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Motivation

▶ Cartesian theories (or essentially algebraic theories) have the same
expressive power as finite limit sketches.

▶ One way of getting a finite limit sketch from a cartesian theory is to
form the syntactic category.

▶ Cartesian theories have an underlying algebraic theory, but this
disappears after passing to the syntactic category.

▶ For example, it is possible for different algebraic theories to
generate cartesian theories that have equivalent syntactic
categories.

▶ Thus, what we would like to do is to augment the notion of
(many-sorted) Lawvere theory so it can encode cartesian theories.
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Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories:

first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines.

The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic,

so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic:

∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae.

So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Motivation

▶ We already know how to do something like this for (intuitionistic)
first-order theories: first-order hyperdoctrines. The idea is to
associate with each object in a Lawvere theory a poset of
predicates.

▶ There is a fairly transparent correspondence between the axioms
for first-order hyperdoctrines and the logical connectives of
first-order logic, so it is straightforward to vary the definition to
obtain hyperdoctrines corresponding to coherent theories and
regular theories.

▶ However, cartesian theories are problematic: ∃ cannot be applied
to arbitrary formulae. So we have to start from scratch and build
up to cartesian theories.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Definitions

Definition. A precartesian hyperdoctrine is a pair (u� , Ω) where:
▶ u� is a cartesian monoidal category.
▶ Ω is a contravariant functor from u� to the category of

meet-semilattices.

Given such, define the category E(Ω) as follows:
▶ The objects are pairs (𝑋, 𝑃) where 𝑋 is an object in u� and 𝑃 is an

element of Ω(𝑋).
▶ The morphisms (𝑋, 𝑃) → (𝑌, 𝑄) are the morphisms 𝑓 : 𝑋 → 𝑌

in u� such that 𝑃 ≤ 𝑄 ⋅ 𝑓 .

Remark. E(Ω) is itself a cartesian monoidal category: define

(𝑋, 𝑃) × (𝑌, 𝑄) = (𝑋 × 𝑌, 𝑃 ⋅ 𝑥 ∧ 𝑄 ⋅ 𝑦)

where 𝑥 : 𝑋 × 𝑌 → 𝑋 and 𝑦 : 𝑋 × 𝑌 → 𝑌 are the projections.
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Examples

(a) u� is a cartesian monoidal category and Ω(𝑋) is the poset of
𝐽-closed sieves on 𝑋 for some Grothendieck topology 𝐽 on u� .

(b) u� is a category with finite limits and Ω(𝑋) is the poset of
subobjects of 𝑋.

(c) u� is the category of Hausdorff spaces and Ω(𝑋) is the poset of
closed subspaces of 𝑋.

(d) u� is the category of topological spaces or locales and Ω(𝑋) is the
poset of open subspaces of 𝑋.

Another viewpoint on cartesian theories Zhen Lin Low
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The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).

▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.

(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

The Leibniz category

Definition. The Leibniz category associated with (u� , Ω) is the
category Leib(Ω) defined as follows:

▶ The objects are the objects in E(Ω).
▶ The morphisms are the equivalence classes of morphisms in E(Ω).

Slogan: indiscernibles are identical.

Proposition.
(i) The quotient functorE(Ω) → Leib(Ω) preserves finitary products.
(ii) In particular,Leib(Ω) is a cartesianmonoidal category.

But what about equalisers?

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists,

if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1,

then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ ⊤u�) ∧ 𝑋≈ ⋅ (𝑥0 × idu�) ≤ 𝑋≈ ⋅ (𝑥1 × idu�)

in Ω(𝑇 × 𝑋),

so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ 𝐻) ∧ 𝑋≈ ⋅ (𝑥0 × 𝑥0) ≤ 𝑋≈ ⋅ (𝑥1 × 𝑥0)

in Ω(𝑇 × 𝑇),

so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ 𝐻) ∧ 𝑋≈ ⋅ (𝑥0 × 𝑥0) ≤ 𝑋≈ ⋅ (𝑥1 × 𝑥0)

in Ω(𝑇 × 𝑇), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0),

hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Definition. A Leibniz equality Ω-relation on an object 𝑋 in u� is an
element 𝑋≈ of Ω(𝑋 × 𝑋) with the following properties:

▶ For every morphism 𝑥 : 𝑇 → 𝑋 in u� :

⊤u� ≤ 𝑋≈ ⋅ ⟨𝑥, 𝑥⟩

▶ For every parallel pair 𝑥0, 𝑥1 : (𝑇, 𝐻) → (𝑋, ⊤u�) in E(Ω):

𝐻 ≤ 𝑋≈ ⋅ ⟨𝑥0, 𝑥1⟩ ⟹ 𝑥0 ≼ 𝑥1

Remark. Assuming 𝑋≈ exists, if 𝑥0 ≼ 𝑥1, then,

(𝐻 ⊠ 𝐻) ∧ 𝑋≈ ⋅ (𝑥0 × 𝑥0) ≤ 𝑋≈ ⋅ (𝑥1 × 𝑥0)

in Ω(𝑇 × 𝑇), so 𝐻 ≤ 𝑋≈(𝑥1, 𝑥0), hence 𝑥0 ≍ 𝑥1.

Another viewpoint on cartesian theories Zhen Lin Low



Introduction Precartesian hyperdoctrines Horn hyperdoctrines Cartesian hyperdoctrines

Leibniz equality

Lemma. Let 𝑓0, 𝑓1 : (𝑋, 𝑃) → (𝑌, 𝑄) be a parallel pair of morphisms in
E(Ω). Assuming𝑌≈ exists, the following are equivalent:

(i) 𝑓0 ≍ 𝑓1 asmorphisms (𝑋, 𝑃) → (𝑌, 𝑄) inE(Ω).
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Definition. A Horn hyperdoctrine is a precartesian hyperdoctrine
(u� , Ω) with the following property:

▶ For every object 𝑋 in u� , 𝑋≈ exists.

Proposition. If (u� , Ω) is a Horn hyperdoctrine, thenLeib(Ω) has
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Leibniz equivalences

Definition. A Leibniz equivalence in E(Ω) is a morphism that becomes
invertible in Leib(Ω).

Proposition. Let 𝐹 : E(Ω) → u� be a functor. Assuming (u� , Ω) is a Horn
hyperdoctrine, the following are equivalent:

(i) 𝐹 : E(Ω) → u� sends Leibniz equivalences inE(Ω) to isomorphisms
inu� .

(ii) 𝐹 : E(Ω) → u� factors through the quotient functor
E(Ω) → Leib(Ω).

In other words, Leib(Ω) is (isomorphic to) the category obtained by
freely inverting the Leibniz equivalences in E(Ω).

Another viewpoint on cartesian theories Zhen Lin Low
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Subprojections

Definition. A subprojection in E(Ω) is a morphism in E(Ω) whose
underlying morphism in u� is a product projection (up to isomorphism).

Lemma. Consider a commutative triangle inLeib(Ω):

(𝑌, 𝑄)

(𝑋, 𝑃) (𝑍, 𝑅)

u�
u�

ℎ

If 𝑔 : (𝑌, 𝑄) → (𝑍, 𝑅) is a subprojection inE(Ω), then there is a
morphism 𝑓1 : (𝑋, 𝑃) → (𝑌, 𝑄) inE(Ω) such that 𝑓 ≍ 𝑓1 and 𝑔 ∘ 𝑓1 = ℎ
inE(Ω).
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Subprojections

Proposition.
(i) The class of subprojections inE(Ω) is closed under pullbacks.
(ii) The quotient functorE(Ω) → Leib(Ω) preserves pullbacks of

subprojections.

Proposition. If (u� , Ω) is a Horn hyperdoctrine, then everymorphism in
E(Ω) factors as a Leibniz equivalence followed by a subprojection.

Thus, we have proved:

Theorem. If (u� , Ω) is a Horn hyperdoctrine, thenE(Ω) is a category of
fibrant objects where:

▶ The weak equivalences are the Leibniz equivalences.
▶ The fibrations are the subprojections.

Moreover,Leib(Ω) is the homotopy category.

Another viewpoint on cartesian theories Zhen Lin Low
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Some trouble

▶ There is a fully faithful embedding u� → E(Ω) given by
𝑋 ↦ (𝑋, ⊤u�), and it preserves finitary products.

▶ Thus the composite u� → E(Ω) → Leib(Ω) preserves finitary
products.

▶ Unfortunately, equalisers are not preserved. For instance, in
example (c),

{(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥𝑦 = 1} ℝ2 ℝ

is not preserved.
▶ In other words, there are morphisms in Leib(Ω) which ought to

be invertible but are not. What are they?
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Topological equivalences

Let 𝑓 : (𝑋, 𝑃) → (𝑌, 𝑄) be a morphism in E(Ω). For every object 𝑇 in
u� , we have:

Ω(𝑇 × 𝑌) Ω(𝑇 × 𝑋)

↓{⊤u� ⊠ 𝑄} ↓{⊤u� ⊠ 𝑃}

(−)∧(⊤u�⊠u�)

(idu�×u� )∗

(−)∧(⊤u�⊠u�)

Definition. The morphism 𝑓 : (𝑋, 𝑃) → (𝑌, 𝑄) in E(Ω) is …

… a topological embedding if, for every object 𝑇 in u� ,
↓{⊤u� ⊠ 𝑄} → ↓{⊤u� ⊠ 𝑃} is surjective.

… is a topological quotient if, for every object 𝑇 in u� ,
↓{⊤u� ⊠ 𝑄} → ↓{⊤u� ⊠ 𝑃} is an order embedding.

… is a topological equivalence if, for every object 𝑇 in u� ,
↓{⊤u� ⊠ 𝑄} → ↓{⊤u� ⊠ 𝑃} is an order isomorphism.

Another viewpoint on cartesian theories Zhen Lin Low
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Topological equivalences

Proposition.
(i) Every Leibniz equivalence inE(Ω) is a topological equivalence in

E(Ω).
(ii) The class of topological equivalences inE(Ω) has the 2-out-of-6

property.

(iii) The class of topological embeddings / quotients / equivalences is
closed under pullback along subprojections.

Definition. The category of loci is the category Lc(Ω) obtained by
freely inverting the topological equivalences in E(Ω).

Another viewpoint on cartesian theories Zhen Lin Low
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Existential quantification

Definition. A cartesian hyperdoctrine is a Horn hyperdoctrine (u� , Ω)
with the following property:

▶ Every subprojection in E(Ω) that becomes a monomorphism in
Leib(Ω) factors as a topological quotient followed by a vertical
morphism in E(Ω).

Lemma. The following are equivalent:

(i) (u� , Ω) is a cartesian hyperdoctrine.
(ii) Everymonomorphism inLeib(Ω) is a topological embedding in

E(Ω) and factors as a topological quotient followed by a vertical
morphism inE(Ω).

(iii) Everymonomorphism inLeib(Ω) factors as a topological
equivalence followed by a vertical morphism inE(Ω).
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The category of loci, redux

Theorem. Assuming (u� , Ω) is a cartesian hyperdoctrine:
(i) The localisation functorLeib(Ω) → Lc(Ω) reflects

monomorphisms.

(ii) The localisation functorE(Ω) → Lc(Ω) preserves pullbacks of
vertical morphisms.

(iii) Everymonomorphism inLc(Ω) factors as an isomorphism inLc(Ω)
followed by a vertical morphism inE(Ω).

In other words, the natural map Ω(𝑋) → SubLc(Ω)((𝑋, ⊤u�)) is an
isomorphism.

Another viewpoint on cartesian theories Zhen Lin Low
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A question

▶ Let 𝕋 be a (many-sorted) algebraic theory.
▶ Let u� be the Lawvere theory corresponding to 𝕋 .
▶ Let Ω(𝑋) be the poset of finitely generated congruences on the

free 𝕋 -algebra represented by 𝑋, ordered by reverse inclusion.
▶ Then, (u� , Ω) is a Horn hyperdoctrine.
▶ Moreover, Leib(Ω) is equivalent to the syntactic category of the

cartesian theory generated by 𝕋 .
▶ Is every topological equivalence in E(Ω) already a Leibniz

equivalence?
▶ This happens if every monomorphism in Leib(Ω) is a regular

monomorphism, e.g. when 𝕋 is the theory of abelian groups. What
happens otherwise?

Another viewpoint on cartesian theories Zhen Lin Low
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