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The problem

Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋,

there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋)

and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋)

such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌,

there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋)

such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another:

this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem
Let 𝑀0 ∈ 𝑀1 ∈ 𝑀2 ∈ ⋯ be a chain of set-theoretic universes (in
some unspecified sense).

▶ Consider theorems that assert that some object with some
universal property exist in each universe 𝑀u�.

▶ One such theorem says that, for every set 𝑋, there exists a set
𝒫 (𝑋) and a binary relation [∈]u� ⊆ 𝑋 × 𝒫 (𝑋) such that, for
every binary relation 𝑅 ⊆ 𝑋 × 𝑌, there is a unique map
𝑟 : 𝑌 → 𝒫 (𝑋) such that ⟨𝑥, 𝑦⟩ ∈ 𝑅 if and only if
⟨𝑥, 𝑟(𝑥)⟩ ∈ [∈]u� .

▶ Unfortunately, there is no guarantee that a universal object in 𝑀u�
remains universal in 𝑀u�+1.

▶ Indeed, it is well-known that powersets need not be preserved
when passing from one model of set theory to another: this is
implied by the theory of forcing.

Accessible functors and inaccessible cardinals Zhen Lin Low



Introduction Accessibility and ind-completions Change of universe Future work References

The problem

▶ So we must be more careful with how we choose our chain of
universes.

▶ But even under the most ideal circumstances, it is not clear
whether universal objects are stable under universe enlargement.

▶ For instance, Bowler [2012] has constructed an 𝜔-sequence of
monads on 𝐒𝐞𝐭 whose colimit depends on 𝐔, where 𝐒𝐞𝐭 is the
category of 𝐔-sets.

▶ When can we be sure that enlarging the universe does not change
limits, adjoints, Kan extensions etc. in the concrete categories we
wish to study?

▶ For 𝐒𝐞𝐭 this is easy: we have explicit constructions for limits and
colimits. The general strategy will be to reduce the problem to the
case where explicit constructions are available.
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Set-theoretic universes

The following definition is the same as the one found in [SGA 4a, Exposé
I, Appendice]; the only difference is the terminology.

Definition. A pre-universe is a set 𝐔 satisfying these axioms:

1. If 𝑥 ∈ 𝑦 and 𝑦 ∈ 𝐔, then 𝑥 ∈ 𝐔.

2. If 𝑥 ∈ 𝐔 and 𝑦 ∈ 𝐔 (but not necessarily distinct), then {𝑥, 𝑦} ∈ 𝐔.

3. If 𝑥 ∈ 𝐔, then 𝒫 (𝑥) ∈ 𝐔, where 𝒫 (𝑥) denotes the set of all
subsets of 𝑥.

4. If 𝑥 ∈ 𝐔 and 𝑓 : 𝑥 → 𝐔 is a map, then ⋃u�∈u� 𝑓 (𝑖) ∈ 𝐔.

A universe is a pre-universe 𝐔 with this additional property:

5. 𝜔 ∈ 𝐔, where 𝜔 is the set of all finite (von Neumann) ordinals.

Example. The empty set is a pre-universe, and with very mild
assumptions, so is the set 𝐇𝐅 of all hereditarily finite sets.
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Set-theoretic universes

▶ For definiteness, we may take our base theory to be Mac Lane set
theory, which is a certain weak subsystem of Zermelo–Fraenkel set
theory with choice (ZFC).

▶ Mitchell [1972] has shown that one can construct a model of Mac
Lane set theory from any model of Lawvere’s elementary theory of
the category of sets (ETCS) and vice versa.

▶ With the assumptions of Mac Lane set theory, any universe is a
transitive model of ZFC.

▶ Moreover, in Mac Lane set theory, if 𝐔 is any non-empty
pre-universe, then there exists a strongly inaccessible cardinal 𝜅
such that the members of 𝐔 are all the sets of rank < 𝜅.

▶ Of course, the existence of universes (in ZFC or its subsystems) is
independent of the axioms of ZFC.
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Conventions

▶ We will assume there are two universes 𝐔 and 𝐔+, with 𝐔 ∈ 𝐔+.
▶ We follow Mac Lane [CWM]: by categorywe mean a model of the

first-order theory of categories inside set theory, though not
necessarily one that is a member of some universe.

▶ Given a pre-universe 𝐔, by 𝐔-setwe mean a member of 𝐔, and by
𝐔-classwe mean a subset of 𝐔.

▶ By 𝐔-small categorywe mean a category ℂ such that ob ℂ and
mor ℂ are 𝐔-sets, and by locally 𝐔-small categorywe mean a
category u� such that ob u� and mor u� are 𝐔-classes and each
hom-set u�(𝑥, 𝑦) is a 𝐔-set.

▶ More generally, given a regular cardinal 𝜅, by 𝜅-small categorywe
mean a category ℂ such that mor ℂ has cardinality < 𝜅.
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Definitions

Let 𝜅 be a regular cardinal in a universe 𝐔.

Definition. A (𝜅, 𝐔)-compact object in a locally 𝐔-small category u� is
an object 𝐴 such that the representable functor u�(𝐴, −) : u� → 𝐒𝐞𝐭
preserves colimits for all 𝐔-small 𝜅-filtered diagrams.
We write 𝐊𝐔

u� (u�) for the full subcategory of u� spanned by the
(𝜅, 𝐔)-compact objects.

Definition. A 𝜅-accessible 𝐔-category is a locally 𝐔-small category u�
satisfying the following conditions:

▶ u� has colimits for all 𝐔-small 𝜅-filtered diagrams.
▶ There exists a 𝐔-set u� ⊆ ob u� such that, for every object 𝐵 in u� ,

there exists a 𝐔-small 𝜅-filtered diagram of objects in u� with 𝐵 as
its colimit in u� , and every object in u� is (𝜅, 𝐔)-compact.

Definition. A locally 𝜅-presentable 𝐔-category is a 𝜅-accessible
𝐔-category that is 𝐔-cocomplete.
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Examples

▶ The category of 𝐔-sets is a locally ℵ0-presentable 𝐔-category, and
the (ℵ0, 𝐔)-compact objects are precisely the finite sets.

▶ The category of 𝐔-small groups (resp. rings, categories, etc.) is a
locally ℵ0-presentable 𝐔-category, and the (ℵ0, 𝐔)-compact
objects are precisely the finitely presentable groups (resp. rings,
categories, etc.).

▶ The category of 𝐔-small fields is a ℵ0-accessible 𝐔-category that is
not locally ℵ0-presentable.

▶ The category of 𝐔-small Banach spaces and short linear maps is a
locally ℵ1-presentable 𝐔-category, but it is not locally
ℵ0-presentable.

▶ Every Grothendieck 𝐔-topos is a locally 𝜅-presentable 𝐔-category
for some regular cardinal 𝜅 in 𝐔.
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Definitions (cont.)

Definition. A (𝜅, 𝐔)-accessible functor is a functor 𝐹 : u� → u� that
preserves colimits for 𝐔-small 𝜅-filtered diagrams.
We write 𝐀𝐜𝐜𝐔

u� (u�, u�) for the category of (𝜅, 𝐔)-accessible functors
u� → u�.

Theorem. For every locally𝐔-small category u� there exist a locally
𝐔-small category 𝐈𝐧𝐝u�

𝐔(u�) and a functor𝛾 : u� → 𝐈𝐧𝐝u�
𝐔(u�) such that:

1. 𝐈𝐧𝐝u�
𝐔(u�) has colimits for all𝐔-small 𝜅-filtered diagrams.

2. Ifu� is a category with colimits for all𝐔-small 𝜅-filtered diagrams,
then𝛾∗ : 𝐀𝐜𝐜𝐔

u� (𝐈𝐧𝐝u�
𝐔(u�), u�) → [u�, u�] is fully faithful and

essentially surjective on objects.

Definition. The free (𝜅, 𝐔)-ind-completion of u� is the category
𝐈𝐧𝐝u�

𝐔(u�).
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Fundamental results

Theorem. Let u� be a 𝜅-accessible𝐔-small category. The functor
𝐈𝐧𝐝u�

𝐔(u�) → u� induced by the inclusion𝐊𝐔
u� (u�) ↪ u� is fully faithful and

essentially surjective on objects.

Proposition. Let 𝜅 and 𝜆 be regular cardinals in a universe𝐔, with 𝜅 ≤ 𝜆.
If u� is a locally 𝜅-presentable𝐔-category, then u� is also a locally
𝜆-presentable𝐔-category.

Proposition. A category u� is a locally presentable𝐔-category for at most
one universe𝐔, provided u� is not a preorder.

Proposition. Let u� be a locally 𝜅-presentable𝐔-category and let 𝕁 be a
𝜇-small category in𝐔.

1. [𝕁, u�] is also a locally 𝜅-presentable𝐔-category.
2. If 𝜆 is a regular cardinal in𝐔 and 𝜆 ≥ max {𝜅, 𝜇}, then the

(𝜆, 𝐔)-compact objects in [𝕁, u�] are precisely the diagrams 𝕁 → u�
that are componentwise (𝜆, 𝐔)-compact.
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Beck–Chevalley conditions

Definition. Let 𝐹 ⊣ 𝐺 and 𝐹′ ⊣ 𝐺′ be adjunctions and consider a
mated pair of natural transformations:

u� u�′

u� u�′

u�

u�

u�′

u�

u�

u� u�′

u� u�′

u�

u�

u�′

u�

u�

The diagram on the left satisfies the right Beck–Chevalley condition if 𝛽
is a natural isomorphism; dually, the diagram on the right satisfies the
left Beck–Chevalley condition if 𝛼 is a natural isomorphism.

Morally, the left (resp. right) Beck–Chevalley condition says that 𝐻 and
𝐾 preserve the left (resp. right) adjoint of 𝐺 (resp. 𝐹).
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Accessible extensions

Definition. Let 𝜅 be a regular cardinal in a universe 𝐔, and let 𝐔+ be a
universe with 𝐔 ⊆ 𝐔+. A (𝜅, 𝐔, 𝐔+)-accessible extension is a
(𝜅, 𝐔)-accessible functor 𝑖 : u� → u�+ with these properties:

▶ u� is a 𝜅-accessible 𝐔-category.
▶ u�+ is a 𝜅-accessible 𝐔+-category.
▶ 𝑖 sends (𝜅, 𝐔)-compact objects in u� to (𝜅, 𝐔+)-compact objects

in u�+.
▶ The functor 𝐊𝐔

u� (u�) → 𝐊𝐔+
u� (u�+) so induced by 𝑖 is fully faithful

and essentially surjective on objects.

Example. If 𝐒𝐞𝐭 is the category of 𝐔-sets and 𝐒𝐞𝐭+ is the category of
𝐔+-sets, then the inclusion 𝐒𝐞𝐭 ↪ 𝐒𝐞𝐭+ is a (𝜅, 𝐔, 𝐔+)-extension.
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Fundamental results

Example. Let 𝔹 be a 𝐔-small category in which idempotents split.
Then the (𝜅, 𝐔)-accessible functor 𝐈𝐧𝐝u�

𝐔(𝔹) → 𝐈𝐧𝐝u�
𝐔+(𝔹) obtained

by extending the embedding 𝛾+ : 𝔹 → 𝐈𝐧𝐝u�
𝐔+(𝔹) along

𝛾 : 𝔹 → 𝐈𝐧𝐝u�
𝐔(𝔹) is a (𝜅, 𝐔, 𝐔+)-accessible extension.

Proposition. All examples of (𝜅, 𝐔, 𝐔+)-accessible extensions are (up to
equivalence) of the above form.

Proposition. Let 𝑖 : u� → u�+ be a (𝜅, 𝐔, 𝐔+)-accessible extension.
1. u� is a locally 𝜅-presentable𝐔-category if and only if u�+ is a locally

𝜅-presentable𝐔+-category.
2. The functor 𝑖 : u� → u�+ is fully faithful.
3. If𝐵 : u� → u� is any diagram (not necessarily𝐔-small) and u� has a

limit for𝐵, then 𝑖 preserves this limit.

Remark. Conversely, any fully faithful functor 𝑖 : u� → u�+ satisfying the
bulleted conditions on the previous slide must be (𝜅, 𝐔)-accessible.
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Stability of accessible adjoint functors

We assume the following hypotheses:
▶ 𝐔 and 𝐔+ are universes, with 𝐔 ∈ 𝐔+.
▶ 𝜅 and 𝜆 are regular cardinals in 𝐔, with 𝜅 ≤ 𝜆.
▶ u� is a locally 𝜅-presentable 𝐔-category.
▶ u� is a locally 𝜆-presentable 𝐔-category.
▶ u�+ is a locally 𝜅-presentable 𝐔+-category.
▶ u�+ is a locally 𝜆-presentable 𝐔+-category.
▶ 𝑖 : u� → u�+ and 𝑗 : u� → u�+ are fully faithful functors.
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Stability of accessible adjoint functors

Theorem. Consider the following strictly commutative diagrams:

u� u�+

u� u�+

u�

u�

u�+

u�

u� u�+

u� u�+

u�

u�

u�+

u�

1. Given the diagram on the left, if both 𝐹 and 𝐹+ have right adjoints
and 𝑖 is a (𝜅, 𝐔, 𝐔+)-accessible extension, then the diagram satisfies
the right Beck–Chevalley condition.

2. Given the diagram on the right, if𝐺 is (𝜆, 𝐔)-accessible,𝐺+ is
(𝜆, 𝐔+)-accessible, both have left adjoints, 𝑖 is a
(𝜅, 𝐔, 𝐔+)-accessible extension, and 𝑗 is a (𝜆, 𝐔, 𝐔+)-accessible
extension, then the diagram satisfies the left Beck–Chevalley
condition.
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Stability of accessible adjoint functors

Outline of proof.

▶ First, prove claim (2) in the special case where 𝜅 = 𝜆. This uses the
explicit construction of left adjoints given in the proof of the
accessible adjoint functor theorem.

▶ Deduce that (𝜅, 𝐔, 𝐔+)-accessible extensions preserve colimits
for all 𝐔-small diagrams, not just 𝜅-filtered ones. This uses the
aforementioned characterisation of 𝜅-compact objects in
categories of the form [𝕁, u�] where 𝕁 is 𝜅-small.

▶ Finally, prove the theorem itself. Again, we use the explicit
constructions given in the proof of the accessible adjoint functor
theorem. ■
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Further properties of accessible extensions

Theorem. Let 𝑖 : u� → u�+ be a (𝜅, 𝐔, 𝐔+)-accessible extension and let u�
be a locally 𝜅-presentable𝐔-category.

1. If 𝜆 is a regular cardinal in𝐔 and 𝜅 ≤ 𝜆, then 𝑖 : u� → u�+ is also a
(𝜆, 𝐔, 𝐔+)-accessible extension.

2. If𝜇 is the cardinality of𝐔, then 𝑖 : u� → u�+ factors through the
inclusion𝐊𝐔+

u� (u�+) ↪ u�+ as functor u� → 𝐊𝐔+
u� (u�+) that is (fully

faithful and) essentially surjective on objects.

3. The (𝜇, 𝐔+)-accessible functor 𝐈𝐧𝐝u�
𝐔+(u�) → u�+ induced by

𝑖 : u� → u�+ is fully faithful and essentially surjective on objects.

Corollary. If𝔹 is a 𝜅-cocomplete𝐔-small category and𝜇 is the cardinality
of𝐔, then the canonical (𝜇, 𝐔+)-accessible functor
𝐈𝐧𝐝u�

𝐔+(𝐈𝐧𝐝u�
𝐔(𝔹)) → 𝐈𝐧𝐝u�

𝐔+(𝔹) is fully faithful and essentially
surjective on objects.
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Combinatorial model structures

Let 𝔹 be a 𝜅-cocomplete 𝐔-small category, let ℳ = 𝐈𝐧𝐝u�
𝐔(𝔹), and let

ℐ and u� be 𝐔-sets. Suppose ℐ and u� cofibrantly generate a Quillen
model structure on ℳ. Do ℐ and u� also cofibrantly generate a Quillen
model structure on ℳ+ = 𝐈𝐧𝐝u�

𝐔+(𝔹)?
▶ The inclusion ℳ ↪ ℳ+ preserves the functorial factorisations

constructed by the small object arguments of Quillen [1967] and of
Garner [2009].

▶ Now define u�+ to be the collection of all morphisms in ℳ+ of the
form 𝑞 ∘ 𝑗 where 𝑗 is a u� -cofibration and 𝑞 is an ℐ-injective
morphism.

▶ As soon as we know that u�+ has the 2-out-of-3 property in ℳ+,
we would have a cofibrantly generated model structure on ℳ+

extending the model structure on ℳ. But why should u�+ have
the 2-out-of-3 property?
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Weaker notions of universe

Let us say that 𝐔 is aweak universe if it satisfies axioms 1–3 and 5 in the
definition of ‘universe’ plus the following axiom:

4−. If 𝑥 ∈ 𝐔, then ⋃u�∈u� 𝑦 ∈ 𝐔.

Does the theory of accessible extensions still work if we replace
‘universe’ with ‘weak universe’ everywhere?

▶ In Mac Lane set theory, if 𝐔 is a weak universe, then 𝐔 is a model of
Zermelo set theory with (global) choice, so the category of 𝐔-sets
is a model of ETCS.

▶ Moreover, in ordinary ZFC, every set is a member of some weak
universe: indeed, for every limit ordinal 𝛼 > 𝜔, the set 𝐕u� is a
weak universe.

▶ If things still work in this context, it would afford an adequate
framework for applying category-theoretic methods to study
category theory,without needing any large cardinals.
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