Cocycles in categories of fibrant objects

 (arXiv:1502.03925)Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge

Young Topologists' Meeting 2015
Écublens, Switzerland

Introduction
Categories of fibrant objects
Mapping spaces

Details
Auxiliary notions
Proof sketch

An application
Revisiting cocycles

Intuition

Intuition

$\{$ categories of fibrant objects $\} \simeq\{(\infty, 1)$-categories with finite limits $\}$

Intuition

$\{$ categories of fibrant objects $\} \simeq\{(\infty, 1)$-categories with finite limits $\}$
This is made precise by some recent results:

Intuition

$\{$ categories of fibrant objects $\} \simeq\{(\infty, 1)$-categories with finite limits $\}$
This is made precise by some recent results:

- Karol Szumiło. 'Two models for the homotopy theory of cocomplete homotopy theories'. PhD thesis. University of Bonn, 2014

Intuition

$\{$ categories of fibrant objects $\} \simeq\{(\infty, 1)$-categories with finite limits $\}$
This is made precise by some recent results:

- Karol Szumiło. 'Two models for the homotopy theory of cocomplete homotopy theories'. PhD thesis. University of Bonn, 2014
- Chris Kapulkin and Karol Szumiło. Quasicategories of frames of cofibration categories. 29th June 2015. arXiv: 1506.08681

Definition

Definition

A category of fibrant objects is a category

Definition

A category of fibrant objects is a category with finite products

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences',

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2 -out-of-3 property.

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations (i.e. fibrations that are weak equivalences)

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2 -out-of- 6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations is also closed under pullback.

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations is also closed under pullback.
(D) For every object X,

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations is also closed under pullback.
(D) For every object X, the diagonal $\Delta: X \rightarrow X \times X$ factors as a weak equivalence followed by a fibration.

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations is also closed under pullback.
(D) For every object X, the diagonal $\Delta: X \rightarrow X \times X$ factors as a weak equivalence followed by a fibration.
(E) Every object is fibrant,

Definition

A category of fibrant objects is a category with finite products and two classes of morphisms, called 'fibrations' and 'weak equivalences', that satisfy the following axioms:
(A) Every isomorphism is a weak equivalence and the class of weak equivalences has the 2-out-of-6 property.
(B) Every isomorphism is a fibration and the class of fibrations is closed under composition.
(C) The class of fibrations is closed under pullback and the class of trivial fibrations is also closed under pullback.
(D) For every object X, the diagonal $\Delta: X \rightarrow X \times X$ factors as a weak equivalence followed by a fibration.
(E) Every object is fibrant, i.e. for every object $X, X \rightarrow 1$ is a fibration.

Examples

Examples

- Given a model category,

Examples

- Given a model category, the full subcategory of fibrant objects

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences)

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product,

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product, then \mathcal{M} is a category of fibrant objects

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product, then \mathcal{M} is a category of fibrant objects (with the same weak equivalences but more fibrations).

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product, then \mathcal{M} is a category of fibrant objects (with the same weak equivalences but more fibrations).
- The category of small categories of fibrant objects

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product, then \mathcal{M} is a category of fibrant objects (with the same weak equivalences but more fibrations).
- The category of small categories of fibrant objects is itself a category of fibrant objects.

Examples

- Given a model category, the full subcategory of fibrant objects (with the obvious fibrations and weak equivalences) is a category of fibrant objects.
- If \mathcal{M} is a right-proper model category and the class of weak equivalences in \mathcal{M} is closed under binary product, then \mathcal{M} is a category of fibrant objects (with the same weak equivalences but more fibrations).
- The category of small categories of fibrant objects is itself a category of fibrant objects. This is a result of Szumiło.

Question

Question

Since a category of fibrant objects has an "underlying" ($\infty, 1$)-category,

Question

Since a category of fibrant objects has an "underlying" ($\infty, 1$)-category, there is a space of "homotopy morphisms" between any two objects.

Question

Since a category of fibrant objects has an "underlying" ($\infty, 1$)-category, there is a space of "homotopy morphisms" between any two objects. What is this mapping space?

Answer

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

- The n-simplices are commutative diagrams of the form below:

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

- The n-simplices are commutative diagrams of the form below:

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

- The n-simplices are commutative diagrams of the form below:

- The outermost face operators delete a row of vertical arrows.

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

- The n-simplices are commutative diagrams of the form below:

- The outermost face operators delete a row of vertical arrows.
- The inner face operators compose a pair of rows of vertical arrows.

Answer

The mapping space for a pair (X, Y) of objects in a category of fibrant objects is homotopy equivalent to the simplicial set defined as follows:

- The n-simplices are commutative diagrams of the form below:

- The outermost face operators delete a row of vertical arrows.
- The inner face operators compose a pair of rows of vertical arrows.
- The degeneracy operators insert a row of identity arrows.

Definitions

Definitions

From now on, \mathcal{C} is a category of fibrant objects

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C}

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

where the edges are arrows pointing either leftward or rightward

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

where the edges are arrows pointing either leftward or rightward and all leftward-pointing arrows are weak equivalences.

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

where the edges are arrows pointing either leftward or rightward and all leftward-pointing arrows are weak equivalences.
- A cocycle $(f, w): X \rightarrow Y$ in C

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

$$
X __\bullet _\cdots ___
$$

where the edges are arrows pointing either leftward or rightward and all leftward-pointing arrows are weak equivalences.

- A cocycle $(f, w): X \rightarrow Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below:

$$
X \underset{\sim}{\underset{\sim}{w}} \bullet \xrightarrow{f} Y
$$

Definitions

From now on, \mathcal{C} is a category of fibrant objects and \mathcal{W} is the subcategory of weak equivalences.
Let X and Y be objects in C.

- A zigzag $X \leadsto Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below,

$$
X __\bullet _\cdots ___
$$

where the edges are arrows pointing either leftward or rightward and all leftward-pointing arrows are weak equivalences.

- A cocycle $(f, w): X \rightarrow Y$ in \mathcal{C} is a diagram in \mathcal{C} of the form below:

$$
X \underset{\sim}{\underset{\sim}{w}} \bullet \xrightarrow{f} Y
$$

This terminology is due to Jardine.

Homotopy morphisms

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in Ho \mathcal{C} are the objects in C.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in $\mathrm{Ho} \mathcal{C}$ are the objects in \mathcal{C}.
- The morphisms in Ho \mathcal{C} are zigzags in C modulo a certain equivalence relation.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in $\mathrm{Ho} \mathcal{C}$ are the objects in \mathcal{C}.
- The morphisms in Ho C are zigzags in C modulo a certain equivalence relation.
- Composition in $\mathrm{Ho} \mathcal{C}$ is induced by concatenation of zigzags.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in $\mathrm{Ho} \mathcal{C}$ are the objects in \mathcal{C}.
- The morphisms in Ho C are zigzags in C modulo a certain equivalence relation.
- Composition in $\mathrm{Ho} \mathcal{C}$ is induced by concatenation of zigzags. The above description does not use the fact that \mathcal{C} is a category of fibrant objects.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in $\mathrm{Ho} \mathcal{C}$ are the objects in \mathcal{C}.
- The morphisms in Ho C are zigzags in C modulo a certain equivalence relation.
- Composition in $\mathrm{Ho} \mathcal{C}$ is induced by concatenation of zigzags. The above description does not use the fact that \mathcal{C} is a category of fibrant objects.
It is also unsatisfactory because it involves zigzags of arbitrary length.

Homotopy morphisms

The homotopy category $\operatorname{Ho} \mathcal{C}$ is the category obtained from \mathcal{C} by freely adjoining inverses for weak equivalences. More explicitly:

- The objects in $\mathrm{Ho} \mathcal{C}$ are the objects in \mathcal{C}.
- The morphisms in Ho C are zigzags in C modulo a certain equivalence relation.
- Composition in $\mathrm{Ho} \mathcal{C}$ is induced by concatenation of zigzags. The above description does not use the fact that \mathcal{C} is a category of fibrant objects.
It is also unsatisfactory because it involves zigzags of arbitrary length. Can we do better?

Simplifying zigzags

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects.

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects. The key idea is to turn zigzags of the form

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects. The key idea is to turn zigzags of the form

into equivalent zigzags of the form below,

$$
X \stackrel{\simeq}{\longleftarrow} \bullet \cdots \longrightarrow Y
$$

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects. The key idea is to turn zigzags of the form

into equivalent zigzags of the form below,

$$
X \stackrel{\simeq}{\longleftrightarrow} \bullet \cdots \longrightarrow Y
$$

thereby reducing the number of leftward-pointing arrows.

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects. The key idea is to turn zigzags of the form

into equivalent zigzags of the form below,

$$
X \check{\simeq} \bullet \longrightarrow \longrightarrow Y
$$

thereby reducing the number of leftward-pointing arrows. If we can do the above in a homotopically sensitive way, then what we have is a homotopical calculus of right fractions.

Simplifying zigzags

We need a way of simplifying zigzags in a category of fibrant objects. The key idea is to turn zigzags of the form

into equivalent zigzags of the form below,

$$
X \check{\simeq} \bullet \longrightarrow \longrightarrow Y
$$

thereby reducing the number of leftward-pointing arrows.
If we can do the above in a homotopically sensitive way, then what we have is a homotopical calculus of right fractions.
In that situation, an old result of Dwyer and Kan says that the mapping spaces are homotopy equivalent to the nerves of the categories of cocycles.

Functional correspondences

Functional correspondences

Let X and Y be objects in \mathcal{C}.

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in \mathcal{C}

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in \mathcal{C} is a cocycle

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in C is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in C is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.
- For any cocycle $(f, w): X \rightarrow Y$ in \mathcal{C},

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in \mathcal{C} is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.
- For any cocycle $(f, w): X \rightarrow Y$ in \mathcal{C}, there exist a functional correspondence $(p, v): X \rightarrow Y$

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in C is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.
- For any cocycle $(f, w): X \rightarrow Y$ in \mathcal{C}, there exist a functional correspondence $(p, v): X \rightarrow Y$ and a commutative diagram of the form below:

$$
\begin{aligned}
& X \underset{\sim}{\sim} \tilde{X} \xrightarrow{f} Y \\
& \|\quad \simeq j j \quad\| \\
& X \underset{v}{\simeq} \hat{X} \underset{p}{\longrightarrow} Y
\end{aligned}
$$

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in C is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.
- For any cocycle $(f, w): X \rightarrow Y$ in \mathcal{C}, there exist a functional correspondence $(p, v): X \rightarrow Y$ and a commutative diagram of the form below:

$$
\begin{aligned}
& X \underset{\sim}{\sim} \tilde{X} \xrightarrow{f} Y \\
& \|\quad \simeq \downarrow j \quad\| \\
& X \underset{v}{\simeq} \hat{X} \underset{p}{\longrightarrow} Y
\end{aligned}
$$

Indeed, using Brown's factorisation lemma, we just factor $\langle f, w\rangle: \tilde{X} \rightarrow Y \times X$ as a weak equivalence followed by a fibration.

Functional correspondences

Let X and Y be objects in \mathcal{C}.

- A functional correspondence $(p, v): X \rightarrow Y$ in C is a cocycle such that the induced morphism $\langle p, v\rangle: \tilde{X} \rightarrow Y \times X$ is a fibration.
- For any cocycle $(f, w): X \rightarrow Y$ in \mathcal{C}, there exist a functional correspondence $(p, v): X \rightarrow Y$ and a commutative diagram of the form below:

$$
\begin{aligned}
& X \underset{\sim}{\sim} \tilde{X} \xrightarrow{f} Y \\
& \|\quad \simeq j j \quad\| \\
& X \underset{v}{\simeq} \hat{X} \underset{p}{\longrightarrow} Y
\end{aligned}
$$

Indeed, using Brown's factorisation lemma, we just factor $\langle f, w\rangle: \tilde{X} \rightarrow Y \times X$ as a weak equivalence followed by a fibration.

- Moreover, the data (p, v) and j are homotopically unique, i.e. the space of such choices is contractible.

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

Calculus of fractions

The first step is well-defined up to a contractible space of choices.

Calculus of fractions

The first step is well-defined up to a contractible space of choices.
All the other steps are functorial.

Calculus of fractions

Calculus of fractions

Calculus of fractions

Assume $w=\operatorname{id}_{Y}$.

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

$$
\begin{aligned}
& X \stackrel{\simeq}{\longleftrightarrow} \stackrel{f_{1}}{\longrightarrow} \cdot \cdots \cdots \cdots \cdot \xrightarrow{f_{k}} Y \xrightarrow{\mathrm{id}} Y
\end{aligned}
$$

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

$$
\begin{aligned}
& X \stackrel{\simeq}{\longleftrightarrow} \stackrel{f_{1}}{\longrightarrow} \cdot \cdots \cdots \cdots \cdot \xrightarrow{f_{k}} Y \xrightarrow{\mathrm{id}} Y
\end{aligned}
$$

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

All of the above steps are functorial.

Calculus of fractions

Assume $v \circ u=\operatorname{id}_{Y}$.

All of the above steps are functorial.
These two procedures lie at the heart of the proof that categories of fibrant objects admit a homotopical calculus of right fractions.

Revisiting cocycles

Revisiting cocycles

A cocycle $X \rightarrow Y$ in the sense of Jardine is a diagram of the form below:

$$
X \check{\simeq} \bullet \longrightarrow
$$

Revisiting cocycles

A cocycle $X \rightarrow Y$ in the sense of Jardine is a diagram of the form below:

$$
X \check{\longleftarrow} \bullet \longrightarrow Y
$$

Question. What is the connection between cocycles in the sense above and cocycles in cohomology?

Revisiting cocycles

A cocycle $X \rightarrow Y$ in the sense of Jardine is a diagram of the form below:

$$
X \simeq \simeq \longrightarrow Y
$$

Question. What is the connection between cocycles in the sense above and cocycles in cohomology?
Answer. The Verdier hypercovering theorem.

Cohomology via homotopy theory

Cohomology via homotopy theory

Let X be a topological space.

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

$$
\operatorname{Hom}_{\mathrm{Ho} \mathrm{Top}}(X, \mathrm{~K}(A, n)) \cong \mathrm{H}^{n}(X ; A)
$$

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

$$
\operatorname{Hom}_{\mathrm{Ho} \mathrm{Top}}(X, \mathrm{~K}(A, n)) \cong \mathrm{H}^{n}(X ; A)
$$

where the RHS is singular cohomology.

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

$$
\operatorname{Hom}_{\mathrm{Ho} \mathrm{Top}}(X, \mathrm{~K}(A, n)) \cong \mathrm{H}^{n}(X ; A)
$$

where the RHS is singular cohomology.
Similarly, given a sheaf \mathscr{A} of abelian groups on X,

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

$$
\operatorname{Hom}_{\mathrm{Ho} \mathrm{Top}}(X, \mathrm{~K}(A, n)) \cong \mathrm{H}^{n}(X ; A)
$$

where the RHS is singular cohomology.
Similarly, given a sheaf \mathscr{A} of abelian groups on X,

$$
\operatorname{Hom}_{\operatorname{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \cong \mathrm{H}^{n}(X ; \mathscr{A})
$$

Cohomology via homotopy theory

Let X be a topological space.
Classically, given an abelian group A,

$$
\operatorname{Hom}_{\mathrm{Ho} \mathrm{Top}}(X, \mathrm{~K}(A, n)) \cong \mathrm{H}^{n}(X ; A)
$$

where the RHS is singular cohomology.
Similarly, given a sheaf \mathscr{A} of abelian groups on X,

$$
\operatorname{Hom}_{\operatorname{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \cong \mathrm{H}^{n}(X ; \mathscr{A})
$$

where the RHS is sheaf cohomology.

A homotopy colimit formula

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

where:

- \mathcal{C} is a category of fibrant objects.

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

where:

- \mathcal{C} is a category of fibrant objects.
- \mathcal{W} is the subcategory of weak equivalences.

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

where:

- \mathcal{C} is a category of fibrant objects.
- \mathcal{W} is the subcategory of weak equivalences.
- $U: \mathcal{W}_{I X} \rightarrow \mathcal{C}$ is the obvious projection.

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

where:

- \mathcal{C} is a category of fibrant objects.
- \mathcal{W} is the subcategory of weak equivalences.
- $U: \mathcal{W}_{I X} \rightarrow \mathcal{C}$ is the obvious projection.

This is a straightforward consequence of Thomason's homotopy colimit theorem and the earlier characterisation of $\mathbf{R H o m}_{\mathcal{C}}(X, Y)$ in terms of cocycles.

A homotopy colimit formula

We have the following homotopy colimit formula for mapping spaces,

$$
\operatorname{RHom}_{C}(X, Y) \simeq \operatorname{holim}_{\left(\mathcal{W}_{/ X}\right)}{ }^{\text {op }} \operatorname{Hom}_{C}(U, Y)
$$

where:

- \mathcal{C} is a category of fibrant objects.
- \mathcal{W} is the subcategory of weak equivalences.
- $U: \mathcal{W}_{I X} \rightarrow \mathcal{C}$ is the obvious projection.

This is a straightforward consequence of Thomason's homotopy colimit theorem and the earlier characterisation of $\mathbf{R H o m}_{\mathcal{C}}(X, Y)$ in terms of cocycles.
In fact, we can replace $\mathcal{W}_{/ X}$ with the full subcategory \mathcal{Q}_{X} spanned by the trivial fibrations $\tilde{X} \rightarrow X$.

Hypercovers

Hypercovers

Let X be a topological space.

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Example. Let $\left\{U_{i} \mid i \in I\right\}$ be an open cover of X.

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Example. Let $\left\{U_{i} \mid i \in I\right\}$ be an open cover of X. There is a hypercover of X defined as follows,

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Example. Let $\left\{U_{i} \mid i \in I\right\}$ be an open cover of X. There is a hypercover of X defined as follows,

$$
U_{n}=\coprod_{\left(i_{0}, \ldots, i_{n}\right)} U_{i_{0}} \cap \cdots \cap U_{i_{n}}
$$

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Example. Let $\left\{U_{i} \mid i \in I\right\}$ be an open cover of X. There is a hypercover of X defined as follows,

$$
\mathscr{U}_{n}=\coprod_{\left(i_{0}, \ldots, i_{n}\right)} U_{i_{0}} \cap \cdots \cap U_{i_{n}}
$$

where $\left(i_{0}, \ldots, i_{n}\right)$ runs over all $(n+1)$-tuples of elements of I.

Hypercovers

Let X be a topological space.
Definition. A hypercover of X is a sheaf \mathscr{U} of simplicial sets on X such that $\mathscr{U} \rightarrow 1_{X}$ is a stalkwise trivial Kan fibration.

Example. Let $\left\{U_{i} \mid i \in I\right\}$ be an open cover of X. There is a hypercover of X defined as follows,

$$
\mathscr{U}_{n}=\coprod_{\left(i_{0}, \ldots, i_{n}\right)} U_{i_{0}} \cap \cdots \cap U_{i_{n}}
$$

where $\left(i_{0}, \ldots, i_{n}\right)$ runs over all $(n+1)$-tuples of elements of I.
Thus, hypercovers are generalisations of open covers.

The Verdier hypercovering theorem

The Verdier hypercovering theorem

$\mathrm{H}^{n}(X ; \mathscr{A})$

The Verdier hypercovering theorem

$$
\mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Ho} \operatorname{sSh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
\mathrm{H}^{n}(X ; \mathscr{A}) & \cong \operatorname{Hom}_{\operatorname{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\operatorname{RHom}_{\mathrm{sSh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)\right)
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
\mathrm{H}^{n}(X ; \mathscr{A}) & \cong \operatorname{Hom}_{\operatorname{Hos} \operatorname{sh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\operatorname{RHom}_{\mathrm{sSh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\mathrm{op}}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right)
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
\mathrm{H}^{n}(X ; \mathscr{A}) & \cong \operatorname{Hom}_{\operatorname{Hos}^{\operatorname{SSh}(X)}}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\operatorname{RHom}_{\operatorname{shh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\longrightarrow \mathcal{Q}^{\circ}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right) \\
& \cong \underset{\mathcal{Q}^{\mathrm{op}}}{\operatorname{limom}_{\mathrm{sSh}(X)}}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
& \mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\operatorname{RHom}_{\operatorname{sSh}}^{(X)},\left(1_{X}, K(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\text {op }}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right) \\
& \cong{\underset{\underline{Q}}{ }{ }^{\text {op }}}^{\operatorname{Hom}_{\mathrm{sSh}(X)}}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n)) \\
& \cong \lim _{\mathcal{Q}^{\mathrm{op}}} \mathrm{H}_{0}\left(\underline{\operatorname{Hom}}\left(\mathrm{C}(\mathscr{U}), \Sigma^{n} \mathscr{A}\right)\right)
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
& \mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\mathbf{R H o m}_{\operatorname{sSh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\text {op }}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right) \\
& \cong{\underset{\underline{Q}}{ }{ }^{\text {op }}}^{\operatorname{Hom}_{\mathrm{sSh}(X)}}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n)) \\
& \cong \lim _{\mathcal{Q}^{\mathrm{op}}} \mathrm{H}_{0}\left(\underline{\operatorname{Hom}}\left(\mathrm{C}(\mathscr{U}), \Sigma^{n} \mathscr{A}\right)\right) \\
& \cong \lim _{\mathcal{Q}^{\mathrm{op}}} \mathrm{H}_{0}\left(\Sigma^{n} \underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})\right)
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
& \mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Hos} \operatorname{ssh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\mathbf{R H o m}_{\operatorname{sSh}}^{(X)},\left(1_{X}, K(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\text {op }}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right) \\
& \cong{\underset{\underline{Q}}{ }{ }^{\text {op }}}^{\operatorname{Hom}_{\mathrm{sSh}(X)}}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n)) \\
& \cong \lim _{\mathcal{Q}^{\mathrm{op}}} \mathrm{H}_{0}\left(\underline{\operatorname{Hom}}\left(\mathrm{C}(\mathscr{U}), \Sigma^{n} \mathscr{A}\right)\right) \\
& \cong \lim _{\mathcal{Q}^{\text {op }}} \mathrm{H}_{0}\left(\Sigma^{n} \underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})\right)
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
& \mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\mathbf{R H o m}_{\operatorname{sSh}}^{(X)},\left(1_{X}, K(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\circ}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right) \\
& \cong \lim _{\mathcal{Q}^{\mathrm{op}}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n)) \\
& \cong \lim _{\underline{Q} \text { op }} \mathrm{H}_{0}\left(\underline{\operatorname{Hom}}\left(\mathrm{C}(\mathscr{U}), \Sigma^{n} \mathscr{A}\right)\right) \\
& \cong{\underset{\underline{\lim }}{ }{ }^{\text {op }}} \mathrm{H}_{0}\left(\Sigma^{n} \underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})\right) \\
& \cong \lim _{\mathcal{Q}^{\text {op }}} \mathrm{H}_{-n}(\underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})) \\
& \cong \lim _{\underline{Q} \text { op }} \mathrm{H}^{n}(\operatorname{Hom}(\mathrm{C}(\mathscr{U}), \mathscr{A}))
\end{aligned}
$$

The Verdier hypercovering theorem

$$
\begin{aligned}
& \mathrm{H}^{n}(X ; \mathscr{A}) \cong \operatorname{Hom}_{\mathrm{Hossh}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right) \\
& \cong \pi_{0}\left(\operatorname{RHom}_{\mathbf{s S h}(X)}\left(1_{X}, \mathrm{~K}(\mathscr{A}, n)\right)\right) \\
& \cong \pi_{0}\left(\operatorname{holim}_{\mathcal{Q}^{\mathrm{op}}} \operatorname{Hom}_{\mathrm{sSh}(X)}(\mathscr{U}, \mathrm{K}(\mathscr{A}, n))\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cong \lim _{Q^{\mathrm{op}}} \mathrm{H}_{0}\left(\underline{\operatorname{Hom}}\left(\mathrm{C}(\mathscr{U}), \Sigma^{n} \mathscr{A}\right)\right) \\
& \cong \lim _{\mathcal{Q}^{\text {op }}} \mathrm{H}_{0}\left(\Sigma^{n} \underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})\right) \\
& \cong \lim _{Q^{\mathrm{op}}} \mathrm{H}_{-n}(\underline{\operatorname{Hom}}(\mathrm{C}(\mathscr{U}), \mathscr{A})) \\
& \cong \lim _{\underline{Q} \mathrm{op}} \mathrm{H}^{n}(\operatorname{Hom}(\mathrm{C}(\mathscr{U}), \mathscr{A}))
\end{aligned}
$$

This is basically the Verdier hypercovering theorem.

