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 Introduction
Category theory and logic are two of the cornerstones of mathematical
foundations, the others being set theory and model theory, yet at first
sight there is no obvious connection between the two subjects. This is, of
course, an illusion. There is a deep and rich connection between category
theory and mathematical logic, touching theoretical computer science.
The purpose of this talk is to illustrate a small fragment of this corres-
pondence and perhaps give a glimpse into the field of ‘categorical logic’.

For further reading in categorical logic, I suggest Lambek and Scott
[], and for further reading in proof theory and type theory, I suggest
Girard, Taylor and Lafont []. The standard reference for category the-
ory is Mac Lane [], but Awodey [] (up to Chapter ) is more than
sufficient for our purposes.

 Bicartesian closed categories
First, we recall the definition of category.

Definition .. A category C consists of the following data:

• a class of objects, ob C

• for each pair of objects (A, B), a class of arrows, C (A, B)

• for each object A, an identity arrow idA in C (A, A)

• for each triple of objects (A, B, C), a composition operator
◦ : C (B, C)× C (A, B) → C (A, C)
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These data are moreover required to satisfy the following laws:

• For all f in C (A, B),

f ◦ idA = f = idB ◦ f

• If f ∈ C (A, B), g ∈ C (B, C), and h ∈ C (C, D), then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

When the category C is clear from context, we may write f : A → B
to mean that f ∈ C (A, B).

Example .. The category of all sets, denoted by Set, has as its objects
every set, and its arrows are just functions between sets.

One of the most pervasive concepts in category theory is the concept
of a universal property. I will not attempt to give a definition here, but I
will give some important examples now.

Definition .. An initial object of a category C is an object 0 with the
following universal property: for every object A of C , there is a unique
arrow □A : 0 → A.

Another important concept is that of duality. Informally, given some
notion in a category, its dual notion is obtained by reversing all the arrows.
For example, the dual of an initial object is a terminal object. Explicitly,

Definition .. A terminal object of a category C is an object 1 with the
following universal property: for every object A of C , there is a unique
arrow ⃝A : A → 1.

We will also need to recall the notions of product and coproduct in a
category.

Definition .. Let C be a category, and let (A, B) be a pair of objects in
C . Their product consists of the following data:

• an object, A × B

• a pair of projection arrows,πA,B
1 : A× B → A andπA,B

2 : A× B → B

These data are required to have the following universal property: for
each pair of arrows ( f , g), where f ∈ C (C, A) and g ∈ C (C, B), there is a
unique arrow ⟨ f , g⟩ : C → A × B such that

πA,B
1 ◦ ⟨ f , g⟩ = f πA,B

2 ◦ ⟨ f , g⟩ = g
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Definition .. The coproduct is the notion dual to the product. Expli-
citly, the coproduct of a pair of objects (A, B) consists of the following
data:

• an object, A + B

• a pair of insertion arrows, ιA,B
1 : A → A + B and ιA,B

2 : B → A + B.

These data are required to have the following universal property: for
each pair of arrows ( f , g) where f ∈ C (A, C) and g ∈ C (B, C), there is a
unique arrow [ f , g] : A + B → C such that

[ f , g] ◦ ιA,B
1 = f [ f , g] ◦ ιA,B

2 = g

Example .. In the category Set, the empty set ∅ is an initial object, and
any singleton set is a terminal object. The product of two sets is simply
their cartesian product, and the coproduct is the disjoint union.

Finally, we need a notion akin to that of a function space.

Definition .. Let C be a category with all binary products. An object B
is exponentiable just if there are data

• for each object C, an object CB and an arrow εB,C : CB × B → C

• for every pair of objects (A, C), a bijection

λA,B,C : C (A × B, C) → C
(

A, CB
)

satisfying the following conditions:

• For every object C,
λCB,B,C(εB,C) = idCB

• If f ∈ C (A′, A) and g ∈ C (C, C′), then for every h in C (A × B, C),

λA′,B,C′(g ◦ h ◦ ( f × idB)) = gB ◦ λA,B,C(h) ◦ f

where f × idB is the arrow ⟨ f ◦ π1,π2⟩ : A′ × B → A × B and gB is
the arrow λCB,B,C′(g ◦ εB,C) : CB → (C′)B

We may sometimes write (B → C) instead of CB.
The map λA,B,C is sometimes referred to as the currying map, since it

takes an arrow of type A × B → C to an arrow of type A → (B → C) in a
natural and bijective manner.
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Example .. In the category Set, every set B is exponentiable, with the
set CB being the usual set of all functions B → C.

We are at last able to define the main object of interest of this talk:

Definition .. A bicartesian closed category is a category C with

• an initial object and a terminal object

• a product A× B and a coproduct A+ B, for all pairs of objects (A, B)

• all objects exponentiable

Example .. The category Set is a bicartesian closed category.

Example .. The trivial category with only one object is a bicartesian
closed category.

 Sequent calculus
And now, to the logical side of things. The astute auditor has probably
noticed that there appears to be a formal similarity between the universal
properties of the notions defined in the preceding section and the rules of
inference for the various logical connectives. We now sharpen this formal
similarity by fixing a formal deduction calculus for propositional logic.

Definition .. A context is a finite (and possibly empty) list of proposi-
tions. In particular, if Γ is a context and p is a proposition, we denote by
Γ, p the context obtained by appending p to the list Γ.

Definition .. A sequent is a string of the form Γ ⊢ p, where Γ is a
context and p is a proposition. The intended interpretation of a valid
sequent Γ ⊢ p is that p is provable from Γ.

Of course, we should probably say what a proposition is. First of
all, suppose we are given some atomic propositions ⊥,⊤, p1, p2, . . .; from
these we may build up compound propositions using the logical connect-
ives ∧, ∨, and ⇒ Explicitly, if p and q are propositions, then so are p ∧ q,
p∨ q, and p ⇒ q. Of course, we would like to know how these compound
propositions are related to one another, and for this, we need some rules
of inference:
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• Conjunction introduction: If Γ is a context and p and q are propos-
itions, if the sequents Γ ⊢ p and Γ ⊢ q are valid, so is the sequent
Γ ⊢ p ∧ q. We write this as follows:

Γ ⊢ p Γ ⊢ q
Γ ⊢ p ∧ q

• Conjunction elimination: If Γ is a context and p, q, r are proposi-
tions,

Γ, p ⊢ r
Γ, p ∧ q ⊢ r

Γ, q ⊢ r
Γ, p ∧ q ⊢ r

• Disjunction introduction: If Γ is a context and p, q are propositions,

Γ ⊢ p
Γ ⊢ p ∨ q

Γ ⊢ q
Γ ⊢ p ∨ q

• Disjunction elimination: If Γ is a context and p, q, r are proposi-
tions,

Γ, p ⊢ r Γ, q ⊢ r
Γ, p ∨ q ⊢ r

• Conditional proof: If Γ is a context and p and q are propositions,

Γ, p ⊢ q
Γ ⊢ p ⇒ q

• Modus ponens: If Γ is a context and p, q, r are propositions,

Γ ⊢ p Γ, q ⊢ r
Γ, p ⇒ q ⊢ r

• Ex falso quodlibet: If p is any proposition,

⊥ ⊢ p

• Tautology introduction: If Γ is any context,

Γ ⊢ ⊤
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• Identity axiom: If p is any proposition,

p ⊢ p

• Cut rule: If Γ is a context and p and q are propositions,

Γ ⊢ p Γ, p ⊢ q
Γ ⊢ q

• There are also some structural rules which I will omit.

 The Brouwer–Heyting–Kolmogorov category
It should now be quite clear that there ought to be a correspondence
between the logical connectives ⊥,⊤,∧,∨,⇒ and the operations of a bi-
cartesian closed category 0, 1,×,+,→. For example, the universal prop-
erty of A × B can be represented schematically as

f : C → A g : C → B
⟨ f , g⟩ : C → A × B

This looks suspiciously like the rule of conjunction introduction

Γ ⊢ p Γ ⊢ q
Γ ⊢ p ∧ q

and similar observations can be made about ∨ and +, ⇒ and exponenti-
ation, ⊥ and the initial object 0, and ⊤ and the terminal object 1.

Thus, one is led to wonder if there is some bicartesian closed category
C in which propositions are objects and the 0, 1,×,+,→ are precisely
the logical connectives ⊥,⊤,∧,∨,⇒. The answer turns out to be yes.
In fact, there are at least two ways of constructing such a category: one
way is to construct the Lindenbaum–Tarski algebra, which yields a pre-
order category where there is at most one arrow between any two ob-
jects. However, a much more interesting approach is to construct the
Brouwer–Heyting–Kolmogorov category, where the arrows between two
propositions are precisely the (equivalence classes of) formal proofs of
one from the other.

But what is a formal proof, and when are they equivalent? Well, the
trick is that we can rig the definition so that what we want becomes true.
First of all, we need to algebraise our notion of bicartesian closed category.
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Definition .. An algebraic bicartesian closed category is a bicartesian
closed category C together with the following algebraic data:

• a chosen initial object 0 and a chosen terminal object 1

• for every pair of objects (A, B), a chosen product A × B, together
with projectionsπA,B

1 ,πA,B
2 , and a chosen coproduct A+ B, together

with insertions ιA,B
1 , ιA,B

2

• for every pair of objects (B, C), a chosen exponential object CB, to-
gether with an arrow εB,C and natural bijections λA,B,C for each A

Note that the algebraic structure on a bicartesian closed category need
not be unique: there are very many possible algebraic structures on Set,
for example. Once we have fixed such data, the category becomes a model
of the essentially algebraic theory of bicartesian closed categories. As
usual, there is a notion of homomorphism between two models:

Definition .. A strict bicartesian closed functor is a functor between
two algebraic bicartesian closed categories which respects the algebraic
data.

So, for example, if F : C → C ′ is a strict bicartesian closed functor,
then for any pair of objects (A, B) in C , we have F(A × B) = F(A)× F(B)
as objects of C ′. Note that we have equality, and not just an isomorph-
ism! (In other words, strictness is an ‘evil’ notion.) Similarly, we have
F
(
πA,B

1

)
= πF(A),F(B)

1 as arrows in C ′.
There is also a natural notion of a free model:

Definition .. An algebraic bicartesian closed category C is freely gen-
erated by S, S ⊆ ob C , just when the following holds: for every algebraic
bicartesian closed category C ′ and every map F : S → ob C ′, there is a
unique strict bicartesian closed functor F : C → C ′ with F(A) = F(A)
for each object A in S.

We define the Brouwer–Heyting–Kolmogorov category BHK of a pro-
positional theory to be the free (algebraic) bicartesian closed category
generated by the set of atomic propositions of the theory. As one would
expect, every arrow in such a freely-generated category can be expressed
using some combination of

◦, id,□,⃝, ⟨−,−⟩ ,π1,π2, [−,−] , ι1, ι2,λ, ε
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and each of these operations corresponds precisely with one of the rules
of inferences in the sequent calculus. Conversely, every valid derivation
of a sequent of the form p ⊢ q can be translated into an arrow p → q
constructed using these operations. Thus, we are led to define a formal
proof of q assuming p to be an arrow p → q in BHK, and we say two
derivations are equivalent if they correspond to the same arrow in this
category.

Example .. Let p and q be atomic propositions. Consider the following
two derivations of the sequent p ∧ q ⊢ p ∨ q:

p ⊢ p q ⊢ q
p ∧ q ⊢ p p ∧ q ⊢ q
p ∧ q ⊢ p ∨ q p ∧ q ⊢ p ∨ q

The left derivation corresponds to the composite

....p ∧ q ..p ..p ∨ q.π1 . ι1

while the right derivation corresponds to the composite

....p ∧ q ..q ..p ∨ q.π2 . ι2

Now, it seems obvious that we should have

ι1 ◦ π1 ̸= ι2 ◦ π2

and this is indeed the case: since BHK is freely generated by the atomic
propositions, once we fix an algebraic structure on Set, there is a unique
strict bicartesian closed functor F : BHK → Set with F(p) = {0} and
F(q) = {1}. It is then clear that

F(ι1) ◦ F(π1) ̸= F(ι2) ◦ F(π2)

since the two maps have distinct images in {0, 1}. Thus, the original ar-
rows in BHK must have been distinct.

Of course, merely defining BHK to be a free bicartesian closed cat-
egory does not prove that we have one: after all, it could well be the case
that our requirements are somehow self-contradictory. Nonetheless, it is
possible to construct BHK explicitly by using results about normal forms
of natural deduction proofs. (For details about normalisation, see Girard,
Taylor and Lafont [].)
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 The law of excluded middle
Perhaps the most remarkable property of the category of natural deduc-
tion proofs is that there can be genuinely different arrows p → q: in other
words, the category is able to distinguish between (some) proofs of q from
p. For example, an arrow ⊤ → (p ∨ q) corresponds to either an arrow
⊤ → p or an arrow ⊤ → q, and cannot correspond to both at once: this
is the disjunction property of intuitionistic logic. However, there is no
free lunch: something must have been sacrificed in order for us to have
this remarkable property. If one contemplates incompleteness for a few
moments, one immediately realises that what we have given up must be
the law of excluded middle: for, if q is an undecidable proposition, then
we have neither a proof of q nor a proof of ¬q, but we certainly do have a
proof of q ∨ ¬q.

Recall that ¬p is simply an abbreviation for p ⇒ ⊥. It is a simple
exercise in formal logic to show that the law of excluded middle

Γ ⊢ p ∨ ¬p

is equivalent to the rule of double negation elimination

Γ ⊢ ¬¬p
Γ ⊢ p

so one is led to wonder, what happens if we require our bicartesian closed
category C to have an isomorphism ¬¬p ∼→ p? For this, we require a little
lemma, originally due to Joyal.

Lemma .. Let C be a cartesian closed category (i.e. a category with a terminal
object 1, binary products, and all objects exponentiable) with an initial object 0.
Then, for any object A, there is at most one arrow f : A → 0.

Proof. This proof follows Freyd [, Prop. .]. First, observe that

C (0 × A, B) ∼= C (0, (A → B))

so there is a unique arrow 0 × A → B for every object B in C , i.e. 0 × A is
also an initial object. Now, suppose we have an arrow f : A → 0. Then,
we have an arrow ⟨ f , idA⟩ : A → 0 × A, and π2 ◦ ⟨ f , idA⟩ = idA, while
⟨ f , idA⟩ ◦ π2 = id0×A since 0 × A is initial. So A ∼= 0, and f is the unique
arrow A → 0. ■
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Theorem .. Let C be a cartesian closed category with an initial object 0. If
for every object A we have an isomorphism ((A → 0) → 0) ∼→ A, then C is a
preorder category, i.e. C has at most one arrow between any two objects.

Proof. By definition of the exponential object (C → 0),

C (B, (C → 0)) ∼= C (B × C, 0)

so the above lemma implies there is at most one arrow B → (C → 0) for
any two objects B and C. But if we have A ∼= ((A → 0) → 0), then there is
at most one arrow B → A for any object B, so we have a preorder category
C . ■

So, unfortunately, there is no hope of constructing a bicartesian closed
category which adequately captures the proof theory of classical proposi-
tional logic: the theorem above implies that adding double negation elim-
ination to our requirements causes the category of proofs to lose the abil-
ity to distinguish between different derivations p → q. One might ar-
gue that at least we do not have an outright contradiction, but in fact we
have gained nothing new: this collapsed category is equivalent to a well-
understood boolean algebra, namely the free boolean algebra generated
by the atomic propositions. Thus, it would appear that in order to have a
good theory, we have to restrict our attention to intuitionistic logic.
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