Introduction		Cartesian hyperdoctrines

Another viewpoint on cartesian theories

Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

> Categorical Logic Workshop 4 December 2015 Stockholm, Sweden

	Cartesian hyperdoctrines

Introduction Motivation

Precartesian hyperdoctrines

Definitions Examples The Leibniz category

Horn hyperdoctrines

Leibniz equality Leibniz equivalences Subprojections

Cartesian hyperdoctrines

Topological equivalences Existential quantification A question

Introduction			Cartesian hyperdoctrines
00	0000	00000	000000

Another viewpoint on cartesian theories

æ

ヘロン 人間 とくほとくほとう

Introduction		Cartesian hyperdoctrines
00		

 Cartesian theories (or essentially algebraic theories) have the same expressive power as finite limit sketches.

Introduction	Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
••			

- Cartesian theories (or essentially algebraic theories) have the same expressive power as finite limit sketches.
- One way of getting a finite limit sketch from a cartesian theory is to form the syntactic category.

Introduction	Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
••			

- Cartesian theories (or essentially algebraic theories) have the same expressive power as finite limit sketches.
- One way of getting a finite limit sketch from a cartesian theory is to form the syntactic category.
- Cartesian theories have an underlying algebraic theory, but this disappears after passing to the syntactic category.

Introduction		Cartesian hyperdoctrines
•0		

- Cartesian theories (or essentially algebraic theories) have the same expressive power as finite limit sketches.
- One way of getting a finite limit sketch from a cartesian theory is to form the syntactic category.
- Cartesian theories have an underlying algebraic theory, but this disappears after passing to the syntactic category.
- For example, it is possible for different algebraic theories to generate cartesian theories that have equivalent syntactic categories.

Introduction		Cartesian hyperdoctrines
•0		

- Cartesian theories (or essentially algebraic theories) have the same expressive power as finite limit sketches.
- One way of getting a finite limit sketch from a cartesian theory is to form the syntactic category.
- Cartesian theories have an underlying algebraic theory, but this disappears after passing to the syntactic category.
- For example, it is possible for different algebraic theories to generate cartesian theories that have equivalent syntactic categories.
- Thus, what we would like to do is to augment the notion of (many-sorted) Lawvere theory so it can encode cartesian theories.

Introduction		Cartesian hyperdoctrines
00		

Another viewpoint on cartesian theories

Zhen Lin Low

æ

ヘロン 人間 とくほとくほとう

Introduction		Cartesian hyperdoctrines
00		

We already know how to do something like this for (intuitionistic) first-order theories:

Э

Introduction		Cartesian hyperdoctrines
00		

We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines.

Introduction		Cartesian hyperdoctrines
0•		
Motivation		

We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.

Introduction		Cartesian hyperdoctrines
00		
A.A		

- We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.
- There is a fairly transparent correspondence between the axioms for first-order hyperdoctrines and the logical connectives of first-order logic,

Introduction		Cartesian hyperdoctrines
00		

- We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.
- There is a fairly transparent correspondence between the axioms for first-order hyperdoctrines and the logical connectives of first-order logic, so it is straightforward to vary the definition to obtain hyperdoctrines corresponding to coherent theories and regular theories.

Introduction		Cartesian hyperdoctrines
00		

- We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.
- There is a fairly transparent correspondence between the axioms for first-order hyperdoctrines and the logical connectives of first-order logic, so it is straightforward to vary the definition to obtain hyperdoctrines corresponding to coherent theories and regular theories.
- However, cartesian theories are problematic:

Introduction		Cartesian hyperdoctrines
00		

- We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.
- There is a fairly transparent correspondence between the axioms for first-order hyperdoctrines and the logical connectives of first-order logic, so it is straightforward to vary the definition to obtain hyperdoctrines corresponding to coherent theories and regular theories.
- ► However, cartesian theories are problematic: ∃ cannot be applied to arbitrary formulae.

Introduction		Cartesian hyperdoctrines
00		

- We already know how to do something like this for (intuitionistic) first-order theories: first-order hyperdoctrines. The idea is to associate with each object in a Lawvere theory a poset of predicates.
- There is a fairly transparent correspondence between the axioms for first-order hyperdoctrines and the logical connectives of first-order logic, so it is straightforward to vary the definition to obtain hyperdoctrines corresponding to coherent theories and regular theories.
- ► However, cartesian theories are problematic: ∃ cannot be applied to arbitrary formulae. So we have to start from scratch and build up to cartesian theories.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Another viewpoint on cartesian theories

æ

▲ロン ▲園 > ▲ 国 > ▲ 国 > -

Precartesian hyperdoctrines	Cartesian hyperdoctrines
•••	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

< ∃ >

Precartesian hyperdoctrines	Cartesian hyperdoctrines
•••	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

► *S* is a cartesian monoidal category.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
•••	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- \triangleright *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
•••	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
•••	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

▶ The objects are pairs (*X*, *P*)

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

• The objects are pairs (X, P) where X is an object in S

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ► *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- The morphisms $(X, P) \rightarrow (Y, Q)$

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- ▶ The morphisms $(X, P) \rightarrow (Y, Q)$ are the morphisms $f : X \rightarrow Y$ in *S*

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- \triangleright *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- ▶ The morphisms $(X, P) \rightarrow (Y, Q)$ are the morphisms $f : X \rightarrow Y$ in *S* such that $P \leq Q \cdot f$.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- \triangleright *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- ▶ The morphisms $(X, P) \rightarrow (Y, Q)$ are the morphisms $f : X \rightarrow Y$ in *S* such that $P \leq Q \cdot f$.

Remark. $E(\Omega)$ is itself a cartesian monoidal category:

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- \triangleright *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- ▶ The morphisms $(X, P) \rightarrow (Y, Q)$ are the morphisms $f : X \rightarrow Y$ in *S* such that $P \leq Q \cdot f$.

Remark. $E(\Omega)$ is itself a cartesian monoidal category: define

$$(X,P)\times (Y,Q)=(X\times Y,P\cdot x\wedge Q\cdot y)$$

Precartesian hyperdoctrines	Cartesian hyperdoctrines
• 0 00	

Definition. A precartesian hyperdoctrine is a pair (S, Ω) where:

- ▶ *S* is a cartesian monoidal category.
- Ω is a contravariant functor from S to the category of meet-semilattices.

Given such, define the category $E(\Omega)$ as follows:

- The objects are pairs (X, P) where X is an object in S and P is an element of Ω(X).
- ▶ The morphisms $(X, P) \rightarrow (Y, Q)$ are the morphisms $f : X \rightarrow Y$ in *S* such that $P \leq Q \cdot f$.

Remark. $E(\Omega)$ is itself a cartesian monoidal category: define

$$(X,P)\times (Y,Q)=(X\times Y,P\cdot x\wedge Q\cdot y)$$

where $x : X \times Y \rightarrow X$ and $y : X \times Y \rightarrow Y$ are the projections.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

Another viewpoint on cartesian theories

æ

▲ロン ▲園 > ▲ 国 > ▲ 国 > -

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S},Ω) is a precartesian hyperdoctrine, unless otherwise stated.

∢ ≣⇒

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \rightarrow (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ '

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. We write $f_0 \leq f_1$ and we say f_0 is a **specialisation** of f_1 '
Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (S, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

▶ For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

$$(\top_T \boxtimes P) \land R \cdot (\mathrm{id}_T \times f_0) \le R \cdot (\mathrm{id}_T \times f_1)$$

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

▶ For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

$$(\top_T \boxtimes P) \land R \cdot (\mathrm{id}_T \times f_0) \le R \cdot (\mathrm{id}_T \times f_1)$$

We write $f_0 \asymp f_1'$

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

▶ For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

$$(\top_T \boxtimes P) \land R \cdot (\mathrm{id}_T \times f_0) \le R \cdot (\mathrm{id}_T \times f_1)$$

We write $f_0 \approx f_1$ and we say f_0 and f_1 are **equivalent**

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

▶ For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

$$(\top_T \boxtimes P) \land R \cdot (\mathrm{id}_T \times f_0) \le R \cdot (\mathrm{id}_T \times f_1)$$

We write $f_0 = f_1$ and we say f_0 and f_1 are **equivalent** for the conjunction of $f_0 \leq f_1$ and $f_1 \leq f_0$.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

From now on, (\mathcal{S}, Ω) is a precartesian hyperdoctrine, unless otherwise stated.

Definition. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $\mathbf{E}(\Omega)$. We write $f_0 \leq f_1$ ' and we say f_0 is a **specialisation** of f_1 ' for the the following condition:

▶ For every object *T* in *S* and every $R \in \Omega(T \times Y)$:

$$(\top_T \boxtimes P) \land R \cdot (\mathrm{id}_T \times f_0) \le R \cdot (\mathrm{id}_T \times f_1)$$

We write ' $f_0 = f_1$ ' and we say ' f_0 and f_1 are **equivalent**' for the conjunction of $f_0 \leq f_1$ and $f_1 \leq f_0$.

Remark. This defines an enrichment of $E(\Omega)$ in preordered sets.

	Precartesian hyperdoctrines		Cartesian hyperdoctrines
00	0000	00000	0000000

Another viewpoint on cartesian theories

Zhen Lin Low

ē,

ヘロン 人間 とくほとくほと

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

(a) S is a cartesian monoidal category

Э

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

(a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X

	Precartesian hyperdoctrines	Cartesian hyperdoctrines
	0000	
Examples		

(a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits and $\Omega(X)$ is the poset of subobjects of X.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits and $\Omega(X)$ is the poset of subobjects of X.
- (c) S is the category of Hausdorff spaces

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits and $\Omega(X)$ is the poset of subobjects of X.
- (c) S is the category of Hausdorff spaces and $\Omega(X)$ is the poset of closed subspaces of X.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits and $\Omega(X)$ is the poset of subobjects of X.
- (c) S is the category of Hausdorff spaces and $\Omega(X)$ is the poset of closed subspaces of X.
- (d) S is the category of topological spaces or locales

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

- (a) S is a cartesian monoidal category and $\Omega(X)$ is the poset of J-closed sieves on X for some Grothendieck topology J on S.
- (b) S is a category with finite limits and $\Omega(X)$ is the poset of subobjects of X.
- (c) S is the category of Hausdorff spaces and $\Omega(X)$ is the poset of closed subspaces of X.
- (d) S is the category of topological spaces or locales and $\Omega(X)$ is the poset of open subspaces of X.

Precartesian hyperdoctrines	Cartesian hyperdoctrines
0000	

Another viewpoint on cartesian theories

-

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

イロト イロト イヨト イヨト

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

• The objects are the objects in $E(\Omega)$.

∢ Ξ

< ロ > < 同 > < 三 >

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

- The objects are the objects in $E(\Omega)$.
- The morphisms are the equivalence classes of morphisms in $E(\Omega)$.

< ロ > < 同 > < 三 >

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

- The objects are the objects in $E(\Omega)$.
- The morphisms are the equivalence classes of morphisms in $E(\Omega)$.

Slogan: indiscernibles are identical.

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

- The objects are the objects in $E(\Omega)$.
- The morphisms are the equivalence classes of morphisms in $E(\Omega)$.

Slogan: indiscernibles are identical.

Proposition.

(i) The quotient functor $E(\Omega) \rightarrow Leib(\Omega)$ preserves finitary products.

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

- The objects are the objects in $E(\Omega)$.
- The morphisms are the equivalence classes of morphisms in $E(\Omega)$.

Slogan: indiscernibles are identical.

Proposition.

- (i) The quotient functor $E(\Omega) \rightarrow Leib(\Omega)$ preserves finitary products.
- (ii) In particular, $\textbf{Leib}(\Omega)$ is a cartesian monoidal category.

Definition. The Leibniz category associated with (S, Ω) is the category Leib (Ω) defined as follows:

- The objects are the objects in $E(\Omega)$.
- The morphisms are the equivalence classes of morphisms in $E(\Omega)$.

Slogan: indiscernibles are identical.

Proposition.

- (i) The quotient functor $E(\Omega) \rightarrow Leib(\Omega)$ preserves finitary products.
- (ii) In particular, $\textbf{Leib}(\Omega)$ is a cartesian monoidal category.

But what about equalisers?

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Another viewpoint on cartesian theories

Zhen Lin Low

≺ 臣 →

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \rightarrow X$ in S:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \rightarrow X$ in S:

$$\mathsf{T}_T \le X^{\approx} \cdot \langle x, x \rangle$$

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^{\approx} \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^\approx \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $\mathbf{E}(\Omega)$:

$$H \le X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\mathsf{T}_T \le X^{\approx} \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $\mathbf{E}(\Omega)$:

$$H \le X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^{\approx} \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

$$H \le X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists, if $x_0 \leq x_1$,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^{\approx} \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

$$H \leq X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists, if $x_0 \leq x_1$, then,

$$(H \boxtimes \top_X) \land X^{\approx} \cdot (x_0 \times \mathrm{id}_X) \le X^{\approx} \cdot (x_1 \times \mathrm{id}_X)$$

in $\Omega(T \times X)$,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^\approx \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

$$H \leq X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists, if $x_0 \leq x_1$, then,

$$(H \boxtimes H) \land X^{\approx} \cdot (x_0 \times x_0) \le X^{\approx} \cdot (x_1 \times x_0)$$

in $\Omega(T \times T)$,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^\approx \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

$$H \leq X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists, if $x_0 \leq x_1$, then,

$$(H \boxtimes H) \land X^{\approx} \cdot (x_0 \times x_0) \le X^{\approx} \cdot (x_1 \times x_0)$$

in $\Omega(T \times T)$, so $H \leq X^{\approx}(x_1, x_0)$,
	Horn hyperdoctrines	Cartesian hyperdoctrines
	• 0 000	

Definition. A Leibniz equality Ω -relation on an object X in S is an element X^{\approx} of $\Omega(X \times X)$ with the following properties:

For every morphism $x : T \to X$ in S:

$$\top_T \le X^\approx \cdot \langle x, x \rangle$$

► For every parallel pair $x_0, x_1 : (T, H) \rightarrow (X, \top_X)$ in $E(\Omega)$:

$$H \leq X^{\approx} \cdot \langle x_0, x_1 \rangle \quad \Longrightarrow \quad x_0 \leqslant x_1$$

Remark. Assuming X^{\approx} exists, if $x_0 \leq x_1$, then,

$$(H \boxtimes H) \land X^{\approx} \cdot (x_0 \times x_0) \le X^{\approx} \cdot (x_1 \times x_0)$$

in $\Omega(T \times T)$, so $H \le X^{\approx}(x_1, x_0)$, hence $x_0 \asymp x_1$.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	0000	

Another viewpoint on cartesian theories

Zhen Lin Low

≺ 臣 →

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \rightarrow (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$.

∢ ≣⇒

Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \rightarrow (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists,

Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \rightarrow (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent: (i) $f \to f$ as morphisms $(X, P) \to (Y, Q)$ in $E(\Omega)$

- (i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.
- (ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.
- (iii) $P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$ in $\Omega(X)$.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(iii)
$$P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$$
 in $\Omega(X)$.

Definition. A **Horn hyperdoctrine** is a precartesian hyperdoctrine (S, Ω) with the following property:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(iii)
$$P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$$
 in $\Omega(X)$.

Definition. A Horn hyperdoctrine is a precartesian hyperdoctrine (S, Ω) with the following property:

For every object X in S,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(iii)
$$P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$$
 in $\Omega(X)$.

Definition. A **Horn hyperdoctrine** is a precartesian hyperdoctrine (S, Ω) with the following property:

For every object X in S, X^{\approx} exists.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(iii)
$$P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$$
 in $\Omega(X)$.

Definition. A **Horn hyperdoctrine** is a precartesian hyperdoctrine (S, Ω) with the following property:

For every object X in S, X^{\approx} exists.

Proposition. *If* (S, Ω) *is a Horn hyperdoctrine,*

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Lemma. Let $f_0, f_1 : (X, P) \to (Y, Q)$ be a parallel pair of morphisms in $E(\Omega)$. Assuming Y^{\approx} exists, the following are equivalent:

(i) $f_0 \simeq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(ii) $f_0 \leq f_1$ as morphisms $(X, P) \rightarrow (Y, Q)$ in $\mathbf{E}(\Omega)$.

(iii)
$$P \leq Y^{\approx} \cdot \langle f_0, f_1 \rangle$$
 in $\Omega(X)$.

Definition. A **Horn hyperdoctrine** is a precartesian hyperdoctrine (S, Ω) with the following property:

For every object X in S, X^{\approx} exists.

Proposition. *If* (S, Ω) *is a Horn hyperdoctrine, then* **Leib** (Ω) *has equalisers.*

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Another viewpoint on cartesian theories

< ≣⇒

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

イロト イロト イヨト イヨト

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

Proposition. Let $F : \mathbf{E}(\Omega) \to C$ be a functor.

-∢≣⇒

< ロ > < 同 > < 三 >

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

Proposition. Let $F : \mathbf{E}(\Omega) \to C$ be a functor. Assuming (S, Ω) is a Horn hyperdoctrine,

-∢ ≣ ▶

< ロ > < 同 > < 三 >

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

Proposition. Let $F : E(\Omega) \to C$ be a functor. Assuming (S, Ω) is a Horn hyperdoctrine, the following are equivalent:

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

Proposition. Let $F : E(\Omega) \to C$ be a functor. Assuming (S, Ω) is a Horn hyperdoctrine, the following are equivalent:

(i) $F : \mathbf{E}(\Omega) \to C$ sends Leibniz equivalences in $\mathbf{E}(\Omega)$ to isomorphisms in C.

Definition. A Leibniz equivalence in $E(\Omega)$ is a morphism that becomes invertible in Leib (Ω) .

Proposition. Let $F : E(\Omega) \to C$ be a functor. Assuming (S, Ω) is a Horn hyperdoctrine, the following are equivalent:

- (i) $F : \mathbf{E}(\Omega) \to C$ sends Leibniz equivalences in $\mathbf{E}(\Omega)$ to isomorphisms in C.
- (ii) $F : \mathbf{E}(\Omega) \to C$ factors through the quotient functor $\mathbf{E}(\Omega) \to \mathbf{Leib}(\Omega)$.

In other words, $Leib(\Omega)$ is (isomorphic to) the category obtained by freely inverting the Leibniz equivalences in $E(\Omega)$.

		Horn hyperdoctrines	Cartesian hyperdoctrines
00	0000	00000	0000000

Another viewpoint on cartesian theories

・ロト ・四ト ・ヨト ・ヨト

Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

If $g : (Y, Q) \rightarrow (Z, R)$ is a subprojection in $\mathbf{E}(\Omega)$,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

If $g : (Y, Q) \rightarrow (Z, R)$ is a subprojection in $E(\Omega)$, then there is a morphism $f_1 : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

If $g : (Y, Q) \to (Z, R)$ is a subprojection in $E(\Omega)$, then there is a morphism $f_1 : (X, P) \to (Y, Q)$ in $E(\Omega)$ such that $f \approx f_1$

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Definition. A subprojection in $E(\Omega)$ is a morphism in $E(\Omega)$ whose underlying morphism in S is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle in $\text{Leib}(\Omega)$:

If $g : (Y, Q) \to (Z, R)$ is a subprojection in $\mathbf{E}(\Omega)$, then there is a morphism $f_1 : (X, P) \to (Y, Q)$ in $\mathbf{E}(\Omega)$ such that $f \asymp f_1$ and $g \circ f_1 = h$ in $\mathbf{E}(\Omega)$.

		Horn hyperdoctrines	Cartesian hyperdoctrines
00	0000	00000	0000000

Another viewpoint on cartesian theories

・ロト ・四ト ・ヨト ・ヨト

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

(i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.

∢ ≣⇒

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow Leib(\Omega)$ preserves pullbacks of subprojections.

- 22

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. *If* (S, Ω) *is a Horn hyperdoctrine,*

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:
	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (S, Ω) is a Horn hyperdoctrine,

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

• The weak equivalences are the Leibniz equivalences.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- ► The weak equivalences are the Leibniz equivalences.
- The fibrations are the subprojections.

	Horn hyperdoctrines	Cartesian hyperdoctrines
	00000	

Proposition.

- (i) The class of subprojections in $E(\Omega)$ is closed under pullbacks.
- (ii) The quotient functor $E(\Omega) \rightarrow \text{Leib}(\Omega)$ preserves pullbacks of subprojections.

Proposition. If (S, Ω) is a Horn hyperdoctrine, then every morphism in $E(\Omega)$ factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- The weak equivalences are the Leibniz equivalences.
- > The fibrations are the subprojections.

Moreover, $\text{Leib}(\Omega)$ is the homotopy category.

	Cartesian hyperdoctrines
	• 000 000

Another viewpoint on cartesian theories

Zhen Lin Low

ъ

ヘロン 人間 とくほとくほとう

	Cartesian hyperdoctrines
	● 000 000

► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, T_X)$,

< ∃ >

Precartesian hyperdoctrines	Horn hyperdoctrines	Cartesian hyperdoctrines
		• 000 000

► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, T_X)$, and it preserves finitary products.

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- ► Thus the composite $S \rightarrow E(\Omega) \rightarrow Leib(\Omega)$ preserves finitary products.

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- ► Thus the composite $S \rightarrow E(\Omega) \rightarrow Leib(\Omega)$ preserves finitary products.
- Unfortunately, equalisers are not preserved.

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- ► Thus the composite $S \to E(\Omega) \to Leib(\Omega)$ preserves finitary products.
- Unfortunately, equalisers are not preserved. For instance, in example (c),

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- Thus the composite S → E(Ω) → Leib(Ω) preserves finitary products.
- Unfortunately, equalisers are not preserved. For instance, in example (c),

$$\left\{ (x,y) \in \mathbb{R}^2 \,\middle|\, xy = 1 \right\} \longleftrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R}$$

is not preserved.

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- ► Thus the composite $S \to E(\Omega) \to Leib(\Omega)$ preserves finitary products.
- Unfortunately, equalisers are not preserved. For instance, in example (c),

$$\left\{(x,y)\in\mathbb{R}^2\,\middle|\,xy=1\right\}\, \longmapsto\, \mathbb{R}^2\, \underset{}{\longrightarrow}\, \mathbb{R}$$

is not preserved.

In other words, there are morphisms in Leib(Ω) which ought to be invertible but are not.

	Cartesian hyperdoctrines
	• 000 000

- ► There is a fully faithful embedding $S \to E(\Omega)$ given by $X \mapsto (X, \top_X)$, and it preserves finitary products.
- ► Thus the composite $S \to E(\Omega) \to Leib(\Omega)$ preserves finitary products.
- Unfortunately, equalisers are not preserved. For instance, in example (c),

$$\left\{(x,y)\in\mathbb{R}^2\,\middle|\,xy=1\right\}\, \longmapsto\, \mathbb{R}^2\, \underset{}{\longrightarrow}\, \mathbb{R}$$

is not preserved.

In other words, there are morphisms in Leib(Ω) which ought to be invertible but are not. What are they?

	Cartesian hyperdoctrines
	000000

Э

	Cartesian hyperdoctrines
	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $\mathbf{E}(\Omega)$.

	Cartesian hyperdoctrines
	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $\mathbf{E}(\Omega)$. For every object T in S,

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is a **topological embedding** if, for every object *T* in *S*,

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

... a **topological embedding** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is surjective.

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

- ... a **topological embedding** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is surjective.
- \dots is a **topological quotient** if, for every object T in S,

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

- ... a **topological embedding** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is surjective.
- ... is a **topological quotient** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is an order embedding.

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

... a **topological embedding** if, for every object *T* in *S*,

 $\downarrow \{\top_T \boxtimes Q\} \rightarrow \downarrow \{\top_T \boxtimes P\} \text{ is surjective.}$

- ... is a **topological quotient** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is an order embedding.
- ... is a **topological equivalence** if, for every object T in S,

			Cartesian hyperdoctrines
00	0000	00000	000000

Let $f : (X, P) \rightarrow (Y, Q)$ be a morphism in $E(\Omega)$. For every object T in S, we have:

Definition. The morphism $f : (X, P) \rightarrow (Y, Q)$ in $E(\Omega)$ is ...

 \dots a **topological embedding** if, for every object *T* in *S*,

 $\downarrow \{\top_T \boxtimes Q\} \rightarrow \downarrow \{\top_T \boxtimes P\} \text{ is surjective.}$

- ... is a **topological quotient** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is an order embedding.
- ... is a **topological equivalence** if, for every object *T* in *S*, $\downarrow \{ \top_T \boxtimes Q \} \rightarrow \downarrow \{ \top_T \boxtimes P \}$ is an order isomorphism.

	Cartesian hyperdoctrines
	000000

Э

Proposition.

(i) Every Leibniz equivalence in $E(\Omega)$ is a topological equivalence in $E(\Omega)$.

イロト イロト イヨト イヨト

Proposition.

- (i) Every Leibniz equivalence in $E(\Omega)$ is a topological equivalence in $E(\Omega)$.
- (ii) The class of topological equivalences in $E(\Omega)$ has the 2-out-of-6 property.

-∢≣⇒

< ロ > < 同 > < 三 >

Proposition.

- (i) Every Leibniz equivalence in $E(\Omega)$ is a topological equivalence in $E(\Omega)$.
- (ii) The class of topological equivalences in $E(\Omega)$ has the 2-out-of-6 property.
- (iii) The class of topological embeddings / quotients / equivalences is closed under pullback along subprojections.

• • • • • • • • • • •

Proposition.

- (i) Every Leibniz equivalence in $E(\Omega)$ is a topological equivalence in $E(\Omega)$.
- (ii) The class of topological equivalences in $E(\Omega)$ has the 2-out-of-6 property.
- (iii) The class of topological embeddings / quotients / equivalences is closed under pullback along subprojections.

Definition. The **category of loci** is the category $Lc(\Omega)$ obtained by freely inverting the topological equivalences in $E(\Omega)$.

	Cartesian hyperdoctrines
	0000000

<□> <@> < E> < E> E の

Another viewpoint on cartesian theories

Theorem. If (S, Ω) is a Horn hyperdoctrine,

イロト イロト イヨト イヨト

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

イロト イロト イヨト イヨト

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

> The weak equivalences are the topological equivalences.

< ∃ >

< ロ > < 同 > < 三 >

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

< □ > < @ > < Ξ

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

Theorem.

(i) The localisation functor $E(\Omega) \rightarrow Lc(\Omega)$
Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

Theorem.

(i) The localisation functor $E(\Omega) \rightarrow Lc(\Omega)$ factors as the quotient functor $E(\Omega) \rightarrow Leib(\Omega)$

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

Theorem.

(i) The localisation functor E(Ω) → Lc(Ω) factors as the quotient functor E(Ω) → Leib(Ω) followed by a faithful localisation functor Leib(Ω) → Lc(Ω).

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

Theorem.

- (i) The localisation functor E(Ω) → Lc(Ω) factors as the quotient functor E(Ω) → Leib(Ω) followed by a faithful localisation functor Leib(Ω) → Lc(Ω).
- (ii) Moreover, $Leib(\Omega) \rightarrow Lc(\Omega)$ preserves finite limits.

Theorem. If (S, Ω) is a Horn hyperdoctrine, then $E(\Omega)$ is a category of fibrant objects where:

- > The weak equivalences are the topological equivalences.
- The fibrations are the subprojections.

Theorem.

- (i) The localisation functor E(Ω) → Lc(Ω) factors as the quotient functor E(Ω) → Leib(Ω) followed by a faithful localisation functor Leib(Ω) → Lc(Ω).
- (ii) Moreover, $Leib(\Omega) \rightarrow Lc(\Omega)$ preserves finite limits.
- (iii) $Lc(\Omega)$ has finite limits.

æ

<ロ> (四) (四) (日) (日) (日)

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

イロト イロト イヨト イヨト

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

 \blacktriangleright Every subprojection in $E(\Omega)$ that becomes a monomorphism in $Leib(\Omega)$

イロト イロト イヨト イヨト

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

 Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient

-∢ ≣ ▶

< ロ > < 同 > < 回 >

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).

< ∃ >

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).

Lemma. *The following are equivalent:*

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).

Lemma. The following are equivalent:

(i) (S, Ω) is a cartesian hyperdoctrine.

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- **Lemma.** *The following are equivalent:*
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in $Leib(\Omega)$ is a topological embedding in $E(\Omega)$

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- Lemma. The following are equivalent:
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in $\text{Leib}(\Omega)$ is a topological embedding in $E(\Omega)$ and factors as a topological quotient

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- Lemma. The following are equivalent:
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in Leib(Ω) is a topological embedding in E(Ω) and factors as a topological quotient followed by a vertical morphism in E(Ω).

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- Lemma. The following are equivalent:
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in Leib(Ω) is a topological embedding in E(Ω) and factors as a topological quotient followed by a vertical morphism in E(Ω).
- (iii) Every monomorphism in $\text{Leib}(\Omega)$

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- Lemma. The following are equivalent:
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in Leib(Ω) is a topological embedding in E(Ω) and factors as a topological quotient followed by a vertical morphism in E(Ω).
- (iii) Every monomorphism in $\mathbf{Leib}(\Omega)$ factors as a topological equivalence

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (S, Ω) with the following property:

- Every subprojection in E(Ω) that becomes a monomorphism in Leib(Ω) factors as a topological quotient followed by a vertical morphism in E(Ω).
- Lemma. The following are equivalent:
 - (i) (S, Ω) is a cartesian hyperdoctrine.
 - (ii) Every monomorphism in Leib(Ω) is a topological embedding in E(Ω) and factors as a topological quotient followed by a vertical morphism in E(Ω).
- (iii) Every monomorphism in $\text{Leib}(\Omega)$ factors as a topological equivalence followed by a vertical morphism in $E(\Omega)$.

< ロ > < 同 > < 三 >

Another viewpoint on cartesian theories

Zhen Lin Low

Þ

<ロ> (四) (四) (日) (日) (日)

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

イロト イロト イヨト イヨト

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

 (i) The localisation functor Leib(Ω) → Lc(Ω) reflects monomorphisms.

イロト イロト イヨト イヨト

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

- (i) The localisation functor $\text{Leib}(\Omega) \rightarrow \text{Lc}(\Omega)$ reflects monomorphisms.
- (ii) The localisation functor $E(\Omega) \rightarrow Lc(\Omega)$ preserves pullbacks of vertical morphisms.

< ロ > < 同 > < 三 >

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

- (i) The localisation functor $\text{Leib}(\Omega) \rightarrow \text{Lc}(\Omega)$ reflects monomorphisms.
- (ii) The localisation functor E(Ω) → Lc(Ω) preserves pullbacks of vertical morphisms.
- (iii) Every monomorphism in $Lc(\Omega)$

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

- (i) The localisation functor $\text{Leib}(\Omega) \rightarrow \text{Lc}(\Omega)$ reflects monomorphisms.
- (ii) The localisation functor E(Ω) → Lc(Ω) preserves pullbacks of vertical morphisms.
- (iii) Every monomorphism in $Lc(\Omega)$ factors as an isomorphism in $Lc(\Omega)$

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

- (i) The localisation functor $\text{Leib}(\Omega) \rightarrow \text{Lc}(\Omega)$ reflects monomorphisms.
- (ii) The localisation functor E(Ω) → Lc(Ω) preserves pullbacks of vertical morphisms.
- (iii) Every monomorphism in $Lc(\Omega)$ factors as an isomorphism in $Lc(\Omega)$ followed by a vertical morphism in $E(\Omega)$.

Theorem. Assuming (S, Ω) is a cartesian hyperdoctrine:

- (i) The localisation functor $\text{Leib}(\Omega) \rightarrow \text{Lc}(\Omega)$ reflects monomorphisms.
- (ii) The localisation functor E(Ω) → Lc(Ω) preserves pullbacks of vertical morphisms.
- (iii) Every monomorphism in $Lc(\Omega)$ factors as an isomorphism in $Lc(\Omega)$ followed by a vertical morphism in $E(\Omega)$.

In other words, the natural map $\Omega(X) \to Sub_{Lc(\Omega)}((X, T_X))$ is an isomorphism.

くロ とくぼ とくほ とく ほんし

	Cartesian hyperdoctrines
	000000

Another viewpoint on cartesian theories

Zhen Lin Low

ē,

ヘロン 人間 とくほとくほとう

	Cartesian hyperdoctrines
	000000

• Let \mathbb{T} be a (many-sorted) algebraic theory.

Э

	Cartesian hyperdoctrines
	0000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- Let S be the Lawvere theory corresponding to \mathbb{T} .

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X,

		Cartesian hyperdoctrines
		000000
A		

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (\mathcal{S}, Ω) is a Horn hyperdoctrine.

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (S, Ω) is a Horn hyperdoctrine.
- Moreover, Leib(Ω) is equivalent to the syntactic category of the cartesian theory generated by T.

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (\mathcal{S}, Ω) is a Horn hyperdoctrine.
- Moreover, Leib(Ω) is equivalent to the syntactic category of the cartesian theory generated by T.
- Is every topological equivalence in E(Ω) already a Leibniz equivalence?

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to **T**.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (\mathcal{S}, Ω) is a Horn hyperdoctrine.
- Moreover, Leib(Ω) is equivalent to the syntactic category of the cartesian theory generated by T.
- Is every topological equivalence in E(Ω) already a Leibniz equivalence?
- This happens if every monomorphism in Leib(Ω) is a regular monomorphism,

	Cartesian hyperdoctrines
	000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (\mathcal{S}, Ω) is a Horn hyperdoctrine.
- Moreover, Leib(Ω) is equivalent to the syntactic category of the cartesian theory generated by T.
- Is every topological equivalence in E(Ω) already a Leibniz equivalence?
- This happens if every monomorphism in Leib(Ω) is a regular monomorphism, e.g. when T is the theory of abelian groups.

	Cartesian hyperdoctrines
	0000000

- Let \mathbb{T} be a (many-sorted) algebraic theory.
- ▶ Let *S* be the Lawvere theory corresponding to T.
- Let Ω(X) be the poset of finitely generated congruences on the free T-algebra represented by X, ordered by reverse inclusion.
- Then, (\mathcal{S}, Ω) is a Horn hyperdoctrine.
- Moreover, Leib(Ω) is equivalent to the syntactic category of the cartesian theory generated by T.
- Is every topological equivalence in E(Ω) already a Leibniz equivalence?
- This happens if every monomorphism in Leib(Ω) is a regular monomorphism, e.g. when T is the theory of abelian groups. What happens otherwise?