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Abstract

The functor of points is away of defining schemeswithout going through
locally ringed spaces. The essential idea is to replace points in the classical
sense with generalised elements, i.e. morphisms whose domain need not
be point-like in any sense, de-emphasising the special role of prime ideals
and fields in the traditional approach.

As usual in algebraic geometry, all rings under consideration are commutat-
ive unless otherwise stated. For simplicity, we work with CRing, the category
of rings, but it should be clear that we could equally well work with the category
of 𝑅-algebras for any ring 𝑅. We could also replace CRing with the category of
finitely generated 𝑅-algebras for any ring 𝑅, but then we will only get schemes
locally of finite type over 𝑅 instead of general schemes over 𝑅.

The functor of points approach to scheme theory is used in only a handful
of textbooks, such as [Demazure and Gabriel, 1970] and [Jantzen, 2003]. Aside
from some basic category theory and some basic commutative algebra, I aim to
give a self-contained introduction in these notes.

One technical point that must be mentioned is that the category [CRing,Set]
is not locally small; indeed, it is so large that we cannot work with it properly
even in von Neumann–Gödel–Bernays set theory (NBG). To use the termino-
logy of Adámek, Herrlich and Strecker [ACC], the collections of objects and
morphisms in [CRing,Set] are conglomerates, not classes. However, we can
get around this by replacing [CRing,Set] with the full subcategory of access-
ible functors CRing → Set, which is then locally small but still closed under
limits and colimits for small diagrams. Of course, one then has to check that all
the functors CRing → Set we work with are indeed accessible, but we will not
do this.
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The functor of points

1 The Zariski topology

Definition 1.1. A Zariski-local epimorphism in [CRing,Set] is a morphism
𝛼 : 𝐹 → 𝐺 satisfying the following condition:

• For any ring𝐴 and any element 𝑦 of𝐺(𝐴), there exist elements 𝑎1, … , 𝑎𝑛 of
𝐴 (where 𝑛 is possibly zero) and elements 𝑥𝑖 of 𝐹 (𝐴[𝑎𝑖

−1]) (for 1 ≤ 𝑖 ≤ 𝑛)
such that 𝛼𝐴[𝑎𝑖

−1](𝑥𝑖) = 𝐺(𝛾𝑖)(𝑦) (for 1 ≤ 𝑖 ≤ 𝑛), where 𝛾𝑖 : 𝐴 → 𝐴[𝑎𝑖
−1]

is the universal ring homomorphism that inverts 𝑎𝑖, and

𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛 = 1

for some elements 𝑏1, … , 𝑏𝑛 of 𝐴.

Remark 1.2. If 𝛼 : 𝐹 → 𝐺 is a Zariski-local epimorphism and 𝐴 is a field,
then 𝛼𝐴 : 𝐹 (𝐴) → 𝐺(𝐴) is surjective (because every non-zero element of 𝐴 is
invertible).

Lemma 1.3. Let 𝐴 be a ring, let h𝐴 = CRing(𝐴, −), and let 𝑈 ⊆ h𝐴 be a
subfunctor. The following are equivalent:

(i) The inclusion 𝑈 ↪ h𝐴 is a Zariski-local epimorphism.

(ii) There exist elements 𝑎1, … , 𝑎𝑛 of 𝐴 such that 𝛾𝑖 ∈ 𝑈(𝐴[𝑎𝑖
−1]), where

𝛾𝑖 : 𝐴 → 𝐴[𝑎𝑖
−1] is the universal ring homomorphism that inverts 𝑎𝑖, and

𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛 = 1

for some elements 𝑏1, … , 𝑏𝑛 of 𝐴.

Proof. (i) ⇒ (ii). Apply the definition to the element id𝐴 of h𝐴(𝐴).

(ii) ⇒ (i). Let 𝑅 be a ring and let 𝑓 be an element of h𝐴(𝑅), i.e. a ring homo-
morphism 𝐴 → 𝑅. Then, for 𝑟𝑖 = 𝑓(𝑎𝑖), there is a commutative diagram in
CRing of the form below,

𝐴 𝐴[𝑎𝑖
−1]

𝑅 𝑅[𝑟𝑖
−1]

𝑓

𝛾𝑖

𝛾′
𝑖

2



The functor of points

where 𝛾′
𝑖 : 𝑅 → 𝑅[𝑟𝑖

−1] is the localising homomorphism. Thus, for each 𝑖,
𝛾′

𝑖 ∘ 𝑓 ∈ 𝑈(𝑅[𝑟𝑖
−1]); moreover,

𝑟1𝑓(𝑏1) + ⋯ + 𝑟𝑛𝑓(𝑏𝑛) = 1

so we are done. ■

Proposition 1.4.
(i) The class of Zariski-local epimorphisms in [CRing,Set] is closed under

pullback, i.e. for any pullback diagram in [CRing,Set], say

𝐹 ′ 𝐹

𝐺′ 𝐺

𝛼′ 𝛼

if 𝛼 : 𝐹 → 𝐺 is a Zariski-local epimorphism, then so is 𝛼′ : 𝐹 ′ → 𝐺′.

(ii) Let 𝛼 : 𝐹 → 𝐺 and 𝛽 : 𝐺 → 𝐻 be morphisms in [CRing,Set]. If
𝛽 ∘ 𝛼 : 𝐹 → 𝐻 is a Zariski-local epimorphism, then so is 𝛽 : 𝐺 → 𝐻 .

(iii) The class of Zariski-local epimorphisms in [CRing,Set] is closed under
composition.

Proof. These are straightforward exercises. ◊

Corollary 1.5. For each ring𝐴, let 𝐽(𝐴) be the collection of subfunctors𝑈 ⊆ h𝐴

such that the inclusion is a Zariski-local epimorphism. Then 𝐽 is a Grothendieck
topology on CRingop, called the Zariski topology. ■

Definition 1.6.
• A Zariski-covering sieve on a ring 𝐴 is a subfunctor 𝑈 ⊆ h𝐴 such that
the inclusion 𝑈 ↪ h𝐴 is a Zariski-local epimorphism.

• A Zariski sheaf is a functor 𝐹 : CRing → Set that satisfies the sheaf
condition with respect to the Zariski topology on CRingop, i.e. for any
ring 𝐴 and any Zariski-covering sieve 𝑈 ⊆ h𝐴, the induced map

[CRing,Set](h𝐴, 𝐹 ) → [CRing,Set](𝑈, 𝐹 )

is a bijection.
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Proposition 1.7. The Zariski topology on CRingop is subcanonical, i.e. for any
ring 𝐴, the representable functor h𝐴 is a Zariski sheaf.

Proof. Let 𝑅 be a ring, let 𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛 be elements of 𝑅 such that

𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛 = 1

and let 𝑎𝑖,𝑗 = 𝑎𝑖𝑎𝑗 . We will show that the following diagram in CRing is an
equaliser diagram,

𝑅
𝑛

∏
𝑖=1

𝑅[𝑎𝑖
−1]

𝑛

∏
𝑖=1

𝑛

∏
𝑗=1

𝑅[𝑎𝑖,𝑗
−1]

where the arrows are induced by the various localising homomorphisms.
To begin, we verify that the homomorphism 𝑅 → ∏𝑛

𝑖=1 𝑅[𝑎𝑖
−1] is injective.

Let 𝑐 be an element of 𝑅 such that 𝑐 = 0 in each 𝑅[𝑎𝑖
−1], i.e. 𝑎𝑖

𝑘𝑖𝑐 = 0 in 𝑅 for
some natural numbers 𝑘1, … , 𝑘𝑛. By considering the equation below,

(𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛)𝑘1+⋯+𝑘𝑛 = 1

we see that there exist 𝑏′
1, … , 𝑏′

𝑛 in 𝑅 such that

𝑎1
𝑘1𝑏′

1 + ⋯ + 𝑎𝑛
𝑘𝑛𝑏′

𝑛 = 1

and thus,
𝑐 = (𝑎1

𝑘1𝑏′
1 + ⋯ + 𝑎𝑛

𝑘𝑛𝑏′
𝑛)𝑐 = 0

in 𝑅. Hence, the kernel of 𝑅 → ∏𝑛
𝑖=1 𝑅[𝑎𝑖

−1] is trivial, as required.
Now, suppose we have 𝑐1, … , 𝑐𝑛 in 𝑅 and natural numbers 𝑘1, … , 𝑘𝑛 such

that 𝑐𝑖𝑎𝑖
−𝑘𝑖 = 𝑐𝑗𝑎𝑗

−𝑘𝑗 in each 𝑅[𝑎𝑖,𝑗
−1], i.e.

𝑎𝑖,𝑗
𝑚𝑖,𝑗 𝑎𝑗

𝑘𝑗 𝑐𝑖 = 𝑎𝑖,𝑗
𝑚𝑖,𝑗 𝑎𝑖

𝑘𝑖𝑐𝑗

in 𝑅 for some natural number 𝑚𝑖,𝑗 , or equivalently:

𝑎𝑗
𝑚𝑖,𝑗+𝑘𝑗 (𝑎𝑖

𝑚𝑖,𝑗 𝑐𝑖) = 𝑎𝑖
𝑚𝑖,𝑗+𝑘𝑖(𝑎𝑗

𝑚𝑖,𝑗 𝑐𝑗)

Let 𝑚 = max {𝑚𝑖,𝑗}. There exist 𝑏′
1, … , 𝑏′

𝑛 in 𝑅 such that

𝑎1
𝑚+𝑘1𝑏′

1 + ⋯ + 𝑎𝑛
𝑚+𝑘𝑛𝑏′

𝑛 = 1
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and thus:

𝑎𝑖
𝑚+𝑘𝑖(𝑎1

𝑚𝑏′
1𝑐1 + ⋯ + 𝑎𝑛

𝑚𝑏′
𝑛𝑐𝑛) = 𝑎𝑖

𝑚(𝑎1
𝑚+𝑘1𝑏′

1 + ⋯ + 𝑎𝑛
𝑚+𝑘𝑛𝑏′

𝑛)𝑐𝑖 = 𝑎𝑖
𝑚𝑐𝑖

i.e. 𝑎1
𝑚𝑏′

1𝑐1 + ⋯ + 𝑎𝑛
𝑚𝑏′

𝑛𝑐𝑛 = 𝑐𝑖𝑎𝑖
−𝑘𝑖 in 𝑅[𝑎𝑖

−1]. Thus, the diagram in question
is indeed an equaliser diagram.

The above implies that h𝐴 satisfies the sheaf condition with respect to the
sieve on 𝑅 generated by {𝑅[𝑎1

−1] ← 𝑅, … , 𝑅[𝑎𝑛
−1] ← 𝑅}. Lemma 1.3 says

that the Zariski topology is generated by such sieves, so a standard argument
shows that h𝐴 is indeed a Zariski sheaf. ■

Lemma 1.8. Let 𝛼 : 𝐹 → 𝐺 be a morphism in [CRing,Set] with the following
property:

• In any pullback diagram in [CRing,Set] of the form below,

𝑉 𝐹

𝑊 𝐺

𝛼

if 𝑊 is a representable functor, then 𝑉 is a Zariski sheaf.

Under this hypothesis, if 𝐺 is a Zariski sheaf, then 𝐹 is also a Zariski sheaf.

Proof. Let 𝐴 be a ring and let 𝑈 ⊆ h𝐴 be a Zariski-covering sieve. Suppose 𝐺 is
a Zariski sheaf; we wish to show that 𝐹 is also a Zariski sheaf. Let 𝜑 : 𝑈 → 𝐹
be a morphism in [CRing,Set]. By hypothesis, there is a unique morphism
𝜓 : h𝐴 → 𝐺 in [CRing,Set] making the following diagram commute,

𝑈 𝐹

h𝐴 𝐺

𝜑

𝛼

𝜓

so we get a commutative diagram of the form below,

𝑈 𝑉 𝐹

h𝐴 h𝐴 𝐺

𝜃

𝜌

𝜋

𝛼

id 𝜓
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where the right square is a pullback square and 𝜋 ∘ 𝜃 = 𝜑. Since 𝑉 is a Zariski
sheaf, there is a unique morphism 𝜎 : h𝐴 → 𝑉 extending 𝜃 : 𝑈 → 𝑉 along
𝑈 ↪ h𝐴. Thus, 𝜋 ∘ 𝜎 : h𝐴 → 𝐹 extends 𝜑 : 𝑈 → 𝐹 along 𝑈 ↪ h𝐴. Moreover,
𝜌 ∘ 𝜎 : h𝐴 → h𝐴 extends 𝑈 ↪ h𝐴 along itself, so by lemma 1.3, we must have
𝜌 ∘ 𝜎 = idh𝐴. We deduce that the map

[CRing,Set](h𝐴, 𝐹 ) → [CRing,Set](𝑈, 𝐹 )

induced by 𝑈 ↪ h𝐴 is a surjection.
Now, suppose �̄� : h𝐴 → 𝐹 is any morphism extending 𝜑 : 𝑈 → 𝐹 along

𝑈 ↪ h𝐴. Since 𝐺 is a Zariski sheaf, it follows that 𝛼∘�̄� = 𝜓 , so there is a unique
morphism 𝜏 : h𝐴 → 𝑉 such that 𝜋 ∘ 𝜏 = �̄� and 𝜌 ∘ 𝜏 = idh𝐴. By considering the
restriction of 𝜏 : h𝐴 → 𝑉 along 𝑈 ↪ h𝐴 and using the hypothesis that 𝑉 is a
Zariski sheaf, we may deduce that 𝜏 = 𝜎, hence �̄� = 𝜋 ∘ 𝜎. Thus, the map

[CRing,Set](h𝐴, 𝐹 ) → [CRing,Set](𝑈, 𝐹 )

induced by 𝑈 ↪ h𝐴 is an injection, and this completes the proof. ■

2 Open and closed immersions

Definition 2.1. An affine morphism in [CRing,Set] is a morphism 𝛼 : 𝐹 → 𝐺
with the following property:

• In any pullback diagram in [CRing,Set] of the form below,

𝑉 𝐹

𝑊 𝐺

𝛼

if 𝑊 is a representable functor, then 𝑉 is also a representable functor.

Example 2.2. If 𝐹 and 𝐺 are both representable functors CRing → Set, then
every morphism 𝐹 → 𝐺 is affine, because CRing has pushouts and the Yoneda
embedding sends pushouts in CRing to pullbacks in [CRing,Set].

Proposition 2.3.
(i) The class of affine morphisms in [CRing,Set] is closed under pullback.
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(ii) The class of affine morphisms in [CRing,Set] is closed under composi-
tion.

Proof. This is a straightforward exercise. (Use the pullback pasting lemma.) ◊

Proposition 2.4. Let 𝛼 : 𝐹 → 𝐺 be an affine morphism in [CRing,Set].

(i) If 𝐺 is a representable functor, then so is 𝐹 .

(ii) If 𝐺 is a Zariski sheaf, then so is 𝐹 .

Proof. (i). Immediate from the definition.

(ii). Use lemma 1.8. ■

Definition 2.5. A closed immersion in [CRing,Set] is a morphism 𝛼 : 𝐹 → 𝐺
with the following property:

• For every ring 𝐴 and every morphism 𝜓 : h𝐴 → 𝐺, there is a pullback
diagram in [CRing,Set] of the form below,

h𝐵 𝐹

h𝐴 𝐺

h𝑓 𝛼

𝜓

where 𝑓 : 𝐴 → 𝐵 is a surjective ring homomorphism.

A closed subfunctor of 𝐺 : CRing → Set is a subfunctor 𝐹 ⊆ 𝐺 such that the
inclusion 𝐹 ↪ 𝐺 is a closed immersion.

Example 2.6. For any ring homomorphism 𝑓 : 𝐴 → 𝐵, h𝑓 : h𝐵 → h𝐴 is a closed
immersion in [CRing,Set] if and only if 𝑓 : 𝐴 → 𝐵 is surjective (because the
class of surjective ring homomorphisms is closed under pushout in CRing).

Proposition 2.7.
(i) The class of closed immersions in [CRing,Set] is closed under pullback.

(ii) The class of closed immersions in [CRing,Set] is closed under composi-
tion.

Proof. This is a straightforward exercise. (Use the pullback pasting lemma.) ◊
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Proposition 2.8.
(i) Every closed immersion in [CRing,Set] is an affine morphism.

(ii) Every closed immersion in [CRing,Set] is a monomorphism.

Proof. (i). Immediate from the definition.

(ii). Apply the Yoneda lemma. ■

Definition 2.9. Let 𝑓 : 𝐴 → 𝐵 be a surjective ring homomorphism. The sub-
functor D(𝑓) ⊆ h𝐴 is defined as follows:

• Given a ring homomorphism 𝑔 : 𝐴 → 𝑅, 𝑔 ∈ D(𝑓)(𝑅) if and only if, for
any commutative square in CRing of the form below,

𝐴 𝐵

𝑅 𝑆

𝑔

𝑓

we have 𝑆 ≅ {0}.

Lemma 2.10. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝑅 be ring homomorphisms. If
𝑓 : 𝐴 → 𝐵 is surjective, then the following are equivalent:

(i) 𝑔 ∈ D(𝑓)(𝑅).

(ii) The following diagram is a pushout square in CRing:

𝐴 𝐵

𝑅 {0}

𝑔

𝑓

(iii) There exist elements 𝑎1, … , 𝑎𝑛 of 𝐴 and elements 𝑟1, … , 𝑟𝑛 of 𝑅 such that

𝑔(𝑎1)𝑟1 + ⋯ + 𝑔(𝑎𝑛)𝑟𝑛 = 1

and 𝑓(𝑎𝑖) = 0 (for 1 ≤ 𝑖 ≤ 𝑛).

8



The functor of points

Proof. (i) ⇒ (ii). This follows from the fact that every ring homomorphism
{0} → 𝑇 is an isomorphism.

(ii) ⇒ (iii). If the following diagram is a pushout square in CRing,

𝐴 𝐵

𝑅 {0}

𝑔

𝑓

then (by considering the explicit construction of pushouts in CRing) the ideal of
𝐵 generated by the image of ker 𝑓 ⊆ 𝐴 must be the unit ideal.

(iii) ⇒ (i). Consider a commutative diagram in CRing of the form below:

𝐴 𝐵

𝑅 𝑆

𝑔

𝑓

𝑘

ℎ

Then,

1 = ℎ(𝑔(𝑎1)𝑟1 + ⋯ + 𝑔(𝑎𝑛)𝑟𝑛) = 𝑘(𝑓(𝑎1))ℎ(𝑟1) + ⋯ + 𝑘(𝑓(𝑎𝑛))ℎ(𝑟𝑛) = 0

so indeed 𝑆 ≅ {0}. ■

Corollary 2.11. Let 𝐴 be a ring, let 𝑎 be an element of 𝐴, let 𝑓 : 𝐴 → 𝐴/(𝑎)
be the quotient homomorphism, and let 𝛾 : 𝐴 → 𝐴[𝑎−1] be the universal ring
homomorphism inverting 𝑎. Then there is a unique isomorphism h𝐴[𝑎−1] → D(𝑓)
making the following diagram in [CRing,Set] commute:

h𝐴[𝑎−1] D(𝑓)

h𝐴 h𝐴

h𝛾

≅

Proof. Apply lemma 2.10. ■
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Definition 2.12. A open immersion in [CRing,Set] is a morphism 𝛼 : 𝐹 → 𝐺
with the following property:

• For every ring 𝐴 and every morphism 𝜓 : h𝐴 → 𝐺, there is a pullback
diagram in [CRing,Set] of the form below,

D(𝑓) 𝐹

h𝐴 𝐺

𝛼

𝜓

where 𝑓 : 𝐴 → 𝐵 is some surjective ring homomorphism.

An open subfunctor of 𝐺 : CRing → Set is a subfunctor 𝐹 ⊆ 𝐺 such that the
inclusion 𝐹 ↪ 𝐺 is an open immersion.

Proposition 2.13. Every open immersion in [CRing,Set] is a monomorphism.

Proof. Apply the Yoneda lemma. ■

Proposition 2.14. The class of open immersions in [CRing,Set] is closed under
pullback.

Proof. This is a straightforward exercise. (Use the pullback pasting lemma.) ◊

Corollary 2.15. Let 𝛼 : 𝐹 → 𝐺 and 𝛽 : 𝐺 → 𝐻 be morphisms in [CRing,Set].
If 𝛽 : 𝐺 → 𝐻 is a monomorphism and 𝛽 ∘ 𝛼 : 𝐹 → 𝐻 is an open immersion,
then 𝛼 : 𝐹 → 𝐺 is also an open immersion.

Proof. Since 𝛽 : 𝐺 → 𝐻 is a monomorphism, the diagram below is a pullback
square in [CRing,Set],

𝐹 𝐹

𝐺 𝐻

𝛼 𝛽∘𝛼

𝛽

so the claim is a special case of proposition 2.14. ■

Lemma 2.16. Let 𝑓 : 𝐴 → 𝐵 be a surjective ring homomorphism. Then D(𝑓)
is an open subfunctor of h𝐴.
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Proof. Let 𝑔 : 𝐴 → 𝑅 be any ring homomorphism. Suppose we have the fol-
lowing pushout diagram in CRing:

𝐴 𝐵

𝑅 𝑆

𝑔

𝑓

ℎ

Then ℎ : 𝑅 → 𝑆 is also a surjective ring homomorphism, and it is straightfor-
ward to verify that the following diagram is a pullback square in [CRing,Set]:

D(ℎ) D(𝑓)

h𝑆 h𝑅
h𝑔

Thus, D(𝑓) ↪ h𝑅 is indeed an open immersion. ■

Remark 2.17. In contrast to closed immersions, open immersions are not neces-
sarily affine morphisms. Indeed, if 𝑓 : ℤ[𝑥, 𝑦] → ℤ is any (necessarily surject-
ive) ring homomorphism, thenD(𝑓) is not a representable functorCRing → Set.

3 Schemes

Definition 3.1. A scheme is a Zariski sheaf 𝑋 : CRing → Set for which there
is a set 𝔘 satisfying the following conditions:

• Each element of 𝔘 is a pair (𝐴, 𝑥) where 𝐴 is a ring and 𝑥 is an element
of 𝑋(𝐴).

• For each element (𝐴, 𝑥) of 𝔘, the corresponding morphism h𝐴 → 𝑋 is an
open immersion.

• The induced morphism ∐(𝐴,𝑥)∈𝔘 h𝐴 → 𝑋 is a Zariski-local epimorphism.

An atlas for 𝑋 is such a set 𝔘.

Remark 3.2. The above definition is equivalent to Définition 3.11 in [Demazure
and Gabriel, 1970], but not literally the same. Instead of using the notion of a
Zariski-local epimorphism, they require that, for every field 𝑘, the induced map
∐(𝐴,𝑥)∈𝔘 h𝐴(𝑘) → 𝑋(𝑘) is a surjection.

11
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Example 3.3. It is clear that every representable functor CRing → Set is a
scheme. It is therefore no abuse of language to say define an affine scheme to
be a representable functor.

Proposition 3.4. Let 𝑓 : 𝐴 → 𝐵 be a surjective ring homomorphism. Then
D(𝑓) is a Zariski sheaf.

Proof. Let 𝑅 be a ring, let 𝑈 be a Zariski-covering sieve on 𝑅, and let 𝑠 : 𝑈 →
D(𝑓) be a morphism. Wemust show that there is a unique morphism h𝑅 → D(𝑓)
extending 𝑠 : 𝑈 → D(𝑓) along 𝑈 ↪ h𝐴.

Firstly, by proposition 1.7 and the Yoneda lemma, there is a unique ring ho-
momorphism 𝑔 : 𝐴 → 𝑅 making the following diagram in [CRing,Set] com-
mute:

𝑈 D(𝑓)

h𝑅 h𝐴

𝑠

h𝑔

It thus suffices to show that 𝑔 ∈ D(𝑓)(𝑅). Consider a pushout square in CRing
of the form below:

𝐴 𝐵

𝑅 𝑆

𝑔

𝑓

ℎ

We then have the following pullback square in [CRing,Set]:

D(ℎ) D(𝑓)

h𝑅 h𝐴
h𝑔

In particular, we have 𝑈 ⊆ D(ℎ) ⊆ h𝑅. On the other hand, let 𝑉 be the subfunc-
tor of h𝑆 making the diagram below a pullback square in [CRing,Set]:

𝑉 𝑈

h𝑆 h𝑅
hℎ

12
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By proposition 1.4, 𝑉 is a Zariski-covering sieve on 𝑆. Thus, for any ring ho-
momorphism 𝑡 : 𝑆 → 𝑇 such that 𝑡 ∈ 𝑉 (𝑇 ), we must have 𝑡 ∘ ℎ ∈ D(ℎ), and
therefore 𝑇 ≅ {0}. Hence, 𝑉 is either empty or generated by {{0} ← 𝑆}, so
lemma 1.3 implies 𝑆 ≅ {0}. The claim follows, by lemma 2.10. ■

Corollary 3.5. Let 𝛼 : 𝐹 → 𝐺 be an open immersion in [CRing,Set]. If 𝐺 is a
Zariski sheaf, then so is 𝐹 .

Proof. Apply lemma 1.8 and proposition 3.4. ■

Proposition 3.6. Let 𝑓 : 𝐴 → 𝐵 be a surjective ring homomorphism. For
each element 𝑎 in 𝐴, let 𝛾𝑎 : 𝐴 → 𝐴[𝑎−1] be the universal ring homomorphism
inverting 𝑎, and define 𝔘 as follows:

𝔘 = {(𝐴[𝑎−1], 𝛾𝑎) | 𝑎 ∈ ker 𝑓}

(i) For 𝑎 ∈ ker 𝑓 , the morphism h 𝛾𝑎 : h𝐴[𝑎−1] → h𝐴 factors through the inclu-
sion D(𝑓) ↪ h𝐴 as an open immersion h𝐴[𝑎−1] → D(𝑓).

(ii) The induced morphism

∐
(𝐴[𝑎−1],𝛾𝑎)

h𝐴[𝑎−1] → D(𝑓)

is a Zariski-local epimorphism.

(iii) D(𝑓) is a scheme with atlas 𝔘.

Proof. (i). By lemma 2.10, if 𝑎 ∈ ker 𝑓 , then the localising homomorphism
𝛾𝑎 : 𝐴 → 𝐴[𝑎−1] is an element of D(𝑓)(𝐴[𝑎−1]). Thus, by the Yoneda lemma,

h 𝛾𝑎 : h𝐴[𝑎−1] → h𝐴 factors through D(𝑓) ↪ h𝐴. Moreover, by corollary 2.11
and lemma 2.16, h 𝛾𝑎 : h𝐴[𝑎−1] → h𝐴 is an open immersion, so by corollary 2.15,
the morphism h𝐴[𝑎−1] → D(𝑓) corresponding to 𝛾𝑎 ∈ D(𝑓)(𝐴[𝑎−1]) is indeed an
open immersion.

(ii). Let 𝑔 : 𝐴 → 𝑅 be any ring homomorphism such that 𝑔 ∈ D(𝑓)(𝑅). Then,
for 𝑎 ∈ ker 𝑓 , we have the following pushout diagram in CRing,

𝐴 𝐴[𝑎−1]

𝑅 𝑅[𝑔(𝑎)−1]

𝑔

𝛾𝑎

𝑔[𝑎−1]

𝛾𝑔(𝑎)

13
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so 𝛾𝑔(𝑎) ∘ 𝑔 : 𝐴 → 𝑅[𝑔(𝑎)−1] is in D(𝑓)(𝑅[𝑔(𝑎)−1]). Moreover, there exist
elements 𝑎1, … , 𝑎𝑛 of ker 𝑓 and elements 𝑟1, … , 𝑟𝑛 of 𝑅 such that

𝑔(𝑎1)𝑟1 + ⋯ + 𝑔(𝑎𝑛)𝑟𝑛 = 1

and we may conclude that ∐
(𝐴[𝑎−1],𝛾𝑎)

h𝐴[𝑎−1] → D(𝑓) is indeed a Zariski-local
epimorphism. This completes the proof that 𝔘 is an atlas for D(𝑓).

(iii). By proposition 3.4, D(𝑓) is a Zariski sheaf, and the above shows 𝔘 is an
atlas for D(𝑓), so we are done. ■

Lemma 3.7. Let 𝐴 be a ring and let 𝑈 ⊆ h𝐴 be a subfunctor. For each element
𝑎 of 𝐴, let 𝛾𝑎 : 𝐴 → 𝐴[𝑎−1] be the universal ring homomorphism inverting 𝑎,
and define 𝐼 as follows:

𝐼 = {𝑎 ∈ 𝐴 | 𝛾𝑎 ∈ 𝑈(𝐴[𝑎−1])}
If 𝑈 is a Zariski sheaf, then:

(i) 𝐼 is an ideal of 𝐴.

(ii) Let 𝑎 be an element of 𝐴 and let 𝑛 be a natural number. If 𝑎𝑛 ∈ 𝐼 , then
𝑎 ∈ 𝐼 .

(iii) Let 𝔞 be an ideal of 𝐴 and let 𝑓 : 𝐴 → 𝐴/𝔞 be the quotient homomorph-
ism. Then D(𝑓) ⊆ 𝑈 if and only if 𝔞 ⊆ 𝐼 .

Proof. (i). Since ∅ is a Zariski-covering sieve on {0} and 𝐴[0−1] ≅ {0}, we
must have 0 ∈ 𝐼 . Moreover, if 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐼 , then the following diagram in
CRing commutes,

𝐴 𝐴

𝐴[𝑏−1] 𝐴[(𝑎𝑏)−1]

𝛾𝑏 𝛾𝑎𝑏

so we must have 𝑎𝑏 ∈ 𝐼 as well. Finally, if 𝑎 ∈ 𝐼 , 𝑏 ∈ 𝐼 , and 𝑐 = 𝑎 + 𝑏,
then by lemma 1.3, {𝐴[𝑐−1][𝑎−1] ← 𝐴[𝑐−1], 𝐴[𝑐−1][𝑏−1] ← 𝐴[𝑐−1]} generates
a Zariski-covering sieve on 𝐴[𝑐−1]; but the following diagrams in CRing com-
mute,

𝐴 𝐴[𝑎−1]

𝐴[𝑐−1] 𝐴[(𝑐𝑎)−1]

𝛾𝑐

𝛾𝑎 𝐴 𝐴[𝑏−1]

𝐴[𝑐−1] 𝐴[(𝑐𝑏)−1]

𝛾𝑐

𝛾𝑏

14
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and 𝑐𝑎 ∈ 𝐼 and 𝑐𝑏 ∈ 𝐼 by the earlier argument, so 𝑐 ∈ 𝐼 because 𝑈 is a Zariski
sheaf.

(ii). Clearly, 𝑎 is invertible in 𝐴[𝑎−𝑛], and it is not hard to see that the induced
homomorphism 𝐴[𝑎−1] → 𝐴[𝑎−𝑛] is an isomorphism. Thus, if 𝑎𝑛 ∈ 𝐼 , then
𝑎 ∈ 𝐼 as well.

(iii). Let 𝑎 ∈ 𝔞. We have 𝛾𝑎 ∈ D(𝑓)(𝐴[𝑎−1]), so if D(𝑓) ⊆ 𝑈 , then 𝑎 ∈ 𝐼 .
Conversely, suppose 𝔞 ⊆ 𝐼 . For 𝑎 ∈ 𝔞, we have 𝛾𝑎 ∈ 𝑈(𝐴[𝑎−1]), and by

proposition 3.6, the induced morphism

∐
𝑎∈𝔞

h𝐴[𝑎−1] → D(𝑓)

is a Zariski-local epimorphism; but 𝑈 is a Zariski sheaf, so D(𝑓) ⊆ 𝑈 . ■

Lemma 3.8. Let 𝐴 be a ring and let 𝑈 ⊆ 𝑉 ⊆ h𝐴 be subfunctors. If the inclu-
sions 𝑈 ↪ 𝑉 and 𝑉 ↪ h𝐴 are open immersions, then 𝑈 ↪ h𝐴 is also an open
immersion.

Proof. For each element 𝑎 of 𝐴, let 𝛾𝑎 : 𝐴 → 𝐴[𝑎−1] be universal ring homo-
morphism inverting 𝑎, and define 𝐼 and 𝐽 as follows:

𝐼 = {𝑎 ∈ 𝐴 | 𝛾𝑎 ∈ 𝑈(𝐴[𝑎−1])}
𝐽 = {𝑎 ∈ 𝐴 | 𝛾𝑎 ∈ 𝑉 (𝐴[𝑎−1])}

Clearly, 𝐼 ⊆ 𝐽 . Note that 𝑈 and 𝑉 are Zariski sheaves (by proposition 1.7
and corollary 3.5), so 𝐼 and 𝐽 are ideals of 𝐴, by lemma 3.7. Moreover, if
𝑓 : 𝐴 → 𝐴/𝐼 and 𝑔 : 𝐴 → 𝐴/𝐽 are the quotient homomorphisms, then
we have D(𝑔) = 𝑉 (by proposition 3.6) and D(𝑓) ⊆ 𝑈 . We will show that
D(𝑓) = 𝑈 ; the claim then follows, by lemma 2.16.

For 𝑎 ∈ 𝐼 , let 𝑈𝑎 ⊆ h𝐴[𝑎−1] be the subfunctor making the following diagram
a pullback square in [CRing,Set],

𝑈𝑎 𝑈

h𝐴[𝑎−1] 𝑉
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where the bottom horizontal arrow corresponds to 𝛾𝑎 ∈ 𝑉 (𝐴[𝑎−1]). We then
have a pullback square in [CRing,Set] of the form below,

∐𝑎∈𝐽 𝑈𝑎 𝑈

∐𝑎∈𝐽 h𝐴[𝑎−1] 𝑉

and since the bottom horizontal arrow is a Zariski-local epimorphism, the top
horizontal arrow is also a Zariski-local epimorphism (by proposition 1.4). Let
𝐽𝑎 be defined as follows:

𝐽𝑎 = {𝑏 ∈ 𝐴[𝑎−1] | 𝛾𝑏 ∈ 𝑈𝑎(𝐴[𝑎−1][𝑏−1])}

Since 𝑈𝑎 ↪ h𝐴[𝑎−1] is an open immersion (by proposition 2.14), we know that
the induced morphism ∐𝑏∈𝐽𝑎

h𝐴[𝑎−1][𝑏−1] → 𝑈𝑎 is a Zariski-local epimorphism.
Thus, the composite

∐𝑎∈𝐼 ∐𝑏∈𝐽𝑎
h𝐴[𝑎−1][𝑏−1] ∐𝑎∈𝐼 𝑈𝑎 𝑈

is a Zariski-local epimorphism. Moreover, for any element 𝑎 of 𝐴 and any ele-
ment 𝑏 of 𝐴[𝑎−1], there exist an element 𝑐 of 𝐴 and an isomorphism 𝐴[𝑐−1] →
𝐴[𝑎−1][𝑏−1] making the diagram in CRing shown below commute,

𝐴 𝐴[𝑐−1]

𝐴[𝑎−1] 𝐴[𝑎−1][𝑏−1]

𝛾𝑎

𝛾𝑐

≅

𝛾𝑏

namely 𝑎𝑐′ for any element 𝑐′ of 𝐴 such that 𝑏 = 𝛾𝑎(𝑐′)𝛾𝑎(𝑎)−𝑛 for some nat-
ural number 𝑛. It follows that the induced morphism ∐𝑎∈𝐽 h𝐴[𝑎−1] → 𝑈 is a
Zariski-local epimorphism, and therefore D(𝑓) = 𝑈 , as claimed. ■

Proposition 3.9. The class of open immersions in [CRing,Set] is closed under
composition.

Proof. Use the pullback pasting lemma to reduce to lemma 3.8. ■
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Lemma 3.10. Let 𝛼 : 𝑋 → 𝑌 be a morphism in [CRing,Set]. Suppose 𝑌 is a
scheme and 𝔙 is an atlas for 𝑌 with the following property:

• For each element (𝐴, 𝑦) of 𝔙, let 𝑈(𝐴,𝑦) be the subfunctor of 𝑋 making the
diagram below a pullback square in [CRing,Set],

𝑈(𝐴,𝑦) 𝑋

h𝐴 𝑌

𝛼

where the bottom horizontal arrow corresponds to 𝑦 ∈ 𝑌 (𝐴). Then 𝑈(𝐴,𝑦)
is a scheme.

Under this hypothesis, if 𝑋 is a Zariski sheaf, then 𝑋 is also a scheme.

Proof. For each element (𝐴, 𝑦) of 𝔙, let 𝔘(𝐴,𝑦) be an atlas for the scheme 𝑈(𝐴,𝑦).
Let 𝔘 = ⋃(𝐴,𝑦)∈𝔙 𝔙(𝐴,𝑦). We will show that 𝔘 is an atlas for 𝑋.

Let (𝐴, 𝑦) be an element of𝔙. By proposition 2.14, 𝑈(𝐴,𝑦) is an open subfunc-
tor of 𝑋, so by proposition 3.9, for each element (𝐵, 𝑥) of 𝔘(𝐴,𝑦), the morphism
h𝐵 → 𝑋 corresponding to 𝑥 ∈ 𝑈(𝐴,𝑦)(𝐵) ⊆ 𝑋(𝐵) is an open immersion.

By definition, each ∐(𝐵,𝑥)∈𝔘(𝐴,𝑦)
h𝐵 → 𝑈(𝐴,𝑦) is a Zariski-local epimorphism,

and by proposition 1.4, ∐(𝐴,𝑦)∈𝔙 𝑈(𝐴,𝑦) → 𝑋 is also a Zariski-local epimorphism.
Thus, ∐(𝐵,𝑥)∈𝔘 h𝐵 → 𝑋 is a Zariski-local epimorphism. Thus, 𝔘 is indeed an
atlas for 𝑋. ■

Proposition 3.11. Let 𝑌 be a scheme and let 𝛼 : 𝑋 → 𝑌 be a morphism in

[CRing,Set].

(i) If 𝛼 : 𝑋 → 𝑌 is an affine morphism, then 𝑋 is a scheme.

(ii) If 𝛼 : 𝑋 → 𝑌 is a closed immersion, then 𝑋 is a scheme.

(iii) If 𝛼 : 𝑋 → 𝑌 is an open immersion, then 𝑋 is a scheme.

open immersion . If 𝑌 is a scheme, then so is 𝑋.

Proof. In each case, we will use lemma 3.10 to deduce that 𝑋 is a scheme.

(i). By proposition 2.4, 𝑋 is a Zariski sheaf, and by proposition 2.3, the hypo-
theses of the lemma are satisfied (for any atlas of 𝑌 whatsoever).

17



The functor of points

(ii). By proposition 2.8, this is a special case of (i).

(iii). By corollary 3.5, 𝑋 is a Zariski sheaf, and by propositions 2.14 and 3.6,
the hypotheses of the lemma are satisfied (for any atlas of 𝑌 whatsoever). ■
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