	Observations

Generalising the functor of points approach

Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

> Category Theory 2015 Aveiro, Portugal

		Observations
0000	00000000	00000

Introduction

The concept Examples

Details Zariski contexts Localic contexts Charted spaces

Observations

Э

Introduction		Observations
••••	00000000	00000

Generalising the functor of points approach

< ≣⇒

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction		Observations
0000	00000000	00000

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \to [\mathcal{C}^{\text{op}}, \mathbf{Set}].$

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.
- More generally, we might think of *E* as a category of spaces and *C* as a subcategory of models or probes.

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.
- More generally, we might think of *E* as a category of spaces and *C* as a subcategory of models or probes.

Three questions:

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.
- More generally, we might think of *E* as a category of spaces and *C* as a subcategory of models or probes.

Three questions:

When is the Yoneda representation fully faithful?

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.
- More generally, we might think of *E* as a category of spaces and *C* as a subcategory of models or probes.

Three questions:

- When is the Yoneda representation fully faithful?
- Which presheaves on C can be represented by an object in \mathcal{E} ?

Introduction	Observations
• 0 00	

Let \mathcal{E} be a category and let \mathcal{C} be a full subcategory.

- ▶ We get a Yoneda representation $h_{\bullet} : \mathcal{E} \rightarrow [\mathcal{C}^{\text{op}}, \mathbf{Set}].$
- ► In the case where *E* is the category of schemes and *C* is the category of affine schemes, *h_X* is called the **functor of points** of *X*.
- More generally, we might think of *E* as a category of spaces and *C* as a subcategory of models or probes.

Three questions:

- When is the Yoneda representation fully faithful?
- Which presheaves on C can be represented by an object in \mathcal{E} ?
- ▶ What additional structure on *E* and/or *C* do we need to answer these questions?

Introduction		Observations
0000	00000000	00000

Generalising the functor of points approach

< ≣⇒

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction	Observations
0000	

▶ We focus on manifold-like notions,

Э

Introduction ⊙●○○	Details	Observations
		00000

We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- Many examples:

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- Many examples: locally Hausdorff spaces,

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- Many examples: locally Hausdorff spaces, schemes,

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ▶ Many examples: locally Hausdorff spaces, schemes, \mathscr{C}^{∞} -schemes,

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds,

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers:

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers: so, prima facie, we need to be given a class B of monomorphisms in C

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers: so, *prima facie*, we need to be given a class B of monomorphisms in C and a Grothendieck topology T on C.

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers: so, *prima facie*, we need to be given a class B of monomorphisms in C and a Grothendieck topology T on C.
- ▶ In all of the above examples, T can be reconstructed from (the canonical Grothendieck topology on) *C* and *B*.

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers: so, *prima facie*, we need to be given a class B of monomorphisms in C and a Grothendieck topology T on C.
- ▶ In all of the above examples, T can be reconstructed from (the canonical Grothendieck topology on) *C* and *B*.
- ▶ In many of those examples, *B* can be reconstructed from *C* itself.

Introduction	Observations
0000	

- We focus on manifold-like notions, i.e. spaces obtained by gluing together model spaces along open subspaces.
- ► Many examples: locally Hausdorff spaces, schemes, C[∞]-schemes, real and complex manifolds, ...
- We need to be able to recognise open embeddings and open covers: so, *prima facie*, we need to be given a class B of monomorphisms in C and a Grothendieck topology T on C.
- ▶ In all of the above examples, T can be reconstructed from (the canonical Grothendieck topology on) *C* and *B*.
- ▶ In many of those examples, *B* can be reconstructed from *C* itself.
- We obtain a uniform procedure for building \mathcal{E} from \mathcal{C} .

Introduction	Details	Observations
0000	00000000	00000

Generalising the functor of points approach

< ≣⇒

Introduction	Observations
0000	

\mathcal{E} | I. Haus. spaces | schemes | \mathscr{C}^{∞} -schemes lfp

Generalising the functor of points approach

Э

Introduction		Observations
0000	00000000	00000

${\mathcal E}$	l. Haus. spaces	schemes	\mathscr{C}^∞ -schemes lfp
С	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$

< ≣⇒

Image: A math a math

Introduction		Observations
0000	00000000	00000

	E	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
(,	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$
1	3	open emb.	open imm.	open imm.

◆□ > ◆舂 > ◆臣 > ◆臣 > -

ntroduction	Details	Observations
0000	00000000	00000

${\mathcal E}$	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
С	Haus	CRing ^{op}	$\mathrm{Alg}_{\mathscr{C}^{\infty},\mathrm{fp}}^{\mathrm{op}}$
В	open emb.	open imm.	open imm.
Т	open cover	Zariski	archimedean

◆ロ > ◆母 > ◆ 臣 > ◆ 臣 > -

Introduction		Observations
0000	00000000	00000

	\mathcal{E}	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
_	С	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$
	\mathcal{B}	open emb.	open imm.	open imm.
	Т	open cover	Zariski	archimedean

In the above cases:

Generalising the functor of points approach

◆ロ > ◆舂 > ◆臣 > ◆臣 > -

Introduction		Observations
0000	00000000	00000

${\mathcal E}$	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
С	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$
\mathcal{B}	open emb.	open imm.	open imm.
Т	open cover	Zariski	archimedean

In the above cases:

 B is the class of monomorphisms that occur as pseudocomplements of regular monomorphisms.

Introduction		Observations
0000	00000000	00000

${\mathcal E}$	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
С	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$
\mathcal{B}	open emb.	open imm.	open imm.
Т	open cover	Zariski	archimedean

In the above cases:

- B is the class of monomorphisms that occur as pseudocomplements of regular monomorphisms.
- ► T is generated by the universally effective-epimorphic sieves that admit a generating set consisting of members of *B*.

Introduction		Observations
0000	00000000	00000

${\mathcal E}$	l. Haus. spaces	schemes	${\mathscr C}^\infty$ -schemes lfp
С	Haus	CRing ^{op}	$\operatorname{Alg}_{\mathscr{C}^{\infty},\operatorname{fp}}^{\operatorname{op}}$
\mathcal{B}	open emb.	open imm.	open imm.
Т	open cover	Zariski	archimedean

In the above cases:

- B is the class of monomorphisms that occur as pseudocomplements of regular monomorphisms.
- ► T is generated by the universally effective-epimorphic sieves that admit a generating set consisting of members of *B*.
- ▶ However, *C* is not always closed under "open" subobjects in *E*.

Introduction		Observations
0000	00000000	00000

Secondary examples

Generalising the functor of points approach

Zhen Lin Low

- 22

Introduction		Observations
0000	00000000	00000

Introduction	Observations
0000	

To get e.g. *n*-dimensional smooth manifolds:

C = the category of open subspaces of ℝⁿ and smooth maps between them.

Introduction	Observations
0000	

- C = the category of open subspaces of ℝⁿ and smooth maps between them.
- $\blacktriangleright B =$ the class of smooth open embeddings.

- C = the category of open subspaces of ℝⁿ and smooth maps between them.
- \mathcal{B} = the class of smooth open embeddings.
- ► T = open cover topology.

- C = the category of open subspaces of ℝⁿ and smooth maps between them.
- $\blacktriangleright B = \text{the class of smooth open embeddings.}$
- T = open cover topology.
- ► There are not enough closed embeddings, so the earlier characterisation of *B* does not work.

- C = the category of open subspaces of ℝⁿ and smooth maps between them.
- $\blacktriangleright B = \text{the class of smooth open embeddings.}$
- T = open cover topology.
- ► There are not enough closed embeddings, so the earlier characterisation of 𝔅 does not work.
- But T is still generated by the universally effective-epimorphic sieves that admit a generating set consisting of members of B.

To get e.g. *n*-dimensional smooth manifolds:

- C = the category of open subspaces of ℝⁿ and smooth maps between them.
- $\blacktriangleright B = \text{the class of smooth open embeddings.}$
- ► T = open cover topology.
- ► There are not enough closed embeddings, so the earlier characterisation of *B* does not work.
- But T is still generated by the universally effective-epimorphic sieves that admit a generating set consisting of members of B.

[The manifolds we get this way are possibly non-Hausdorff and non-second-countable.]

	Details	Observations
0000	0000000	00000

Generalising the functor of points approach

Zhen Lin Low

< Ξ

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C.

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in *C*. We say (f_0, f_1) is a **disjoint pair** in *C* if,

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

< 글→

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

the object T is a strict initial object in C.

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

the object T is a strict initial object in C.

Definition. Let $f : X \to Y$ be a morphism in C.

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

the object T is a strict initial object in C.

Definition. Let $f : X \to Y$ be a morphism in C. Define a presheaf D(f) on C as follows:

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

the object T is a strict initial object in C.

Definition. Let $f : X \to Y$ be a morphism in C. Define a presheaf D(f) on C as follows:

 $D(f)(T) = \{y \in C(T, Y) \mid (f, y) \text{ is a disjoint pair in } C\}$

	Details	Observations
0000	• 00 00000	00000

Definition. Let $f_0 : X_0 \to Y$ and $f_1 : X_1 \to Y$ be morphisms in C. We say (f_0, f_1) is a **disjoint pair** in C if, for every commutative square in C of the form below,

the object T is a strict initial object in C.

Definition. Let $f : X \to Y$ be a morphism in C. Define a presheaf D(f) on C as follows:

 $D(f)(T) = \{y \in C(T, Y) \mid (f, y) \text{ is a disjoint pair in } C\}$

A **pseudocomplement** of $f : X \rightarrow Y$ is a representation of D(f).

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

	Details	Observations
0000	0000000	00000

Generalising the functor of points approach

Zhen Lin Low

イロト イロト イヨト イヨト

	Details	Observations
0000	0000000	00000

Details	Observations
0000000	

Definition. A **Zariski context** is a pair $(\mathcal{C}, \mathcal{P})$ where:

▶ C is a locally small category with a strict initial object 0.

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- $\triangleright \mathcal{P}$ is a quadrable class of monomorphisms in \mathcal{C} ,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- ▶ P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- ► For every object *Y* in *C*,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both $id_Y : Y \to Y$

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.
- $\mathcal{P}_{/Y}$ is an essentially small category,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.
- ▶ P_{/Y} is an essentially small category, where P_{/Y} is the full subcategory of C_{/Y}

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.
- ▶ $\mathcal{P}_{/Y}$ is an essentially small category, where $\mathcal{P}_{/Y}$ is the full subcategory of $\mathcal{C}_{/Y}$ spanned by those (X, f) such that $f : X \to Y$ is a member of \mathcal{P} .

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.
- ▶ $\mathcal{P}_{/Y}$ is an essentially small category, where $\mathcal{P}_{/Y}$ is the full subcategory of $\mathcal{C}_{/Y}$ spanned by those (X, f) such that $f : X \to Y$ is a member of \mathcal{P} .

• If
$$f: X \to Y$$
 is a member of \mathcal{P} ,

Details	Observations
0000000	

- ▶ *C* is a locally small category with a strict initial object 0.
- P is a quadrable class of monomorphisms in C, i.e. every member of P is a monomorphism in C, members of P can be pulled back along any morphism in C, and any such pullback is again a member of P.
- For every object Y in C, both id_Y : Y → Y and ⊥_Y : 0 → Y are members of P.
- ▶ $\mathcal{P}_{/Y}$ is an essentially small category, where $\mathcal{P}_{/Y}$ is the full subcategory of $\mathcal{C}_{/Y}$ spanned by those (X, f) such that $f : X \to Y$ is a member of \mathcal{P} .
- ▶ If $f : X \to Y$ is a member of \mathcal{P} , then D(f) is a representable presheaf on \mathcal{C} .

	Details	Observations
0000	0000000	00000

	Details	Observations
0000	0000000	00000

(a) *C* is either **Top** or **Haus**

	Details	Observations
0000	0000000	00000

(a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative R-algebras

Details	Observations
0000000	

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.

Details	Observations
0000000	

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) $\mathcal{C}^{\operatorname{op}}$ is the category of finitely presented \mathscr{C}^{∞} -algebras

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is finitely generated.

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is finitely generated.

Some remarks:

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is finitely generated.

Some remarks:

▶ For (a) and (c), *P* is closed under composition.

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is finitely generated.

Some remarks:

- For (a) and (c), \mathcal{P} is closed under composition.
- ► For all three, *P* is contained in the class of regular monomorphisms.

	Details	Observations
0000	0000000	00000

- (a) C is either **Top** or **Haus** and \mathcal{P} is the class of closed embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is a principal ideal.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{P}^{op} is the class of surjective homomorphisms whose kernel is finitely generated.

Some remarks:

- ▶ For (a) and (c), *P* is closed under composition.
- ► For all three, *P* is contained in the class of regular monomorphisms.
- ▶ For (a) in the case C = Haus and (c), P is precisely the class of regular monomorphisms.

	Details	Observations
0000	0000000	00000

Generalising the functor of points approach

Zhen Lin Low

イロト イロト イヨト イヨト

	Details	Observations
0000	000000	00000

Details	Observations
0000000	

Definition. A localic context is a pair (C, B) where:

► *C* is a locally small category.

Details	Observations
000 00 000	

- ► *C* is a locally small category.
- \mathcal{B} is a quadrable class of monomorphisms in \mathcal{C} .

Details	Observations
000 00 000	

- ▶ *C* is a locally small category.
- \mathcal{B} is a quadrable class of monomorphisms in \mathcal{C} .
- ► For every object *Y* in *C*,

Details	Observations
000 00 000	

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .

Details	Observations
000 00 000	

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.

Details	Observations
000 00 000	

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Details	Observations
000 00 000	

Definition. A localic context is a pair $(\mathcal{C}, \mathcal{B})$ where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/\gamma}$ is an essentially small category.

Proposition. Let $(\mathcal{C}, \mathcal{P})$ be a Zariski context

Details	Observations
000 00 000	

Definition. A localic context is a pair $(\mathcal{C}, \mathcal{B})$ where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, P) be a Zariski context and let \mathcal{B} be the class of morphisms in C

Details	Observations
000 00 000	

Definition. A localic context is a pair (C, B) where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, \mathcal{P}) be a Zariski context and let \mathcal{B} be the class of morphisms in C that occur as pseudocomplements of members of \mathcal{P} .

Details	Observations
000 00 000	

Definition. A localic context is a pair $(\mathcal{C}, \mathcal{B})$ where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, \mathcal{P}) be a Zariski context and let \mathcal{B} be the class of morphisms in C that occur as pseudocomplements of members of \mathcal{P} . The following are equivalent:

Details	Observations
000 00 000	

Definition. A localic context is a pair (C, B) where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, \mathcal{P}) be a Zariski context and let \mathcal{B} be the class of morphisms in C that occur as pseudocomplements of members of \mathcal{P} . The following are equivalent:

(i) $(\mathcal{C}, \mathcal{B})$ is a localic context.

Details	Observations
000 00 000	

Definition. A localic context is a pair (C, B) where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, P) be a Zariski context and let \mathcal{B} be the class of morphisms in C that occur as pseudocomplements of members of P. The following are equivalent:

- (i) $(\mathcal{C}, \mathcal{B})$ is a localic context.
- (ii) \mathcal{B} is closed under composition,

Details	Observations
000 00 000	

Definition. A localic context is a pair (C, B) where:

- ▶ *C* is a locally small category.
- ▶ *B* is a quadrable class of monomorphisms in *C*.
- ▶ For every object Y in C, $id_Y : Y \to Y$ is a member of \mathcal{B} .
- ▶ *B* is closed under composition.
- $\mathcal{B}_{/Y}$ is an essentially small category.

Proposition. Let (C, P) be a Zariski context and let \mathcal{B} be the class of morphisms in C that occur as pseudocomplements of members of P. The following are equivalent:

- (i) $(\mathcal{C}, \mathcal{B})$ is a localic context.
- (ii) B is closed under composition, and every member of B is a quadrable (mono)morphism in C.

	Details	Observations
0000	00000000	00000

(a) C is either **Top** or **Haus** or **Loc**

イロト イロト イヨト イヨト

(a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.

イロト イロト イヨト イヨト

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) \mathcal{C}^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A \left[a^{-1} \right]$.

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A \left[a^{-1} \right]$.
- (d) *C* is the category of open subspaces of \mathbb{R}^n and \mathcal{C}^k -maps

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (d) C is the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps and \mathcal{B} is the class of open embeddings.

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (d) *C* is the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps and \mathcal{B} is the class of open embeddings.
- (e) C is the category of open subspaces of \mathbb{C}^n and holomorphic maps

	Details	Observations
0000	0000000	00000

- (a) *C* is either **Top** or **Haus** or **Loc** and *B* is the class of open embeddings.
- (b) C^{op} is the category of (all / finitely presented / finitely generated) commutative *R*-algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (c) C^{op} is the category of finitely presented \mathscr{C}^{∞} -algebras and \mathcal{B}^{op} is the class of principal localisations $A \to A[a^{-1}]$.
- (d) *C* is the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps and \mathcal{B} is the class of open embeddings.
- (e) C is the category of open subspaces of \mathbb{C}^n and holomorphic maps and \mathcal{B} is the class of open embeddings.

	Details	Observations
0000	000 00 000	00000

Generalising the functor of points approach

Zhen Lin Low

< ≣⇒

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

	Details	Observations
0000	000 00 000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object *Y* in *C* is a collection of objects in $\mathcal{B}_{/Y}$

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object Y in C is a collection of objects in $\mathcal{B}_{/Y}$ that generates a universally effective-epimorphic sieve on Y.

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object Y in C is a collection of objects in $\mathcal{B}_{/Y}$ that generates a universally effective-epimorphic sieve on Y.

Proposition. The basic open covers constitute a subcanonical Grothendieck pretopology on *C*.

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object Y in C is a collection of objects in $\mathcal{B}_{/Y}$ that generates a universally effective-epimorphic sieve on Y.

Proposition. The basic open covers constitute a subcanonical Grothendieck pretopology on *C*.

Remark. Clearly, any basic open cover in the sense above is also a covering family of elements of $\mathcal{B}_{/Y}$ considered as a poset.

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object Y in C is a collection of objects in $\mathcal{B}_{/Y}$ that generates a universally effective-epimorphic sieve on Y.

Proposition. The basic open covers constitute a subcanonical Grothendieck pretopology on *C*.

Remark. Clearly, any basic open cover in the sense above is also a covering family of elements of $\mathcal{B}_{/Y}$ considered as a poset. Thus, the induced Grothendieck topology coincides with the classical open cover topology in each of our examples.

	Details	Observations
0000	00000000	00000

Henceforth, $(\mathcal{C}, \mathcal{B})$ is an arbitrary localic context.

Definition. A **basic open cover** of an object Y in C is a collection of objects in $\mathcal{B}_{/Y}$ that generates a universally effective-epimorphic sieve on Y.

Proposition. The basic open covers constitute a subcanonical Grothendieck pretopology on *C*.

Remark. Clearly, any basic open cover in the sense above is also a covering family of elements of $\mathcal{B}_{/Y}$ considered as a poset. Thus, the induced Grothendieck topology coincides with the classical open cover topology in each of our examples.

Definition. A **sheaf** on C is a presheaf on C that satisfies the sheaf condition with respect to all basic open covers.

	Details	Observations
0000	000000000	00000

Generalising the functor of points approach

Zhen Lin Low

< ≣⇒

Image: A math a math

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*.

< Ξ

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property:

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$,

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of h_Y defined as follows,

$$A_{Y,b}(T) = \{ y \in \mathcal{C}(T,Y) \, \big| \, b \cdot y \in A(T) \}$$

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of h_Y defined as follows,

$$A_{Y,b}(T) = \{ y \in \mathcal{C}(T,Y) \, \big| \, b \cdot y \in A(T) \}$$

then there is some collection of objects in $\mathcal{B}_{/\gamma}$

	Details	Observations
0000	000000 00	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of h_Y defined as follows,

$$A_{Y,b}(T) = \{ y \in \mathcal{C}(T,Y) \, \big| \, b \cdot y \in A(T) \}$$

then there is some collection of objects in $\mathcal{B}_{/Y}$ such that $A_{Y,b}$ is the union of the corresponding representable subsheaves of h_Y .

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of h_Y defined as follows,

$$A_{Y,b}(T) = \{ y \in \mathcal{C}(T,Y) \, \big| \, b \cdot y \in A(T) \}$$

then there is some collection of objects in $\mathcal{B}_{/Y}$ such that $A_{Y,b}$ is the union of the corresponding representable subsheaves of h_Y . An **open embedding of sheaves** on C is a monomorphism whose image is an open subsheaf.

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of h_Y defined as follows,

 $A_{Y,b}(T) = \left\{ y \in \mathcal{C}(T,Y) \, \middle| \, b \cdot y \in A(T) \right\}$

then there is some collection of objects in $\mathcal{B}_{/Y}$ such that $A_{Y,b}$ is the union of the corresponding representable subsheaves of h_Y . An **open embedding of sheaves** on C is a monomorphism whose image is an open subsheaf.

Lemma. The class of open embeddings of sheaves is closed under composition.

	Details	Observations
0000	000000000	00000

Definition. Let *B* be a sheaf on *C*. An **open subsheaf** of *B* is a subsheaf $A \subseteq B$ with the following property: for each object *Y* in *C* and each $b \in B(Y)$, if $A_{Y,b}$ is the subsheaf of \hbar_Y defined as follows,

 $A_{Y,b}(T) = \left\{ y \in \mathcal{C}(T,Y) \, \middle| \, b \cdot y \in A(T) \right\}$

then there is some collection of objects in $\mathcal{B}_{/Y}$ such that $A_{Y,b}$ is the union of the corresponding representable subsheaves of h_Y . An **open embedding of sheaves** on C is a monomorphism whose image is an open subsheaf.

Lemma. The class of open embeddings of sheaves is closed under composition.

Theorem. The class of open subsheaves of any sheaf A on C is a (possibly non-small) subframe of the (possibly non-small) frame of subsheaves of A.

	Details	Observations
0000	000000000	00000

Generalising the functor of points approach

Zhen Lin Low

< ≣⇒

Details	Observations
000000000	

Definition. Let A be a sheaf on C.

Details	Observations
000000000	

Details	Observations
000000000	

Definition. Let *A* be a sheaf on *C*. An **atlas** of *A* is a set Φ that satisfies these axioms:

• Every element of Φ is a pair (X, a) where X is an object in C and $a \in A(X)$.

Details	Observations
000000000	

- Every element of Φ is a pair (X, a) where X is an object in C and $a \in A(X)$.
- ▶ For each $(X, a) \in \Phi$, the morphism $h_X \to A$ given by $x \mapsto a \cdot x$ is an open embedding of sheaves on *C*.

Details	Observations
000000000	

- Every element of Φ is a pair (X, a) where X is an object in C and $a \in A(X)$.
- ▶ For each $(X, a) \in \Phi$, the morphism $h_X \to A$ given by $x \mapsto a \cdot x$ is an open embedding of sheaves on *C*.
- ▶ The induced morphism $\coprod_{(X,a)\in\Phi} h_X \to A$ is an epimorphism of sheaves on *C*.

Details	Observations
000000000	

- Every element of Φ is a pair (X, a) where X is an object in C and $a \in A(X)$.
- ► For each $(X, a) \in \Phi$, the morphism $h_X \to A$ given by $x \mapsto a \cdot x$ is an open embedding of sheaves on *C*.
- ▶ The induced morphism $\coprod_{(X,a)\in\Phi} h_X \to A$ is an epimorphism of sheaves on C.
- A charted space is a sheaf that admits an atlas.

Details	Observations
000000000	

Definition. Let *A* be a sheaf on *C*. An **atlas** of *A* is a set Φ that satisfies these axioms:

- Every element of Φ is a pair (X, a) where X is an object in C and $a \in A(X)$.
- ► For each $(X, a) \in \Phi$, the morphism $h_X \to A$ given by $x \mapsto a \cdot x$ is an open embedding of sheaves on *C*.
- ▶ The induced morphism $\coprod_{(X,a)\in\Phi} h_X \to A$ is an epimorphism of sheaves on *C*.
- A charted space is a sheaf that admits an atlas.

Example. Any representable sheaf admits an atlas.

	Details	Observations
0000	00000000	00000

Generalising the functor of points approach

	Details	Observations
0000	0000000	00000

(a) For C = Haus,

	Details	Observations
0000	0000000	00000

(a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.

	Details	Observations
0000	000000 00	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras,

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.

	Details	Observations
0000	00000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.

(c) For
$$C^{\operatorname{op}} = \operatorname{Alg}_{\mathscr{C}^{\infty}, \operatorname{fp}'}$$

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.
- (d) For C = the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps,

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.
- (d) For C = the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps, charted spaces are the same thing as *n*-dimensional \mathscr{C}^k -manifolds.

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.
- (d) For C = the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps, charted spaces are the same thing as *n*-dimensional \mathscr{C}^k -manifolds.
- (e) For C = the category of open subspaces of \mathbb{C}^n and holomorphic maps,

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.
- (d) For C = the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps, charted spaces are the same thing as *n*-dimensional \mathscr{C}^k -manifolds.
- (e) For C = the category of open subspaces of \mathbb{C}^n and holomorphic maps, charted spaces are the same thing as *n*-dimensional complex analytic manifolds.

	Details	Observations
0000	0000000	00000

- (a) For C = Haus, charted spaces are the same thing as locally Hausdorff spaces.
- (b) For C^{op} = the category of (all / finitely presented / finitely generated) commutative *R*-algebras, charted spaces are the same thing as schemes (— / locally of finite presentation / locally of finite type) over Spec *R*.
- (c) For $C^{op} = Alg_{\mathscr{C}^{\infty}, fp}$, charted spaces are the same thing as \mathscr{C}^{∞} -schemes locally of finite presentation.
- (d) For C = the category of open subspaces of \mathbb{R}^n and \mathscr{C}^k -maps, charted spaces are the same thing as *n*-dimensional \mathscr{C}^k -manifolds.
- (e) For C = the category of open subspaces of \mathbb{C}^n and holomorphic maps, charted spaces are the same thing as *n*-dimensional complex analytic manifolds.

[As before, manifolds are possibly non-Hausdorff and non-second-countable.]

		Observations
0000	00000000	00000

Basic properties

Generalising the functor of points approach

< ≣⇒

		Observations
0000	00000000	0000

Basic properties

Let S be the category of sheaves on $\mathcal C$

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

Theorem.

(i) \mathcal{E} is (equivalent to) a locally small category.

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.
- (iv) \mathcal{E} with the class of open embeddings together constitute a localic context.

		Observations
0000	00000000	0000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.
- (iv) \mathcal{E} with the class of open embeddings together constitute a localic context.
- (v) \mathcal{E} is an infinitary extensive category.

		Observations
0000	00000000	00000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.
- (iv) \mathcal{E} with the class of open embeddings together constitute a localic context.
- (v) \mathcal{E} is an infinitary extensive category.
- (vi) If C has finite products (resp. finite limits),

		Observations
0000	00000000	00000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.
- (iv) \mathcal{E} with the class of open embeddings together constitute a localic context.
- (v) \mathcal{E} is an infinitary extensive category.
- (vi) If C has finite products (resp. finite limits), then E also has finite products (resp. finite limits),

		Observations
0000	00000000	00000

Let S be the category of sheaves on C and let \mathcal{E} be the full subcategory spanned by the charted spaces.

- (i) \mathcal{E} is (equivalent to) a locally small category.
- (ii) Any open subsheaf of a charted space is also a charted space.
- (iii) The coproduct (in S) of a small family of charted spaces is also a charted space.
- (iv) \mathcal{E} with the class of open embeddings together constitute a localic context.
- (v) \mathcal{E} is an infinitary extensive category.
- (vi) If C has finite products (resp. finite limits), then \mathcal{E} also has finite products (resp. finite limits), and $\mathcal{E} \hookrightarrow S$ preserves these.

		Observations
0000	00000000	0000

Generalising the functor of points approach

- 22

		Observations
0000	00000000	0000

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \rightarrow B$

Introduction Details	Observations
00000 00000000	0000

Definition. A local homeomorphism of sheaves on *C* is a morphism $h : A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of *A*

		Observations
0000	00000000	0000

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

0000 000000 00000 00000	ns

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

(i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.

0000 0000000 00000 00000			Observations
	0000	00000000	0000

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C

0000 0000000 00000 00000			Observations
	0000	00000000	0000

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \rightarrow B$ is a local homeomorphism of sheaves on C and B is a charted space,

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space,

< □ > < □ > < □ > < □ >

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

- (i) The class of local homeomorphisms of sheaves on *C* is a quadrable class of morphisms in *S*.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space, then B is also a charted space.

< ロ > < 同 > < 三 >

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

- (i) The class of local homeomorphisms of sheaves on *C* is a quadrable class of morphisms in *S*.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space, then B is also a charted space.
- (iv) Given morphisms $h : A \rightarrow B$ and $k : B \rightarrow C$,

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

- (i) The class of local homeomorphisms of sheaves on *C* is a quadrable class of morphisms in *S*.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space, then B is also a charted space.
- (iv) Given morphisms $h : A \to B$ and $k : B \to C$, assuming $k : B \to C$ is a local homeomorphism of sheaves on C,

イロン イ御 とくほ とくほ とう

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space, then B is also a charted space.
- (iv) Given morphisms $h : A \to B$ and $k : B \to C$, assuming $k : B \to C$ is a local homeomorphism of sheaves on $C, k \circ h : A \to C$ is a local homeomorphism

イロト イタト イヨト イヨト

Definition. A local homeomorphism of sheaves on C is a morphism $h: A \to B$ for which there is a small open cover $\{A'_k | k \in K\}$ of A such that each composite $A'_k \hookrightarrow A \to B$ is an open embedding of sheaves.

Proposition.

- (i) The class of local homeomorphisms of sheaves on C is a quadrable class of morphisms in S.
- (ii) If $h : A \to B$ is a local homeomorphism of sheaves on C and B is a charted space, then A is also a charted space.
- (iii) If $h : A \to B$ is an epimorphic local homeomorphism of sheaves on C and A is a charted space, then B is also a charted space.
- (iv) Given morphisms $h : A \to B$ and $k : B \to C$, assuming $k : B \to C$ is a local homeomorphism of sheaves on $C, k \circ h : A \to C$ is a local homeomorphism if and only if $h : A \to B$ is a local homeomorphism.

イロト イタト イヨト イヨト

		Observations
0000	00000000	00000

Generalising the functor of points approach

Zhen Lin Low

< ≣⇒

(日)

	Observations
	00000

Definition. Let *B* be a charted space.

Generalising the functor of points approach

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$ where $h : A \to B$ is a local homeomorphism.

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$ where $h : A \to B$ is a local homeomorphism.

Theorem. Let $\mathcal{D}_{/B}$ be the category of espaces étalés over *B*.

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$ where $h : A \to B$ is a local homeomorphism.

Theorem. Let $\mathcal{D}_{/B}$ be the category of espaces étalés over *B*.

(i) $\mathcal{D}_{/B} \hookrightarrow \mathcal{S}_{/B}$ creates limits for finite diagrams and colimits for small diagrams.

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$ where $h : A \to B$ is a local homeomorphism.

Theorem. Let $\mathcal{D}_{/B}$ be the category of espaces étalés over *B*.

- (i) $\mathcal{D}_{/B} \hookrightarrow \mathcal{S}_{/B}$ creates limits for finite diagrams and colimits for small diagrams.
- (ii) $\mathcal{D}_{/B}$ is an infinitary pretopos.

	Observations
	00000

Definition. Let *B* be a charted space. An **espace étalé** over *B* is an object (A, h) in $\mathcal{E}_{/B}$ where $h : A \to B$ is a local homeomorphism.

Theorem. Let $\mathcal{D}_{/B}$ be the category of espaces étalés over *B*.

- (i) $\mathcal{D}_{/B} \hookrightarrow \mathcal{S}_{/B}$ creates limits for finite diagrams and colimits for small diagrams.
- (ii) $\mathcal{D}_{/B}$ is an infinitary pretopos.
- (iii) $\mathcal{D}_{/B}$ is a localic Grothendieck topos.

		Observations
0000	00000000	00000

Definition. Let A be a sheaf on C.

イロト イロト イヨト イヨト

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

▶ Both projections $R \rightarrow A$ are local homeomorphisms.

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- Both projections $R \rightarrow A$ are local homeomorphisms.
- There is a small open cover $\{A'_k | k \in K\}$ of A

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- Both projections $R \rightarrow A$ are local homeomorphisms.
- ► There is a small open cover $\{A'_k | k \in K\}$ of A such that, for each $k \in K$,

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- Both projections $R \rightarrow A$ are local homeomorphisms.
- ► There is a small open cover $\{A'_k | k \in K\}$ of A such that, for each $k \in K$, $(A'_k \times A'_k) \cap R \subseteq \Delta_A$.

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- ▶ Both projections $R \rightarrow A$ are local homeomorphisms.
- ► There is a small open cover $\{A'_k | k \in K\}$ of A such that, for each $k \in K$, $(A'_k \times A'_k) \cap R \subseteq \Delta_A$.

Proposition.

(i) The kernel pair of any local homeomorphism of charted spaces is a tractable equivalence relation.

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- Both projections $R \rightarrow A$ are local homeomorphisms.
- ► There is a small open cover $\{A'_k | k \in K\}$ of A such that, for each $k \in K$, $(A'_k \times A'_k) \cap R \subseteq \Delta_A$.

Proposition.

- (i) The kernel pair of any local homeomorphism of charted spaces is a tractable equivalence relation.
- (ii) $\mathcal{E} \hookrightarrow S$ creates quotients for tractable equivalence relations.

		Observations
0000	00000000	00000

Definition. Let *A* be a sheaf on *C*. A **tractable equivalence relation** on *A* is an equivalence relation $R \subseteq A \times A$ with these properties:

- Both projections $R \rightarrow A$ are local homeomorphisms.
- ► There is a small open cover $\{A'_k | k \in K\}$ of A such that, for each $k \in K$, $(A'_k \times A'_k) \cap R \subseteq \Delta_A$.

Proposition.

- (i) The kernel pair of any local homeomorphism of charted spaces is a tractable equivalence relation.
- (ii) $\mathcal{E} \hookrightarrow S$ creates quotients for tractable equivalence relations.
- (iii) \mathcal{E} has universally effective quotients for tractable equivalence relations.

		Observations
0000	00000000	00000

Generalising the functor of points approach

Zhen Lin Low

∢ Ξ

Theorem. Let \mathcal{F} be any full replete subcategory of S that satisfies the following conditions:

イロト イロト イヨト イヨト

Theorem. Let \mathcal{F} be any full replete subcategory of S that satisfies the following conditions:

• Every representable sheaf on C is in \mathcal{F} .

< ∃ >

Image: A mathematical states and the states and

- Every representable sheaf on C is in \mathcal{F} .
- \blacktriangleright *F* is closed under coproduct in *S* for small families of objects.

- Every representable sheaf on C is in \mathcal{F} .
- ▶ *F* is closed under coproduct in *S* for small families of objects.
- \blacktriangleright *F* is closed under kernel pair in *S* for local homeomorphisms.

- Every representable sheaf on C is in \mathcal{F} .
- ▶ *F* is closed under coproduct in *S* for small families of objects.
- \blacktriangleright *F* is closed under kernel pair in *S* for local homeomorphisms.
- \blacktriangleright \mathcal{F} is closed under quotient for tractable equivalence relations.

- Every representable sheaf on C is in \mathcal{F} .
- ▶ *F* is closed under coproduct in *S* for small families of objects.
- \blacktriangleright *F* is closed under kernel pair in *S* for local homeomorphisms.
- F is closed under quotient for tractable equivalence relations. Then $\mathcal{E} \subseteq \mathcal{F}$.

Theorem. Let \mathcal{F} be any full replete subcategory of S that satisfies the following conditions:

- Every representable sheaf on C is in \mathcal{F} .
- ▶ *F* is closed under coproduct in *S* for small families of objects.
- \blacktriangleright *F* is closed under kernel pair in *S* for local homeomorphisms.
- ▶ *F* is closed under quotient for tractable equivalence relations.

Then $\mathcal{E} \subseteq \mathcal{F}$. Moreover, \mathcal{E} is the smallest such \mathcal{F} .

Theorem. Let \mathcal{F} be any full replete subcategory of S that satisfies the following conditions:

- Every representable sheaf on C is in \mathcal{F} .
- ▶ *F* is closed under coproduct in *S* for small families of objects.
- \blacktriangleright *F* is closed under kernel pair in *S* for local homeomorphisms.
- \blacktriangleright \mathcal{F} is closed under quotient for tractable equivalence relations.

Then $\mathcal{E} \subseteq \mathcal{F}$. Moreover, \mathcal{E} is the smallest such \mathcal{F} .

Corollary. A sheaf on \mathcal{E} is a charted space if and only if it is a representable sheaf on \mathcal{E} .