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Abstract

It is often said that a Grothendieck topos is like (the category of sheaves on) a
generalised space where points can have non-trivial automorphisms – so
something like an orbifold. This turned out to be true in a very precise sense, as
explained in the [1984] monograph of Joyal and Tierney: every bounded topos
is indeed the category of equivariant sheaves on a localic groupoid. A later
result of Butz and Moerdijk [1997, 1998] showed that certain Grothendieck
toposes even admit representations as topological groupoids.
The purpose of this talk is expository: I will try explain the construction of these
groupoids and some of the ingredients that go into the proof.

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 2 / 27



Abstract

It is often said that a Grothendieck topos is like (the category of sheaves on) a
generalised space where points can have non-trivial automorphisms – so
something like an orbifold.

This turned out to be true in a very precise sense, as
explained in the [1984] monograph of Joyal and Tierney: every bounded topos
is indeed the category of equivariant sheaves on a localic groupoid. A later
result of Butz and Moerdijk [1997, 1998] showed that certain Grothendieck
toposes even admit representations as topological groupoids.
The purpose of this talk is expository: I will try explain the construction of these
groupoids and some of the ingredients that go into the proof.

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 2 / 27



Abstract

It is often said that a Grothendieck topos is like (the category of sheaves on) a
generalised space where points can have non-trivial automorphisms – so
something like an orbifold. This turned out to be true in a very precise sense, as
explained in the [1984] monograph of Joyal and Tierney: every bounded topos
is indeed the category of equivariant sheaves on a localic groupoid.

A later
result of Butz and Moerdijk [1997, 1998] showed that certain Grothendieck
toposes even admit representations as topological groupoids.
The purpose of this talk is expository: I will try explain the construction of these
groupoids and some of the ingredients that go into the proof.

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 2 / 27



Abstract

It is often said that a Grothendieck topos is like (the category of sheaves on) a
generalised space where points can have non-trivial automorphisms – so
something like an orbifold. This turned out to be true in a very precise sense, as
explained in the [1984] monograph of Joyal and Tierney: every bounded topos
is indeed the category of equivariant sheaves on a localic groupoid. A later
result of Butz and Moerdijk [1997, 1998] showed that certain Grothendieck
toposes even admit representations as topological groupoids.

The purpose of this talk is expository: I will try explain the construction of these
groupoids and some of the ingredients that go into the proof.

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 2 / 27



Abstract

It is often said that a Grothendieck topos is like (the category of sheaves on) a
generalised space where points can have non-trivial automorphisms – so
something like an orbifold. This turned out to be true in a very precise sense, as
explained in the [1984] monograph of Joyal and Tierney: every bounded topos
is indeed the category of equivariant sheaves on a localic groupoid. A later
result of Butz and Moerdijk [1997, 1998] showed that certain Grothendieck
toposes even admit representations as topological groupoids.
The purpose of this talk is expository: I will try explain the construction of these
groupoids and some of the ingredients that go into the proof.

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 2 / 27



Introduction
Definitions
Fundamental results

Localic groupoids
Definitions
Descent theorems
Groupoid representations

Spatial groupoids
Definitions
Constructing the groupoid
Generalised Galois theory

References

Zhen Lin Low (Cambridge) Toposes as groupoids YRM 2013 3 / 27



Introduction Definitions

Definitions

Definition (Giraud). A Grothendieck topos is a locally small category ℰ
satisfying these axioms:

1. ℰ has finite limits.

2. ℰ has coproducts for small families of objects, and these are moreover
disjoint and preserved by pullbacks.

3. Every equivalence relation in ℰ is the kernel pair of a regular epimorphism,
and regular epimorphisms are preserved by pullbacks.

4. ℰ admits a small separating family, i.e. there exists a small full subcategory
u� such that the induced presheaf representation ℰ → [u� op, 𝐒𝐞𝐭] is
faithful.

Example. For any small category u� , the category [u� op, 𝐒𝐞𝐭] is a Grothendieck
topos; in particular, 𝐒𝐞𝐭 is a Grothendieck topos.
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Introduction Definitions

Definitions

Giraud’s definition is somewhat unmotivated, but has the advantage of being
manifestly invariant under equivalence and suggesting the right notion of
morphism between (Grothendieck) toposes:

Definition. Let ℰ and ℱ be (elementary) toposes. A geometric morphism
𝑓 : ℰ → ℱ is a functor 𝑓 ∗ : ℱ → ℰ that has a right adjoint and preserves finite
limits. The functor 𝑓 ∗ is called the inverse image functor, and its right adjoint 𝑓∗
is called the direct image functor.

Example. Let 𝑓 : u� → u� be a functor between two small categories. This
induces (by composition) a functor 𝑓 ∗ : [u�op, 𝐒𝐞𝐭] → [u� op, 𝐒𝐞𝐭], and 𝑓 ∗ has
both a left adjoint 𝑓! and a right adjoint 𝑓∗. Thus, 𝑓 ∗ is the inverse image functor
of a geometric morphism [u� op, 𝐒𝐞𝐭] → [u�op, 𝐒𝐞𝐭].
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Introduction Definitions

Definitions

Definition. A bound for a geometric morphism 𝑝 : ℰ → u� is an object 𝐵 in ℰ
such that, for every object 𝐸 in ℰ, there exist an object 𝐼 in u� and a zigzag of the
form below in ℰ:

(𝑝∗𝐼) × 𝐵 • 𝐸

Definition. A bounded geometric morphism is a geometric morphism that
admits a bound.

Definition. A localic geometric morphism is a geometric morphism for which 1
is a bound.

Definition. Given a topos u� , an u�-topos is a geometric morphism 𝑝 : ℰ → u� .
We say that ℰ is an u�-topos with property 𝜑 if the geometric morphism 𝑝 has
property 𝜑.
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Introduction Fundamental results

Fundamental results

Theorem (Giraud). Any Grothendieck topos in the sense of Giraud is equivalent to
the category of sheaves on a small site.

Proof. See [ML–M, Appendix]. □

Theorem (Sheaf toposes as elementary toposes).
1. The category of sheaves on a small site is an elementary topos.

2. For any elementary topos ℰ, there is at most one geometric morphism
ℰ → 𝐒𝐞𝐭 (up to unique isomorphism).

3. An elementary topos is a Grothendieck topos if and only if it is a bounded as a
𝐒𝐞𝐭-topos.

Proof. See Lemma A2.1.10, Example A4.1.9, and Lemma B3.1.6 in [Johnstone,
2002a]. □

Henceforth we shall use the word ‘topos’ for the elementary notion.
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Introduction Fundamental results

Fundamental results

Theorem (Base change for toposes). Let𝔗𝔬𝔭 be the 2-category of toposes and
geometric morphisms, and let 𝑓 : u� ′ → u� and 𝑝 : ℰ → u� be geometric morphisms.
If 𝑝 is bounded (resp. localic), then the bicategorical pullback of 𝑝 along 𝑓 exists in
𝔗𝔬𝔭 and is a bounded (resp. localic) geometric morphism.

Proof. See Proposition 3.3.6 in [Johnstone, 2002a, Part B]. □

Theorem (Object classifiers). Letu� be a topos with an NNO and let𝔅𝔗𝔬𝔭u� be the
2-category of boundedu�-toposes. Then, the forgetful functor𝔅𝔗𝔬𝔭u�

op → ℭ𝔞𝔱 is
bicategorically represented by a boundedu�-toposu�[𝕆]; in particular, it must send
bicategorical colimits in𝔅𝔗𝔬𝔭u� to bicategorical limits inℭ𝔞𝔱.

Proof. See Example 3.2.9 in [Johnstone, 2002a, Part B]. □
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Localic groupoids Definitions

Frames and locales

Definition. A frame is a partially ordered set 𝐴 that has arbitrary joins and finite
meets, such that binary meets in 𝐴 distribute over arbitrary joins. A frame
homomorphism is a map between frames that preserves arbitary joins and
finite meets.

We write 𝐅𝐫𝐦 for the category of frames; note that it is enriched over 𝐏𝐨𝐬𝐞𝐭 and
hence is a 2-category.

Definition. A locale is an object in the category 𝐋𝐨𝐜 = 𝐅𝐫𝐦op.

Example. For any topological space 𝑋, the set Ouv(𝑋) of open subsets of 𝑋
(partially ordered by inclusion) is a frame, and for any continuous 𝑓 : 𝑋 → 𝑌, the
pullback map 𝑓 −1 : Ouv(𝑌) → Ouv(𝑋) is a frame homomorphism. Note that
the functor Ouv : 𝐓𝐨𝐩 → 𝐅𝐫𝐦op is neither full nor faithful, and although it
preserves all colimits, it does not preserve all finite limits.
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Localic groupoids Definitions

Locales and toposes

Proposition. Let𝔏𝔬𝔠 be the 2-category of locales and let𝔅𝔗𝔬𝔭𝐒𝐞𝐭 be the
2-category of Grothendieck toposes. There is a pseudofunctor
𝐒𝐡(−) : 𝔏𝔬𝔠 → 𝔅𝔗𝔬𝔭𝐒𝐞𝐭 with the following properties:

▶ The functors𝔏𝔬𝔠(𝑋, 𝑌) → 𝐆𝐞𝐨𝐦𝐒𝐞𝐭(𝐒𝐡(𝑋), 𝐒𝐡(𝑌)) are fully faithful and
essentially surjective on objects.

▶ 𝐒𝐡(−) itself is essentially surjective onto to the full 2-subcategory of localic
toposes.

▶ 𝐒𝐡(−) has a bicategorical left adjoint and both preserves and reflects
bicategorical limits.

Proof. See Theorem 1.4.7 and Remark 1.4.8 in [Johnstone, 2002b, Part C]. □
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Localic groupoids Definitions

Localic groupoids

Since 𝐅𝐫𝐦 is the category of models for an (infinitary) algebraic theory in 𝐒𝐞𝐭, it
is both complete and cocomplete. Hence, 𝐋𝐨𝐜 has finite limits, and the
following definition is legitimate:

Definition. A localic groupoid is an internal groupoid in 𝐋𝐨𝐜.

More explicitly, a localic groupoid 𝔾 consists of three locales, 𝐺0, 𝐺1, and 𝐺2,
together with morphisms as in the diagram below,

𝐺2 𝐺1 𝐺0

u�0

u�1
u�2

u�0

u�1

u�0

and an involution 𝑖 : 𝐺1 → 𝐺1, such that various conditions are satisfied.
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Localic groupoids Definitions

Equivariant sheaves

Definition. An equivariant sheaf on a localic groupoid 𝔾 is an object 𝐴 in
𝐒𝐡(𝐺0) equipped with a morphism 𝜃 : 𝑑∗

1𝐴 → 𝑑∗
0𝐴 in 𝐒𝐡(𝐺1) such that the

following diagrams commute:

𝑠∗
0𝑑∗

1𝐴 𝑠∗
0𝑑∗

0𝐴

𝐴 𝐴

≅

u�∗
0u�

≅

𝑑∗
2𝑑∗

1𝐴

𝑑∗
1𝑑∗

1𝐴 𝑑∗
2𝑑∗

0𝐴

𝑑∗
1𝑑∗

0𝐴 𝑑∗
0𝑑∗

1𝐴

𝑑∗
0𝑑∗

0𝐴

≅ u�∗
2u�

u�∗
1u� ≅

≅ u�∗
0u�
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Localic groupoids Descent theorems

Equivariant sheaves as descent data

Proposition. Let𝔾 be a localic groupoid and let𝐒𝐡(𝔾) be the category of
equivariant sheaves on𝔾.

1. 𝐒𝐡(𝔾) is a bicategorical limit for the (pseudocommutative) diagram inℭ𝔞𝔱
shown below:

𝐒𝐡(𝐺0) 𝐒𝐡(𝐺1) 𝐒𝐡(𝐺2)

u�∗
0

u�∗
1

u�∗
0

u�∗
0

u�∗
1

u�∗
2

2. 𝐒𝐡(𝔾) is a Grothendieck topos.
3. 𝐒𝐡(𝔾) is a bicategorical colimit for the corresponding (pseudocommutative)

diagram in𝔅𝔗𝔬𝔭𝐒𝐞𝐭.

Proof. See Corollary 3.4.12 in [Johnstone, 2002a, Part B], or Proposition 3.4 in
[Moerdijk, 1988]. □
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Localic groupoids Descent theorems

Connected and locally connected toposes

Definition. A connected geometric morphism is a geometric morphism whose
inverse image functor is fully faithful.

Definition. A locally connected geometric morphism is a geometric morphism
𝑝 : ℰ → u� such that the inverse image functor 𝑝∗ has a left adjoint, and for each
morphism 𝑓 : 𝑋 → 𝑌 in u� , the following diagram of categories and functors
satisfies the right Beck–Chevalley condition:

u�∕u� ℰ∕u�∗u�

u�∕u� ℰ∕u�∗u�

u� ∗

u�∗
∕u�

(u�∗u� )∗

u�∗
∕u�

Example. If 𝑋 is a topological space, then 𝐒𝐡(𝑋) is a connected (resp. locally
connected) topos if and only if 𝑋 is a connected (resp. locally connected)
topological space.
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Localic groupoids Descent theorems

Descent theorems

Theorem. Let 𝑝 : ℰ → u� be a bounded geometric morphism, and consider the
following diagram in𝔅𝔗𝔬𝔭,

ℰ ×u� ℰ ×u� ℰ ℰ ×u� ℰ ℰ

where themorphisms are induced by the various pullbacks and satisfy the evident
fragment of the simplicial identities. If 𝑝 is connected and locally connected, thenu�
is a bicategorical colimit for this diagram.

Proof. See [Moerdijk, 1985, § 3], or Theorem 5.1.1 in [Johnstone, 2002b, Part
C]. □

Theorem. The same conclusion holds if 𝑝 : ℰ → u� is an open geometric surjection.

Proof. See Theorem 1 in [Joyal and Tierney, 1984, Ch. VIII, § 2], or Theorem 5.1.6
in [Johnstone, 2002b, Part C]. □
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Localic groupoids Groupoid representations

Partial enumerations

Let 𝐾 be an infinite set.

Definition. A partial equivalence relation on 𝐾 is a symmetric transitive
relation on 𝐾, or equivalently, an equivalence relation on some subset of 𝐾.

▶ Let ℙu� be the set of finite partial equivalence relations on 𝐾, partially
ordered by inclusion.

▶ Clearly, ℙu� is a join semilattice, and one may verify that an ideal of ℙu� is
the same thing as a partial equivalence relation on 𝐾.

▶ Thus, (by Diaconescu’s theorem) we may think of [ℙu�, 𝐒𝐞𝐭] as the
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Localic groupoids Groupoid representations

A localic cover

Theorem. Ifu� is a Grothendieck topos, then there exist a localic topos ℰ and a
localic, connected, and locally connected geometric morphism 𝑝 : ℰ → u� .

Proof. Let 𝐵 be a bound for u� . This is classified by a geometric morphism
𝑏 : u� → 𝐒𝐞𝐭[𝕆], and it is easy to see that 𝑏 is localic. Let ℙ = ℙℕ, 𝑄 = 𝑄ℕ,
and let 𝑞 : [ℙ, 𝐒𝐞𝐭] → 𝐒𝐞𝐭[𝕆] be the geometric morphism that classifies 𝑄. It
can be shown that 𝑞 is a connected and locally connected geometric morphism:
see Example 3.3.9 in [Johnstone, 2002b, Part C].
Now consider the following bicategorical pullback square in 𝔗𝔬𝔭:

ℰ [ℙ, 𝐒𝐞𝐭]

u� 𝐒𝐞𝐭[𝕆]

u�

u�

u�

u�
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A localic cover

Proof (cont.). Now consider the following bicategorical pullback square in 𝔗𝔬𝔭:

ℰ [ℙ, 𝐒𝐞𝐭]

u� 𝐒𝐞𝐭[𝕆]

u�

u�

u�

u�

Since 𝑏 : u� → 𝐒𝐞𝐭[𝕆] is localic, so is 𝑐 : ℰ → [ℙ, 𝐒𝐞𝐭]; and [ℙ, 𝐒𝐞𝐭] is a localic
topos, therefore ℰ and 𝑝 : ℰ → u� are also localic. On the other hand, the
pullback of a connected and locally connected geometric morphism along a
bounded geometric morphism is again connected and locally connected (see
Theorem 3.3.15 in [Johnstone, 2002b, Part C]), so 𝑝 : ℰ → u� is a connected and
locally connected geometric morphism, as required. ■
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Headline result

Corollary. Ifu� is a Grothendieck topos, thenu� is equivalent to the category of
equivariant sheaves on a localic groupoid.

Proof. Let 𝑝 : ℰ → u� be a localic, connected, and locally connected geometric
morphism, with ℰ a localic topos. Now take iterated pullbacks in 𝔅𝔗𝔬𝔭𝐒𝐞𝐭:

ℰ ×u� ℰ ×u� ℰ ℰ ×u� ℰ ℰ

Since pullbacks of localic geometric morphisms are again localic, both ℰ ×u� ℰ
and ℰ ×u� ℰ ×u� ℰ are localic toposes. Let us say that ℰ ≃ 𝐒𝐡(𝐺0),
ℰ ×u� ℰ ≃ 𝐒𝐡(𝐺1), and ℰ ×u� ℰ ×u� ℰ ≃ 𝐒𝐡(𝐺2). Because 𝔏𝔬𝔠 embeds as a
reflective 2-subcategory of 𝔅𝔗𝔬𝔭𝐒𝐞𝐭, we find that 𝐺2 ≅ 𝐺1 ×u�0

𝐺1 in 𝐋𝐨𝐜.
Moreover, the data in the above diagram corresponds to an internal groupoid 𝔾
in 𝐋𝐨𝐜. It thus follows from the descent theorem for connected and locally
connected geometric morphisms that u� is equivalent to the category of
equivariant sheaves on 𝔾. ■
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𝐺1 in 𝐋𝐨𝐜.
Moreover, the data in the above diagram corresponds to an internal groupoid 𝔾
in 𝐋𝐨𝐜. It thus follows from the descent theorem for connected and locally
connected geometric morphisms that u� is equivalent to the category of
equivariant sheaves on 𝔾. ■
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Spatial groupoids Definitions

Definitions

Let 𝐓𝐨𝐩 be the category of topological spaces.

Definition. A spatial groupoid (or topological groupoid) is an internal
groupoid in 𝐓𝐨𝐩.

Defining equivariant sheaves on a spatial groupoid is a little subtle, since (as
previously mentioned) Ouv : 𝐓𝐨𝐩 → 𝐅𝐫𝐦op does not preserve finite limits.
Nonetheless, the definition given earlier for localic groupoids works verbatim for
spatial groupoids as well, and the category of equivariant sheaves is still a
Grothendieck topos.
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Spatial groupoids Definitions

Definitions

Definition. A point of a 𝐒𝐞𝐭-topos u� is a geometric morphism 𝐒𝐞𝐭 → u� .

Example. When u� = 𝐒𝐡(𝑋) for a topological space 𝑋, every point of 𝑋 gives
rise to a point of u� in the above sense, though distinct points of 𝑋 may become
isomorphic as points of u� .

Definition. A family {𝑓u� : ℰu� → u� ∣ 𝑖 ∈ 𝐼} of geometric morphisms is jointly
surjective if the family {𝑓 ∗

u� : u� → ℰu� ∣ 𝑖 ∈ 𝐼} is jointly (faithful and) conservative.

Definition. A 𝐒𝐞𝐭-topos u� has enough points if there exists a jointly surjective
family of points of u� .

Proposition. A Grothendieck toposu� has enough points if and only if there exists a
small jointly surjective family of points ofu� .

Proof. See Lemma 2.2.11 in [Johnstone, 2002b, Part C]. □
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Spatial groupoids Constructing the groupoid

Constructing the groupoid

Let u� be a Grothendieck topos with enough points, and let 𝑇 be a pre-bound for
u� , i.e. an object such that 1 ⨿ 𝑇 ⨿ 𝑇2 ⨿ ⋯ is a bound for u� . Choose a small
family 𝑋 of points of u� such that 𝑋 is jointly surjective, and let 𝜅 be an infinite
cardinal such that, for each 𝑝 in 𝑋, the set 𝑝∗𝑇 has cardinality ≤ 𝜅.

Definition. An enumerated model is a pair (𝑝, 𝛼), where 𝑝 is in 𝑋 and
𝛼 : 𝜅 ⇀ 𝑝∗𝑇 is a partial surjection whose fibres are infinite. An isomorphism of
enumerated models 𝜑 : (𝑝, 𝛼) → (𝑞, 𝛽) is a natural isomorphism 𝜑 : 𝑝∗ ⇒ 𝑞∗

such that 𝜑u� ∘ 𝛼 = 𝛽.
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Constructing the groupoid

Next, define the following topological space 𝐺1:
▶ The points are quintuples (𝜑, 𝑝, 𝛼, 𝑞, 𝛽), where (𝑝, 𝛼) and (𝑞, 𝛽) are

enumerated models and 𝜑 : 𝑝∗ ⇒ 𝑞∗ is any natural isomorphism, modulo
the equivalence relation that identifies isomorphic enumerated models.

▶ The basic open subsets are the subsets

𝑊 ⃗𝚤,u�, ⃗𝚥,u� = {(𝜑, 𝑝, 𝛼, 𝑞, 𝛽) ∈ 𝐺1 ∣ 𝛼( ⃗𝚤) ∈ 𝑝∗𝐶, 𝛽( ⃗𝚥) ∈ 𝑞∗𝐷,
𝜑u�u�(𝛼( ⃗𝚤)) = 𝛽( ⃗𝚥) }

where ⃗𝚤 and ⃗𝚥 are 𝑛-tuples of elements of 𝜅, and 𝐶 and 𝐷 are subobjects of
𝑇u� in u� .

▶ We define projections 𝑑0, 𝑑1 : 𝐺1 → 𝐺0 by the following formulae:

𝑑0(𝜑, 𝑝, 𝛼, 𝑞, 𝛽) = (𝑞, 𝛽) 𝑑1(𝜑, 𝑝, 𝛼, 𝑞, 𝛽) = (𝑝, 𝛼)

Note that they are well-defined and continuous.
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Constructing the groupoid

Now define 𝐺2 by the pullback diagram in 𝐓𝐨𝐩 shown below:

𝐺2 𝐺1

𝐺1 𝐺0

u�2

u�0

u�1

u�0

We define 𝑑1 : 𝐺2 → 𝐺1 by the following formula:

((𝜑, 𝑝, 𝛼, 𝑞, 𝛽), (𝜓, 𝑞, 𝛽, 𝑟, 𝛾)) ↦ (𝜓 ∙ 𝜑, 𝑝, 𝛼, 𝑟, 𝛾)

We also define 𝑠0 : 𝐺0 → 𝐺1 in the obvious way:

(𝑝, 𝛼) ↦ (idu�, 𝑝, 𝛼, 𝑝, 𝛼)

Similarly, the involution 𝑖 : 𝐺1 → 𝐺1 is given by the formula below:

(𝜑, 𝑝, 𝛼, 𝑞, 𝛽) ↦ (𝜑−1, 𝑞, 𝛽, 𝑝, 𝛼)
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Spatial groupoids Generalised Galois theory

Generalised Galois theory

It is not hard to check that the formulae just given do indeed define continuous
maps, and it is clear that these data constitute a spatial groupoid 𝔾.

Theorem. With notation as before,u� is equivalent to𝐒𝐡(𝔾).

Proof. See [Butz and Moerdijk, 1998]. □

Thus, taking u� to be the classifying topos of a one-sorted coherent theory 𝕋
with generic model 𝑇, the Butz–Moerdijk theorem essentially says that the
automorphisms of models of 𝕋, plus some topological data, suffice to
determine the theory 𝕋, at least up to Morita equivalence. This may be
regarded as a generalised Galois theory.
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