Accessibility and ind-completions	Change of universe	References

Accessible functors and inaccessible cardinals Universes for category theory (arXiv:1304.5227)

Zhen Lin Low

Department of Pure Mathematics and Mathematical Statistics University of Cambridge

Category Theory 2013 Sydney, Australia

Accessible functors and inaccessible cardinals

	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

Introduction

The problem Set-theoretic universes

Accessibility and ind-completions

Definitions and examples Fundamental results

Change of universe

Definitions Stability theorems

Future work

Introduction	Accessibility and ind-completions	Change of universe	References
• 0 000			

Accessible functors and inaccessible cardinals

∢ ≣⇒

Introduction	Accessibility and ind-completions	Change of universe	References
0000			

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

Let $M_0 \in M_1 \in M_2 \in \cdots$ be a chain of set-theoretic universes (in some unspecified sense).

Consider theorems that assert that some object with some universal property *exist* in each universe M_n.

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set X,

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- ► One such theorem says that, for every set X, there exists a set 𝒫(X)

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set X, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set X, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$,

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set X, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$, there is a unique map $r: Y \to \mathscr{P}(X)$

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set X, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$, there is a unique map $r: Y \to \mathscr{P}(X)$ such that $\langle x, y \rangle \in R$ if and only if $\langle x, r(x) \rangle \in [\in]_X$.

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set *X*, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$, there is a unique map $r: Y \to \mathscr{P}(X)$ such that $\langle x, y \rangle \in R$ if and only if $\langle x, r(x) \rangle \in [\in]_X$.
- Unfortunately, there is no guarantee that a universal object in M_n remains universal in M_{n+1} .

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set *X*, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$, there is a unique map $r: Y \to \mathscr{P}(X)$ such that $\langle x, y \rangle \in R$ if and only if $\langle x, r(x) \rangle \in [\in]_X$.
- Unfortunately, there is no guarantee that a universal object in M_n remains universal in M_{n+1} .
- Indeed, it is well-known that powersets need not be preserved when passing from one model of set theory to another:

Introduction	Accessibility and ind-completions	Change of universe	References
●○ ○○○			

- Consider theorems that assert that some object with some universal property *exist* in each universe M_n.
- One such theorem says that, for every set *X*, there exists a set $\mathscr{P}(X)$ and a binary relation $[\in]_X \subseteq X \times \mathscr{P}(X)$ such that, for every binary relation $R \subseteq X \times Y$, there is a unique map $r: Y \to \mathscr{P}(X)$ such that $\langle x, y \rangle \in R$ if and only if $\langle x, r(x) \rangle \in [\in]_X$.
- Unfortunately, there is no guarantee that a universal object in M_n remains universal in M_{n+1} .
- Indeed, it is well-known that powersets need not be preserved when passing from one model of set theory to another: this is implied by the theory of forcing.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

Accessible functors and inaccessible cardinals

∢ ≣⇒

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

So we must be more careful with how we choose our chain of universes.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- So we must be more careful with how we choose our chain of universes.
- But even under the most ideal circumstances, it is not clear whether universal objects are stable under universe enlargement.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- So we must be more careful with how we choose our chain of universes.
- But even under the most ideal circumstances, it is not clear whether universal objects are stable under universe enlargement.
- For instance, Bowler [2012] has constructed an ω-sequence of monads on Set whose colimit depends on U, where Set is the category of U-sets.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- So we must be more careful with how we choose our chain of universes.
- But even under the most ideal circumstances, it is not clear whether universal objects are stable under universe enlargement.
- For instance, Bowler [2012] has constructed an ω-sequence of monads on Set whose colimit depends on U, where Set is the category of U-sets.
- When can we be sure that enlarging the universe does not change limits, adjoints, Kan extensions etc. in the concrete categories we wish to study?

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- So we must be more careful with how we choose our chain of universes.
- But even under the most ideal circumstances, it is not clear whether universal objects are stable under universe enlargement.
- For instance, Bowler [2012] has constructed an ω-sequence of monads on Set whose colimit depends on U, where Set is the category of U-sets.
- When can we be sure that enlarging the universe does not change limits, adjoints, Kan extensions etc. in the concrete categories we wish to study?
- For Set this is easy: we have explicit constructions for limits and colimits.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- So we must be more careful with how we choose our chain of universes.
- But even under the most ideal circumstances, it is not clear whether universal objects are stable under universe enlargement.
- For instance, Bowler [2012] has constructed an ω-sequence of monads on Set whose colimit depends on U, where Set is the category of U-sets.
- When can we be sure that enlarging the universe does not change limits, adjoints, Kan extensions etc. in the concrete categories we wish to study?
- For Set this is easy: we have explicit constructions for limits and colimits. The general strategy will be to reduce the problem to the case where explicit constructions are available.

	Introduction	Accessibility and ind-completions	Change of universe		References
00 00 0000 00	00000	0000	000000	00	

< Ξ

Introduction	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Introduction	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

Introduction	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

1. If $x \in y$ and $y \in U$, then $x \in U$.

000000 00000 00	Introduction	Accessibility and ind-completions	Change of universe		References
	00000	0000	000000	00	

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A pre-universe is a set U satisfying these axioms:

1. If $x \in y$ and $y \in U$, then $x \in U$.

2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.

000000 00000 00	Introduction	Accessibility and ind-completions	Change of universe		References
	00000	0000	000000	00	

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

- 1. If $x \in y$ and $y \in U$, then $x \in U$.
- 2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
- 3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

- 1. If $x \in y$ and $y \in \mathbf{U}$, then $x \in \mathbf{U}$.
- 2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
- 3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.
- 4. If $x \in \mathbf{U}$ and $f : x \to \mathbf{U}$ is a map, then $\bigcup_{i \in x} f(i) \in \mathbf{U}$.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

- 1. If $x \in y$ and $y \in U$, then $x \in U$.
- 2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
- 3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.
- 4. If $x \in \mathbf{U}$ and $f : x \to \mathbf{U}$ is a map, then $\bigcup_{i \in x} f(i) \in \mathbf{U}$.

A **universe** is a pre-universe **U** with this additional property:

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

- 1. If $x \in y$ and $y \in U$, then $x \in U$.
- 2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
- 3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.
- 4. If $x \in \mathbf{U}$ and $f : x \to \mathbf{U}$ is a map, then $\bigcup_{i \in x} f(i) \in \mathbf{U}$.

A **universe** is a pre-universe **U** with this additional property:

5. $\omega \in \mathbf{U}$, where ω is the set of all finite (von Neumann) ordinals.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

The following definition is the same as the one found in [SGA 4a, Exposé I, Appendice]; the only difference is the terminology.

Definition. A **pre-universe** is a set **U** satisfying these axioms:

- 1. If $x \in y$ and $y \in \mathbf{U}$, then $x \in \mathbf{U}$.
- 2. If $x \in \mathbf{U}$ and $y \in \mathbf{U}$ (but not necessarily distinct), then $\{x, y\} \in \mathbf{U}$.
- 3. If $x \in \mathbf{U}$, then $\mathscr{P}(x) \in \mathbf{U}$, where $\mathscr{P}(x)$ denotes the set of all subsets of x.
- 4. If $x \in \mathbf{U}$ and $f : x \to \mathbf{U}$ is a map, then $\bigcup_{i \in x} f(i) \in \mathbf{U}$.

A **universe** is a pre-universe **U** with this additional property:

5. $\omega \in \mathbf{U}$, where ω is the set of all finite (von Neumann) ordinals.

Example. The empty set is a pre-universe, and with very mild assumptions, so is the set **HF** of all hereditarily finite sets.

000 00 00000 00	

< Ξ

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).
- Mitchell [1972] has shown that one can construct a model of Mac Lane set theory from any model of Lawvere's elementary theory of the category of sets (ETCS) and vice versa.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).
- Mitchell [1972] has shown that one can construct a model of Mac Lane set theory from any model of Lawvere's elementary theory of the category of sets (ETCS) and vice versa.
- With the assumptions of Mac Lane set theory, any universe is a transitive model of ZFC.

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

- For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).
- Mitchell [1972] has shown that one can construct a model of Mac Lane set theory from any model of Lawvere's elementary theory of the category of sets (ETCS) and vice versa.
- With the assumptions of Mac Lane set theory, any universe is a transitive model of ZFC.
- Moreover, in Mac Lane set theory, if U is any non-empty pre-universe,

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

Set-theoretic universes

- For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).
- Mitchell [1972] has shown that one can construct a model of Mac Lane set theory from any model of Lawvere's elementary theory of the category of sets (ETCS) and vice versa.
- With the assumptions of Mac Lane set theory, any universe is a transitive model of ZFC.
- Moreover, in Mac Lane set theory, if U is any non-empty pre-universe, then there exists a strongly inaccessible cardinal κ such that the members of U are all the sets of rank < κ.</p>

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

Set-theoretic universes

- For definiteness, we may take our base theory to be Mac Lane set theory, which is a certain weak subsystem of Zermelo–Fraenkel set theory with choice (ZFC).
- Mitchell [1972] has shown that one can construct a model of Mac Lane set theory from any model of Lawvere's elementary theory of the category of sets (ETCS) and vice versa.
- With the assumptions of Mac Lane set theory, any universe is a transitive model of ZFC.
- Moreover, in Mac Lane set theory, if U is any non-empty pre-universe, then there exists a strongly inaccessible cardinal κ such that the members of U are all the sets of rank < κ.</p>
- Of course, the existence of universes (in ZFC or its subsystems) is independent of the axioms of ZFC.

Introduction	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

Accessible functors and inaccessible cardinals

・ロト ・聞 ト ・ ヨト ・ ヨト

Introduction	Accessibility and ind-completions	Change of universe	References
00000			

• We will assume there are two universes U and U^+ , with $U \in U^+$.

-

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.
- ▶ Given a pre-universe U, by U-set we mean a member of U,

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.
- Given a pre-universe U, by U-set we mean a member of U, and by U-class we mean a subset of U.

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.
- Given a pre-universe U, by U-set we mean a member of U, and by U-class we mean a subset of U.
- ▶ By U-small category we mean a category C such that ob C and mor C are U-sets,

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.
- Given a pre-universe U, by U-set we mean a member of U, and by U-class we mean a subset of U.
- By U-small category we mean a category C such that ob C and mor C are U-sets, and by locally U-small category we mean a category C such that ob C and mor C are U-classes and each hom-set C(x, y) is a U-set.

Introduction ○○○○●	Accessibility and ind-completions	Change of universe	References

- We will assume there are two universes U and U^+ , with $U \in U^+$.
- We follow Mac Lane [CWM]: by category we mean a model of the first-order theory of categories *inside* set theory, though not necessarily one that is a member of some universe.
- Given a pre-universe U, by U-set we mean a member of U, and by U-class we mean a subset of U.
- ▶ By U-small category we mean a category C such that ob C and mor C are U-sets, and by locally U-small category we mean a category C such that ob C and mor C are U-classes and each hom-set C(x, y) is a U-set.
- More generally, given a regular cardinal κ , by κ -small category we mean a category \mathbb{C} such that mor \mathbb{C} has cardinality $< \kappa$.

Accessibility and ind-completions	Change of universe	References
• 00 0		

Accessible functors and inaccessible cardinals

Þ

・ロト ・四ト ・ヨト ・ヨト

Accessibility and ind-completions	Change of universe	References
●00 ○		

Let κ be a regular cardinal in a universe **U**.

Э

Accessibility and ind-completions	Change of universe	References
• 00 0		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category C is an object A such that the representable functor $C(A, -) : C \rightarrow \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams.

Accessibility and ind-completions	Change of universe	References
• 00 0		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category \mathcal{C} is an object A such that the representable functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C})$ for the full subcategory of \mathcal{C} spanned by the (κ, \mathbf{U}) -compact objects.

Accessibility and ind-completions	Change of universe	References
••••		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category \mathcal{C} is an object A such that the representable functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C})$ for the full subcategory of \mathcal{C} spanned by the (κ, \mathbf{U}) -compact objects.

Accessibility and ind-completions	Change of universe	References
••••		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category C is an object A such that the representable functor $C(A, -) : C \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(C)$ for the full subcategory of C spanned by the (κ, \mathbf{U}) -compact objects.

Definition. A κ -accessible U-category is a locally U-small category C satisfying the following conditions:

• C has colimits for all U-small κ -filtered diagrams.

Accessibility and ind-completions	Change of universe	References
••••		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category \mathcal{C} is an object A such that the representable functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C})$ for the full subcategory of \mathcal{C} spanned by the (κ, \mathbf{U}) -compact objects.

- C has colimits for all U-small κ -filtered diagrams.
- There exists a **U**-set $\mathcal{G} \subseteq \operatorname{ob} \mathcal{C}$ such that,

Accessibility and ind-completions	Change of universe	References
••••		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category C is an object A such that the representable functor $C(A, -) : C \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(C)$ for the full subcategory of C spanned by the (κ, \mathbf{U}) -compact objects.

- C has colimits for all U-small κ -filtered diagrams.
- ► There exists a **U**-set $\mathcal{G} \subseteq$ ob \mathcal{C} such that, for every object B in \mathcal{C} , there exists a **U**-small κ -filtered diagram of objects in \mathcal{G} with B as its colimit in \mathcal{C} ,

Accessibility and ind-completions	Change of universe	References
••••		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category \mathcal{C} is an object A such that the representable functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C})$ for the full subcategory of \mathcal{C} spanned by the (κ, \mathbf{U}) -compact objects.

- C has colimits for all U-small κ -filtered diagrams.
- ► There exists a **U**-set $\mathcal{G} \subseteq$ ob \mathcal{C} such that, for every object B in \mathcal{C} , there exists a **U**-small κ -filtered diagram of objects in \mathcal{G} with B as its colimit in \mathcal{C} , and every object in \mathcal{G} is (κ, \mathbf{U}) -compact.

Accessibility and ind-completions	Change of universe	References
• 00 0		

Let κ be a regular cardinal in a universe **U**.

Definition. A (κ, \mathbf{U}) -compact object in a locally U-small category C is an object A such that the representable functor $C(A, -) : C \to \mathbf{Set}$ preserves colimits for all U-small κ -filtered diagrams. We write $\mathbf{K}^{\mathbf{U}}_{\kappa}(C)$ for the full subcategory of C spanned by the (κ, \mathbf{U}) -compact objects.

Definition. A κ -accessible U-category is a locally U-small category C satisfying the following conditions:

- C has colimits for all U-small κ -filtered diagrams.
- ► There exists a **U**-set $\mathcal{G} \subseteq$ ob \mathcal{C} such that, for every object B in \mathcal{C} , there exists a **U**-small κ -filtered diagram of objects in \mathcal{G} with B as its colimit in \mathcal{C} , and every object in \mathcal{G} is (κ, \mathbf{U}) -compact.

Definition. A locally κ -presentable U-category is a κ -accessible U-category that is U-cocomplete.

Accessibility and ind-completions	Change of universe	References
0000		

Accessible functors and inaccessible cardinals

ł

・ロト ・四ト ・ヨト ・ヨト

Accessibility and ind-completions	Change of universe	References
0000		

▶ The category of U-sets is a locally ℵ₀-presentable U-category,

	Accessibility and ind-completions	Change of universe	References
	000		
Examples			

The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category,

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finitely presentable groups (resp. rings, categories, etc.).

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finitely presentable groups (resp. rings, categories, etc.).
- The category of U-small fields is a N₀-accessible U-category that is not locally N₀-presentable.

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finitely presentable groups (resp. rings, categories, etc.).
- The category of U-small fields is a N₀-accessible U-category that is not locally N₀-presentable.
- The category of U-small Banach spaces and short linear maps is a locally N₁-presentable U-category,

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finitely presentable groups (resp. rings, categories, etc.).
- The category of U-small fields is a N₀-accessible U-category that is not locally N₀-presentable.
- The category of U-small Banach spaces and short linear maps is a locally N₁-presentable U-category, but it is not locally N₀-presentable.

Accessibility and ind-completions	Change of universe	References
0000		

- The category of U-sets is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finite sets.
- The category of U-small groups (resp. rings, categories, etc.) is a locally N₀-presentable U-category, and the (N₀, U)-compact objects are precisely the finitely presentable groups (resp. rings, categories, etc.).
- The category of U-small fields is a N₀-accessible U-category that is not locally N₀-presentable.
- The category of U-small Banach spaces and short linear maps is a locally N₁-presentable U-category, but it is not locally N₀-presentable.
- Every Grothendieck U-topos is a locally κ -presentable U-category for some regular cardinal κ in U.

Accessibility and ind-completions	Change of universe	References
0000		

Accessible functors and inaccessible cardinals

Zhen Lin Low

∢ Ξ

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for U-small κ -filtered diagrams.

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally **U**-small category C

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally U-small category C there exist a locally U-small category $Ind_{U}^{\kappa}(C)$

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : \mathcal{C} \to \mathcal{D}$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(\mathcal{C}, \mathcal{D})$ for the category of (κ, \mathbf{U}) -accessible functors $\mathcal{C} \to \mathcal{D}$.

Theorem. For every locally U-small category C there exist a locally U-small category $\operatorname{Ind}_{U}^{\kappa}(C)$ and a functor $\gamma : C \to \operatorname{Ind}_{U}^{\kappa}(C)$ such that:

Accessibility and ind-completions	Change of universe	References
0000		

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally U-small category C there exist a locally U-small category $\operatorname{Ind}_{U}^{\kappa}(C)$ and a functor $\gamma : C \to \operatorname{Ind}_{U}^{\kappa}(C)$ such that:

1. Ind^{κ}_U(C) has colimits for all U-small κ -filtered diagrams.

Accessibility and ind-completions	Change of universe	References
0000		

Definitions (cont.)

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally U-small category C there exist a locally U-small category $\operatorname{Ind}_{U}^{\kappa}(C)$ and a functor $\gamma : C \to \operatorname{Ind}_{U}^{\kappa}(C)$ such that:

- 1. Ind^{κ}_U(C) has colimits for all U-small κ -filtered diagrams.
- 2. If \mathcal{D} is a category with colimits for all U-small κ -filtered diagrams,

Accessibility and ind-completions	Change of universe	References
0000		

Definitions (cont.)

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally U-small category C there exist a locally U-small category $\operatorname{Ind}_{U}^{\kappa}(C)$ and a functor $\gamma : C \to \operatorname{Ind}_{U}^{\kappa}(C)$ such that:

- 1. Ind^{κ}_U(C) has colimits for all U-small κ -filtered diagrams.
- 2. If \mathcal{D} is a category with colimits for all U-small κ -filtered diagrams, then $\gamma^* : \mathbf{Acc}^{\mathbf{U}}_{\kappa}(\mathbf{Ind}^{\kappa}_{\mathbf{U}}(\mathcal{C}), \mathcal{D}) \to [\mathcal{C}, \mathcal{D}]$ is fully faithful and essentially surjective on objects.

Accessibility and ind-completions	Change of universe	References
0000		

Definitions (cont.)

Definition. A (κ, \mathbf{U}) -accessible functor is a functor $F : C \to D$ that preserves colimits for **U**-small κ -filtered diagrams. We write $\mathbf{Acc}^{\mathbf{U}}_{\kappa}(C, D)$ for the category of (κ, \mathbf{U}) -accessible functors $C \to D$.

Theorem. For every locally U-small category C there exist a locally U-small category $\operatorname{Ind}_{U}^{\kappa}(C)$ and a functor $\gamma : C \to \operatorname{Ind}_{U}^{\kappa}(C)$ such that:

- 1. Ind^{κ}_U(C) has colimits for all U-small κ -filtered diagrams.
- 2. If \mathcal{D} is a category with colimits for all U-small κ -filtered diagrams, then $\gamma^* : \mathbf{Acc}^{\mathbf{U}}_{\kappa}(\mathbf{Ind}^{\kappa}_{\mathbf{U}}(\mathcal{C}), \mathcal{D}) \to [\mathcal{C}, \mathcal{D}]$ is fully faithful and essentially surjective on objects.

Definition. The free (κ, \mathbf{U}) -ind-completion of C is the category $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(C)$.

	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

< ∃⇒

00000 00 0 00 00		Accessibility and ind-completions	Change of universe		References
	00000	0000	000000	00	

Theorem. Let C be a κ -accessible U-small category.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible U-small category. The functor $Ind_{U}^{\kappa}(C) \rightarrow C$ induced by the inclusion $K_{\kappa}^{U}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category,

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Proposition. A category C is a locally presentable U-category for at most one universe U, provided C is not a preorder.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Proposition. A category C is a locally presentable U-category for at most one universe U, provided C is not a preorder.

Proposition. Let *C* be a locally κ -presentable **U**-category and let J be a μ -small category in **U**.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Proposition. A category C is a locally presentable U-category for at most one universe U, provided C is not a preorder.

Proposition. Let *C* be a locally κ -presentable **U**-category and let J be a μ -small category in **U**.

1. [J, C] is also a locally κ -presentable **U**-category.

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Proposition. A category C is a locally presentable U-category for at most one universe U, provided C is not a preorder.

Proposition. Let *C* be a locally κ -presentable **U**-category and let J be a μ -small category in **U**.

- 1. [J, C] is also a locally κ -presentable **U**-category.
- 2. If λ is a regular cardinal in **U** and $\lambda \geq \max{\{\kappa, \mu\}}$,

Accessibility and ind-completions	Change of universe	References
0000		

Theorem. Let C be a κ -accessible **U**-small category. The functor $\operatorname{Ind}_{\mathbf{U}}^{\kappa}(C) \to C$ induced by the inclusion $\mathbf{K}_{\kappa}^{\mathbf{U}}(C) \hookrightarrow C$ is fully faithful and essentially surjective on objects.

Proposition. Let κ and λ be regular cardinals in a universe **U**, with $\kappa \leq \lambda$. If *C* is a locally κ -presentable **U**-category, then *C* is also a locally λ -presentable **U**-category.

Proposition. A category C is a locally presentable U-category for at most one universe U, provided C is not a preorder.

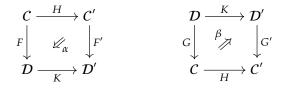
Proposition. Let *C* be a locally κ -presentable **U**-category and let J be a μ -small category in **U**.

- 1. [J, C] is also a locally κ -presentable **U**-category.
- If λ is a regular cardinal in U and λ ≥ max {κ, μ}, then the (λ, U)-compact objects in [J, C] are precisely the diagrams J → C that are componentwise (λ, U)-compact.

Accessibility and ind-completions	Change of universe	References
	• 0 00000	

Accessibility and ind-completions	Change of universe	References
	• 0 00000	

Definition. Let $F \dashv G$ and $F' \dashv G'$ be adjunctions and consider a mated pair of natural transformations:



Accessibility and ind-completions	Change of universe	References
	• 0 00000	

Definition. Let $F \dashv G$ and $F' \dashv G'$ be adjunctions and consider a mated pair of natural transformations:

The diagram on the left satisfies the **right Beck–Chevalley condition** if β is a natural isomorphism;

Accessibility and ind-completions	Change of universe	References
	• 0 00000	

Definition. Let $F \dashv G$ and $F' \dashv G'$ be adjunctions and consider a mated pair of natural transformations:

The diagram on the left satisfies the **right Beck–Chevalley condition** if β is a natural isomorphism; dually, the diagram on the right satisfies the **left Beck–Chevalley condition** if α is a natural isomorphism.

Accessibility and ind-completions	Change of universe	References
	• 0 00000	

Definition. Let $F \dashv G$ and $F' \dashv G'$ be adjunctions and consider a mated pair of natural transformations:

The diagram on the left satisfies the **right Beck–Chevalley condition** if β is a natural isomorphism; dually, the diagram on the right satisfies the **left Beck–Chevalley condition** if α is a natural isomorphism.

Morally, the left (resp. right) Beck–Chevalley condition says that H and K preserve the left (resp. right) adjoint of G (resp. F).

イロト イワト イヨト イヨト

	Accessibility and ind-completions	Change of universe		References
00000	0000	000000	00	

< ∃⇒

Accessibility and ind-completions	Change of universe	References
	000000	

Definition. Let κ be a regular cardinal in a universe U, and let U^+ be a universe with $U \subseteq U^+$.

Accessibility and ind-completions	Change of universe	References
	000000	

Accessibility and ind-completions	Change of universe	References
	000000	

Definition. Let κ be a regular cardinal in a universe U, and let U⁺ be a universe with U \subseteq U⁺. A (κ , U, U⁺)-accessible extension is a (κ , U)-accessible functor $i : C \to C^+$ with these properties:

• *C* is a κ -accessible **U**-category.

Accessibility and ind-completions	Change of universe	References
	000000	

- *C* is a κ -accessible **U**-category.
- C^+ is a κ -accessible \mathbf{U}^+ -category.

Accessibility and ind-completions	Change of universe	References
	000000	

- *C* is a κ -accessible **U**-category.
- C^+ is a κ -accessible **U**⁺-category.
- i sends (κ, U)-compact objects in C to (κ, U⁺)-compact objects in C⁺.

Accessibility and ind-completions	Change of universe	References
	000000	

- *C* is a κ -accessible **U**-category.
- C^+ is a κ -accessible **U**⁺-category.
- i sends (κ, U)-compact objects in C to (κ, U⁺)-compact objects in C⁺.
- The functor $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C}) \to \mathbf{K}^{\mathbf{U}^+}_{\kappa}(\mathcal{C}^+)$ so induced by *i* is fully faithful and essentially surjective on objects.

Accessibility and ind-completions	Change of universe	References
	000000	

Definition. Let κ be a regular cardinal in a universe U, and let U⁺ be a universe with U \subseteq U⁺. A (κ , U, U⁺)-accessible extension is a (κ , U)-accessible functor $i : C \to C^+$ with these properties:

- *C* is a κ -accessible **U**-category.
- C^+ is a κ -accessible \mathbf{U}^+ -category.
- i sends (κ, U)-compact objects in C to (κ, U⁺)-compact objects in C⁺.
- The functor $\mathbf{K}^{\mathbf{U}}_{\kappa}(\mathcal{C}) \to \mathbf{K}^{\mathbf{U}^+}_{\kappa}(\mathcal{C}^+)$ so induced by *i* is fully faithful and essentially surjective on objects.

Example. If Set is the category of U-sets and Set⁺ is the category of U⁺-sets, then the inclusion Set \hookrightarrow Set⁺ is a (κ , U, U⁺)-extension.

Introduction Acc	cessibility and ind-completions	Change of universe	Future work	References
00000 00	000	00000	00	

< ∃⇒

00000 0000 00		Accessibility and ind-completions	Change of universe		References
	00000	0000	00000	00	

Example. Let \mathbb{B} be a U-small category in which idempotents split.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^+ : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ along $\gamma : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^{+}: \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ along $\gamma: \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^{+})$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^{+}: \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^{+}}^{\kappa}(\mathbb{B})$ along $\gamma: \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^{+})$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Proposition. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^+ : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ along $\gamma : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Proposition. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

1. *C* is a locally κ -presentable **U**-category if and only if *C*⁺ is a locally κ -presentable **U**⁺-category.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^+ : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ along $\gamma : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Proposition. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

- 1. *C* is a locally κ -presentable **U**-category if and only if *C*⁺ is a locally κ -presentable **U**⁺-category.
- 2. The functor $i : C \to C^+$ is fully faithful.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^+ : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ along $\gamma : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Proposition. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

- 1. *C* is a locally κ -presentable **U**-category if and only if *C*⁺ is a locally κ -presentable **U**⁺-category.
- 2. The functor $i : C \to C^+$ is fully faithful.
- 3. If $B : \mathcal{J} \to C$ is any diagram (not necessarily U-small) and C has a limit for B, then *i* preserves this limit.

Accessibility and ind-completions	Change of universe	References
	000000	

Example. Let \mathbb{B} be a U-small category in which idempotents split. Then the (κ, \mathbf{U}) -accessible functor $\mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B}) \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ obtained by extending the embedding $\gamma^+ : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}^+}^{\kappa}(\mathbb{B})$ along $\gamma : \mathbb{B} \to \mathbf{Ind}_{\mathbf{U}}^{\kappa}(\mathbb{B})$ is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Proposition. All examples of $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extensions are (up to equivalence) of the above form.

Proposition. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

- 1. *C* is a locally κ -presentable **U**-category if and only if *C*⁺ is a locally κ -presentable **U**⁺-category.
- 2. The functor $i : C \to C^+$ is fully faithful.
- 3. If $B : \mathcal{J} \to C$ is any diagram (not necessarily U-small) and C has a limit for B, then i preserves this limit.

Remark. Conversely, any fully faithful functor $i : C \to C^+$ satisfying the bulleted conditions on the previous slide must be (κ, \mathbf{U}) -accessible.

	Accessibility and ind-completions	Change of universe		References
00000	0000	000000	00	

Accessibility and ind-completions	Change of universe	References
	0000000	

We assume the following hypotheses:

▶ **U** and \mathbf{U}^+ are universes, with $\mathbf{U} \in \mathbf{U}^+$.

< < >> < <</>

- ▶ **U** and \mathbf{U}^+ are universes, with $\mathbf{U} \in \mathbf{U}^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.

Accessibility and ind-completions	Change of universe	References
	0000000	

- ▶ **U** and U^+ are universes, with $U \in U^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.
- *C* is a locally κ -presentable U-category.

- ▶ **U** and \mathbf{U}^+ are universes, with $\mathbf{U} \in \mathbf{U}^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.
- *C* is a locally κ -presentable **U**-category.
- \mathcal{D} is a locally λ -presentable **U**-category.

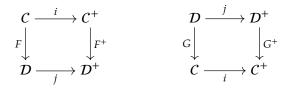
- U and U^+ are universes, with $U \in U^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.
- *C* is a locally κ -presentable **U**-category.
- D is a locally λ -presentable **U**-category.
- C^+ is a locally κ -presentable \mathbf{U}^+ -category.

- U and U^+ are universes, with $U \in U^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.
- *C* is a locally κ -presentable **U**-category.
- \mathcal{D} is a locally λ -presentable **U**-category.
- C^+ is a locally κ -presentable \mathbf{U}^+ -category.
- \mathcal{D}^+ is a locally λ -presentable \mathbf{U}^+ -category.

- U and U^+ are universes, with $U \in U^+$.
- κ and λ are regular cardinals in **U**, with $\kappa \leq \lambda$.
- *C* is a locally κ -presentable U-category.
- D is a locally λ -presentable U-category.
- C^+ is a locally κ -presentable \mathbf{U}^+ -category.
- \mathcal{D}^+ is a locally λ -presentable \mathbf{U}^+ -category.
- $i: C \to C^+$ and $j: D \to D^+$ are fully faithful functors.

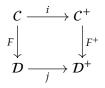
Introduction Acces	ssibility and ind-completions	Change of universe	Future work	References
0000 000	0	0000000	00	

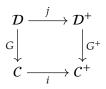
Accessibility and ind-completions	Change of universe	References
	0000000	



Accessibility and ind-completions	Change of universe	References
	0000000	

Theorem. Consider the following strictly commutative diagrams:





1. Given the diagram on the left,

Accessibility and ind-completions	Change of universe	References
	0000000	

Theorem. Consider the following strictly commutative diagrams:

1. Given the diagram on the left, if both F and F^+ have right adjoints

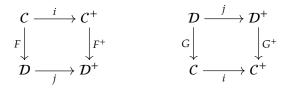
Accessibility and ind-completions	Change of universe	References
	0000000	

Theorem. Consider the following strictly commutative diagrams:

1. Given the diagram on the left, if both F and F^+ have right adjoints and i is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension,

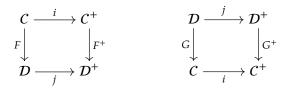
Accessibility and ind-completions	Change of universe	References
	0000000	

Theorem. Consider the following strictly commutative diagrams:



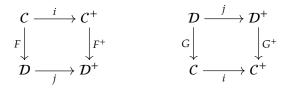
 Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.

Accessibility and ind-completions	Change of universe	References
	0000000	



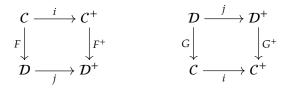
- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- 2. Given the diagram on the right,

Accessibility and ind-completions	Change of universe	References
	0000000	



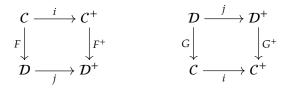
- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- 2. Given the diagram on the right, if G is (λ, \mathbf{U}) -accessible,

Accessibility and ind-completions	Change of universe	References
	0000000	



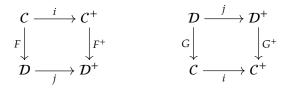
- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- 2. Given the diagram on the right, if G is (λ, \mathbf{U}) -accessible, G⁺ is (λ, \mathbf{U}^+) -accessible,

Accessibility and ind-completions	Change of universe	References
	0000000	



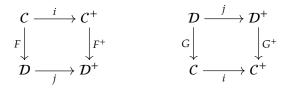
- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- 2. Given the diagram on the right, if G is (λ, \mathbf{U}) -accessible, G⁺ is (λ, \mathbf{U}^+) -accessible, both have left adjoints,

Accessibility and ind-completions	Change of universe	References
	0000000	



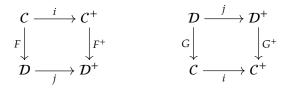
- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- 2. Given the diagram on the right, if G is (λ, \mathbf{U}) -accessible, G⁺ is (λ, \mathbf{U}^+) -accessible, both have left adjoints, *i* is a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension,

Accessibility and ind-completions	Change of universe	References
	0000000	



- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- Given the diagram on the right, if G is (λ, U)-accessible, G⁺ is (λ, U⁺)-accessible, both have left adjoints, i is a (κ, U, U⁺)-accessible extension, and j is a (λ, U, U⁺)-accessible extension,

Accessibility and ind-completions	Change of universe	References
	0000000	



- Given the diagram on the left, if both F and F⁺ have right adjoints and i is a (κ, U, U⁺)-accessible extension, then the diagram satisfies the right Beck–Chevalley condition.
- Given the diagram on the right, if G is (λ, U)-accessible, G⁺ is (λ, U⁺)-accessible, both have left adjoints, i is a (κ, U, U⁺)-accessible extension, and j is a (λ, U, U⁺)-accessible extension, then the diagram satisfies the left Beck–Chevalley condition.

Accessibility and ind-completions	Change of universe	References
	0000000	

Outline of proof.

First, prove claim (2) in the special case where $\kappa = \lambda$.

∢ Ξ

Outline of proof.

First, prove claim (2) in the special case where κ = λ. This uses the explicit construction of left adjoints given in the proof of the accessible adjoint functor theorem.

- First, prove claim (2) in the special case where κ = λ. This uses the explicit construction of left adjoints given in the proof of the accessible adjoint functor theorem.
- Deduce that (κ, U, U⁺)-accessible extensions preserve colimits for *all* U-small diagrams, not just κ-filtered ones.

- First, prove claim (2) in the special case where κ = λ. This uses the explicit construction of left adjoints given in the proof of the accessible adjoint functor theorem.
- Deduce that (κ, U, U⁺)-accessible extensions preserve colimits for *all* U-small diagrams, not just κ-filtered ones. This uses the aforementioned characterisation of κ-compact objects in categories of the form [J, C] where J is κ-small.

- First, prove claim (2) in the special case where κ = λ. This uses the explicit construction of left adjoints given in the proof of the accessible adjoint functor theorem.
- Deduce that (κ, U, U⁺)-accessible extensions preserve colimits for *all* U-small diagrams, not just κ-filtered ones. This uses the aforementioned characterisation of κ-compact objects in categories of the form [J, C] where J is κ-small.
- Finally, prove the theorem itself.

- First, prove claim (2) in the special case where κ = λ. This uses the explicit construction of left adjoints given in the proof of the accessible adjoint functor theorem.
- Deduce that (κ, U, U⁺)-accessible extensions preserve colimits for *all* U-small diagrams, not just κ-filtered ones. This uses the aforementioned characterisation of κ-compact objects in categories of the form [J, C] where J is κ-small.
- Finally, prove the theorem itself. Again, we use the explicit constructions given in the proof of the accessible adjoint functor theorem.

Accessibility and ind-completions	Change of universe	References
	000000	

Accessibility and ind-completions	Change of universe	References
	000000	

Accessibility and ind-completions	Change of universe	References
	000000	

Theorem. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension and let *C* be a locally κ -presentable **U**-category.

1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$,

Accessibility and ind-completions	Change of universe	References
	000000	

Theorem. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension and let *C* be a locally κ -presentable **U**-category.

1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.

Accessibility and ind-completions	Change of universe	References
	000000	

- 1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.
- 2. If μ is the cardinality of **U**,

Accessibility and ind-completions	Change of universe	References
	000000	

- 1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.
- 2. If μ is the cardinality of **U**, then $i : C \to C^+$ factors through the inclusion $\mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+) \hookrightarrow C^+$ as functor $C \to \mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+)$ that is (fully faithful and) essentially surjective on objects.

Accessibility and ind-completions	Change of universe	References
	000000	

- 1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.
- 2. If μ is the cardinality of **U**, then $i : C \to C^+$ factors through the inclusion $\mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+) \hookrightarrow C^+$ as functor $C \to \mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+)$ that is (fully faithful and) essentially surjective on objects.
- 3. The (μ, \mathbf{U}^+) -accessible functor $\mathbf{Ind}_{\mathbf{U}^+}^{\mu}(\mathcal{C}) \to \mathcal{C}^+$ induced by $i: \mathcal{C} \to \mathcal{C}^+$ is fully faithful and essentially surjective on objects.

Accessibility and ind-completions	Change of universe	References
	000000	

Further properties of accessible extensions

Theorem. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension and let *C* be a locally κ -presentable **U**-category.

- 1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.
- 2. If μ is the cardinality of **U**, then $i : C \to C^+$ factors through the inclusion $\mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+) \hookrightarrow C^+$ as functor $C \to \mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+)$ that is (fully faithful and) essentially surjective on objects.
- 3. The (μ, \mathbf{U}^+) -accessible functor $\mathbf{Ind}_{\mathbf{U}^+}^{\mu}(\mathcal{C}) \to \mathcal{C}^+$ induced by $i: \mathcal{C} \to \mathcal{C}^+$ is fully faithful and essentially surjective on objects.

Corollary. If \mathbb{B} is a κ -cocomplete U-small category and μ is the cardinality of U,

Accessibility and ind-completions	Change of universe	References
	000000	

Further properties of accessible extensions

Theorem. Let $i : C \to C^+$ be a $(\kappa, \mathbf{U}, \mathbf{U}^+)$ -accessible extension and let *C* be a locally κ -presentable **U**-category.

- 1. If λ is a regular cardinal in **U** and $\kappa \leq \lambda$, then $i : C \to C^+$ is also a $(\lambda, \mathbf{U}, \mathbf{U}^+)$ -accessible extension.
- 2. If μ is the cardinality of **U**, then $i : C \to C^+$ factors through the inclusion $\mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+) \hookrightarrow C^+$ as functor $C \to \mathbf{K}^{\mathbf{U}^+}_{\mu}(C^+)$ that is (fully faithful and) essentially surjective on objects.
- 3. The (μ, \mathbf{U}^+) -accessible functor $\mathbf{Ind}_{\mathbf{U}^+}^{\mu}(\mathcal{C}) \to \mathcal{C}^+$ induced by $i: \mathcal{C} \to \mathcal{C}^+$ is fully faithful and essentially surjective on objects.

Corollary. If \mathbb{B} is a κ -cocomplete U-small category and μ is the cardinality of U, then the canonical (μ, U^+) -accessible functor $\operatorname{Ind}_{U^+}^{\mu}(\operatorname{Ind}_{U}^{\kappa}(\mathbb{B})) \to \operatorname{Ind}_{U^+}^{\kappa}(\mathbb{B})$ is fully faithful and essentially surjective on objects.

Accessibility and ind-completions	Change of universe	Future work	References
		0	

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets.

Accessibility and ind-completions	Change of universe	Future work	References
		● 0	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} .

Accessibility and ind-completions	Change of universe	Future work	References
		•o	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} . Do \mathcal{I} and \mathcal{J} also cofibrantly generate a Quillen model structure on $\mathcal{M}^+ = Ind_{U^+}^{\kappa}(\mathbb{B})$?

Accessibility and ind-completions	Change of universe	Future work	References
		0	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} . Do \mathcal{I} and \mathcal{J} also cofibrantly generate a Quillen model structure on $\mathcal{M}^{+} = Ind_{U^{+}}^{\kappa}(\mathbb{B})$?

The inclusion M → M⁺ preserves the functorial factorisations constructed by the small object arguments of Quillen [1967] and of Garner [2009].

Accessibility and ind-completions	Change of universe	Future work	References
		0	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} . Do \mathcal{I} and \mathcal{J} also cofibrantly generate a Quillen model structure on $\mathcal{M}^{+} = Ind_{U^{+}}^{\kappa}(\mathbb{B})$?

- The inclusion M → M⁺ preserves the functorial factorisations constructed by the small object arguments of Quillen [1967] and of Garner [2009].
- Now define W⁺ to be the collection of all morphisms in M⁺ of the form q ∘ j where j is a J-cofibration and q is an I-injective morphism.

Accessibility and ind-completions	Change of universe	Future work	References
		0	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} . Do \mathcal{I} and \mathcal{J} also cofibrantly generate a Quillen model structure on $\mathcal{M}^{+} = Ind_{U^{+}}^{\kappa}(\mathbb{B})$?

- The inclusion M → M⁺ preserves the functorial factorisations constructed by the small object arguments of Quillen [1967] and of Garner [2009].
- Now define W⁺ to be the collection of all morphisms in M⁺ of the form q ∘ j where j is a J-cofibration and q is an I-injective morphism.
- ► As soon as we know that W⁺ has the 2-out-of-3 property in M⁺, we would have a cofibrantly generated model structure on M⁺ extending the model structure on M.

Accessibility and ind-completions	Change of universe	Future work	References
		0	

Let \mathbb{B} be a κ -cocomplete U-small category, let $\mathcal{M} = Ind_{U}^{\kappa}(\mathbb{B})$, and let \mathcal{I} and \mathcal{J} be U-sets. Suppose \mathcal{I} and \mathcal{J} cofibrantly generate a Quillen model structure on \mathcal{M} . Do \mathcal{I} and \mathcal{J} also cofibrantly generate a Quillen model structure on $\mathcal{M}^{+} = Ind_{U^{+}}^{\kappa}(\mathbb{B})$?

- The inclusion M → M⁺ preserves the functorial factorisations constructed by the small object arguments of Quillen [1967] and of Garner [2009].
- Now define W⁺ to be the collection of all morphisms in M⁺ of the form q ∘ j where j is a J-cofibration and q is an I-injective morphism.
- As soon as we know that W⁺ has the 2-out-of-3 property in M⁺, we would have a cofibrantly generated model structure on M⁺ extending the model structure on M. But why should W⁺ have the 2-out-of-3 property?

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Accessible functors and inaccessible cardinals

-

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that U is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that U is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

Does the theory of accessible extensions still work if we replace 'universe' with 'weak universe' everywhere?

In Mac Lane set theory, if U is a weak universe,

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

Does the theory of accessible extensions still work if we replace 'universe' with 'weak universe' everywhere?

In Mac Lane set theory, if U is a weak universe, then U is a model of Zermelo set theory with (global) choice,

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

Does the theory of accessible extensions still work if we replace 'universe' with 'weak universe' everywhere?

In Mac Lane set theory, if U is a weak universe, then U is a model of Zermelo set theory with (global) choice, so the category of U-sets is a model of ETCS.

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

- In Mac Lane set theory, if U is a weak universe, then U is a model of Zermelo set theory with (global) choice, so the category of U-sets is a model of ETCS.
- Moreover, in ordinary ZFC, every set is a member of some weak universe:

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

- In Mac Lane set theory, if U is a weak universe, then U is a model of Zermelo set theory with (global) choice, so the category of U-sets is a model of ETCS.
- Moreover, in ordinary ZFC, every set is a member of some weak universe: indeed, for every limit ordinal α > ω, the set V_α is a weak universe.

Accessibility and ind-completions	Change of universe	Future work	References
		00	

Let us say that **U** is a **weak universe** if it satisfies axioms 1–3 and 5 in the definition of 'universe' *plus* the following axiom:

4⁻. If
$$x \in \mathbf{U}$$
, then $\bigcup_{y \in x} y \in \mathbf{U}$.

- In Mac Lane set theory, if U is a weak universe, then U is a model of Zermelo set theory with (global) choice, so the category of U-sets is a model of ETCS.
- Moreover, in ordinary ZFC, every set is a member of some weak universe: indeed, for every limit ordinal *α* > *ω*, the set V_α is a weak universe.
- If things still work in this context, it would afford an adequate framework for applying category-theoretic methods to study category theory, *without* needing any large cardinals.

Accessibility and ind-completions	Change of universe	References

References

Adámek, Jiří and Jiří Rosický

[LPAC] Locally presentable and accessible categories. London Mathematical Society Lecture Note Series 189. Cambridge: Cambridge University Press, 1994. xiv+316. ISBN: 0-521-42261-2. DOI: 10.1017/CB09780511600579.

Artin, Michael, Alexander Grothendieck and Jean-Louis Verdier [SGA 4a] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics 269. Berlin: Springer-Verlag, 1972. xix+525. ISBN: 3-540-05896-6.

Bowler, Nathan J.

[2012] 'Barren structures and badly behaved monads on the category of sets'. Talk at the Category Theory seminar in the University of Cambridge. 11th Mar. 2012.

References (cont.)

Garner, Richard

[2009] 'Understanding the small object argument'. In: *Appl. Categ. Structures* 17.3 (2009), pp. 247–285. ISSN: 0927-2852. DOI: 10.1007/s10485-008-9137-4.

 Mac Lane, Saunders
[CWM] Categories for the working mathematician. Second. Graduate Texts in Mathematics 5. New York: Springer-Verlag, 1998. xii+314. ISBN: 0-387-98403-8.

Mitchell, William

[1972] 'Boolean topoi and the theory of sets'. In: J. Pure Appl. Algebra 2 (1972), pp. 261–274. ISSN: 0022-4049. DOI: 10.1016/0022-4049(72)90006-0.

	Accessibility and ind-completions	Change of universe		References
00000	0000	0000000	00	

References (cont.)

Quillen, Daniel G.

[1967] Homotopical algebra. Lecture Notes in Mathematics 43. Berlin: Springer-Verlag, 1967. iv+156.