	Accessibility		Conclusion
000000	0000	0000000	00

The heart of a combinatorial model category (arXiv:1402.6659)

Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

Category Theory 2014 Cambridge, England

Accessibility	Conclusion

Introduction

Background Definitions The key question

Accessibility

Definitions A critical fact

Main result

Definitions Further examples The result

Conclusion

Recap Outlook

Introduction	Accessibility	Conclusion
• 0 0000		

The heart of a combinatorial model category

< ≣⇒

Image: A math a math

Introduction	Accessibility		Conclusion
• o oooo	0000	0000000	00

Roughly speaking:

An $(\infty, 1)$ -category is a homotopy-theoretic analogue of category,

Introduction	Accessibility	Conclusion
• 0 0000		

Roughly speaking:

An (∞, 1)-category is a homotopy-theoretic analogue of category, or more concretely, (something like) a category enriched in spaces.

Introduction	Accessibility	Conclusion
• 0 0000		

- An (∞, 1)-category is a homotopy-theoretic analogue of category, or more concretely, (something like) a category enriched in spaces.
- ▶ A model category is a model for nice (∞, 1)-categories.

Introduction	Accessibility	Conclusion
• 0 0000		

- An (∞, 1)-category is a homotopy-theoretic analogue of category, or more concretely, (something like) a category enriched in spaces.
- A model category is a model for nice $(\infty, 1)$ -categories.
- A locally presentable category is a cocomplete category that is generated under (sufficiently highly) filtered colimits by a (small) set of small objects,

Introduction	Accessibility	Conclusion
• 0 0000		

- An (∞, 1)-category is a homotopy-theoretic analogue of category, or more concretely, (something like) a category enriched in spaces.
- A model category is a model for nice $(\infty, 1)$ -categories.
- A locally presentable category is a cocomplete category that is generated under (sufficiently highly) filtered colimits by a (small) set of small objects, or equivalently, the category of models for a (possibly infinitary) essentially algebraic theory.

Introduction	Accessibility	Conclusion
• 0 0000		

- An (∞, 1)-category is a homotopy-theoretic analogue of category, or more concretely, (something like) a category enriched in spaces.
- A model category is a model for nice $(\infty, 1)$ -categories.
- A locally presentable category is a cocomplete category that is generated under (sufficiently highly) filtered colimits by a (small) set of small objects, or equivalently, the category of models for a (possibly infinitary) essentially algebraic theory.
- ► A combinatorial model category is a model for locally presentable (∞, 1)-categories.

Introduction	Accessibility	Conclusion
00000		

The heart of a combinatorial model category

< ≣⇒

Image: A math a math

Introduction	Accessibility	Conclusion
00000		

 It is known that every locally κ-presentable category is the free κ-ind-completion of a small κ-cocomplete category.

Introduction	Accessibility	Conclusion
00000		

- It is known that every locally κ-presentable category is the free κ-ind-completion of a small κ-cocomplete category.
- ► Joyal and Lurie have proved the analogous theorem for locally presentable (∞, 1)-categories.

Introduction	Accessibility	Conclusion
00000		

- It is known that every locally κ-presentable category is the free κ-ind-completion of a small κ-cocomplete category.
- ► Joyal and Lurie have proved the analogous theorem for locally presentable (∞, 1)-categories.
- Moreover, every locally presentable (∞, 1)-category is modelled by some combinatorial model category.

Introduction	Accessibility	Conclusion
00000		

- It is known that every locally κ-presentable category is the free κ-ind-completion of a small κ-cocomplete category.
- ► Joyal and Lurie have proved the analogous theorem for locally presentable (∞, 1)-categories.
- Moreover, every locally presentable (∞, 1)-category is modelled by some combinatorial model category.
- The question: Is every combinatorial model category freely generated by a small model category, and in what sense?

Introduction	Accessibility	Conclusion
00000		

Introduction	Accessibility	Conclusion
00000		

Let \mathcal{M} be a category.

Introduction	Accessibility	Conclusion
00000		

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

The heart of a combinatorial model category

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- ▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.
- ► *I*[□] denotes the class of morphisms with the right lifting property with respect to every member of *I*.

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- ▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.
- I[□] denotes the class of morphisms with the right lifting property with respect to every member of I.

A weak factorisation system on \mathcal{M} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{M} such that:

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- ▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.
- I[□] denotes the class of morphisms with the right lifting property with respect to every member of I.

A weak factorisation system on \mathcal{M} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{M} such that:

Every morphism in *M* can be factored as a member of *L* followed by a member of *R*.

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- ▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.
- I[□] denotes the class of morphisms with the right lifting property with respect to every member of I.

A weak factorisation system on \mathcal{M} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{M} such that:

Every morphism in *M* can be factored as a member of *L* followed by a member of *R*.

•
$$\mathcal{L} = \square \mathcal{R}$$
 and $\mathcal{R} = \mathcal{L} \square$.

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- ▶ □ *I* denotes the class of morphisms with the left lifting property with respect to every member of *I*.
- I[□] denotes the class of morphisms with the right lifting property with respect to every member of I.

A weak factorisation system on \mathcal{M} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{M} such that:

Every morphism in *M* can be factored as a member of *L* followed by a member of *R*.

•
$$\mathcal{L} = \square \mathcal{R}$$
 and $\mathcal{R} = \mathcal{L} \square$.

A cofibrantly generated weak factorisation system on \mathcal{M} is a weak factorisation system, say $(\mathcal{L}, \mathcal{R})$,

Let \mathcal{M} be a category. Given any subclass $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$:

- I denotes the class of morphisms with the left lifting property with respect to every member of I.
- I[□] denotes the class of morphisms with the right lifting property with respect to every member of I.

A weak factorisation system on \mathcal{M} is a pair $(\mathcal{L}, \mathcal{R})$ of subclasses of mor \mathcal{M} such that:

- Every morphism in *M* can be factored as a member of *L* followed by a member of *R*.
- $\mathcal{L} = \square \mathcal{R}$ and $\mathcal{R} = \mathcal{L} \square$.

A cofibrantly generated weak factorisation system on \mathcal{M} is a weak factorisation system, say $(\mathcal{L}, \mathcal{R})$, for which there is a (small) set $\mathcal{I} \subseteq \operatorname{mor} \mathcal{M}$ such that $\mathcal{R} = \mathcal{I}^{\square}$.

イロト イタト イヨト イヨト

Introduction	Accessibility	Conclusion
000000		

The heart of a combinatorial model category

< Ξ

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A **model structure** on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

• \mathcal{W} has the 2-out-of-3 property in \mathcal{M} ,

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

➤ W has the 2-out-of-3 property in M, i.e. given a commutative diagram in M of the form below,

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

➤ W has the 2-out-of-3 property in M, i.e. given a commutative diagram in M of the form below,

if any two of the arrows are in \mathcal{W} , then so is the third.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

➤ W has the 2-out-of-3 property in M, i.e. given a commutative diagram in M of the form below,

if any two of the arrows are in \mathcal{W} , then so is the third.

• $(C \cap W, F)$ and $(C, W \cap F)$ are weak factorisation systems on \mathcal{M} .

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

➤ W has the 2-out-of-3 property in M, i.e. given a commutative diagram in M of the form below,

if any two of the arrows are in \mathcal{W} , then so is the third.

• $(C \cap W, F)$ and $(C, W \cap F)$ are weak factorisation systems on \mathcal{M} .

A cofibrantly generated model structure is a model structure, say $(\mathcal{C}, \mathcal{W}, \mathcal{F})$,

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

A model structure on a category \mathcal{M} is a triple $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ of subclasses of mor \mathcal{M} satifying the following conditions:

➤ W has the 2-out-of-3 property in M, i.e. given a commutative diagram in M of the form below,

if any two of the arrows are in \mathcal{W} , then so is the third.

• $(C \cap W, F)$ and $(C, W \cap F)$ are weak factorisation systems on \mathcal{M} .

A cofibrantly generated model structure is a model structure, say $(\mathcal{C}, \mathcal{W}, \mathcal{F})$, where the weak factorisation systems $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ and $(\mathcal{C}, \mathcal{W} \cap \mathcal{F})$ are cofibrantly generated.

Introduction	Accessibility	Conclusion
000000		

The heart of a combinatorial model category

< Ξ

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

The heart of a combinatorial model category

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

• a weak equivalence is a morphism in \mathcal{W} ,

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- ▶ a weak equivalence is a morphism in *W*,
- ▶ a **cofibration** is a morphism in *C*,
| Introduction | Accessibility | | Conclusion |
|--------------|---------------|---------|------------|
| 000000 | 0000 | 0000000 | 00 |

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- ▶ a weak equivalence is a morphism in *W*,
- ▶ a **cofibration** is a morphism in *C*,
- ▶ a **fibration** is a morphism in *F*,

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- ▶ a weak equivalence is a morphism in *W*,
- ▶ a **cofibration** is a morphism in *C*,
- ▶ a **fibration** is a morphism in *F*,
- a trivial cofibration is a morphism in $\mathcal{C} \cap \mathcal{W}$, and

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- ▶ a weak equivalence is a morphism in *W*,
- ▶ a **cofibration** is a morphism in *C*,
- ▶ a **fibration** is a morphism in *F*,
- a trivial cofibration is a morphism in $\mathcal{C} \cap \mathcal{W}$, and
- a trivial fibration is a morphism in $\mathcal{W} \cap \mathcal{F}$.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- ▶ a weak equivalence is a morphism in *W*,
- ▶ a **cofibration** is a morphism in *C*,
- a **fibration** is a morphism in \mathcal{F} ,
- a trivial cofibration is a morphism in $\mathcal{C} \cap \mathcal{W}$, and
- a **trivial fibration** is a morphism in $\mathcal{W} \cap \mathcal{F}$.

A **model category** is a locally small category that has limits and colimits for finite diagrams and is equipped with a model structure.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Given a model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on a category,

- a weak equivalence is a morphism in \mathcal{W} ,
- ▶ a **cofibration** is a morphism in *C*,
- ▶ a **fibration** is a morphism in *F*,
- a trivial cofibration is a morphism in $\mathcal{C} \cap \mathcal{W}$, and
- a trivial fibration is a morphism in $\mathcal{W} \cap \mathcal{F}$.

A model category is a locally small category that has limits and colimits for finite diagrams and is equipped with a model structure. A combinatorial model category is a locally presentable category

equipped with a cofibrantly generated model structure.

Introduction	Accessibility	Conclusion
000000		

The heart of a combinatorial model category

Zhen Lin Low

< ≣⇒

Introduction	Accessibility	Conclusion
00000		

Let \mathcal{M} be a locally presentable category,

Introduction	Accessibility		Conclusion
00000	0000	0000000	00

Let $\mathcal M$ be a locally presentable category, let $\mathcal I$ and $\mathcal I'$ be subsets of mor $\mathcal M,$

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Let \mathcal{M} be a locally presentable category, let \mathcal{I} and \mathcal{I}' be subsets of mor \mathcal{M} , and let κ and λ be regular cardinals satisfying the following hypotheses:

• \mathcal{M} is a locally κ -presentable category.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

- \mathcal{M} is a locally κ -presentable category.
- There are < λ morphisms between any two κ-presentable objects in M.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

- \mathcal{M} is a locally κ -presentable category.
- There are < λ morphisms between any two κ-presentable objects in M.
- *I* and *I*['] are λ-small sets of morphisms between κ-presentable objects.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

- \mathcal{M} is a locally κ -presentable category.
- There are < λ morphisms between any two κ-presentable objects in M.
- *I* and *I* ' are λ-small sets of morphisms between κ-presentable objects.
- The full subcategory of *M* spanned by the λ-presentable objects is closed under finite limits in *M* and admits a model structure cofibrantly generated by *I* and *I'*.

Introduction	Accessibility		Conclusion
000000	0000	0000000	00

Let \mathcal{M} be a locally presentable category, let \mathcal{I} and \mathcal{I}' be subsets of mor \mathcal{M} , and let κ and λ be regular cardinals satisfying the following hypotheses:

- \mathcal{M} is a locally κ -presentable category.
- There are < λ morphisms between any two κ-presentable objects in M.
- *I* and *I* ' are λ-small sets of morphisms between κ-presentable objects.
- The full subcategory of *M* spanned by the λ-presentable objects is closed under finite limits in *M* and admits a model structure cofibrantly generated by *I* and *I'*.

What further assumption do we need on λ to deduce that \mathcal{M} admits a model structure cofibrantly generated by \mathcal{I} and \mathcal{I}' ?

Accessibility	Conclusion
0000	

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X.

	Accessibility		Conclusion
000000	• 0 00	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

	Accessibility		Conclusion
000000	• 0 00	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

• $\kappa < \lambda$, and

	Accessibility		Conclusion
000000	• 0 00	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- for all λ -small sets X,

	Accessibility		Conclusion
000000	• 0 00	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

	Accessibility		Conclusion
000000	• 0 00	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

We define $\kappa \triangleleft \lambda$ to mean that κ is sharply less than λ .

	Accessibility		Conclusion
000000	• 00 0	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

We define $\kappa \triangleleft \lambda$ to mean that κ is sharply less than λ .

Example. If λ is any uncountable regular cardinal, then $\aleph_0 \triangleleft \lambda$.

	Accessibility		Conclusion
000000	• 00 0	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

We define $\kappa \triangleleft \lambda$ to mean that κ is sharply less than λ .

Example. If λ is any uncountable regular cardinal, then $\aleph_0 \triangleleft \lambda$.

Theorem. *The following are equivalent:*

	Accessibility		Conclusion
000000	• 00 0	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

We define $\kappa \triangleleft \lambda$ to mean that κ is sharply less than λ .

Example. If λ is any uncountable regular cardinal, then $\aleph_0 \triangleleft \lambda$.

Theorem. *The following are equivalent:*

(i) $\kappa \triangleleft \lambda$.

	Accessibility		Conclusion
000000	• 00 0	0000000	00

Definition. Let κ and λ be regular cardinals and let $\mathscr{P}_{\kappa}(X)$ denote the set of all κ -small subsets of a set X. We say κ is **sharply less than** λ if

- $\kappa < \lambda$, and
- For all λ-small sets X, there exists a λ-small cofinal subposet of the poset 𝒫_κ(X).

We define $\kappa \triangleleft \lambda$ to mean that κ is sharply less than λ .

Example. If λ is any uncountable regular cardinal, then $\aleph_0 \lhd \lambda$.

Theorem. *The following are equivalent:*

- (i) $\kappa \triangleleft \lambda$.
- (ii) Every κ -accessible category is also a λ -accessible category.

Accessibility	Conclusion
0000	

The heart of a combinatorial model category

< ≣⇒

< < >> < <</>

Accessibility	Conclusion
0000	

Theorem. Let *C* be a κ -accessible category

Accessibility	Conclusion
0000	

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$.

The heart of a combinatorial model category

	Accessibility		Conclusion
000000	0000	0000000	00

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

(i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.

	Accessibility		Conclusion
000000	0000	0000000	00

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to \mathcal{C}$

	Accessibility		Conclusion
000000	0000	0000000	00

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C

	Accessibility		Conclusion
000000	0000	0000000	00

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.

	Accessibility		Conclusion
000000	0000	0000000	00

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$

	Accessibility		Conclusion
000000	0000	0000000	00

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C
| | Accessibility | | Conclusion |
|--------|---------------|---------|------------|
| 000000 | 0000 | 0000000 | 00 |

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\varinjlim_{\mathcal{J}} A$.

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{t \to \mathcal{J}} A$.
- **Lemma.** Let C be a κ -accessible category,

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{K \to \mathcal{J}} A$.

Lemma. Let C be a κ -accessible category, let A be a κ -presentable object in C,

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{t \to \mathcal{J}} A$.

Lemma. Let C be a κ -accessible category, let A be a κ -presentable object in C, and let B be a λ -presentable object in C.

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{n \to \mathcal{J}} A$.

Lemma. Let C be a κ -accessible category, let A be a κ -presentable object in C, and let B be a λ -presentable object in C. If the hom-set C(A, A') is μ -small for all κ -presentable objects A' in C

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{K \to \mathcal{J}} A$.

Lemma. Let C be a κ -accessible category, let A be a κ -presentable object in C, and let B be a λ -presentable object in C. If the hom-set C(A, A') is μ -small for all κ -presentable objects A' in C and $\kappa \triangleleft \lambda$,

	Accessibility		Conclusion
000000	0000	0000000	00

Theorem. Let *C* be a κ -accessible category and let $\kappa \triangleleft \lambda$. The following are equivalent for an object *C* in *C*:

- (i) *C* is a λ -presentable object in *C*, i.e. $C(C, -) : C \rightarrow$ Set preserves λ -filtered colimits.
- (ii) There exists a λ -small κ -filtered diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and $C \cong \varinjlim_{\mathcal{T}} A$.
- (iii) There exists a λ -small directed diagram $A : \mathcal{J} \to C$ such that each Aj is a κ -presentable object in C and C is a retract of $\lim_{K \to \mathcal{J}} A$.

Lemma. Let *C* be a κ -accessible category, let *A* be a κ -presentable object in *C*, and let *B* be a λ -presentable object in *C*. If the hom-set C(A, A') is μ -small for all κ -presentable objects A' in *C* and $\kappa \triangleleft \lambda$, then the hom-set C(A, B) has cardinality $< \max{\{\lambda, \mu\}}$.

< □ > < □ > < □ > < □ >

Accessibility	Conclusion
0000	

The heart of a combinatorial model category

< ≣⇒

< < >> < <</>

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals.

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams.

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Accessibility	Conclusion
0000	

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals.

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ Set preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$,

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

(i) \mathcal{B} is (κ, λ) -compactly generated,

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

(i) \mathcal{B} is (κ, λ) -compactly generated, i.e. \mathcal{B} is essentially small,

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ **Set** preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

(i) B is (κ, λ)-compactly generated, i.e. B is essentially small, B has colimits for all λ-small κ-filtered diagrams,

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ Set preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

(i) B is (κ,λ)-compactly generated, i.e. B is essentially small, B has colimits for all λ-small κ-filtered diagrams, and every object in B is a colimit for some λ-small κ-filtered diagram of (κ,λ)-compact objects in B.

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ Set preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

- (i) B is (κ,λ)-compactly generated, i.e. B is essentially small, B has colimits for all λ-small κ-filtered diagrams, and every object in B is a colimit for some λ-small κ-filtered diagram of (κ,λ)-compact objects in B.
- (ii) $\mathbf{Ind}^{\lambda}(\mathcal{B})$ is a κ -accessible category.

	Accessibility		Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact object in a locally small category C is an object A such that $C(A, -) : C \rightarrow$ Set preserves colimits for all λ -small κ -filtered diagrams. We write $\mathbf{K}_{\kappa}^{\lambda}(C)$ for the full subcategory of C spanned by the (κ, λ) -compact objects.

Theorem. Let \mathcal{B} be a idempotent-complete category and let κ and λ be regular cardinals. If either $\kappa = \lambda$ or $\kappa \triangleleft \lambda$, then the following are equivalent:

- (i) B is (κ,λ)-compactly generated, i.e. B is essentially small, B has colimits for all λ-small κ-filtered diagrams, and every object in B is a colimit for some λ-small κ-filtered diagram of (κ,λ)-compact objects in B.
- (ii) $\mathbf{Ind}^{\lambda}(\mathcal{B})$ is a κ -accessible category.
- (iii) \mathcal{B} is equivalent to the full subcategory of λ -presentable objects in some κ -accessible category.

Accessibility	Conclusion
0000	

Accessibility	Conclusion
0000	

Let $F : \mathcal{C} \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors.

The heart of a combinatorial model category

Accessibility	Conclusion
0000	

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$

The heart of a combinatorial model category

Zhen Lin Low

Accessibility	Conclusion
0000	

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$

	Accessibility		Conclusion
000000	0000	0000000	00

Let $F : C \to \mathcal{E}$ and $G : D \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

Accessibility	Conclusion
0000	

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma category** ($F \wr G$) is the full subcategory of the comma category ($F \downarrow G$) spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

Theorem. Let C, D, and \mathcal{E} be categories with κ -filtered colimits

	Accessibility		Conclusion
000000	000•	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma category** ($F \wr G$) is the full subcategory of the comma category ($F \downarrow G$) spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

	Accessibility		Conclusion
000000	000•	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma category** ($F \wr G$) is the full subcategory of the comma category ($F \downarrow G$) spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

Theorem. Let C, D, and \mathcal{E} be categories with κ -filtered colimits and let $F : C \to \mathcal{E}$ and $G : D \to \mathcal{E}$ be functors that preserve κ -filtered colimits.

(i) The iso-comma category $(F \wr G)$ has κ -filtered colimits,

	Accessibility		Conclusion
000000	000•	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma category** ($F \wr G$) is the full subcategory of the comma category ($F \downarrow G$) spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

Theorem. Let C, D, and \mathcal{E} be categories with κ -filtered colimits and let $F : C \to \mathcal{E}$ and $G : D \to \mathcal{E}$ be functors that preserve κ -filtered colimits.

 (i) The iso-comma category (F ≥ G) has κ-filtered colimits, created by the projection functor (F ≥ G) → C × D.

	Accessibility		Conclusion
000000	000•	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ -accessible functors,

	Accessibility		Conclusion
000000	000•	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ -accessible functors, i.e. C, D, and E are λ -accessible categories

	Accessibility		Conclusion
000000	0000	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ-accessible functors, i.e. C, D, and E are λ-accessible categories and F and G preserve λ-filtered colimits and λ-presentable objects,

	Accessibility		Conclusion
000000	0000	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ-accessible functors, i.e. C, D, and E are λ-accessible categories and F and G preserve λ-filtered colimits and λ-presentable objects, and κ < λ,

	Accessibility		Conclusion
000000	0000	0000000	00

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma** category $(F \wr G)$ is the full subcategory of the comma category $(F \downarrow G)$ spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ-accessible functors, i.e. C, D, and E are λ-accessible categories and F and G preserve λ-filtered colimits and λ-presentable objects, and κ < λ, then (F ≥ G) is a λ-accessible category
The pseudopullback theorem

Let $F : C \to \mathcal{E}$ and $G : \mathcal{D} \to \mathcal{E}$ be functors. Recall that the **iso-comma category** ($F \wr G$) is the full subcategory of the comma category ($F \downarrow G$) spanned by those objects (C, D, e) where $e : FC \to GD$ is an isomorphism in \mathcal{E} .

Theorem. Let C, D, and \mathcal{E} be categories with κ -filtered colimits and let $F : C \to \mathcal{E}$ and $G : D \to \mathcal{E}$ be functors that preserve κ -filtered colimits.

- (i) The iso-comma category $(F \wr G)$ has κ -filtered colimits, created by the projection functor $(F \wr G) \rightarrow C \times D$.
- (ii) If F and G are strongly λ-accessible functors, i.e. C, D, and E are λ-accessible categories and F and G preserve λ-filtered colimits and λ-presentable objects, and κ < λ, then (F ≥ G) is a λ-accessible category and the projection functors (F ≥ G) → C and (F ≥ G) → D are strongly λ-accessible.

くロ とくぼ とくほ とく ほうし

Accessibility	Main result	Conclusion
	• 0 000000	

	Accessibility	Main result	Conclusion
000000	0000	• 0 000000	00

Definition. Let κ and λ be regular cardinals.

	Accessibility	Main result	Conclusion
000000	0000	• 0 000000	00

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact model category is a model category \mathcal{M} that satisfies these axioms:

• \mathcal{M} is a (κ, λ) -compactly generated category,

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact model category is a model category \mathcal{M} that satisfies these axioms:

• \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- *M* has limits for finite diagrams

	Accessibility	Main result	Conclusion
000000	0000	• 0 000000	00

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- \mathcal{M} has limits for finite diagrams and colimits for λ -small diagrams.

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- \mathcal{M} has limits for finite diagrams and colimits for λ -small diagrams.
- Each hom-set in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ is λ -small.

	Accessibility	Main result	Conclusion
000000	0000	• 0 000000	00

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- \mathcal{M} has limits for finite diagrams and colimits for λ -small diagrams.
- Each hom-set in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ is λ -small.
- There exist λ -small sets of morphisms in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ that cofibrantly generate the model structure of \mathcal{M} .

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact model category is a model category \mathcal{M} that satisfies these axioms:

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- \mathcal{M} has limits for finite diagrams and colimits for λ -small diagrams.
- Each hom-set in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ is λ -small.
- There exist λ -small sets of morphisms in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ that cofibrantly generate the model structure of \mathcal{M} .

Example. Let \mathcal{M} be the category of countable simplicial sets.

	Accessibility	Main result	Conclusion
000000	0000	● 0 000000	00

Definition. Let κ and λ be regular cardinals. A (κ, λ) -compact model category is a model category \mathcal{M} that satisfies these axioms:

- \mathcal{M} is a (κ, λ) -compactly generated category, and $\kappa \triangleleft \lambda$.
- \mathcal{M} has limits for finite diagrams and colimits for λ -small diagrams.
- Each hom-set in $\mathbf{K}^{\lambda}_{\kappa}(\mathcal{M})$ is λ -small.
- There exist λ-small sets of morphisms in K^λ_κ(M) that cofibrantly generate the model structure of M.

Example. Let \mathcal{M} be the category of countable simplicial sets. Then \mathcal{M} , equipped with the restriction of the usual Kan–Quillen model structure on **sSet**, is an (\aleph_0, \aleph_1) -compact model category.

Accessibility	Main result	Conclusion
	0000000	

Accessibility	Main result	Conclusion
	0000000	

Definition. Let κ and λ be regular cardinals.

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Definition. Let κ and λ be regular cardinals. A **strongly** (κ, λ) -**combinatorial model category** is a combinatorial model category \mathcal{M} that satisfies these axioms:

• \mathcal{M} is a locally κ -presentable category,

Definition. Let κ and λ be regular cardinals. A **strongly** (κ, λ) -**combinatorial model category** is a combinatorial model category \mathcal{M} that satisfies these axioms:

• \mathcal{M} is a locally κ -presentable category, and $\kappa \triangleleft \lambda$.

- \mathcal{M} is a locally κ -presentable category, and $\kappa \triangleleft \lambda$.
- $\mathbf{K}_{\lambda}(\mathcal{M})$ is closed under finite limits in \mathcal{M} .

- \mathcal{M} is a locally κ -presentable category, and $\kappa \triangleleft \lambda$.
- $\mathbf{K}_{\lambda}(\mathcal{M})$ is closed under finite limits in \mathcal{M} .
- Each hom-set in $\mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small.

- \mathcal{M} is a locally κ -presentable category, and $\kappa \triangleleft \lambda$.
- $\mathbf{K}_{\lambda}(\mathcal{M})$ is closed under finite limits in \mathcal{M} .
- Each hom-set in $\mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small.
- There exist λ -small sets of morphisms in $\mathbf{K}_{\kappa}(\mathcal{M})$ that cofibrantly generate the model structure of \mathcal{M} .

Definition. Let κ and λ be regular cardinals. A **strongly** (κ, λ) -**combinatorial model category** is a combinatorial model category \mathcal{M} that satisfies these axioms:

- \mathcal{M} is a locally κ -presentable category, and $\kappa \triangleleft \lambda$.
- $\mathbf{K}_{\lambda}(\mathcal{M})$ is closed under finite limits in \mathcal{M} .
- Each hom-set in $\mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small.
- There exist λ -small sets of morphisms in $\mathbf{K}_{\kappa}(\mathcal{M})$ that cofibrantly generate the model structure of \mathcal{M} .

Example. The category of simplicial sets, equipped with the usual Kan–Quillen model structure, is a strongly (\aleph_0, \aleph_1) -combinatorial model category.

イロト イタト イヨト イヨト

Accessibility	Main result	Conclusion
	000000	

The heart of a combinatorial model category

Zhen Lin Low

< ≣⇒

A D > A B > A

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category,

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

Proof.

• We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- $\mathbf{K}_{\lambda}(\mathcal{M})$ has limits for finite diagrams by hypothesis,

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).
- Each hom-set in $\mathbf{K}_{\kappa}^{\lambda}(\mathbf{K}_{\lambda}(\mathcal{M})) = \mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small by hypothesis.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).
- Each hom-set in $\mathbf{K}_{\kappa}^{\lambda}(\mathbf{K}_{\lambda}(\mathcal{M})) = \mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small by hypothesis.
- The hypotheses on *M* guarantee the existence of *strongly* λ-accessible functorial (cofibration, trivial fibration)- and (trivial cofibration, fibration)-factorisation systems on *M*,

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).
- Each hom-set in $\mathbf{K}^{\lambda}_{\kappa}(\mathbf{K}_{\lambda}(\mathcal{M})) = \mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small by hypothesis.
- The hypotheses on \mathcal{M} guarantee the existence of *strongly* λ -accessible functorial (cofibration, trivial fibration)- and (trivial cofibration, fibration)-factorisation systems on \mathcal{M} , so $\mathbf{K}_{\lambda}(\mathcal{M})$ is indeed a model category.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).
- Each hom-set in $\mathbf{K}_{\kappa}^{\lambda}(\mathbf{K}_{\lambda}(\mathcal{M})) = \mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small by hypothesis.
- The hypotheses on *M* guarantee the existence of strongly *λ*-accessible functorial (cofibration, trivial fibration)- and (trivial cofibration, fibration)-factorisation systems on *M*, so K_λ(*M*) is indeed a model category. A further check shows that the model structure satisfies the required cofibrant-generation condition.

	Accessibility	Main result	Conclusion
000000	0000	000000	00

Proposition. If \mathcal{M} is a strongly (κ, λ) -combinatorial model category, then $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compact model category.

- We know that $\mathbf{K}_{\lambda}(\mathcal{M})$ is a (κ, λ) -compactly generated category.
- K_λ(M) has limits for finite diagrams by hypothesis, and it also has colimits for λ-small diagrams (easy check).
- Each hom-set in $\mathbf{K}_{\kappa}^{\lambda}(\mathbf{K}_{\lambda}(\mathcal{M})) = \mathbf{K}_{\kappa}(\mathcal{M})$ is λ -small by hypothesis.
- The hypotheses on *M* guarantee the existence of *strongly λ*-accessible functorial (cofibration, trivial fibration)- and (trivial cofibration, fibration)-factorisation systems on *M*, so K_λ(*M*) is indeed a model category. A further check shows that the model structure satisfies the required cofibrant-generation condition.

Accessibility	Main result	Conclusion
	0000000	

The heart of a combinatorial model category

Zhen Lin Low

< ≣⇒

A D > A B > A

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring,

The heart of a combinatorial model category

Accessibility	Main result	Conclusion
	0000000	

Example. Let R be a ring, let Ch(R) be the category of unbounded chain complexes of left R-modules,
Accessibility	Main result	Conclusion
	000000	

Example. Let *R* be a ring, let Ch(R) be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let Ch(R) be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set).

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let Ch(R) be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then Ch(R)

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let Ch(R) be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then Ch(R) (with the projective model structure)

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith,

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith, and let λ be a regular cardinal

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith, and let λ be a regular cardinal such that $\aleph_1 \triangleleft \lambda$ and $2^{\aleph_0} < \lambda$.

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith, and let λ be a regular cardinal such that $\aleph_1 \triangleleft \lambda$ and $2^{\aleph_0} < \lambda$. Then \mathbf{Sp}^{Σ} is a strongly (\aleph_1, λ) -combinatorial model category.

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith, and let λ be a regular cardinal such that $\aleph_1 \triangleleft \lambda$ and $2^{\aleph_0} < \lambda$. Then \mathbf{Sp}^{Σ} is a strongly (\aleph_1, λ) -combinatorial model category.

Proposition. For any combinatorial model category \mathcal{M} ,

Accessibility	Main result	Conclusion
	0000000	

Example. Let *R* be a ring, let $\mathbf{Ch}(R)$ be the category of unbounded chain complexes of left *R*-modules, and let λ be an uncountable regular cardinal such that *R* is λ -small (as a set). Then $\mathbf{Ch}(R)$ (with the projective model structure) is a strongly (\aleph_0, λ) -combinatorial model category.

Example. Let \mathbf{Sp}^{Σ} be the category of symmetric spectra of Hovey, Shipley, and Smith, and let λ be a regular cardinal such that $\aleph_1 \triangleleft \lambda$ and $2^{\aleph_0} < \lambda$. Then \mathbf{Sp}^{Σ} is a strongly (\aleph_1, λ) -combinatorial model category.

Proposition. For any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ such that \mathcal{M} is a strongly (κ, λ) -combinatorial model category.

Accessibility	Main result	Conclusion
	0000000	

The heart of a combinatorial model category

<ロ> (四) (四) (日) (日) (日)

	Accessibility	Main result	Conclusion
000000	0000	0000 000	00

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category

	Accessibility	Main result	Conclusion
000000	0000	0000 000	00

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion.

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial);

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let ${\cal I}$ (resp. ${\cal I}')$ be a λ -small set of generating cofibrations (resp. trivial cofibrations) in ${\cal K}$

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let \mathcal{I} (resp. \mathcal{I}') be a λ -small set of generating cofibrations (resp. trivial cofibrations) in \mathcal{K} such that the domain and codomain of every member of \mathcal{I} (resp. \mathcal{I}') is (κ, λ)-compact in \mathcal{K} .

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let \mathcal{I} (resp. \mathcal{I}') be a λ -small set of generating cofibrations (resp. trivial cofibrations) in \mathcal{K} such that the domain and codomain of every member of \mathcal{I} (resp. \mathcal{I}') is (κ, λ) -compact in \mathcal{K} . We identify \mathcal{K} with the image of the canonical embedding $\mathcal{K} \to \mathcal{M}$.

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let \mathcal{I} (resp. \mathcal{I}') be a λ -small set of generating cofibrations (resp. trivial cofibrations) in \mathcal{K} such that the domain and codomain of every member of \mathcal{I} (resp. \mathcal{I}') is (κ, λ) -compact in \mathcal{K} . We identify \mathcal{K} with the image of the canonical embedding $\mathcal{K} \to \mathcal{M}$. There is then a functorial weak factorisation system (L, R') (resp. (L', R)) on \mathcal{M} cofibrantly generated by \mathcal{I} (resp. \mathcal{I}')

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let \mathcal{I} (resp. \mathcal{I}') be a λ -small set of generating cofibrations (resp. trivial cofibrations) in \mathcal{K} such that the domain and codomain of every member of \mathcal{I} (resp. \mathcal{I}') is (κ, λ) -compact in \mathcal{K} . We identify \mathcal{K} with the image of the canonical embedding $\mathcal{K} \to \mathcal{M}$. There is then a functorial weak factorisation system (L, R') (resp. (L', R)) on \mathcal{M} cofibrantly generated by \mathcal{I} (resp. \mathcal{I}') such that $R, R' : [2, \mathcal{M}] \to [2, \mathcal{M}]$ preserve κ -filtered colimits

Accessibility	Main result	Conclusion
	0000000	

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$, the free λ -ind-completion. Then there is a unique way of making \mathcal{M} into a strongly (κ, λ) -combinatorial model category such that the canonical embedding $\mathcal{K} \to \mathcal{M}$ preserves and reflects the model structure.

Proof. Uniqueness is straightforward (but not entirely trivial); existence is the hard part.

Let \mathcal{I} (resp. \mathcal{I}') be a λ -small set of generating cofibrations (resp. trivial cofibrations) in \mathcal{K} such that the domain and codomain of every member of \mathcal{I} (resp. \mathcal{I}') is (κ, λ) -compact in \mathcal{K} . We identify \mathcal{K} with the image of the canonical embedding $\mathcal{K} \to \mathcal{M}$. There is then a functorial weak factorisation system (L, R') (resp. (L', R)) on \mathcal{M} cofibrantly generated by \mathcal{I} (resp. \mathcal{I}') such that $R, R' : [2, \mathcal{M}] \to [2, \mathcal{M}]$ preserve κ -filtered colimits and are strongly λ -accessible.

Accessibility	Main result	Conclusion
	00000000	

The heart of a combinatorial model category

Zhen Lin Low

<ロ> (四) (四) (日) (日) (日)

Accessibility	Main result	Conclusion
	00000000	

Now let $\mathcal{F}(\text{resp. }\mathcal{F}')$ be the full subcategory of $[2,\mathcal{M}]$

	Accessibility	Main result	Conclusion
		00000000	
The result			

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')).

	Accessibility	Main result	Conclusion
		00000000	
The result			

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$

	Accessibility	Main result	Conclusion
		00000000	
The result			

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

	Accessibility	Main result	Conclusion
		0000000	
 1.			

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \rightarrow [2, \mathcal{M}]$.

	cessibility	Main result	Conclusion
		00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \rightarrow [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$

	essibility	Main result	Conclusion
		0000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

Accessibility	Main result	Conclusion
	00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

It can be shown that the model structure on ${\mathcal M}$ we seek must have

Accessibility	Main result	Conclusion
	00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

It can be shown that the model structure on $\mathcal M$ we seek must have $\mathcal F$ as its fibrations,

Accessibility	Main result	Conclusion
	00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

It can be shown that the model structure on \mathcal{M} we seek must have \mathcal{F} as its fibrations, \mathcal{F}' as its trivial fibrations,
Accessibility	Main result	Conclusion
	00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

It can be shown that the model structure on \mathcal{M} we seek must have \mathcal{F} as its fibrations, \mathcal{F}' as its trivial fibrations, and \mathcal{W} as its weak equivalences.

Accessibility	Main result	Conclusion
	00000000	

Now let \mathcal{F} (resp. \mathcal{F}') be the full subcategory of $[2, \mathcal{M}]$ spanned by the members of the right class of the weak factorisation system induced by (L', R) (resp. (L, R')). Then \mathcal{F} (resp. \mathcal{F}') is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{F} \hookrightarrow [2, \mathcal{M}]$ (resp. $\mathcal{F}' \hookrightarrow [2, \mathcal{M}]$) is strongly λ -accessible.

Let \mathcal{W} be the preimage of \mathcal{F}' under $R : [2, \mathcal{M}] \to [2, \mathcal{M}]$. The pseudopullback theorem implies that \mathcal{W} is closed under κ -filtered colimits in $[2, \mathcal{M}]$ and the inclusion $\mathcal{W} \hookrightarrow [2, \mathcal{M}]$ is strongly λ -accessible.

It can be shown that the model structure on \mathcal{M} we seek must have \mathcal{F} as its fibrations, \mathcal{F}' as its trivial fibrations, and \mathcal{W} as its weak equivalences. Let us show that such a model structure exists.

Accessibility	Main result	Conclusion
	00000000	

The heart of a combinatorial model category

<ロ> (四) (四) (日) (日) (日)

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of $[2, \mathcal{M}]$

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R).

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

(i) $C' \subseteq W$.

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

For (i),

	Accessibility	Main result	Conclusion
000000	0000	00000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) \mathcal{W} (regarded as a class of morphisms in \mathcal{M}) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$,

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$,

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) \mathcal{W} (regarded as a class of morphisms in \mathcal{M}) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$.

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$. (Recall that L' is strongly λ -accessible.)

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) \mathcal{W} (regarded as a class of morphisms in \mathcal{M}) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$. (Recall that L' is strongly λ -accessible.) For (ii),

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) \mathcal{W} (regarded as a class of morphisms in \mathcal{M}) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$. (Recall that L' is strongly λ -accessible.) For (ii), similar arguments show that $\mathcal{F}' \subseteq \mathcal{F} \cap \mathcal{W}$; to show the other inclusion,

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$. (Recall that L' is strongly λ -accessible.) For (ii), similar arguments show that $\mathcal{F}' \subseteq \mathcal{F} \cap \mathcal{W}$; to show the other inclusion, note that the pseudopullback theorem implies every object in $\mathcal{F} \cap \mathcal{W}$ is a λ -filtered colimit of objects in $\mathcal{F} \cap \mathcal{W} \cap [2, \mathcal{K}]$,

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

Let C' be the full subcategory of [2, M] spanned by the left class of the weak factorisation system induced by (L', R). It suffices to verify the following:

- (i) $C' \subseteq W$.
- (ii) $\mathcal{F}' = \mathcal{W} \cap \mathcal{F}$.
- (iii) ${\mathcal W}$ (regarded as a class of morphisms in ${\mathcal M}$) has the 2-out-of-3 property.

For (i), note that $\mathcal{C}' \cap [2, \mathcal{K}] \subseteq \mathcal{W} \cap [2, \mathcal{K}]$, and since every object in \mathcal{C}' is a retract of a λ -filtered colimit of objects in $\mathcal{C}' \cap [2, \mathcal{K}]$, we indeed have $\mathcal{C}' \subseteq \mathcal{W}$. (Recall that L' is strongly λ -accessible.) For (ii), similar arguments show that $\mathcal{F}' \subseteq \mathcal{F} \cap \mathcal{W}$; to show the other inclusion, note that the pseudopullback theorem implies every object in $\mathcal{F} \cap \mathcal{W}$ is a λ -filtered colimit of objects in $\mathcal{F} \cap \mathcal{W} \cap [2, \mathcal{K}]$, and then apply the same argument again.

Accessibility	Main result	Conclusion
	0000000	

The heart of a combinatorial model category

Zhen Lin Low

<ロ> (四) (四) (日) (日) (日)

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

For (iii),

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

For (iii), we need to be a little bit more clever.

Э

	Accessibility	Main result	Conclusion
000000	0000	0000000	00

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Again, by the pseudopullback theorem, each $\Lambda_i^2(\mathcal{W})$ is closed under κ -filtered colimits in $[\mathfrak{B}, \mathcal{M}]$

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Again, by the pseudopullback theorem, each $\Lambda_i^2(\mathcal{W})$ is closed under κ -filtered colimits in $[\mathfrak{B}, \mathcal{M}]$ and each inclusion $\Lambda_i^2(\mathcal{W}) \hookrightarrow [\mathfrak{B}, \mathcal{M}]$ is strongly λ -accessible.

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Again, by the pseudopullback theorem, each $\Lambda_i^2(\mathcal{W})$ is closed under κ -filtered colimits in $[\mathfrak{B}, \mathcal{M}]$ and each inclusion $\Lambda_i^2(\mathcal{W}) \hookrightarrow [\mathfrak{B}, \mathcal{M}]$ is strongly λ -accessible. Thus, every object in $\Lambda_i^2(\mathcal{W})$ is a λ -filtered colimit of objects in $\Lambda_i^2(\mathcal{W}) \cap [\mathfrak{B}, \mathcal{K}]$,

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Again, by the pseudopullback theorem, each $\Lambda_i^2(\mathcal{W})$ is closed under κ -filtered colimits in $[\mathfrak{B}, \mathcal{M}]$ and each inclusion $\Lambda_i^2(\mathcal{W}) \hookrightarrow [\mathfrak{B}, \mathcal{M}]$ is strongly λ -accessible. Thus, every object in $\Lambda_i^2(\mathcal{W})$ is a λ -filtered colimit of objects in $\Lambda_i^2(\mathcal{W}) \cap [\mathfrak{B}, \mathcal{K}]$, so \mathcal{W} indeed has the 2-out-of-3 property.

Accessibility	Main result	Conclusion
	0000000	

For (iii), we need to be a little bit more clever. Consider the three full subcategories $\Lambda_i^2(\mathcal{W})$ (where $i \in \{0, 1, 2\}$) of $[\mathfrak{B}, \mathcal{M}]$ spanned (respectively) by the diagrams of the form below:

Again, by the pseudopullback theorem, each $\Lambda_i^2(\mathcal{W})$ is closed under κ -filtered colimits in $[\mathfrak{B}, \mathcal{M}]$ and each inclusion $\Lambda_i^2(\mathcal{W}) \hookrightarrow [\mathfrak{B}, \mathcal{M}]$ is strongly λ -accessible. Thus, every object in $\Lambda_i^2(\mathcal{W})$ is a λ -filtered colimit of objects in $\Lambda_i^2(\mathcal{W}) \cap [\mathfrak{B}, \mathcal{K}]$, so \mathcal{W} indeed has the 2-out-of-3 property.

Accessibility	Conclusion
	•0

The heart of a combinatorial model category

ē,

ヘロン 人間 とくほどう ほどう

Accessibility	Conclusion
	0

Theorem. Given any combinatorial model category \mathcal{M} ,

< ≣⇒

< < >> < <</>

Accessibility	Conclusion
	0

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ

< ∃ >

Accessibility	Conclusion
	0

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K}

The heart of a combinatorial model category

	Accessibility	Conclusion
		00
Recap		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

	Accessibility	Conclusion
		00
Recap		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category

	Accessibility	Conclusion
		00
Recap		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

	Accessibility	Conclusion
		0
2		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} ,
	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

$$[\mathcal{M},\mathcal{N}] \to [\mathcal{K},\mathcal{N}]$$

	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

 $\left[\mathcal{M},\mathcal{N}\right]\rightarrow\left[\mathcal{K},\mathcal{N}\right]$

induces an equivalence between

• the full subcategory of left Quillen functors $\mathcal{M} \to \mathcal{N}$ and

	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

 $\left[\mathcal{M},\mathcal{N}\right]\rightarrow\left[\mathcal{K},\mathcal{N}\right]$

- the full subcategory of left Quillen functors $\mathcal{M} \to \mathcal{N}$ and
- the full subcategory of functors $\mathcal{K} \to \mathcal{N}$ that preserve

	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

 $\left[\mathcal{M},\mathcal{N}\right]\rightarrow\left[\mathcal{K},\mathcal{N}\right]$

- the full subcategory of left Quillen functors $\mathcal{M} \to \mathcal{N}$ and
- the full subcategory of functors $\mathcal{K} \to \mathcal{N}$ that preserve colimits for λ -small diagrams,

	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

 $\left[\mathcal{M},\mathcal{N}\right]\rightarrow\left[\mathcal{K},\mathcal{N}\right]$

- the full subcategory of left Quillen functors $\mathcal{M} \to \mathcal{N}$ and
- the full subcategory of functors $\mathcal{K} \to \mathcal{N}$ that preserve colimits for λ -small diagrams, cofibrations,

	Accessibility	Conclusion
		0
-		

Theorem. Given any combinatorial model category \mathcal{M} , there exist regular cardinals κ and λ and a (κ, λ) -compact model category \mathcal{K} such that $\mathcal{M} \simeq \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure.

Theorem. Let \mathcal{K} be a (κ, λ) -compact model category and let $\mathcal{M} = \mathbf{Ind}^{\lambda}(\mathcal{K})$ with the induced model structure. Then for every cocomplete model category \mathcal{N} , the restriction

 $\left[\mathcal{M},\mathcal{N}\right]\rightarrow\left[\mathcal{K},\mathcal{N}\right]$

- \blacktriangleright the full subcategory of left Quillen functors $\mathcal{M} \rightarrow \mathcal{N}$ and
- the full subcategory of functors $\mathcal{K} \to \mathcal{N}$ that preserve colimits for λ -small diagrams, cofibrations, and trivial cofibrations.

Accessibility	Conclusion
	00

The heart of a combinatorial model category

æ

▲ロン ▲園 > ▲ 国 > ▲ 国 > -

	Accessibility		Conclusion
000000	0000	0000000	00

How far can we push the analogy between combinatorial model categories and locally presentable categories?

	Accessibility		Conclusion
000000	0000	0000000	00

Accessibility	Conclusion
	00

How far can we push the analogy between combinatorial model categories and locally presentable categories? Given a combinatorial model category \mathcal{M} :

1. Do there exist a small category A,

Accessibility	Conclusion
	00

How far can we push the analogy between combinatorial model categories and locally presentable categories? Given a combinatorial model category \mathcal{M} :

 Do there exist a small category A, a cofibrantly generated model structure on [A^{op}, sSet],

Accessibility	Conclusion
	00

How far can we push the analogy between combinatorial model categories and locally presentable categories? Given a combinatorial model category \mathcal{M} :

1. Do there exist a small category A, a cofibrantly generated model structure on $[A^{op}, sSet]$, and a right Quillen functor $\mathcal{M} \rightarrow [A^{op}, sSet]$

Accessibility	Conclusion
	00

How far can we push the analogy between combinatorial model categories and locally presentable categories? Given a combinatorial model category \mathcal{M} :

 Do there exist a small category A, a cofibrantly generated model structure on [A^{op}, sSet], and a right Quillen functor M → [A^{op}, sSet] that preserves and reflects weak equivalences and fibrations?

Accessibility	Conclusion
	00

- Do there exist a small category A, a cofibrantly generated model structure on [A^{op}, sSet], and a right Quillen functor *M* → [A^{op}, sSet] that preserves and reflects weak equivalences and fibrations?
- 2. Is there a small (perhaps simplicially enriched) limit sketch \mathbb{S} such that \mathcal{M} is Quillen equivalent to some model category of homotopy models of \mathbb{S} ?

Accessibility	Conclusion
	00

- Do there exist a small category A, a cofibrantly generated model structure on [A^{op}, sSet], and a right Quillen functor *M* → [A^{op}, sSet] that preserves and reflects weak equivalences and fibrations?
- 2. Is there a small (perhaps simplicially enriched) limit sketch S such that \mathcal{M} is Quillen equivalent to some model category of homotopy models of S?
- 3. Can we determine the κ and λ for which \mathcal{M} is strongly (κ, λ) -combinatorial

Accessibility	Conclusion
	00

- Do there exist a small category A, a cofibrantly generated model structure on [A^{op}, sSet], and a right Quillen functor *M* → [A^{op}, sSet] that preserves and reflects weak equivalences and fibrations?
- 2. Is there a small (perhaps simplicially enriched) limit sketch \mathbb{S} such that \mathcal{M} is Quillen equivalent to some model category of homotopy models of \mathbb{S} ?
- 3. Can we determine the κ and λ for which \mathcal{M} is strongly (κ, λ) -combinatorial when we do not have an explicit description of the generating trivial cofibrations?