$$
W \star_{\mathcal{J}}-\dashv W \pitchfork-: \mathcal{C} \rightarrow[\mathcal{J}, \mathcal{C}]
$$

Here, $W \pitchfork C: \mathcal{J} \rightarrow \mathcal{C}$ is the diagram $j \mapsto W j \pitchfork C$.
Proof. Claim (i) is straightforward, and for claims (ii) and (iii), observe that we have bijections

$$
\begin{aligned}
C\left(C,\{W, A\}^{\mathcal{J}}\right) & \cong[\mathcal{J}, \operatorname{Set}](W, \mathcal{C}(C, A)) \\
& \cong \int_{j: \mathcal{J}} \operatorname{Set}(W j, \mathcal{C}(C, A j)) \\
& \cong \int_{j: \mathcal{J}} \mathcal{C}(W j \odot C, A j) \\
& \cong[\mathcal{J}, C](W \odot C, A)
\end{aligned}
$$

and these are natural in W, A, and C.
Lemma A.4.12. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let \rrbracket and \rrbracket be \mathbf{U}-small categories. For all functors $A: \rrbracket^{\mathrm{op}} \times \rrbracket^{\mathrm{op}} \times \rrbracket \times \rrbracket \rightarrow$ Set:
(i) The assignment $\left(i^{\prime}, i\right) \mapsto \int_{j: 』} A\left(i^{\prime}, j, i, j\right)$ extends to a functor $\square^{\mathrm{op}} \times \rrbracket \rightarrow$ Set.
(ii) There is a unique morphism θ making the diagram below commute for all i and j,

$$
\begin{gathered}
\int_{i^{\prime}: \square} \int_{j^{\prime}: 』} A\left(i^{\prime}, j^{\prime}, i^{\prime}, j^{\prime}\right) \longrightarrow \int_{j^{\prime}: \Omega} A\left(i, j^{\prime}, i, j^{\prime}\right) \\
\vdots \\
\int_{\left(i^{\prime}, j^{\prime}\right): I X J} A\left(i^{\prime}, j^{\prime}, i^{\prime}, j^{\prime}\right) \longrightarrow A(i, j, i, j)
\end{gathered}
$$

where the unlabelled arrows are the components of the respective universal wedges, and θ is moreover an isomorphism.
(iii) There is a unique morphism σ making the diagram below commute for all i and j,

$$
\begin{aligned}
& \int_{i^{\prime}: \Delta} \int_{j^{\prime}: \Delta} A\left(i^{\prime}, j^{\prime}, i^{\prime}, j^{\prime}\right) \longrightarrow \int_{j^{\prime}: \Delta} A\left(i, j^{\prime}, i, j^{\prime}\right) \\
& \int_{j^{\prime}: \Delta} \int_{i^{\prime}: 0} A\left(i^{\prime}, j^{\prime}, i^{\prime}, j^{\prime}\right) \longrightarrow \int_{i^{\prime}: 0} A\left(i, j^{\prime}, i, j^{\prime}\right)
\end{aligned}
$$

where the unmarked arrows are the components of the respective universal wedges, and σ is moreover an isomorphism.

Proof. See [CWM, Ch. IX, § 8].
Theorem A.4.I3 (Interchange law for ends and coends). Let C be any category and let $A: \mathcal{I}^{\mathrm{op}} \times \mathcal{J}^{\mathrm{op}} \times \mathcal{I} \times \mathcal{J} \rightarrow$ Set be any functor. If the end $\int_{i: I} A\left(i, j^{\prime}, i, j\right)$ exists in \mathcal{C} for all j^{\prime} and j in \mathcal{J}, and the end $\int_{j: J} A\left(i^{\prime}, j, i, j\right)$ exists in \mathcal{C} for all i^{\prime} and i in \mathcal{I}, then the following are equivalent:
(i) The end $\int_{(i, j): I \times \mathcal{J}} A(i, j, i, j)$ exists in \mathcal{C}.
(ii) The iterated end $\int_{i: I} \int_{j: J} A(i, j, i, j)$ exists in \mathcal{C}.
(iii) The iterated end $\int_{j: J} \int_{i: I} A(i, j, i, j)$ exists in C.

In this case, we have a canonical isomorphism in \mathcal{C} :

$$
\int_{i: I} \int_{j: J} A(i, j, i, j) \cong \int_{j: J} \int_{i: I} A(i, j, i, j)
$$

Dually, if the coend $\int^{i: \mathcal{I}} A\left(i, j^{\prime}, i, j\right)$ exists in \mathcal{C} for all j^{\prime} and j in \mathcal{J}, and the coend $\int^{j: \mathcal{J}} A\left(i^{\prime}, j, i, j\right)$ exists in \mathcal{C} for all i^{\prime} and i in \mathcal{I}, then the following are equivalent:
(i) The coend $\int^{(i, j): I \times J} A(i, j, i, j)$ exists in C.
(ii) The iterated coend $\int^{i: L} \int^{j: J} A(i, j, i, j)$ exists in C.
(iii) The iterated coend $\int^{j: J} \int^{i: I} A(i, j, i, j)$ exists in \mathcal{C}.

In this case, we have a canonical isomorphism in \mathcal{C} :

$$
\int^{i: \mathcal{I}} \int^{j: \mathcal{J}} A(i, j, i, j) \cong \int^{j: \mathcal{J}} \int^{i: I} A(i, j, i, j)
$$

Proof. Choose a pre-universe \mathbf{U} such that \mathcal{I} and \mathcal{J} are \mathbf{U}-small categories and \mathcal{C} is a locally \mathbf{U}-small category, and use the Yoneda lemma to reduce the claims to the previous lemma.

Proposition A.4.14. Let \mathbf{U} be a pre-universe, let $\mathbf{S e t}$ be the category of \mathbf{U}-sets, and let \mathcal{C} and \mathcal{J} be locally \mathbf{U}-small categories.
(i) For all j in \mathcal{J} and all functors $A: \mathcal{J} \rightarrow \mathcal{C}$, the Yoneda bijection

$$
\mathcal{C}(C, A j) \cong[\mathcal{J}, \operatorname{Set}]\left(\hbar^{j}, \mathcal{C}(C, A)\right)
$$

exhibits $A j$ as the weighted limit $\left\{\hbar^{j}, A\right\}^{J}$ in C.
(ii) If C is a cotensored \mathbf{U}-category, then the end $\int_{j^{\prime}: \mathcal{J}} \mathcal{J}\left(j, j^{\prime}\right) \pitchfork A j^{\prime}$ exists in \mathcal{C} and can be canonically identified with $A j$.
(iii) For all functors $H: \mathcal{J}^{\text {op }} \times \mathcal{J} \rightarrow \mathcal{C}$, the weighted limit $\left\{\operatorname{Hom}_{\mathcal{J}}, H\right\}^{\mathfrak{o p}^{\mathrm{p}} \times \mathcal{J}}$ exists in \mathcal{C} if and only if the end $\int_{j: J} H(j, j)$ exists in \mathcal{C}, and there is a canonical identification of the two.

Dually:
(i') For all j in \mathcal{J} and all functors $A: \mathcal{J} \rightarrow \mathcal{C}$, the Yoneda bijection

$$
\mathcal{C}(A j, C) \cong\left[\mathcal{J}^{\mathrm{op}}, \operatorname{Set}\right]\left(\hbar_{j}, \mathcal{C}(A, C)\right)
$$

exhibits $A j$ as the weighted colimit $h_{j} \star_{J} A$ in \mathcal{C}.
(ii') If \mathcal{C} is a tensored \mathbf{U}-category, then the coend $\int^{j^{\prime}: \mathcal{J}} \mathcal{J}\left(j^{\prime}, j\right) \odot A j^{\prime}$ exists in \mathcal{C} and can be canonically identified with $A j$.
 exists in \mathcal{C} if and only if the coend $\int^{j: J} H(j, j)$ exists in \mathcal{C}, and there is a canonical identification of the two.

A. Generalities

Proof. (i). This is an immediate consequence of the Yoneda lemma and the definition of weighted limit.
(ii). Use the identification constructed in the proof of theorem A.4.Io.
(iii). For all objects C in \mathcal{C}, using claim (ii) and the interchange law for ends (theorem A.4.I3), there are bijections

$$
\begin{aligned}
{\left[\mathcal{J}^{\mathrm{op}} \times \mathcal{J}, \operatorname{Set}\right]\left(\operatorname{Hom}_{\mathcal{J}}, \mathcal{C}(H)\right) } & \cong \int_{\left(j^{\prime}, j\right): \mathcal{J}^{\mathrm{p}} \times \mathcal{J}} \operatorname{Set}\left(\mathcal{J}\left(j^{\prime}, j\right), H\left(j^{\prime}, j\right)\right) \\
& \cong \int_{j: \mathcal{J}} \int_{j^{\prime}: \mathcal{J}^{\mathrm{op}}} \operatorname{Set}\left(\mathcal{J}\left(j^{\prime}, j\right), H\left(j^{\prime}, j\right)\right) \\
& \cong \int_{j: \mathcal{J}} \mathcal{C}(C, H(j, j))
\end{aligned}
$$

and these are natural in C; now apply propositions A.3.8 and A.4.7.

Bibliography

Adámek, J. and J. Rosický
[LPAC] Locally presentable and accessible categories. London Mathematical Society Lecture Note Series 189. Cambridge: Cambridge University Press, 1994. xiv+316. ISBN: 0-521-42261-2. DOI: 10.1017/CB09780511600579.

Borceux, Francis
[1994a] Handbook of categorical algebra. 1. Basic category theory. Encyclopedia of Mathematics and its Applications 50. Cambridge: Cambridge University Press, 1994. xvi+345. ISBN: 0-521-44178-1.
[1994b] Handbook of categorical algebra. 2. Categories and structures. Encyclopedia of Mathematics and its Applications 51. Cambridge: Cambridge University Press, 1994. xviii+443. ISBN: 0-521-44179-X.

Dugger, Daniel
[2001] 'Universal homotopy theories'. In: Adv. Math. 164.1 (2001), pp. 144-176. ISSN: 0001-8708. DOI: 10.1006/aima.2001. 2014.

Dwyer, William G., Philip S. Hirschhorn, Daniel M. Kan and Jeffrey H. Smith
[DHKS] Homotopy limit functors on model categories and homotopical categories. Vol. 113. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2004. viii+181. ISBN: 0-8218-3703-6.

Dwyer, William G. and Jan Spaliski
[DS] 'Homotopy theories and model categories'. In: Handbook of algebraic topology. Amsterdam: North-Holland, 1995, pp. 73-126. Doi:
10.1016/B978-044481779-2/50003-1.

Gabriel, Peter and Friedrich Ulmer
[1971] Lokal präsentierbare Kategorien. Lecture Notes in Mathematics 221. Berlin: Springer-Verlag, 1971. v+200.

Gabriel, Peter and Michel Zisman
[GZ] Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967. x+168.

Goerss, Paul G. and John F. Jardine
[GJ] Simplicial homotopy theory. Vol. 174. Progress in Mathematics. Basel: Birkhäuser Verlag, 1999. xvi+510. ISBN: 3-7643-6064-X. Doi: 10.1007/978-3-0348-8707-6.

Hirschhorn, Philip S.
[2003] Model categories and their localizations. Vol. 99. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2003. xvi+457. ISBN: 0-8218-3279-4.

Hovey, Mark
[1999] Model categories. Vol. 63. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 1999. xii+209. ISBN: 0-8218-1359-5.

Joyal, André and Myles Tierney
[2008] Notes on simplicial homotopy theory. Centre de Recerca Matemàtica, Quadern 47. Barcelona, Feb. 2008. url:
http://mat. uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf.

Kelly, G. Maxwell
[2005] Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories 10. Reprint of the 1982 original. 2005, pp. vi+137.

Mac Lane, Saunders

[CWM] Categories for the working mathematician. Second. Graduate Texts in Mathematics 5. New York: Springer-Verlag, 1998. xii+314. ISBN: 0-387-98403-8.

Mathias, Adrian R. D.
[2001] 'The strength of Mac Lane set theory'. In: Ann. Pure Appl. Logic 110.1-3 (2001), pp. 107-234. ISSN: 0168-0072. DOI: 10.1016/S0168-0072(00)00031-2.

May, J. Peter
[1967] Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11. Princeton, NJ: D. Van Nostrand Co., Inc., 1967. vi+161.

Munkres, James R.
[2000] Topology. English. Second. Upper Saddle River, NJ: Prentice Hall, 2000. xvi+537. ISBN: 0-13-181629-2.

Quillen, Daniel G.
[1967] Homotopical algebra. Lecture Notes in Mathematics, No. 43. Berlin: Springer-Verlag, 1967. iv+156.
[1969] 'Rational homotopy theory'. In: Ann. of Math. (2) 90 (1969), pp. 205-295. issn: 0003-486X.

Shulman, Michael A.
[2012] 'Exact completions and small sheaves'. In: Theory Appl. Categ. 27 (2012), pp. 97-173. ISSN: 1201-561X.

Waterhouse, William C.
[1975] ‘Basically bounded functors and flat sheaves’. In: Pacific J. Math. 57.2 (1975), pp. 597-610. Issn: 0030-8730.

Weibel, Charles A.
[1994] An introduction to homological algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge: Cambridge University Press, 1994. xiv+450. ISBN: 0-521-43500-5.

Index

2-out-of-3 property, 75
2-out-of-6 property, 75
accessible category, I3
classification theorem, I5
accessible extension, 26, 28, 30
accessible functor, 15
adjoint
densely-defined partial -, 87
adjoint functor theorem
accessible -, 2 I, 29
\aleph-number, 7
anodyne extension, 47
arity class, 8
classification theorem, 8

Beck-Chevalley condition, 24
cardinal, 7
classification theorem, 7
regular -, 8
strongly inaccessible -, 9
cartesian closed category, 40
category
finite -, 8
locally small —, 2
small-, 2, 8
category with weak equivalences, 5 I
class, 2
classification theorem

- for accessible categories, I5
- for arity classes, 8
- for cardinalities, 7
- for locally presentable categories, 17
- for well-ordered sets, 5
cocomplete category, 3
codegeneracy operator, 35
codense functor, 86
coend, 90
coface operator, 35
cofibrant
— object, 56
— replacement, 59
cofibration, 56
— of simplicial sets, 47
cofinal
- subset of a poset, 8
colimit
weighted —, 8I
compact object, I I
compactly-generated Hausdorff space, 40
complete category, 3
connected components, 39
cosimplicial identities, 36
coskeleton
— of a simplicial set, 44
cotensored category, 92
cowedge, 90
cylinder object, 60
degeneracy operator, 37
dense functor, 86
dinatural transformation, 90
directed preorder, Io
end, 90
exponential object, see cartesian closed category
face operator, 37
factorisation system
functorial -, 73
orthogonal -, 69, 73
weak -, 69
fibrant
— object, 56
— replacement, 59
fibration, 56
- of simplicial sets, see Kan fibration
filtered category, io
fundamental category, 42
fundamental groupoid, 43
geometric realisation
- of a simplicial set, 39
homotopical category, 5I
saturated -, 5 I
slice -, 5 I
homotopical equivalence, 52
homotopical functor, 5I
homotopical Kan extension, 54
homotopically contractible, 53
homotopically initial, 52
homotopically terminal, 52
homotopy
left —, 60
right —, 60
homotopy category, 64, 75
— of a model category, 60, 64
homotopy inverse, 63
horn, 47
ind-completion, I3
ind-object, I3
Kan complex, 47
Kan extension, 80
absolute - , 80
pointwise -, 80,83
Kan fibration, 47
trivial —, 47
Kelley space, see compactly-generated
Hausdorff space
lifting property, 67
limit
weighted -, 8I
localisation, 75
locally presentable category, I6
classification theorem, I7
mate, 24
model category, 55
opposite -, 57
slice —, 57
model structure
Kan-Quillen -, 49
nerve
- functor, 83
— of a category, 42
ordinal, 4
orthogonality, 67
path object, 60
pre-universe, I
Quillen adjunction, 57, 58
Quillen equivalence, 57
Quillen functor, 57
rank
— of a set, 6
relative category, 74
maximal —, 74
minimal -, 74
opposite -, 74
saturated -, 5I, 75
semi-saturated -, 75
relative functor, 74
set, 2
simplex category, 35
simplicial identities, 37
simplicial object, 35
simplicial set, 37
discrete -, 39
singular set, 39
skeleton
— of a simplicial set, 44
standard simplex
— as a simplicial set, 38
- as a topological space, 39
tautological cocone, 83, 86
tautological cone, 86
tensored category, 92
transitive set, 5
trivial cofibration
- of simplicial sets, see anodyne extension
truncation
— of a simplicial set, 43
universe, I
universe convention, 4
weak equivalence, 56, 79
- of simplicial sets, 49
natural, 5 I
wedge, 90
well-ordered set
classification theorem, 5
zigzag, 78

[^0]: ${ }^{[1]}$ See [CWM, Ch. IX, § 5].
 ${ }^{[2]}$ See § A.4.

[^1]: ${ }^{[3]}$ See Theorem I in [CWM, Ch. X, § 2].

[^2]: ${ }^{[4]}$ See the Lemma in [CWM, Ch. V, § 6].
 ${ }^{[5]}$ See Theorem I in [CWM, Ch. V, § 6].

[^3]: ${ }^{[6]}$ See Theorem 2 in [CWM, Ch. IV, § 1].

[^4]: ${ }^{[1]}$ See [Dugger, 2001].

[^5]: ${ }^{[1]}$ See definition A.3.Io.

[^6]: [2] — also known as Kelley spaces.

[^7]: ${ }^{[1]}$ See e.g. [CWM, Ch. IV, § 3].

[^8]: ${ }^{[1]}$ This presentation is due to Quillen [1969].

[^9]: ${ }^{\text {[1] }}$ Warning: This is the opposite of the category \mathbf{T} defined in [DHKS, § 34].

[^10]: ${ }^{[1]}$ See Theorem 3 in [CWM, Ch. IV, § 7].

