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Introduction Details An application

Intuition

{categories of fibrant objects} ≃ {(∞, 1)-categories with finite limits}

This is made precise by some recent results:
▶ Karol Szumiło. ‘Two models for the homotopy theory of

cocomplete homotopy theories’. PhD thesis. University of Bonn,
2014

▶ Chris Kapulkin and Karol Szumiło. Quasicategories of frames of
cofibration categories. 29th June 2015. arXiv: 1506.08681
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Introduction Details An application

Definition

A category of fibrant objects is a category with finite products and two
classes of morphisms, called ‘fibrations’ and ‘weak equivalences’, that
satisfy the following axioms:

(A) Every isomorphism is a weak equivalence and the class of weak
equivalences has the .

(B) Every isomorphism is a fibration and the class of fibrations is closed
under composition.

(C) The class of fibrations is closed under pullback and the class of
trivial fibrations

(D) For every object 𝑋, the diagonal Δ : 𝑋 → 𝑋 × 𝑋 factors as a weak
equivalence followed by a fibration.

(E) Every object is fibrant, i.e. for every object 𝑋, 𝑋 → 1 is a fibration.
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Examples

▶ Given a model category, the full subcategory of fibrant objects
(with the obvious fibrations and weak equivalences) is a category
of fibrant objects.

▶ If ℳ is a right-proper model category and the class of weak
equivalences in ℳ is closed under binary product, then ℳ is a
category of fibrant objects (with the same weak equivalences but
more fibrations).

▶ The category of small categories of fibrant objects is itself a
category of fibrant objects. This is a result of Szumiło.
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Introduction Details An application

Question

Since a category of fibrant objects has an “underlying” (∞, 1)-category,
there is a space of “homotopy morphisms” between any two objects.
What is this mapping space?
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Introduction Details An application

Answer

The mapping space for a pair (𝑋, 𝑌) of objects in a category of fibrant
objects is homotopy equivalent to the simplicial set defined as follows:

▶ The 𝑛-simplices are commutative diagrams of the form below:

𝑋 𝑋̃0 𝑌

⋮ ⋮ ⋮

𝑋 𝑋̃u� 𝑌

≃

≃

▶ The outermost face operators delete a row of vertical arrows.
▶ The inner face operators compose a pair of rows of vertical arrows.
▶ The degeneracy operators insert a row of identity arrows.
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Definitions

From now on, u� is a category of fibrant objects and u� is the
subcategory of weak equivalences.
Let 𝑋 and 𝑌 be objects in u� .

▶ A zigzag 𝑋 ⇝ 𝑌 in u� is a diagram in u� of the form below,

𝑋 • ⋯ • 𝑌

where the edges are arrows pointing either leftward or rightward
and all leftward-pointing arrows are weak equivalences.

▶ A cocycle (𝑓 , 𝑤) : 𝑋 →[ 𝑌 in u� is a diagram in u� of the form below:

𝑋 • 𝑌u�
≃

u�

This terminology is due to Jardine.
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Introduction Details An application

Homotopy morphisms

The homotopy category Ho u� is the category obtained from u� by
freely adjoining inverses for weak equivalences. More explicitly:

▶ The objects in Ho u� are the objects in u� .
▶ The morphisms in Ho u� are zigzags in u� modulo a certain

equivalence relation.
▶ Composition in Ho u� is induced by concatenation of zigzags.

The above description does not use the fact that u� is a category of
fibrant objects.
It is also unsatisfactory because it involves zigzags of arbitrary length.
Can we do better?
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Introduction Details An application

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects.
The key idea is to turn zigzags of the form

𝑋 • ⋯ • 𝑌≃ ≃

into equivalent zigzags of the form below,

𝑋 • ⋯ 𝑌≃

thereby reducing the number of leftward-pointing arrows.
If we can do the above in a homotopically sensitive way, then what we
have is a homotopical calculus of right fractions.
In that situation, an old result of Dwyer and Kan says that the mapping
spaces are homotopy equivalent to the nerves of the categories of
cocycles.
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Introduction Details An application

Functional correspondences

Let 𝑋 and 𝑌 be objects in u� .

▶ A functional correspondence (𝑝, 𝑣) : 𝑋 →[ 𝑌 in u� is a cocycle
such that the induced morphism ⟨𝑝, 𝑣⟩ : 𝑋̃ → 𝑌 × 𝑋 is a fibration.

▶ For any cocycle (𝑓 , 𝑤) : 𝑋 →[ 𝑌 in u� , there exist a functional
correspondence (𝑝, 𝑣) : 𝑋 →[ 𝑌 and a commutative diagram of
the form below:

𝑋 𝑋̃ 𝑌

𝑋 𝑋̂ 𝑌

u�
≃

u�≃

u�

≃
u� u�

Indeed, using Brown’s factorisation lemma, we just factor
⟨𝑓 , 𝑤⟩ : 𝑋̃ → 𝑌 × 𝑋 as a weak equivalence followed by a fibration.

▶ Moreover, the data (𝑝, 𝑣) and 𝑗 are homotopically unique, i.e. the
space of such choices is contractible.
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Introduction Details An application

Calculus of fractions

The first step is well-defined up to a contractible space of choices.
All the other steps are functorial.
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Calculus of fractions

Assume idu� .
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All of the above steps are functorial.
These two procedures lie at the heart of the proof that categories of
fibrant objects admit a homotopical calculus of right fractions.
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Introduction Details An application

Revisiting cocycles

A cocycle 𝑋 →[ 𝑌 in the sense of Jardine is a diagram of the form below:

𝑋 • 𝑌≃

Question. What is the connection between cocycles in the sense above
and cocycles in cohomology?
Answer. The Verdier hypercovering theorem.
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Introduction Details An application

Cohomology via homotopy theory

Let 𝑋 be a topological space.
Classically, given an abelian group 𝐴,

HomHo 𝐓𝐨𝐩(𝑋, K(𝐴, 𝑛)) ≅ Hu�(𝑋; 𝐴)

where the RHS is singular cohomology.
Similarly, given a sheaf 𝒜 of abelian groups on 𝑋,

HomHo 𝐬𝐒𝐡(u�)(1u�, K(𝒜 , 𝑛)) ≅ Hu�(𝑋; 𝒜 )

where the RHS is sheaf cohomology.
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Introduction Details An application

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

𝐑Homu�(𝑋, 𝑌) ≃ holim−−→(u�∕u�)op Homu�(𝑈, 𝑌)

where:
▶ u� is a category of fibrant objects.
▶ u� is the subcategory of weak equivalences.
▶ 𝑈 : u�∕u� → u� is the obvious projection.

This is a straightforward consequence of Thomason’s homotopy colimit
theorem and the earlier characterisation of 𝐑Homu�(𝑋, 𝑌) in terms of
cocycles.
In fact, we can replace u�∕u� with the full subcategory u�u� spanned by
the trivial fibrations 𝑋̃ → 𝑋.
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This is a straightforward consequence of Thomason’s homotopy colimit
theorem and the earlier characterisation of 𝐑Homu�(𝑋, 𝑌) in terms of
cocycles.
In fact, we can replace u�∕u� with the full subcategory u�u� spanned by
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Introduction Details An application

Hypercovers

Let 𝑋 be a topological space.

Definition. A hypercover of 𝑋 is a sheaf 𝒰 of simplicial sets on 𝑋 such
that 𝒰 → 1u� is a stalkwise trivial Kan fibration.

Example. Let {𝑈u� ∣ 𝑖 ∈ 𝐼} be an open cover of 𝑋. There is a hypercover
of 𝑋 defined as follows,

𝒰u� = ∐
(u�0,…,u�u�)

𝑈u�0 ∩ ⋯ ∩ 𝑈u�u�

where (𝑖0, … , 𝑖u�) runs over all (𝑛 + 1)-tuples of elements of 𝐼.

Thus, hypercovers are generalisations of open covers.
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Introduction Details An application

The Verdier hypercovering theorem

Hu�(𝑋; 𝒜 ) ≅ HomHo 𝐬𝐒𝐡(u�)(1u�, K(𝒜 , 𝑛))
≅ 𝜋0(𝐑Hom𝐬𝐒𝐡(u�)(1u�, K(𝒜 , 𝑛)))

≅ 𝜋0(holim−−→u�op Hom𝐬𝐒𝐡(u�)(𝒰 , K(𝒜 , 𝑛)))

≅ lim−−→u�op Hom𝐬𝐒𝐡(u�)(𝒰 , K(𝒜 , 𝑛))

≅ lim−−→u�op H0(Hom(C(𝒰), Σu�𝒜))

≅ lim−−→u�op H0(Σu�Hom(C(𝒰), 𝒜 ))

≅ lim−−→u�op H−u�(Hom(C(𝒰), 𝒜 ))

≅ lim−−→u�op Hu�(Hom(C(𝒰), 𝒜 ))

This is basically the Verdier hypercovering theorem.
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