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The concept

Let ℰ be a category and let u� be a full subcategory.

▶ We get a Yoneda representation h• : ℰ → [u� op, 𝐒𝐞𝐭].
▶ In the case where ℰ is the category of schemes and u� is the

category of affine schemes, hu� is called the functor of points of 𝑋.
▶ More generally, we might think of ℰ as a category of spaces and u�

as a subcategory of models or probes.

Three questions:
▶ When is the Yoneda representation fully faithful?
▶ Which presheaves on u� can be represented by an object in ℰ?
▶ What additional structure on ℰ and/or u� do we need to answer

these questions?
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The concept

▶ We focus on manifold-like notions, i.e. spaces obtained by gluing
together model spaces along open subspaces.

▶ Many examples: locally Hausdorff spaces, schemes, 𝒞 ∞-schemes,
real and complex manifolds, …

▶ We need to be able to recognise open embeddings and open
covers: so, prima facie, we need to be given a class ℬ of
monomorphisms in u� and a Grothendieck topology 𝖳 on u� .

▶ In all of the above examples, 𝖳 can be reconstructed from (the
canonical Grothendieck topology on) u� and ℬ.

▶ In many of those examples, ℬ can be reconstructed from u� itself.
▶ We obtain a uniform procedure for building ℰ from u� .
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Primary examples

ℰ l. Haus. spaces schemes 𝒞 ∞-schemes lfp
u� 𝐇𝐚𝐮𝐬 𝐂𝐑𝐢𝐧𝐠op 𝐀𝐥𝐠𝒞 ∞,fp

op

ℬ open emb. open imm. open imm.
𝖳 open cover Zariski archimedean

In the above cases:
▶ ℬ is the class of monomorphisms that occur as

pseudocomplements of regular monomorphisms.
▶ 𝖳 is generated by the universally effective-epimorphic sieves that

admit a generating set consisting of members of ℬ.
▶ However, u� is not always closed under “open” subobjects in ℰ.

Generalising the functor of points approach Zhen Lin Low
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Secondary examples

To get e.g. 𝑛-dimensional smooth manifolds:
▶ u� = the category of open subspaces of ℝu� and smooth maps

between them.
▶ ℬ = the class of smooth open embeddings.
▶ 𝖳 = open cover topology.
▶ There are not enough closed embeddings, so the earlier

characterisation of ℬ does not work.
▶ But 𝖳 is still generated by the universally effective-epimorphic

sieves that admit a generating set consisting of members of ℬ.
[The manifolds we get this way are possibly non-Hausdorff and non-second-countable.]
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Zariski contexts

Definition. A Zariski context is a pair (u�, u�) where:
▶ u� is a locally small category with a strict initial object 0.
▶ u� is a quadrable class of monomorphisms in u� , i.e. every member

of u� is a monomorphism in u� , members of u� can be pulled back
along any morphism in u� , and any such pullback is again a
member of u� .

▶ For every object 𝑌 in u� , both idu� : 𝑌 → 𝑌 and ⊥u� : 0 → 𝑌 are
members of u� .

▶ u�∕u� is an essentially small category, where u�∕u� is the full
subcategory of u�∕u� spanned by those (𝑋, 𝑓 ) such that 𝑓 : 𝑋 → 𝑌
is a member of u� .

▶ If 𝑓 : 𝑋 → 𝑌 is a member of u� , then D(𝑓 ) is a representable
presheaf on u� .
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Introduction Details Observations

Localic contexts

Definition. A localic context is a pair (u�, ℬ) where:
▶ u� is a locally small category.
▶ ℬ is a quadrable class of monomorphisms in u� .
▶ For every object 𝑌 in u� , idu� : 𝑌 → 𝑌 is a member of ℬ.
▶ ℬ is closed under composition.
▶ ℬ∕u� is an essentially small category.

Proposition. Let (u�, u�) be a Zariski context and letℬ be the class of
morphisms inu� that occur as pseudocomplements of members ofu� . The
following are equivalent:

(i) (u�, ℬ) is a localic context.
(ii) ℬ is closed under composition, and everymember ofℬ is a quadrable

(mono)morphism inu� .

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Examples of localic contexts

(a) u� is either 𝐓𝐨𝐩 or 𝐇𝐚𝐮𝐬 or 𝐋𝐨𝐜 and ℬ is the class of open
embeddings.

(b) u� op is the category of (all / finitely presented / finitely generated)
commutative 𝑅-algebras and ℬop is the class of principal
localisations 𝐴 → 𝐴[𝑎−1].

(c) u� op is the category of finitely presented 𝒞 ∞-algebras and ℬop is
the class of principal localisations 𝐴 → 𝐴[𝑎−1].

(d) u� is the category of open subspaces of ℝu� and 𝒞 u�-maps and ℬ is
the class of open embeddings.

(e) u� is the category of open subspaces of ℂu� and holomorphic maps
and ℬ is the class of open embeddings.

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Basic open covers

Henceforth, (u�, ℬ) is an arbitrary localic context.

Definition. A basic open cover of an object 𝑌 in u� is a collection of
objects in ℬ∕u� that generates a universally effective-epimorphic sieve
on 𝑌.

Proposition. The basic open covers constitute a subcanonical
Grothendieck pretopology onu� .

Remark. Clearly, any basic open cover in the sense above is also a
covering family of elements of ℬ∕u� considered as a poset. Thus, the
induced Grothendieck topology coincides with the classical open cover
topology in each of our examples.

Definition. A sheaf on u� is a presheaf on u� that satisfies the sheaf
condition with respect to all basic open covers.

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Open subsheaves

Definition. Let 𝐵 be a sheaf on u� . An open subsheaf of 𝐵 is a subsheaf
𝐴 ⊆ 𝐵 with the following property: for each object 𝑌 in u� and each
𝑏 ∈ 𝐵(𝑌), if 𝐴u�,u� is the subsheaf of hu� defined as follows,

𝐴u�,u�(𝑇) = {𝑦 ∈ u�(𝑇, 𝑌) ∣ 𝑏 ⋅ 𝑦 ∈ 𝐴(𝑇)}

then there is some collection of objects in ℬ∕u� such that 𝐴u�,u� is the
union of the corresponding representable subsheaves of hu� .
An open embedding of sheaves on u� is a monomorphism whose
image is an open subsheaf.

Lemma. The class of open embeddings of sheaves is closed under
composition.

Theorem. The class of open subsheaves of any sheaf𝐴 onu� is a (possibly
non-small) subframe of the (possibly non-small) frame of subsheaves of𝐴.

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Charted spaces

Definition. Let 𝐴 be a sheaf on u� . An atlas of 𝐴 is a set Φ that satisfies
these axioms:

▶ Every element of Φ is a pair (𝑋, 𝑎) where 𝑋 is an object in u� and
𝑎 ∈ 𝐴(𝑋).

▶ For each (𝑋, 𝑎) ∈ Φ, the morphism hu� → 𝐴 given by 𝑥 ↦ 𝑎 ⋅ 𝑥 is
an open embedding of sheaves on u� .

▶ The induced morphism ∐(u�,u�)∈Φ hu� → 𝐴 is an epimorphism of
sheaves on u� .

A charted space is a sheaf that admits an atlas.

Example. Any representable sheaf admits an atlas.

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Charted spaces by example

(a) For u� = 𝐇𝐚𝐮𝐬, charted spaces are the same thing as locally
Hausdorff spaces.

(b) For u� op = the category of (all / finitely presented / finitely
generated) commutative 𝑅-algebras, charted spaces are the same
thing as schemes (— / locally of finite presentation / locally of finite
type) over Spec 𝑅.

(c) For u� op = 𝐀𝐥𝐠𝒞 ∞,fp, charted spaces are the same thing as
𝒞 ∞-schemes locally of finite presentation.

(d) For u� = the category of open subspaces of ℝu� and 𝒞 u�-maps,
charted spaces are the same thing as 𝑛-dimensional 𝒞 u�-manifolds.

(e) For u� = the category of open subspaces of ℂu� and holomorphic
maps, charted spaces are the same thing as 𝑛-dimensional complex
analytic manifolds.

[As before, manifolds are possibly non-Hausdorff and non-second-countable.]

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Basic properties

Let u� be the category of sheaves on u� and let ℰ be the full subcategory
spanned by the charted spaces.

Theorem.
(i) ℰ is (equivalent to) a locally small category.

(ii) Any open subsheaf of a charted space is also a charted space.

(iii) The coproduct (inu� ) of a small family of charted spaces is also a
charted space.

(iv) ℰwith the class of open embeddings together constitute a localic
context.

(v) ℰ is an infinitary extensive category.

(vi) Ifu� has finite products (resp. finite limits), thenℰ also has finite
products (resp. finite limits), andℰ ↪ u� preserves these.

Generalising the functor of points approach Zhen Lin Low
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Introduction Details Observations

Local homeomorphisms

Definition. A local homeomorphism of sheaves on u� is a morphism
ℎ : 𝐴 → 𝐵 for which there is a small open cover {𝐴′

u� ∣ 𝑘 ∈ 𝐾} of 𝐴 such
that each composite 𝐴′

u� ↪ 𝐴 → 𝐵 is an open embedding of sheaves.

Proposition.
(i) The class of local homeomorphisms of sheaves onu� is a quadrable

class of morphisms inu� .

(ii) If ℎ : 𝐴 → 𝐵 is a local homeomorphism of sheaves onu� and𝐵 is a
charted space, then𝐴 is also a charted space.

(iii) If ℎ : 𝐴 → 𝐵 is an epimorphic local homeomorphism of sheaves onu�
and𝐴 is a charted space, then𝐵 is also a charted space.

(iv) Givenmorphisms ℎ : 𝐴 → 𝐵 and 𝑘 : 𝐵 → 𝐶, assuming 𝑘 : 𝐵 → 𝐶 is
a local homeomorphism of sheaves onu� , 𝑘 ∘ ℎ : 𝐴 → 𝐶 is a local
homeomorphism if and only if ℎ : 𝐴 → 𝐵 is a local homeomorphism.

Generalising the functor of points approach Zhen Lin Low
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Tractable equivalence relations

Definition. Let 𝐴 be a sheaf on u� . A tractable equivalence relation on
𝐴 is an equivalence relation 𝑅 ⊆ 𝐴 × 𝐴 with these properties:

▶ Both projections 𝑅 → 𝐴 are local homeomorphisms.
▶ There is a small open cover {𝐴′

u� ∣ 𝑘 ∈ 𝐾} of 𝐴 such that, for each

𝑘 ∈ 𝐾, (𝐴′
u� × 𝐴′

u�) ∩ 𝑅 ⊆ Δu�.

Proposition.
(i) The kernel pair of any local homeomorphism of charted spaces is a

tractable equivalence relation.

(ii) ℰ ↪ u� creates quotients for tractable equivalence relations.

(iii) ℰ has universally effective quotients for tractable equivalence
relations.

Generalising the functor of points approach Zhen Lin Low
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