
Computabilityeory

Z.L. Low

rd September 

P

ese notes were originally written as revision notes for a course given at the
University of Cambridge by omas Forster in Lent . ey differ from the
official lecture notes in several aspects. For example:

• e official deĕnition of μ-recursive function appearing in these notes al-
lows the application of µ[−] to a μ-recursive total function. Of course, this
is equivalent to the deĕnition where µ[−] can only be applied to primitive
recursive functions.

• e λ-calculus is treated in more detail and is used in an essential way in
some proofs in the chapter on machines.

• Register machines are not treated (in the current version).

Acknowledgements
e statements and proofs of some of the results appearing in these notes are
taken from omas Forster’s official lecture notes.

e section on λ-calculus is partly based on Larry Paulson’s Foundations of
functional programming lecture notes.

i

C

I. Recursion theory 
. Primitive recursive functions . 
. Primitive recursive predicates . 
. Pairs and lists . 
. e Ackermann function and μ-recursive functions 

II. Lambda calculus 
. λ-terms . 
. Conversions, reductions, and equality 
. Arithmetic and recursion . 
. Miscellaneous topics . 

III. Machines 
. Turing machines . 
. Decidable and semidecidable sets 
. Undecidability . 
. Applications to logic . 
. Oracles . 

Bibliography 

iii

I

R 

Before we can begin in earnest, we must ĕrst discuss the difference between
functions-in-intension and functions-in-extension.

A function-in-extension is a (partial) function in the familiar sense: a set Γ of
ordered pairs (x, y) such that (x, y) and (x, y ′) are both in Γ if and only if y = y ′.
e set Γ is also called the graph of a function.

For our purposes, a function-in-intension is a ĕnite description of a (partial)
function; for example, it could be a formula like

x 7→ x2

or it could be deĕned by a logical predicate like

n ∈ N and f(0) = 0 and f(1) = 1 and f(n+ 2) = f(n) + f(n+ 1)

Every function-in-intension deĕnes a function-in-extension, but we do not say
that two functions-in-intension are equal even if their graphs are equal. In fact,
when two partial functions are said to be equal, what is meant is that their graphs
are equal. e deĕnition of function-in-intension is deliberately le vague, as we
will be studying several formalisations of this notion which are a priori different.

LetN be the set of natural numbers; we shall always have 0 ∈ N. In this course
we study partial functions Nk ⇁ N and subsets of N. An elementary counting
argument shows that the set of all partial functionsNk ⇁ N is uncountable, so we
immediately conclude that there are more such functions than we can describe
by any ĕnite means. Clearly, this means there are functions we cannot effectively
compute, but to prove this we must formalise the theory of effective computab-
ility.



I. R 

 Primitive recursive functions
Deĕnition ... Let f : X ⇁ Y be a partial function. e domain of f is the
subset dom f of X such that

dom f = {x ∈ X | f(x) is deĕned}

and we write f(x)↓ if x ∈ dom f, and f(x)↑ if x /∈ dom f. A total function is a
partial function f : X⇁ Y such that dom f = X; we write f : X→ Y in this case.

Deĕnition ... Let g1, . . . , gℓ : Nk ⇁ N and h : Nℓ ⇁ N be functions. A
function f : Nk ⇁ N is the composite of h and g1, . . . , gℓ just when f satisĕes
the following condition: for all x1, . . . , xk, if each gi(x1, . . . , xk)↓, then

f(x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gℓ(x1, . . . , xk))

provided the RHS is deĕned; otherwise f(x1, . . . , xk)↑.
We write f = h ◦ (g1, . . . , gℓ) when f is the composite of h and g1, . . . , gℓ.

Lemma ... If g1, . . . , gℓ : Nk → N and h : Nℓ → N are total functions, then
their composite h ◦ (g1, . . . , gℓ) is also a total function. ■

Deĕnition ... Let g : Nk ⇁ N and h : Nk ⇁ N be partial functions. A
function f : Nk+1 ⇁ N is obtained by primitive recursion from h and g just
when f satisĕes the following conditions:

• For all x1, . . . , xk, if g(x1, . . . , xk)↓, then

f(x1, . . . , xk, 0) = g(x1, . . . , xk)

and otherwise f(x1, . . . , xk, 0)↑.

• For all x1, . . . , xk, y, if f(x1, . . . , xk, y)↓, then

f(x1, . . . , xk, y+ 1) = h(x1, . . . , xk, y, f(x1, . . . , xk, y))

provided the RHS is deĕned; otherwise f(x1, . . . , xk, y+ 1)↑.

We write f = ρ[h;g] when this holds.

We will oen abuse notation and write f(⃗x, . . .) instead of f(x1, . . . , xk, . . .)
when x⃗ = (x1, . . . , xk). Note that k = 0 is allowed in the above deĕnition.



. Primitive recursive functions

Lemma ... If g : Nk → N and h : Nk+2 → N are both total functions, then
ρ[h;g] is a total function Nk+1 → N.

Proof. Use induction on y in the deĕnition above. ■

Deĕnition ... A constant function is a total function f : Nk → N with the
following property: there is a natural number n such that f(x1, . . . , xk) = n for
all x1, . . . , xk.

Remark ... Note that every total function N0 → N is vacuously a constant
function, but a partial function f : N0 ⇁ N may have dom f = ∅!

Deĕnition ... Let k > 0, and let i ∈ {1, . . . , k}. e i-th projection function is
the total function prki : Nk → N such that prki (x1, . . . , xk) = xi for all x1, . . . , xk.

Deĕnition ... e successor function is the total function suc : N → N such
that suc(x) = x+ 1 for all x.

Deĕnition ... A primitive recursive function is any one of the following:

• A constant function Nk → N.

• A projection function prki : Nk → N.

• e successor function suc : N → N.

• A composite h ◦ (g1, . . . , gℓ) : Nk → N of some primitive recursive func-
tions g1, . . . , gℓ : Nk → N and h : Nℓ → N.

• A function ρ[h;g] : Nk+1 → N obtained by primitive recursion on prim-
itive recursive functions h : Nk+2 → N and g : Nk → N.

Formally speaking, we are deĕning a subset of the set
{
f : Nk ⇁ N

∣∣ k ∈ N
}
:

it is the smallest subset closed under composition and primitive recursion which
also contains all constant functions, all projection functions, and the successor
function. Lemmas .. and .. imply that every primitive recursive function is
indeed a total function, so there is no abuse of notation in the above deĕnition.

Example ... e predecessor function is the function pre : N → N such that

pre(0) = 0

pre(x+ 1) = x

is is clearly primitive recursive by declaration, i.e. by the form of its deĕnition.



I. R 

Example ... Bounded subtraction is the binary operation −̇ on N such that

x −̇ 0 = x

x −̇ (y+ 1) = pre(x −̇ y)

is is also primitive recursive by declaration, since pre is primitive recursive.

We could also have deĕned primitive recursive functions as functions-in-
intension constructed by the above rules, but formalising this would take us too
far aĕeld into pure syntax. Nonetheless, it is clear that a primitive recursive func-
tion f : Nk → N , given in the form of a tree of functions-in-intension combined
by composition and primitive recursion, is effectively computable in the sense
that one could ĕnd the value of f(x1, . . . , xk) by unwinding the deĕnitions.

Example ... e function-in-extension N2 → N deĕned by (x, y) 7→ x + y

is a primitive recursive function, even though the corresponding function-in-
intension is not. Indeed, let g : N → N be the identity function id : N → N
(i.e. the projection function pr11 : N → N) and let h : N3 → N be the composite
suc ◦ pr13; one may check that the function f = ρ[h;g] : N2 → N obtained by
primitive recursion satisĕes f(x, y) = x+ y.

Example ... Similarly, the function-in-extension deĕned by (x, y) 7→ x × y
is (equal to) the graph of a primitive recursive function.

Lemma ... If f : Nk+1 → N is a primitive recursive function, then the two
functions

(x1, . . . , xk, z) 7→
z−1∑
y=0

f(x1, . . . , xk, y)

(x1, . . . , xk, z) 7→
z−1∏
y=0

f(x1, . . . , xk, y)

are primitive recursive.

Proof. Write Σ for the ĕrst function and Π for the second. One may check that
the following are primitive recursive declarations of Σ and Π:

Σ(⃗x, 0) = 0

Σ(⃗x, z+ 1) = Σ(⃗x, z) + f(⃗x, z)

Π(⃗x, 0) = 1

Π(⃗x, z+ 1) = Π(⃗x, z)× f(⃗x, z) ■



. Primitive recursive predicates

 Primitive recursive predicates
In mathematics, one oen has to make deĕnitions by cases. Our deĕnition of
primitive recursive function does not permit declarations of the form

is-positive(x) =

0 if x = 0
1 if x ̸= 0

so it seems as if such functions are not primitive recursive. Fortunately, they are,
and the class of primitive recursive predicates has some good properties.

If φ(x1, . . . , xk) is a logical predicate with free variables x1, . . . , xk ranging
over N, let us write [φ] for the function Nk → N such that [φ](⃗x) = 0 if φ(⃗x) is
false and [φ](⃗x) = 1 if φ(⃗x) is true.

Deĕnition ... A primitive recursive predicate is a logical predicate φ such
that the function [φ] is (extensionally equal to) a primitive recursive function.

Lemma ... e function is-positive deĕned above is a primitive recursive func-
tion, and the predicate x ̸= 0 with one free variable x is a primitive recursive pre-
dicate.

Proof. Let g : N0 → N be the constant 0 function, and let h : N2 → N be the
constant 1 function. One may check that is-positive is extensionally equal to the
function ρ[h;g] : N → N. ■

Proposition ... epredicate x = ywith two free variables x andy is a primitive
recursive predicate.

Proof. Let is-zero(x) = [x = 0]; one may check that

is-zero(0) = 1

is-zero(x+ 1) = 0

is a primitive recursive declaration of is-zero. Clearly, x = y if and only if x−̇y = 0

and y −̇ x = 0, so the function is-equal : N2 → N given by

is-equal(x, y) = is-zero(x −̇ y)× is-zero(y −̇ x)

is a primitive recursive function implementing [x = y]. ■



I. R 

Proposition ... Letφ andψ be primitive recursive predicates with the same free
variables. e following are also primitive recursive predicates:

(i) e negation ¬φ.

(ii) e conjunction φ∧ψ.

(iii) e disjunction φ∨ψ.

(iv) e implication φ→ ψ.

Proof. (i). We use bounded subtraction: [¬φ] is extensionally equal to 1 −̇ [φ].
(ii). We use multiplication:

[φ∧ψ](⃗x) = [φ](⃗x)× [ψ](⃗x)

(iii). We use addition and is-positive:

[φ∨ψ](⃗x) = is-positive([φ](⃗x) + [ψ](⃗x))

(iv). Since φ → ψ is logically equivalent to (¬φ) ∨ ψ, this follows from (i)
and (iii). ■

Proposition ... Let φ be a logical predicate with free variables x1, . . . , xk, y. If
φ is a primitive recursive predicate, then the two predicates

∀y < z.φ ∃y < z.φ

with free variables x1, . . . , xk, z are also primitive recursive.

Proof. One readily checks that

[∀y < z.φ](⃗x, z) =
z−1∏
y=0

[φ](⃗x, y)

[∃y < z.φ](⃗x, z) = is-positive

(
z−1∑
y=0

[φ](⃗x, y)

)

and by lemma .., these are primitive recursive. ■



. Pairs and lists

Proposition ... e function if-then-else : N3 → N deĕned below is primitive
recursive:

if-then-else(x, y, z) =

y if x ̸= 0
z if x = 0

Proof. We may use addition and multiplication to implement if-then-else:

if-then-else(x, y, z) = is-positive(x)× y+ is-zero(x)× z

is is primitive recursive by declaration. ■

 Pairs and lists
Lemma ... e predicate x < y with two free variables x and y is a primitive
recursive predicate.

Proof. One may check that the primitive recursive declaration below works:

is-less-than(x, y) = is-positive(y −̇ x) ■

eorem ... Bounded minimisation is primitive recursive: if f : Nk+1 → N is
primitive recursive, then there is a primitive recursive function g : Nk+2 → N with
the property that g(x1, . . . , xk, z,w) is the smallest natural number y less than w
such that f(x1, . . . , xk, y) = z, and g(x1, . . . , xk, z,w) = w if there is no such y.

Proof. e function g can be deĕned as follows:

g(⃗x, z, 0) = 0

g(⃗x, z,w+ 1) =


g(⃗x, z,w) if g(⃗x, z,w) < w
w if g(⃗x, z,w) = w and f(⃗x,w) = z
w+ 1 otherwise

By the previous lemma and propositions .. and .., the above is a primitive
recursive declaration for g as required. ■

Example ... Integer division is primitive recursive: we deĕne quotient(x, y) to
be the least z less than x + 1 such that x < y × (z+ 1), so that quotient(x, y) is
the greatest z such that y× z ⩽ x and x− y× z < y.



I. R 

Proposition ... ere exist three primitive recursive functions, pair : N2 → N,
left : N → N, and right : N → N, such that

left(pair(x, y)) = x

right(pair(x, y)) = y

pair(left(z), right(z)) = z

Moreover, for any ĕxed x, pair(x,−) is strictly increasing, and for any ĕxed y,
pair(−, y) is also strictly increasing.

Proof. We deĕne pair by the arithmetical formula below:

pair(x, y) =
1

2
(x+ y) (x+ y+ 1) + x

One checks that this is a bijectionN2 → Nwith the required ordering properties,
and the functions left and right may be deĕned by bounded minimisation as in
the above theorem, aer permuting function arguments where necessary. ■

Example ... e function f : N → N such that

f(0) = 0

f(1) = 1

f(x+ 2) = f(x) + f(x+ 1)

is primitive recursive. Indeed, one checks that f(x) = left(g(x)), where the func-
tion g : N → N is given by the primitive recursive declaration below:

g(0) = pair(0, 1)

g(x+ 1) = pair(right(g(x)), left(g(x)) + right(g(x)))

A similar technique can be used to implement recursive functions of the form

f(⃗x, y+ n) = h(⃗x, y, f(⃗x, y), . . . , f(⃗x, y+ n− 1))

for any ĕxed positive integer n, but this is not good enough to implement recurs-
ive functions which depend on values computed arbitrarily far in the past. For
this, we need variable-length lists.

ere are several ways of implementing variable-length lists. For example,
one could use linked lists: the number 0 represents the empty list, and the number
r + 1 represents the list obtained by prepending the number left(r) to the list
represented by right(r). Or we could use Gödel’sβ function. e important thing
is that we have some primitive recursive functions to work with lists:



. Pairs and lists

eorem ... ere is an encoding of ĕnite lists of natural numbers with the
following properties:

• ere exists a primitive recursive function listn : Nn → N for each natural
number n, such that listn(a0, . . . , an−1) codes the list (a0, . . . , an−1).

• ere exist primitive recursive functions length : N → N, select : N2 → N,
insert : N2 → N, replace : N3 → N, and slice : N3 → N satisfying the
speciĕcation below.

Given numbers a0, a1, a2, . . .with ai = 0 for all i ⩾ n, if x = listn(a0, . . . , an−1),
then:

(i) e number length(x) is n.

(ii) If y < n then select(x, y) = ay, and otherwise select(x, y) = 0.

(iii) e number insert(x, y) codes the list (a0, . . . , an−1, y).

(iv) Given y = listm(b0, . . . , bm−1), the number replace(x, y, z) codes the list
(a0, . . . , az−1, b0, . . . , bm−1).

(v) If y < z, then slice(x, y, z) codes the list (ay, . . . , az−1), and otherwise
slice(x, y, z) = list0().

Proof. We will use linked lists as described above, so that we have the following
equations for listn : Nn → N:

list0() = 0

listn+1(a0, . . . , an) = pair(a0, listn(a1, . . . , an)) + 1

It is readily checked that each listn : Nn → N is primitive recursive.
Deĕne an auxiliary function tail : N2 → N as follows:

tail(x, 0) = x

tail(x, y+ 1) =

0 if tail(x, y) = 0
right((tail(x, y)) −̇ 1) otherwise

is is certainly primitive recursive. Since x is an upper bound on the length of
the list coded by x, we may use bounded minimisation to compute length(x): it



I. R 

is the smallest natural number y such that tail(x, y) = 0. We deĕne select(x, y)
as below:

select(x, y) =

0 if tail(x, y) = 0
left(tail(x, y) −̇ 1) otherwise

We deĕne another auxiliary function splice : N4 → N by primitive recursion:

splice(x, y,w, 0) = y

splice(x, y,w, z+ 1) = pair(select(x,w −̇ z −̇ 1), splice(x, y, z,w)) + 1

It is now easy to implement the remaining list operations:

replace(x, y, z) = splice(x, y, z, z)

insert(x, y) = replace(x, pair(y, 0) + 1, length(x))

slice(x, y, z) = tail(replace(x, 0, z), y) ■

We are now able to implement course-of-values recursion using primitive
recursive functions:

Lemma ... Let h : Nk+2 → N be a primitive recursive function. If the function
f : Nk+1 → N satisĕes

f(⃗x, 0) = h(⃗x, 0, list0())

f(⃗x, y+ 1) = h(⃗x, y+ 1, listy+1(f(⃗x, 0), . . . , f(⃗x, y)))

then f is a primitive recursive function.

Proof. We deĕne an auxiliary function F : Nk+1 → N by primitive recursion:

F(⃗x, 0) = list1(h(⃗x, 0, list0()))

F(⃗x, y+ 1) = insert(F(⃗x, y), h(⃗x, y+ 1, F(⃗x, y)))

e desired function can then be obtained by composition:

f(⃗x, y) = select(F(⃗x, y), y) ■

Example ... Using the sieve of Eratosthenes, the total function P : N → N
given by

P(0) = 2

P(x+ 1) = the least prime number greater than P(x)

can be implemented by course-of-values recursion, hence, is primitive recursive.



. e Ackermann function and μ-recursive functions

However, are primitive recursive functions rich enough to capture all effect-
ively computable total functions?

 e Ackermann function and μ-recursive functions
Deĕnition ... e Ackermann function is the total function A : N2 → N
satisfying the following equations:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

Proposition ... e Ackermann function is a well-deĕned total function.

Proof. Lexicographically order N2: so (m,n) < (m ′, n ′) if and only ifm < m ′,
or m = m ′ and n < n ′. e deĕnition above is then seen to be an instance
of well-founded recursion, and there is a unique total function satisfying those
equations. ■

e Ackermann function is manifestly effectively computable, but the deĕn-
ition above is also not obviously primitive recursive. In fact, the Ackermann
function is not primitive recursive at all, as we shall soon see.

Lemma ... For all natural numbersm and n,

m+ n < A(m,n) ()
A(m,n) < A(m,n+ 1) ()
A(m,n) < A(m+ 1, n) ()

A(m,n+ 1) ⩽ A(m+ 1, n) ()
A(m, 2n) < A(m+ 2, n) ()

Proof. Clearly, A(0,−) is strictly increasing and A(0, n) > n. Notice that if
A(m,−) is strictly increasing andA(m, 0) > 0, thenA(m,n) > n. We continue
by induction: suppose A(m,−) is strictly increasing and A(m,n) > m + n.
en, A(m+ 1, 0) = A(m, 1) > A(m, 0) ⩾ m+ 1, and

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)) > A(m+ 1, n) > m+ n+ 1



I. R 

as required. is completes the proof of () and (). Since A(m+ 1, n) ⩾ n+ 1,
we have

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)) ⩾ A(m,n+ 1)

and A(m+ 1, 0) = A(m, 1) > A(m, 0), so we have (). Also, if we assume
A(m+ 1, n) ⩾ A(m,n+ 1), then

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)) ⩾ A(m,A(m,n+ 1))

but by () we know A(m,n+ 1) ⩾ n+ 2, so () follows by induction on n from
the above and (). Finally, note that () implies A(m+ 2, 0) > A(m, 0); taking
A(m+ 2, n) > A(m,n) as our induction hypothesis, we ĕnd

A(m+ 2, n+ 1) = A(m+ 1,A(m+ 2, n))

> A(m+ 1,A(m, 2n)) by induction hypothesis and ()
⩾ A(m,A(m, 2n) + 1) by ()
> A(m, 2n+ 1+ 1) by () and ()

as required. ■

Lemma ... Let f : Nk ⇁ N be a partial function. e following are equivalent:

(i) ere is a constant c such that

∀x⃗ ∈ dom f. f(⃗x) < A(c,max x⃗)

(ii) ere is a constant c ′ such that

∀x⃗ ∈ dom f. f(⃗x) < A(c ′, ∥x⃗∥)

where ∥x⃗∥ = x1 + · · ·+ xk.

Proof. (i) ⇒ (ii). Because max x⃗ ⩽ ∥x⃗∥, we have

f(⃗x) < A(c,max x⃗) ⩽ A(x, ∥x⃗∥)

by inequality () of the previous lemma.
(ii) ⇒ (i). Let ℓ be the smallest natural number such that k ⩽ 2ℓ. It is clear

that ∥x⃗∥ ⩽ kmax x⃗ ⩽ 2ℓ max x⃗, so

f(⃗x) < A(c, ∥x⃗∥) ⩽ A
(
c, 2ℓ max x⃗

)
< A(c+ 2ℓ,max x⃗)

by inequalities () and () of the previous lemma. ■



. e Ackermann function and μ-recursive functions

eorem ... Let A : N× N → N be the Ackermann function.

(i) If f : Nk → N is a primitive recursive function, then there are constants cf
and c ′f such that

∀x⃗ ∈ Nk. f(⃗x) < A(cf,max x⃗)

∀x⃗ ∈ Nk. f(⃗x) < A(c ′f, ∥x⃗∥)

(ii) In particular, the Ackermann function is not primitive recursive.

Proof. It is clear that inequality () of lemma .. and (i) together imply (ii), so it
is enough to prove (i). By lemma .., it is enough to show the existence of either
cf or c ′f. Inequality () implies there is such a cf if f is a constant function or a
projection function. We proceed by structural induction on primitive recursive
functions.

Suppose h : Nℓ → N and g1, . . . , gℓ : Nk → N are primitive recursive func-
tions such that

f(⃗x) = h(g1(⃗x), . . . , gℓ(⃗x))

and we already have constants ch, cg1
, . . . , cgℓ

. Let m = max {ch, cg1
, . . . , cgℓ

}.
en,

f(⃗x) = h(g1(⃗x), . . . , gℓ(⃗x))

< A(ch,max {g1(⃗x), . . . , gℓ(⃗x)})
< A(ch,max {A(cg1

,max x⃗), . . . , A(cgℓ
,max x⃗)})

⩽ A(ch, A(m,max x⃗))
⩽ A(m,A(m,max x⃗))
< A(m,A(m+ 1,max x⃗))
= A(m+ 1,max x⃗+ 1)
⩽ A(m+ 2,max x⃗)

so cf = m+ 2 works.
Now, let g : Nk → N and h : Nk+2 → N be primitive recursive functions, and

suppose f : Nk+1 → N is the primitive recursive function such that

f(⃗x, 0) = g(⃗x)

f(⃗x, y+ 1) = h(⃗x, y, f(⃗x, y))



I. R 

For induction, we assume there are constants c ′g and ch such that

g(⃗x) < A
(
c ′g, ∥x⃗∥

)
h(⃗x, y, z) < A(ch,max {x1, . . . , xk, y, z})

for all x⃗. Let x = max x⃗ andm = max
{
c ′g, ch

}
. We have

f(⃗x, 0) = g(x) < A
(
c ′g, ∥x⃗∥

)
⩽ A(m+ 1, ∥x⃗∥ + 0)

and we proceed by induction on y: suppose f(⃗x, y) < A(m+ 1, ∥x⃗∥ + y). en,

f(⃗x, y+ 1) = h(⃗x, y, f(⃗x, y))

< A(ch,max {x, y, f(⃗x, y)})
< A(ch,max {x, y,A(m+ 1, ∥x⃗∥ + y)})

But A(m+ 1, ∥x⃗∥ + y) > ∥x⃗∥ + y ⩾ max {x, y}, so

f(⃗x, y+ 1) < A(ch, A(m+ 1, ∥x⃗∥ + y))

⩽ A(m,A(m+ 1, ∥x⃗∥ + y))

= A(m+ 1, ∥x⃗∥ + y+ 1)

thus c ′f = m+ 1 works. ■

Deĕnition ... Let f : Nk+1 ⇁ N be a partial function. A partial function
g : Nk+1 ⇁ N is obtained by unbounded minimisation from f just when g has
the following property: for all x1, . . . , xk, g(x1, . . . , xk, z)↓ if and only if there is
a y such that f(x1, . . . , xk, y) = z, and g(x1, . . . , xk, z) is the least such y when it
exists. We write g(⃗x, z) = µy[f(⃗x, y) = z] or simply g = µ[f] when this holds.

Deĕnition ... A μ-recursive function is any one of the following:

• A constant function Nk → N.

• A projection function prki : Nk → N.

• e successor function suc : N → N.

• A composite h ◦ (g1, . . . , gℓ) : Nk ⇁ N of some μ-recursive functions
g1, . . . , gℓ : Nk ⇁ N and h : Nℓ ⇁ N.



. e Ackermann function and μ-recursive functions

• A function ρ[h;g] : Nk+1 ⇁ N obtained by primitive recursion on μ-
recursive functions h : Nk+2 ⇁ N and g : Nk ⇁ N.

• A function µ[f] : Nk+1 ⇁ N obtained by unbounded minimisation from a
μ-recursive total function f : Nk+1 → N.

e μ-recursive functions are still reasonably computable, though the use of
unbounded minimisation means we have to admit the possibility of non-halting
computations: aer all, there is general mechanical way of deciding whether or
not there exists y such that f(⃗x, y) = z. (We will prove a precise form of this
claim later.)

Deĕnition ... A μ-recursive predicate is a logical predicate φ such that the
function [φ] is a μ-recursive total function.

We have just seen that the Ackermann function is not primitive recursive,
even though it is an effectively computable total function. Nevertheless, might it
be μ-recursive?

Proposition ... e Ackermann function is a μ-recursive total function.

Proof. e idea is simple enough: since the Ackermann function is deĕned by
well-founded recursion, any computation of A(m,n) must depend on only ĕ-
nitely many other computations of A(m ′, n ′) for (m ′, n ′) < (m,n) (in the lex-
icographic ordering of N2). By using the list operations of theorem .., we
can recognise a valid course-of-computation of A(m,n), and by using unboun-
ded minimisation, we can compute A(m,n) by ĕnding such a valid course-of-
computation.

Let p : N5 → N be the function deĕned as follows. We set p(x, y, z,w, t) = 1
if any one of the conditions below holds:

• If y = 0 andw = z+ 1.

• If y > 0 and z = 0 and there is u < t such that

left(select(x, u)) = pair(y −̇ 1, 1)

andw = right(select(x, u)) for the least such u.



I. R 

• If y > 0 and z > 0 and there is u < t such that

left(select(x, u)) = pair(y,w −̇ 1)

and v < t such that

left(select(x, v)) = pair(y −̇ 1, right(select(x, u)))

for the least such u, andw = right(select(x, v)) for the least such v.

Otherwise, we set p(x, y, z,w) = 0. It is clear that p so deĕned is a primitive
recursive function, since bounded minimisation is primitive recursive by the-
orem ...

Now deĕne q : N2 → N by the following primitive recursion: set q(x, 0) = 1
and setq(x, t+ 1) = 1 if length(x) ⩾ t+1 andq(x, t) = 1 andp(x, y, z,w, t) = 1
where select(x, t) = pair(pair(y, z), w). By the construction of p and q, we have
q(x, t) = 1 if and only if x codes a course-of-computation of the Ackermann
function valid up to (but not including) step t. us, we may deĕne the Acker-
mann function using unbounded minimisation as follows: A(m,n) = w where
select(x, t) = pair(pair(m,n), w), t + 1 = length(x), and x is the least number
such that q(x, t+ 1) = 1. ■

A similar techniquemay used to show that any total function deĕned by well-
founded recursion on a primitive recursive function (or even a μ-recursive total
function) is μ-recursive. us, it appears that μ-recursive functions capture a
much stronger notion of effective computability than primitive recursive func-
tions.

Finally, we should note that wemay assume that a declaration of a μ-recursive
function only uses the minimisation operator once:

eorem ... Let f : Nk → N be a μ-recursive function. en, there is a prim-
itive recursive function g : Nk+1 → N such that

f(⃗x) = right(µy[g(⃗x, y) = 1])

Proof. e idea is that a μ-recursive declaration of f can be translated into a prim-
itive recursive predicate. See [Cohen, , m . and m .]. ■

We will avoid using the above fact where possible.



II

L 

Suppose we were proscribed the use of natural numbers, and only allowed to
manipulate ĕnite strings of symbols. Could we still do arithmetic?

 λ-terms
Fix an alphabet: x, y, z, We will think of these as variable names.

Deĕnition ... A λ-term is a non-empty ĕnite string of symbols of one of the
following forms:

• A single letter, e.g. x. Such a λ-term is called an atomic λ-term.

• A parenthesised concatenation of any two λ-terms, e.g. (xy).

• A string of the form [λx. T], where x is any single letter and T is a λ-term.

Aλ-termwill usually be denoted by anuppercase letter or a boldface romanword;
we reserve typewriter letters for atomic λ-terms. We use S ≡ T to mean that that
the λ-terms denoted by S and T are equal as strings.

Example ... e K combinator is the λ-term below:

K ≡ [λx. [λy. x]]

We also deĕne the S combinator as a λ-term:

S ≡ [λx. [λy. [λz. ((xz) (yz))]]]



II. L 

By convention, the concatenation of λ-terms is assumed le associative, so we
maywrite xz (yz) instead of ((xz) (yz)), and to reduce the proliferation of brack-
ets and λ symbols, we further abbreviate the deĕnition S combinator as follows:

S ≡ [λxyz. xz (yz)]

Deĕnition ... Let T be a λ-term. e set FV(T) of free variables of T and the
set BV(T) of bound variables of T are deĕned by structural recursion:

• If T ≡ x, then FV(T) = {x} and BV(T) = ∅.

• If T ≡ (UV), then FV(T) = FV(U)∪FV(V) and BV(T) = BV(U)∪BV(V).

• If T ≡ [λx. U], then FV(T) = FV(U) \ {x} and BV(T) = BV(U) ∪ {x}.

Note that FV(T) and BV(T) need not be disjoint!

Example ... In the λ-term ([λy. x] y), the variabley is both free andbound. We
should treat λ-terms whose free and bound variables overlap with some caution.

Deĕnition ... A closed λ-term is a λ-term T such that FV(T) = ∅.

Example ... e combinators K and S are closed λ-terms.

Deĕnition ... Let S and T be λ-terms, and let x be any single letter. e λ-
term (T | x 7→ S) (usually written T [S / x]) obtained by substituting S for x in T
is deĕned recursively as follows:

• If T ≡ x, then (T | x 7→ S) ≡ S; if T is a single letter but T ̸≡ x, then
(T | x 7→ S) ≡ T .

• If T ≡ (UV), then (T | x 7→ S) ≡ ((U | x 7→ S) (V | x 7→ S)).

• If T ≡ [λx. U], then (T | x 7→ S) = T ; if y ̸≡ x and T ≡ [λy. U], then
(T | x 7→ S) ≡ [λy. (U | x 7→ S)].

Remark ... Apoorly-chosen substitutionmay change themeaning of a λ-term.
For example, [λy. x] is supposed to be interpreted as a constant function taking
the value x, but ([λy. x] | x 7→ y) ≡ [λy. y] is interpreted as the identity function!
A safe substitution is one of the form (T | x 7→ S) where FV(S) ∩ BV(T) = ∅.



. Conversions, reductions, and equality

 Conversions, reductions, and equality
Deĕnition ... A λ-term V is an α-conversion of a λ-term T if T ≡ [λx. U], y
does not occur either free or bound in U, and V ≡ [λy. (U | x 7→ y)]. We write
T ⇝α V when this holds.

Example ...
K⇝α [λzy. z]

Remark ... Note that⇝α is an equivalence relation on the set of λ-terms. We
will usually treat λ-terms which are α-conversions of each other as being equal,
since they are literally the same aer renaming variables. By replacing subterms
of T by suitable α-conversions, we may always make (T | x 7→ S) into a safe sub-
stitution.

Deĕnition ... A λ-term V is a β-conversion of a λ-term T if T ≡ ([λx. U]S)

andV ≡ (U | x 7→ S) is a safe substitution of S for x inU. We write T ⇝β V when
this holds.

Remark ... e β-conversion of [λx. U]S should be interpreted as the result of
applying the function [λx. U] to the term S.

Example ... We can use β-reduction to peel off layers of [λ· · ·. · · ·]:

Sx⇝β [λyz. xz (yz)]

[λyz. xz (yz)] y⇝β [λz. xz (yz)]

[λz. xz (yz)] z⇝β xz (yz)

Example ... We should think of KT as being the constant function which
evaluates to T :

KT ⇝β [λy. T]

Of course, this only makes sense when y is not free in T .

Deĕnition ... A λ-termU is a η-conversion of a λ-term T if T ≡ [λx. Ux] and
x does not occur free in U. We write T ⇝η U when this holds.

Remark ... If T ⇝η U, then we should think of T andU as being extensionally
equal λ-terms.



II. L 

Deĕnition ... A λ-term T reduces to a λ-term T ′ when any of the following
conditions holds:

• T ⇝β T
′ or T ⇝η T

′.

• T ≡ [λx. U], T ′ ≡ [λx. U ′], and U reduces to U ′.

• T ≡ (UV), T ′ ≡ (U ′V), and U reduces to U ′.

• T ≡ (UV), T ′ ≡ (UV ′), and V reduces to V ′.

We write T ⇝ T ′ when T reduces to T ′. If there is a ĕnite sequence of λ-terms
T1, . . . , Tn such that T ⇝α T1, T1 ⇝ T2, . . . , Tn−1 ⇝ Tn, Tn ⇝α T

′, then we
write T ↠ T ′. We allow n = 1 here, so that T ↠ T .

Example ... Recalling example ..,

Sxyz⇝ [λyz. xz (yz)] yz⇝ [λz. xz (yz)] z⇝ xz (yz)

Deĕnition ... A λ-term T is in normal formwhen no non-trivial reductions
of T are possible. A normalisable λ-term is a λ-term T such that there is a λ-term
T ′ in normal form and T ↠ T ′.

Example ... Let Ω ≡ ([λx. xx] [λx. xx]). Since Ω ⇝β Ω, Ω is not in normal
form. In fact, it is not even normalisable.

Example ... e I combinator is deĕned as

I ≡ [λx. x]

but we have the reductions

SKK⇝ [λyz.Kz (yz)]K⇝ [λz.Kz (Kz)]⇝ [λz. z]⇝α I

us, SKK↠ I.

Despite the name, reduction can sometimes lead to less simple terms:

Example ... e Y combinator is deĕned as

Y ≡ [λh. ([λx. h (xx)] [λx. h (xx)])]

and observe that

YH⇝β ([λx. H (xx)] [λx. H (xx)])⇝β H ([λx. H (xx)] x] [λx. H (xx)])

where the middle λ-term occurs as a strict subterm of the RHS!



. Arithmetic and recursion

Deĕnition ... Two λ-terms T and T ′ are equal just if there is a ĕnite sequence
of λ-terms T1, . . . , T2n−1 such that

T ↠ T1 ↞ T2 ↠ · · ·↞ T2n−2 ↠ T2n−1 ↞ T ′

and we write T = T ′ when this holds.

Proposition ... Equality of λ-terms as deĕned above is an equivalence relation
and respects the formation of λ-terms, i.e.

. If U = U ′, then [λx. U] = [λx. U ′].

. If U = U ′, then (UV) = (U ′V).

. If V = V ′, then (UV) = (UV ′).

Proof. It is clear that equality is reĘexive, symmetric, and transitive. e rest
follows from the fact that⇝ respects the formation of λ-terms. ■

Actually, in the deĕnition, it suffices to take n = 1:

eorem .. (Church–Rosser). If T = T ′, then there is a λ-term T ′′ such that
T ↠ T ′′ and T ′ ↠ T ′′. In particular, if T is normalisable, then its normal form is
unique up to α-conversion.

Proof. Omitted: see [Church and Rosser, ]. □

Notice that the atomic λ-terms x and y are already in normal form, so the
Church–Rosser theorem implies that x ̸= y (as λ-terms, of course). us, not
every equation in λ-calculus is valid, which is a relief: otherwise we would not be
able to do anything useful with it!

 Arithmetic and recursion

In order to do arithmetic in λ-calculus, wemust ĕrst ĕx an encoding for numbers
in λ-terms.



II. L 

Deĕnition ... e Church numerals are deĕned as follows:

0 ≡ [λfx. x]

1 ≡ [λfx. fx]

...
n ≡ [λfx. f (· · · (f︸ ︷︷ ︸

n times

x) · · ·)]
...

Notice that each n is already in normal form and n = m if and only if n = m.

e Church numeral n should be interpreted as the operator which iterates a
function n times.

Proposition ... ere exist λ-terms add,mul, and pow such that

sucn↠ n+ 1

addnm↠ n+m

mulnm↠ n×m
pownm↠ nm

for all Church numerals n andm.

Proof. One simply veriĕes inductively that these work:

suc ≡ [λnfx. f (nfx)]

add ≡ [λnmfx. mf (nfx)]

mul ≡ [λnmf. m (nf)]

pow ≡ [λnm. mn] ■

Remark ... e λ-calculus under discussion is untyped, so λ-terms such as
(addUV) are legal even whenU and V are not equal to Church numerals. How-
ever, the behaviour of add is le unspeciĕed in that case and we should regard
such λ-terms as being devoid of meaning.

We also need to encode the two truth values so that we can talk about λ-terms
representing predicates:



. Arithmetic and recursion

Proposition ... ere exist λ-terms ⊤, ⊥, and if-then-else such that

if-then-else⊤UV ↠ U

if-then-else⊥UV ↠ V

for all λ-terms U and V .

Proof. First, we deĕne ⊤ and ⊥:

⊤ ≡ [λxy. x]

⊥ ≡ [λxy. y]

ese deĕnitions of ⊤ and ⊥ make it easy to deĕne if-then-else:

if-then-else ≡ I ■

Corollary ... ere exist λ-terms not, and, and or such that

and⊤⊤↠ ⊤ or⊤⊤↠ ⊤
not⊤↠ ⊥ and⊤⊥↠ ⊥ or⊤⊥↠ ⊤
not⊥↠ ⊤ and⊥⊤↠ ⊥ or⊥⊤↠ ⊤

and⊥⊥↠ ⊥ or⊥⊥↠ ⊥

Proof. Use if-then-else. ■

Lemma ... ere exists a λ-term is-zero such that

is-zeron↠

⊤ if n = 0

⊥ if n ̸= 0

for all Church numerals n.

Proof. Notice that (K⊥) has the property that

(K⊥) · · · (K⊥)⊤↠ (K⊥)⊤↠ ⊥

so the deĕnition below works:

is-zero ≡ [λn. n (K⊥)⊤] ■



II. L 

We previously argued that μ-recursive functions capture a good notion of
effective computability, so we should show that μ-recursive functions can be en-
coded as λ-terms. Notice that a declaration such as

F ≡ [λn. if-then-else (is-zero n)G (F (pre n))]

is illegal because F appears in both the LHS and the RHS: recall that λ-terms are
ĕnite by deĕnition and so we cannot substitute F on the RHS inĕnitely many
times to get rid of it. However, if we weaken ≡ to = then we can construct such
a λ-term F using the Y combinator from example .., since Y satisĕes the fol-
lowing equation:

YH = H (YH)

erefore, if we set

H ≡ [λfn. if-then-else (is-zero n)G (f (pre n))]

then F ≡ YH has the desired property:

F = HF⇝β [λn. if-then-else (is-zero n)G (F (pre n))]

us we can use the Y combinator to implement recursive deĕnitions—even
non-wellfounded ones! However, to implement primitive recursionwemust ĕrst
implement pre, and it turns out we need to ĕrst implement pairs using λ-terms.

Proposition ... ere exist λ-terms pair, le, and right, such that the following
reductions hold for all λ-terms U and V :

le (pairUV)⇝ U

right (pairUV)⇝ V

Proof. Using proposition .., one may check that these work:

pair ≡ [λxyt. if-then-else txy]
le ≡ [λz. z⊤]

right ≡ [λz. z⊥] ■

Proposition ... ere is a λ-term pre such that

pre 0↠ 0

pren+ 1↠ n

for all Church numerals n.



. Arithmetic and recursion

Proof. First, deĕne an auxiliary λ-term Γ as below:

Γ ≡ [λfz.pair (right z) (f (right z))]

us, for any λ-terms F, U, and V ,

ΓF (pairUV)↠ (pairV (FV))

and so for all Church numerals n,

(n+ 1 (ΓF)) (pairUV)↠ (pair (nFV) (n+ 1 FV))

by induction on n. One may then check that

pre ≡ [λnfx. le (n (Γf) (pair 0 x))]

has the required property. ■

Corollary ... (i) ere exists a λ-term sub such that

subnm =

0 ifm > n

n−m ifm ⩽ n

for all Church numerals n andm.

(ii) ere exists a λ-term is-equal such that

is-equalnm =

⊤ if n = m

⊥ if n ̸= m

for all Church numerals n andm.

Proof. (i). We iterate pre to obtain sub:

sub ≡ [λnm. mpre n]

(ii). We use sub, is-zero, and and:

is-equal ≡ [λnm. and (is-zero (sub nm)) (is-zero (sub mn))] ■

When computing using λ-terms, one must be wary of non-terminating re-
duction strategies:



II. L 

Example ... Recall the λ-term Ω ≡ ([λx. xx] [λx. xx]), and consider the λ-
term T ≡ ([λy. U]Ω), where the variable y does not occur free in U. If we β-
convert the outermost λ-term ĕrst, then

T ⇝β U

but if we try to β-convert the inner λ-terms ĕrst, we end up in a loop:

T ⇝ T ⇝ T · · ·

because Ω⇝β Ω!

However, it is a fact that β-converting λ-subterms of a normalisable λ-term
T from the lemost outermost to the innermost will always terminate in a ĕnite
number of steps, and then η-converting the result yields the normal form of T .

Deĕnition ... Let f : Nk ⇁ N be a partial function. A λ-representation of f
is a λ-term F such that the following holds:

• For all x1, . . . , xk such that f(x1, . . . , xk)↓, the λ-term
(
F x1 · · · xk

)
is nor-

malisable and (
F x1 · · · xk

)
↠ f(x1, . . . , xk)

• Otherwise,
(
F x1 · · · xk

)
is not normalisable.[]

A λ-representable function is a partial function that admits a λ-representation.

eorem ...
(i) e set of λ-representable functions is closed under primitive recursion.

(ii) If g : Nk+1 → N is a λ-representable total function, then the partial function
µ[g] : Nk+1 ⇁ N is λ-representable.

(iii) Every primitive recursive function admits a λ-representation.

(iv) Every μ-recursive function admits a λ-representation.
[] is requirement has its disadvantages: see [Barendregt, , Ch. , § ].



. Miscellaneous topics

Proof. (i). Let f : Nk+1 ⇁ N be a partial function of the form f = ρ[h;g] for
some λ-representable functions g : Nk ⇁ N and h : Nk+2 ⇁ N. Let G and H be
λ-representations of g and h, respectively. Deĕne an auxiliary λ-term as below:

Z ≡ (H x1 . . . xk (prey) (f x1 . . . xk (prey)))

We may represent f by the λ-term F below:

F ≡ Y [λf x1 . . . xk y. if-then-else (is-zero y) (G x1 . . . xk)Z]

Indeed, one may check by induction on y that
(
F x1 · · · xk y

)
↠ f(x1, . . . , xk, y)

as required.
(ii). Let f : Nk+1 ⇁ N be a partial function of the form f = µ[g] for some

λ-representable total function g : Nk+1 → N. Let G be a λ-representation of g.
Consider the λ-terms below:

Y ≡ (G x1 . . . xk z)

T ≡ Y [λt z x1 . . . xk y. if-then-else (is-equal Yy) z (t (suc z) x1 . . . xk y)]

Let F ≡ T 0. Since f(x1, . . . , xk, y) = µz[g(x1, . . . , xk, z) = y], it is clear that
f(x1, . . . , xk, y)↓ implies

(
F x1 . . . xk y

)
↠ f(x1, . . . , xk, y), and otherwise the

λ-term
(
F x1 . . . xk y

)
is not normalisable.[] us, F is a λ-representation of f.

(iii). Clearly, the constant functions and projection functions admit λ-repre-
sentations, and the composition of λ-representable functions is certainly λ-repre-
sentable. e conclusion follows from (i).

(iv). is follows from (ii) and (iii). ■

Remark ... By modifying some of the λ-terms appearing in the above proof,
one may ĕnd λ-terms expressing the λ-calculus versions of the operators ρ[−;−]

and µ[−]. In particular, wemay deĕne ρ[H;G] andµ[F] even when F,G,H accept
arguments which are not Church numerals.

 Miscellaneous topics
Although the λ-representability of primitive recursive functions implies that we
can encode lists of natural numbers as λ-terms (via Church numerals), we should

[] is is actually somewhat subtle: see [Barendregt, , m .., Lem. ..].



II. L 

deĕne a “native” encoding which allows us to encode lists of arbitrary λ-terms. A
signiĕcant advantage of this method is the ability to treat ĕnite and inĕnite lists
on the same basis.

Proposition ... ere is an encoding of inĕnite sequences of λ-terms with the
following properties:

• ere exists a λ-term stream, such that the λ-term (stream F) codes the se-
quence (F 0, F 1, F 2, . . .) (up to equality of λ-terms).

• ere exist λ-terms is-empty, nil, cons, head, tail,[] select, and replace
satisfying the speciĕcation below.

Let U and V be λ-terms, and let S code the sequence (A0, A1, A2, . . .).

(i) e λ-term (is-empty nil) reduces to ⊤, while (is-empty (consUV)) and
(is-emptyS) both reduce to ⊥.

(ii) e λ-term (consUS) codes the sequence (U,A0, A1, A2, . . .).

(iii) e λ-term (headnil) reduces to nil, while (head (consUV)) ↠ U and
(head S)↠ A0.

(iv) e λ-term (tail nil) reduces to nil, while (tail (consUV))↠ V and (tailS)
codes the sequence (A1, A2, A3, . . .).

(v) Given a natural numberm, (selectSm)↠ Am.

(vi) Given a natural number m and a λ-term T coding (B0, B1, B2, . . .), the λ-
term (replaceST m) codes the sequence (A0, . . . , Am−1, B0, B1, B2, . . .).

Proof. Like before, we use linked lists. First, make the following deĕnitions of
cons, nil and is-empty:[]

cons ≡ pair
nil ≡ [λx.⊤]

is-empty ≡ [λx. x [λyz.⊥]]

[] In some circles, head and tail are traditionally known as car and cdr, respectively. is tail
should not be interpreted as the analogue of tail deĕned in theorem ...

[] Caution: is depends heavily on the implementation details of pair in proposition ...



. Miscellaneous topics

Now, deĕne λ-terms head and tail as follows:

head ≡ [λx. if-then-else (is-empty x)nil (le x)]

tail ≡ [λx. if-then-else (is-empty x)nil (right x)]

e λ-term select can be deĕned using iteration:

select ≡ [λxm.head (m tail x)]

On the other hand, the λ-term replace is deĕned by double recursion:

R ≡ (cons (head x) (f (tail x)y (pre m)))
replace ≡ Y [λfxym. if-then-else (is-zero r) yR]

One may then check that the following deĕnition of stream works:

stream ≡ (Y [λsmf. cons (fm) (s (suc m) f)] 0) ■

eorem ... ere is an encoding of ĕnite lists of λ-terms with the following
properties:

• ere exists a λ-term listn for each natural number n, such that list0 ≡ nil
and the λ-term (listnA0 . . . An−1) codes the list (A0, . . . , An−1).

• If a λ-term L codes the ĕnite list (A0, . . . , An−1), then L also codes the se-
quence (A0, . . . , An−1,nil,nil,nil, . . .).

• ere exist λ-terms length, insert, and slice satisfying the speciĕcation be-
low.

Let L ≡ (listnA0 . . . An−1), and let S code the sequence (B0, B1, B2, . . .).

(i) e λ-term (is-emptyL) reduces to ⊥ if n > 0 and (is-emptyL) reduces to
⊤ if n = 0.

(ii) e λ-term (lengthL) reduces to n.

(iii) Ifm < n then (selectLm)↠ Am, and otherwise (selectLm)↠ nil.

(iv) e λ-term (insertLU) codes the list (A0, . . . , An−1, U).

(v) Given a natural number m, the λ-term (replaceSLm) codes the ĕnite list
(B0, . . . , Bm−1, A0, . . . , An−1).



II. L 

(vi) If r and s are natural numbers and r < s, then (sliceS r s) codes the list
(Br, . . . , Bs−1), and otherwise (slice r s)↠ nil.

Proof. We use the λ-terms deĕned in the previous proposition to deĕne listn for
all natural numbers n as below:

list0 ≡ nil
list1 ≡ [λa0. cons a0 nil]

...
listn ≡ [λa0 . . . an−1. cons a0 (cons · · · (cons an−1 nil) · · ·)]

...

By the speciĕcation of is-empty, nil, and cons, we see that (i) holds, and by ex-
amining the details of how select and replace were deĕned in the proof above,
we see that (iii) and (v) are satisĕed.

We use structural recursion on lists and an accumulator to deĕne length:

length ≡ (Y [λcrx. if-then-else (is-empty x) r (c (suc r) (tail x))] 0)

We also deĕne the λ-term insert by structural recursion on lists:

I ≡ (cons (head x) (f (tail x) b))
insert ≡ Y [λfxb. if-then-else (is-empty x) (cons bnil) I]

Finally, we use replace and iterate tail to deĕne slice:

slice ≡ [λxrs. r tail (replace xnil s)] ■

Recall the combinators S, K, and I:

S ≡ [λxyz. xz (yz)] K ≡ [λxy. x] I ≡ [λx. x]

eorem ... If T is a λ-term, then there is a λ-term T ′ constructed using only
the free variables of T and the combinators S,K, I and no other instances of λ-
abstraction such that T ′ ↠ T . We call such a λ-term an abstraction elimination
of T .



. Miscellaneous topics

Proof. If T ≡ x, then T is already in the required form, so we may take T ′ ≡ T

in this case. If T ≡ (UV) andU ′ and V ′ are abstraction eliminations ofU and V ,
respectively, then

T ′ ≡ (U ′V ′)↠ (UV ′)↠ (UV) ≡ T

as required. If T ≡ [λx.W] and x /∈ FV(W), then set T ′ ≡ (KW ′), whereW ′ is
an abstraction elimination ofW; otherwise we proceed by structural induction:

• IfW ≡ x, then set T ′ ≡ I.

• If x ∈ FV(W) andW ≡ (UV), then set T ′ ≡ ((SU ′)V ′), where U ′ and V ′

are the abstraction eliminations of [λx. U] and [λx. V], respectively.

• If x ∈ FV(W),W ≡ [λy. · · ·], andW ′ is an abstraction elimination ofW,
then BV(W ′) = ∅ and so we can run the above recursion on [λx.W ′] to
obtain T ′ without encountering this case again. ■

Recalling that (SKK)↠ I, we obtain the following easy corollary:

Corollary ... Any λ-term admits an abstraction elimination using only the com-
binators S and K. ■

Note, however, the abstraction eliminations are not unique. For example, one
may verify that (SKS)↠ I, and indeed, for any λ-term T whatsoever, (SKT)↠ I.

Example ... Recall that suc = [λnfx. f (nfx)]. Using the recursion described
above, we obtain the following abstraction eliminations:

(S (Kf) (K (nf)))↠ [λx. f (nfx)]

(S (KS)K)↠ [λf. S (Kf)]
(S (KK) n)↠ [λf.K (nf)]

(S (S (KS)K) (S (KK) n))↠ [λf. S (Kf) (K (nf))]

(S (K (S (S (KS)K))) (S (KK)))↠ [λn. S (S (KS)K) (S (KK) n)]↠ suc

Remark ... ere are other choices of combinators which could be used to
achieve abstraction elimination. For example, one could use the BCKW system
of Curry [a,b]:

B ≡ [λxyz. x (yz)] C ≡ [λxyz. xzy]

K ≡ [λxy. x] W ≡ [λxy. xyy]



III

M

Computation is supposed to be amechanical process, yet so far our two proposed
formalisations of effective computability do not explicitly invoke the notion of a
machine. ere are many different deĕnitions of abstract machine but, so far, all
the proposed deĕnitions of abstract ĕnitistic machines turn out to have exactly
the same power as μ-recursive functions and λ-calculus. e Church–Turing
thesis asserts that this will be the case for any attempt to formalise effective com-
putability.[]

 Turing machines

Beware of the Turing tar-pit in
which everything is possible but
nothing of interest is easy.

Alan Perlis, Epigrams on
Programming

Deĕnition ... A Turing machineM comprises the following data:

• A non-empty ĕnite setQ, called the states of M.

• A non-empty ĕnite set Γ , called the alphabet of M.

• A distinguished symbol b in Γ , called the blank symbol.
[] e Church–Turing thesis is an informal claim and cannot be formally proven per se.



III. M

• A distinguished state inQ: the initial state q0.

• A subset ofQ: the accepting states F.

• A partial function δ : (Q \ F)× Γ ⇁ Q× Γ × {−1, 0,+1}, called the trans-
ition function.

Strictly speaking, we requireQ and Γ to be the smallest sets such that b ∈ Γ and
the type declaration for δ is valid, i.e.

• For each q inQ, there is some a in Γ such that either δ(q, a)↓, or there are
some q ′ inQ and a ′ in Γ such that δ(q ′, a ′)↓ and δ(q ′, a ′) = (q, a).

• For each a in Γ , either a = b, or there is some q in Q such that δ(q, a)↓,
or there are q and q ′ inQ and a ′ in γ such that δ(q ′, a ′)↓ and δ(q ′, a ′) =

(q, a).

Deĕnition ... A tape ā for a Turing machine M is an integer-indexed list
(ai | i ∈ Z) such that

• each ai is in the alphabet Γ of M, and

• the set {i ∈ Z |ai ̸= b} is ĕnite, where b is the blank symbol.

Let L be the set of all tapes for a Turing machine M. e transition function
δ induces a partial function σ : Q× L ⇁ Q× L as follows:

• If q ∈ F, then σ(q, ā) = (q, ā).

• If δ(q, a0)↑, then σ(q, ā)↑ as well.

• Otherwise, if δ(q, a0) = (q ′, a ′, u), then σ(q, ā) = (q ′, ā ′) where

a ′
i =

a ′ if i = −u

ai+u if i ̸= −u

It is clear that we can implement σ as a primitive recursive function for any ĕxed
Turing machine M, at least once we have ĕxed an encoding of Q and L and
turned σ into a total function by adjoining a distinguished element ⊥ to the



. Turing machines

domain and codomain to represent undeĕned function values. Now, deĕne a
partial function σ∗ : L× N ⇁ Q× L by primitive recursion:

σ∗(ā, 0) = (q0, ā)

σ∗(ā, n+ 1) = σ(σ∗(ā, n))

(As usual, what this means is that the LHS is deĕned and equal to the RHS
whenever the RHS is deĕned, and the LHS is undeĕned when the RHS is un-
deĕned.) Again, σ∗ is primitive recursive once it has been appropriately modi-
ĕed. us, we obtain a μ-recursive partial function σ∞ : L ⇁ Q×L by unboun-
ded minimisation:

σ∞(ā) = σ∗(ā,µn[σ
∗(ā, n)↓ and σ∗(ā, n) ∈ F× L])

What is remarkable is that we can do all this in a uniform way even whenM

is allowed to vary. Indeed, without loss of generality, we may demand that the
following hold for every Turing machine M:

• Both the state spaceQM and the alphabet ΓM are ĕnite subsets of N.

• e blank symbol bM is 0.

Under this assumption, the set of all Turing machines is countable, and we may
uniformly encode tapes as ĕnite lists of natural numbers indexed by integers.

eorem .. (Kleene). ere exists an enumeration of the set of all Turing ma-
chines and a primitive recursive function E : N3 → Nwith the following properties:

• e number E(m, s, t) codes a ĕnite list of length less than t.

• Ifm codes the Turing machineM and s codes the tape ā, then

E(m, s, t) codes the list (σ∗M(ā, 0), . . . , σ∗
M(ā, ℓ))

where ℓ is the greatest number less than t such that σ∗M(ā, ℓ)↓. (If s codes a
tape ā which contains symbols not in the alphabet ΓM, then E(m, s, t) codes
the empty list.)

In particular, the function T : N3 → N deĕned below is primitive recursive:

T(m, s, h) =

1 if h = E(m, s, length(h) + 1)

0 otherwise

e predicate represented by T is called Kleene’s T -predicate.



III. M

Proof. is is clear, since everything in sight is ĕnite and easily bounded. ■

By theorem .., Kleene’s T-predicate is λ-representable, but it is not hard
to directly prove a version of the above theorem using the “native” λ-calculus
encoding of sequences given in proposition ... We also have a converse:

eorem .. (Turing). ere exists a Turing machine M and an encoding of λ-
terms with variables drawn from a ĕxed countably inĕnite alphabet ∆ as tapes for
M with the following properties:

• M has a unique accepting state ⊤.

• If the tape ā codes a λ-term T and every λ-subterm U of T has the property
BV(U) ∩ FV(U) = ∅, then σ∞(ā)↓ if and only if T is normalisable, and
in that case σ∞(ā) = (⊤, ā ′) where ā ′ codes the normal form of T (up to
α-conversion).

Proof. We ĕx an enumeration of ∆, so that ∆ = {x1, x2, x3, . . .}. e alphabet Γ
of our Turing machine M consists of the following symbols:

b x ′ β \

Additional symbols may be used to record working state on the tape. For clarity,
we will enclose strings with guillemets, e.g. ⟨⟨\x ′x ′⟩⟩. We encode λ-terms using
preĕx notation:

• If T ≡ xn, then we encode T as a string of the form ⟨⟨x ′··· ′⟩⟩ with n prime
symbols.

• If T ≡ (UV), then we encode T as ⟨⟨β⟩⟩ followed by the encoding of U and
the encoding of V .

• If T ≡ [λxn. U], then we encode T as ⟨⟨\⟩⟩ followed by the encoding of xn
and the encoding of U.

For example, the S combinator is encoded as ⟨⟨\x ′\x ′′\x ′′′ββx ′x ′′′βx ′′x ′′′⟩⟩. It is
easy to check that this encodes λ-terms unambiguously and has the advantage of
not requiring brackets (but also the disadvantage of being hard to read).

It was earlier stated that a normalisable λ-term can always be reduced to nor-
mal formby iteratively β-reducing the lemost outermost λ-subterms of the form
(UV) and then iteratively η-reducing the result.



. Turing machines

is is doable by a Turing machine: we use the negatively-indexed section of
the tape as working memory to record the name of the variable we are replacing
and the λ-term we are substituting, and we use the section of the tape aer the
end of the input to record the partial output. First, we do the β-reductions:

. Scan the input for the lemost occurrence of ⟨⟨β\x⟩⟩. If there are no occur-
rences, return to the beginning of the input and proceed to the η-reduction
step.

. Copy the name of the variable to be replaced to working memory.

. Copy the substituent term to workingmemory, and replace the substituent
in the input with ⟨⟨? . . .?⟩⟩. Note that we must count β symbols in order to
correctly determine the start and end of the substituent. Since we are not
yet outputting anything, we may use the section aer the tape to count β
symbols.

. Copy to output the input up to the lemost occurrence of ⟨⟨β\x⟩⟩, and skip
the ⟨⟨β\x ′··· ′⟩⟩.

. Copy to output the input up to the lemost occurrence of ⟨⟨?⟩⟩, taking care
to replace each occurrence of the variable to be replaced in the input with
the substituent in the output.

. Skip the ⟨⟨? . . .?⟩⟩, and copy the remainder of the input to output.

. Erase the working memory and input, and go to the beginning of the out-
put.

. Repeat, regarding the current output as the new input.

Because we are assuming that every λ-subtermU of the input T has the property
BV(U) ∩ FV(U) = ∅, this correctly computes the β-reduction. Now, we do the
η-reductions:

. Scan the input for the lemost occurrence of ⟨⟨\x ′··· ′βUx ′··· ′⟩⟩, where U
denote a well-formed subterm. Note that we must count both β symbols
and prime symbols. If there are no occurrences, return to the beginning of
the input and halt in an accepting state.

. Replace the substrings ⟨⟨\x ′··· ′β⟩⟩ and ⟨⟨x ′··· ′⟩⟩ found above with ⟨⟨? . . .?⟩⟩.



III. M

. Copy the input to output, skipping the occurrences of ⟨⟨? . . .?⟩⟩.

. Erase the working memory and input, and go to the beginning of the out-
put.

. Repeat, regarding the current output as the new input.

One may verify that this algorithm can in principle be implemented as a Turing
machine. ■

Now, letL be the set of all tapes written in a ĕxed alphabet Γ . For each natural
number k, choose an injective total function ink : Nk → L, and also choose an
injective total function out : N → L.

Deĕnition ... Let f : Nk ⇁ N be a partial function. A Turing machine M

computes f just if M satisĕes the following conditions:

• Γ is a subset of the alphabet of M.

• M has a unique accepting state ⊤.

• For all x⃗ in Nk, σ∞(ink(⃗x))↓ if and only if f(⃗x)↓, and when f(⃗x)↓, we have
σ∞(ink(⃗x)) = (⊤, out(f(⃗x))).

ATuring-computable function is a partial function fwhich admits such aTuring
machine M.

eorem .. (Church–Turing). Let f : Nk ⇁ N be a partial function. e
following are equivalent:

(i) ere exists a μ-recursive declaration of f.

(ii) ere exists a λ-representation of f.

(iii) ere exists a Turing machine that computes f.

Proof. (i) ⇒ (ii). is is theorem ...
(ii) ⇒ (iii). is is Turing’s theorem (..).
(iii) ⇒ (i). is is a corollary of Kleene’s theorem (..). ■

We obtain the following strengthening of theorem .. as a corollary:



. Turing machines

Corollary .. (Kleene normal form). ere exists a primitive recursive function
V : N3 → Nwith the following property: for every μ-recursive function f : Nk ⇁ N,
there exists a natural numberm such that

f(⃗x) = right(µz[V(m, listk(⃗x), z) = 1])

for all x⃗ in dom f, and µz[V(m, listk(⃗x), z) = 1]↑ if and only if f(⃗x)↑.

Proof. One simply modiĕes Kleene’s T-predicate to obtain the desired primitive
recursive function V . ■

Corollary .. (Universal Turing machine). ere is a Turing machine that can
simulate any Turing machine. ■

Corollary ... Every μ-recursive partial function f : N ⇁ N admits a μ-recursive
partial right inverse, i.e. a partial function g : N ⇁ N such that the following holds:

y ∈ im f implies g(y)↓ and f(g(y)) = y

Proof. e obvious method using µx[f(x) = y] does not work, since f is not ne-
cessarily a total function. Instead, we must use Kleene’s T-predicate to construct
a primitive recursive predicate φ(x, y, z) with free variables x, y, z such that

∃z.φ(x, y, z) holds if and only if f(x) = y

is can then be used to deĕne g:

g(y) = right(µz[φ(right(z), y, left(z)) = 1]) ■

Recall the primitive recursive function V : N3 → N of corollary ... Let
Fk : N1+k ⇁ N be the μ-recursive partial function given below:

F(m, x⃗) = right(µz[V(m, listk(⃗x), z) = 1])

en, for every μ-recursive partial function f : Nk ⇁ N there is a natural num-
ber r such that f = Fk(r,−), so we may call Fk the universal k-ary μ-recursive
function.

eorem .. (Kleene’s sm,n theorem). ere is a primitive recursive function
sm,n : N1+m → N with the following property: for all natural numbers r and all
m-tuples x⃗,

Fm+n(r, x⃗,−) = Fn(sm,n(r, x⃗),−)

We call sm,n a partial evaluation function.



III. M

Proof. Strictly speaking this depends on howwe deĕne the enumeration of k-ary
μ-recursive functions, but in principle any enumeration that goes via λ-calculus
(as ours does)will work. Indeed, under any reasonable enumeration#of λ-terms
(such as the one in theorem ..), the function

(#(T), x1, . . . , xm) 7→ #
(
T xm . . . xn

)
will be primitive recursive, and this is exactly what we need. ■

Remark. e fact that there is an effectively computable partial evaluation func-
tion is not really a surprise when phrased in terms of programming: all it says is
that, given the source code of a program which computes a function f ofm + n

variables and instances x1, . . . , xm of the ĕrstm variables, there is an automatic
process by which one can obtain the source code of a program which computes
the function f(x1, . . . , xm,−, . . . ,−); but this is entirely obvious: just search and
replace!

What would be interesting, however, is an optimising partial evaluator, i.e.
a partial evaluation function which returns the source code of a more efficient
program that computes f(⃗x,−). LetL1 andL2 be two programming languages,[]
and let r0 be the L1-code of an interpreter for L2.[] Given an optimising partial
evaluator s1,1 for L1, we could do the following:

. Compute s1,1(r0, r) to obtain aL1-code for an efficient program equivalent
to the program described by the L2-code r, i.e. an executable for r.

. Compute s1,1(r1, r0), where r1 is a L1-code for s1,1, to obtain a L1-code
that translates L2-codes into equivalent L1-codes, i.e. a L1-compiler for
L2.

. Compute s1,1(r1, r1) to obtain a L1-code for a program that transforms
interpreters into compilers!

ese are called the st, nd, and rd Futamura projections, respectively.

Recall the Y combinator of λ-calculus:

Y = [λh. ([λx. h (xx)] [λx. h (xx)])]

[] i.e. two different effective enumerations of computable functions.
[] i.e. the universal unary partial computable function F1 for the second enumeration.



. Decidable and semidecidable sets

It is sometimes called a ĕxed point combinator because it produces solutions for
the following equation of λ-terms:

F = (HF)

Indeed, one may check that F ≡ (YH) has the required property. Using the
partial evaluation function s1,1, we may do something similar with μ-recursive
functions:

Corollary .. (Fixed point theorem). If h : N ⇁ N is a μ-recursive partial
function, then there is a natural number n solving the functional equation below:

F1(n,−) = F1(h(n),−)

(Caution: h(n)may be undeĕned, in which case F1(n, x)↑ for all x.)

Proof. Let g : N2 ⇁ N be the partial function deĕned by

g(x, y) = F1(h(s1,1(x, x)), y)

is is μ-recursive because F1, s1,1, and h are, and so g = F2(m,−,−) for some
natural numberm. Let n = s1,1(m,m). en,

F1(n,−) = F1(s1,1(m,m),−) by deĕnition of n
= F2(m,m,−) by deĕnition of s1,1
= g(m,−) by deĕnition ofm
= F1(h(s1,1(m,m)),−) by deĕnition of g
= F1(h(n),−) by deĕnition of n ■

Remark ... A careful examination of the above proof reveals another ĕxed
point combinator for λ-calculus:

Ŷ = [λh. ([λxy. h (xx) y] [λxy. h (xx) y])]

Notice that by η-reducing the innermost λ-abstractions, Ŷ↠ Y.

 Decidable and semidecidable sets
We will soon see how useful the machine formalism is.



III. M

Deĕnition ... A decidable set is a subset X of N such that its characteristic
function χX : N → {0, 1}, given by

χX(x) =

0 if x /∈ X
1 if x ∈ X

is μ-recursive (or, equivalently, λ-representable or Turing-computable).

Clearly, every ĕnite set is decidable, and the extension of any μ-recursive pre-
dicate is decidable (by deĕnition). What is not so clear is whether, say, the image
of a μ-recursive partial function is decidable. In fact, it is not decidable in general.

Deĕnition ... A recursively enumerable set is a non-empty subsetX ofN such
that there is a μ-recursive total function g : N → N whose image is precisely X.

Deĕnition ... A semidecidable set is a subset X ofNwith the following prop-
erty: there exists a μ-recursive partial function f : N ⇁ N such that f(x)↓ and
h(x) = 1 if and only if x ∈ X. (If x /∈ X, then either h(x)↑ or f(x) ̸= 1.)

Proposition ... LetX be a non-empty subset ofN. e following are equivalent:

(i) X is recursively enumerable.

(ii) X = img for some μ-recursive partial function g : N ⇁ N.

(iii) X = dom f for some μ-recursive partial function f : N ⇁ N.

(iv) X is semidecidable.

(v) X is the image of a primitive recursive function g : N → N.

Proof. (i) ⇒ (ii). Obvious.
(ii) ⇒ (iii). Let f be any computable right inverse for g: this exists by co-

rollary .., and x ∈ img if and only if there is y such that g(y) = x, but this
happens if and only if x ∈ dom f.

(iii) ⇒ (iv). Let k : N → N be the constant function given by k(y) = 1, and
let h = k ◦ f. One may check that h is the function required in the deĕnition of
semidecidability.



. Decidable and semidecidable sets

(iv)⇒ (v). SinceX is assumed non-empty, it has a least member x0. Bymodi-
fying Kleene’s T-predicate (theorem ..), we may obtain a primitive recursive
predicate φ(x, z) with two free variables x and z such that

∃z.φ(x, z) holds if and only if h(x)↓ and h(x) = 1

and the function g : N → N deĕned below using bounded quantiĕcation is
primitive recursive, by :

g(y) =

x if ∃z < y. ∃x < y.φ(x, z)
x0 if ∀z < y. ∀x < y.¬φ(x, z)

By construction, the image of g is precisely X, as required.
(v) ⇒ (i). Obvious. ■

Proposition ... Let X be a subset of N. e following are equivalent:

(i) X is decidable.

(ii) N \ X is decidable.

(iii) X and N \ X are both semidecidable.

Proof. (i) ⇔ (ii). Bounded subtraction is primitive recursive, so we can easily
turn the characteristic function of X into the characteristic function of N \X and
vice-versa.

(i) and (ii) ⇒ (iii). Obvious.
(iii) ⇒ (i). Let h, h ′ : N ⇁ N be the partial characteristic functions of X

and N \ X, respectively. By using two instances of Kleene’s T-predicate, we may
construct a μ-recursive total function χX : N → N such that

χ(x) =

1 if (h(x)↓∧ h(x) = 1)∨ (h ′(x)↓∧ h ′(x) ̸= 1)
0 otherwise

and this is precisely the characteristic function of X. ■

Proposition ...
(i) If f : N → N is a μ-recursive total function and X is a decidable (resp. semi-

decidable) set, then f−1X is a decidable (resp. semidecidable) set.



III. M

(ii) If X and Y are decidable (resp. semidecidable) sets, so both X ∩ Y and X ∪ Y
are decidable (resp. semidecidable).

(iii) If f : N ⇁ N is a μ-recursive partial function and X is a semidecidable set,
then the image of X under f is semidecidable.

(iv) If f : Nk ⇁ N is a μ-recursive partial (resp. total) function, then the set
Γ = {listk+1(⃗x, f(⃗x)) | x⃗ ∈ dom f} is semidecidable (resp. decidable).

Proof. (i). e composition of μ-recursive functions is μ-recursive.
(ii). Use proposition ...
(iii). If X is empty, then its image is empty and is semidecidable; otherwise,

X is recursively enumerable by the previous proposition, so its image is also re-
cursively enumerable.

(iv). e set Γ is the image of a μ-recursive function, so it is certainly semi-
decidable. If f is known to be total, then the characteristic function χΓ admits an
evident μ-recursive declaration. ■

More generally, we may talk about decidable or semidecidable subsets of any
countable set U once we have ĕxed a bijection ofU with a decidable subset of N.
In particular, we can use the primitive recursive functions listk of theorem ..
to encode k-tuples of natural numbers as single natural numbers, so we may talk
about decidable and semidecidable subsets of Nk for every positive integer k.

Proposition ... Let X be a subset of Nk. e following are equivalent:

. X is semidecidable.

. ere is a decidable subset Y of Nk+1 such that X is the image of Y under the
projection function (a0, . . . , ak) 7→ (a0, . . . , ak−1).

Proof. (i) ⇒ (ii). Let f : Nk ⇁ N be a μ-recursive partial characteristic function
for X. Using Kleene’s T-predicate (theorem ..), we may construct a primitive
recursive predicate φ(⃗x, y) with free variables x⃗ and y such that φ(⃗x, y) holds
if and only if y codes a terminating computation of f(⃗x) with f(⃗x) = 1. e
extension Y of this predicate is the desired decidable subset of Nk+1.

(ii) ⇒ (i). e image of a decidable set is semidecidable. ■

Proposition ... Let f : Nk → N be a μ-recursive total function. If f is non-
decreasing in the sense that f(⃗x) ⩾ max x⃗ for all k-tuples x⃗, then the image under
f of any decidable subset of Nk is decidable.



. Undecidability

Proof. Lety ∈ N, and letXbe a decidable subset ofNk. By hypothesis, if f(⃗x) = y,
thenmax x⃗ ⩽ y, so there are only ĕnitelymanyk-tupleswemust check in order to
determine whether y is in im f|X. It is then clear that the characteristic function
of im f|X is μ-recursive. ■

Example ... Let f : Nk → N be a μ-recursive total function. If f is strictly
increasing, then there is a decidable set A such that im f|Ak is N \A. [...]

e set of semidecidable subsets of N is clearly countable. It can even be
encoded in a computable way, in the following sense: there is a μ-recursive partial
function χ : N2 ⇁ N such that χ(m,x)↓ with χ(m,x) = 1 if and only if x is in
them-th semidecidable subset ofN. (is enumeration is not assumed bijective,
however.)

Proposition ... A semidecidable union of semidecidable subsets of N is itself
semidecidable: if I is a semidecidable subset of N, then the set

X = {x ∈ N |∃m ∈ I. (χ(m,x)↓∧ χ(m,x) = 1)}

is also a semidecidable subset of N.

Proof. One simply notes that X is a projection of the semidecidable set

Y =
{
(x,m) ∈ N2

∣∣χ(m,x)↓∧ χ(m,x) = 1}
and so X is itself semidecidable. ■

 Undecidability
Since the set of semidecidable subsets of N is countable, a counting argument
shows that there must exist subsets of N which are not even semidecidable; but
are there any interesting sets which are not semidecidable? For example, if we
could show that a set X is semidecidable but not decidable, then its complement
N \ Xmust be not semidecidable.

Let us write m for the m-th Turing machine, as enumerated by Kleene’s T-
predicate (theorem ..). To simplify notation, ifM is a Turing machine, we also
write M(ā) for σ∞M(ā).



III. M

Deĕnition ... A Turing machineM halts on an input ā ifM(ā)↓. e halting
set is the following subset of N:

K =
{
pair(m, s)

∣∣m ∈ N and s ∈ N and s codes a tape ā for m and m (ā)↓
}

eorem .. (Halting problem). e halting set is semidecidable but not decid-
able.

Proof. It is clear that K is semidecidable: simply use Kleene’s T-predicate (the-
orem ..). Let F1 be the universal unary μ-recursive function, and consider the
set X deĕned below:

X = {n ∈ N | F1(n,n)↓}

Since F1 is μ-recursive, there is a Turing machine M which computes F1, so we
could decide membership in X if we could decide membership in K.

Let χX : N → {0, 1} be the characteristic function of X, and let f(n) = 1 if
n ∈ X, f(n)↑ if n /∈ X. e partial function f : N ⇁ N so deĕned is μ-recursive
if χX is. Suppose χX is μ-recursive. en, there is a natural number n such that
f = F1(n,−), so consider f(n): if f(n) = 1, then F1(n,n)↑, so f(n)↑; but if f(n)↑,
then F1(n,n)↓, so f(n) = 1—either way, we have a contradiction, so χX is not
μ-recursive. Hence X and K are not decidable sets. ■

e ĕxed point theorem can be used to prove a recursion-theoretic general-
isation of the undecidability of the halting problem:

eorem.. (Rice). LetA be a subset of the set of graphs of all μ-recursive partial
functions N ⇁ N. e set

X = {n ∈ N | the graph of F1(n,−) is in A}

is decidable if and only if X = ∅ or X = N.

Proof. Suppose we have a ∈ X and b /∈ X. If X is a decidable set, then the
function h : N → N given below is a μ-recursive total function:

h(z) =

b z /∈ X
a z ∈ X

By construction, h(z) ∈ X if and only if z /∈ X. Now, by corollary .., there is
a natural number n such that F1(n,−) = F1(h(n),−). But that means n ∈ X if
and only if n /∈ X—a contradiction. So X is not a decidable set. ■



. Undecidability

Proposition ... e set X = {n ∈ N | F1(n,−) is a total function} is not semi-
decidable.

Proof. It is easy to show that X is not decidable using Rice’s theorem, but we are
claiming something stronger here. e set X is non-empty, so it is recursively
enumerable if and only if it is semidecidable, by proposition ... Suppose, for
a contradiction, that we have a μ-recursive surjection g : N → X. Consider the
function f : N → N given below:

f(x) = F1(g(x), x) + 1

is is a μ-recursive total function, so there is some natural number n for which
f = F1(g(n),−). But we have

f(n) = F1(g(n), n) + 1 by deĕnition of f
f(n) = F1(g(n), n) by deĕnition of n

which is a contradiction. Hence X cannot be recursively enumerable. ■

Deĕnition ... Let X and Y be subsets of N. A total function f : N → N separ-
ates X from Y just if it has these properties:

• for all x in X, f(x) = 1, and

• for all y in Y, f(y) ̸= 1.

We say X and Y are recursively separable just when there is a μ-recursive total
function that separates X from Y; otherwise we say X and Y are recursively in-
separable.

Remark ... Clearly, there is μ-recursive total function separating X from Y if
and only if there is a μ-recursive total function separating Y from X, so despite
appearances recursive separability is indeed a property of unordered pairs of sub-
sets of N.

Example ... Let X ⊆ N. en, X and N \ X are recursively separable if and
only if X is decidable.

Informally, we may think of recursive separability of X and Y as a relativised
version of decidability: it simply says that there is a decision procedure that cor-
rectly accepts all members of X and rejects all members of Y.



III. M

Lemma ... Let X and Y be subsets of N. e following are equivalent:

(i) X and Y are recursively separable.

(ii) ere is a decidable set Z such that X ⊆ Z and Y ∩ Z = ∅.

Proof. (i) ⇒ (ii). Let f : N → N be a μ-recursive total function that separates X
from Y, and take Z = {z ∈ N | f(z) = 1}.

(ii) ⇒ (i). e characteristic function of Z separates X from Y and is a μ-
recursive total function by hypothesis. ■

Example ... X and Y as deĕned below are recursively inseparable:

X = {n ∈ N | F1(n,n)↓ and F1(n,n) ̸= 1}
Y = {n ∈ N | F1(n,n)↓ and F1(n,n) = 1}

Let f be a μ-recursive total function. en, there is a natural number n such that
f = F1(n,−). Consider f(n): if f(n) = 1, then F1(n,n)↓ and F1(n,n) = 1, so
n ∈ Y; if f(n) ̸= 1, then F1(n,n)↓ and F1(n,n) ̸= 1, so n ∈ X—either way, f
cannot separate X from Y. Hence, X and Y must be recursively inseparable.

 Applications to logic
In this section, we work with theories in a suitable formal system. e precise
requirements are le vague; for concreteness, one could take the formal system
to be ordinary second-order logic.

Proposition .. (Craig). Let T be a theory in a countable language L. Fix an
encoding of L. If T has a semidecidable axiomatisation in this encoding, then T

also has a decidable axiomatisation in this encoding. We say T is a recursively
axiomatisable theory in this case.

Proof. Let A be a semidecidable axiomatisation of T. If A is empty, then we
already have a decidable axiomatisation. Otherwise, A is recursively enumer-
able, so there is a primitive recursive surjection g : N → A. Let B be the set of
formulae such that

g(n) = φ if and only if (⊤∧ (φ∧ (· · ·∧ (φ︸ ︷︷ ︸
n times

∧φ) · · ·))) ∈ B



. Applications to logic

Clearly, B is a decidable (even primitive recursive!) axiomatisation of T: to de-
termine whether ψ ∈ B, one simply checks whether ψ is of the above form for
some φ and then checks whether g(n) = φ for the appropriate n. ■

Proposition .. (Gödel). If T is a recursively axiomatisable theory, the set of
theorems of T is recursively enumerable.

Proof. e set
{
(p, q) ∈ N2

∣∣q codes a valid proof of p in T
}
is obviously a non-

empty decidable set, and the set of theorems of T is a projection of this set, hence,
semidecidable and recursively enumerable by propositions .. and ... ■

eorem .. (Gödel’s ĕrst incompleteness theorem). If T is a recursively axio-
matisable sound theory of arithmetic,[] such as Peano arithmetic, then there is a
true arithmetical statement that T cannot prove.

Proof. e hard work goes into showing that every μ-recursive partial function
f : Nk ⇁ N is deĕnable in T, in the sense that there is a predicate φ(⃗x, y) in the
language of T such that

φ(⃗x, y) holds if and only if f(⃗x)↓ and f(⃗x)

Assume this has been done. en, it is not hard to see that the set

Y = {n ∈ N | T proves F1(n,−) is total}

is a semidecidable set. If Y is empty, then there is nothing to do: T is unable to
prove that, say, the identity function is total. Otherwise, Y is non-empty and is
recursively enumerable by proposition .., so let h : N → N be a recursive
enumeration of Y. Consider the function g : N → N deĕned below:

g(x) = F1(h(x), x) + 1

Assuming only the consistency of T, we can show that T is unable to prove that
g is total. Indeed, if T proves that g is total, then there is a numberm such that
g = F1(h(m),−), from which it follows that T proves

g(m) = F1(h(m),m) + 1 by deĕnition of g
g(m) = F1(h(m),m) by deĕnition ofm

[] is means T does not prove any false arithmetical statements.



III. M

whichmeans T proves a contradiction; but T is consistent, so T cannot prove that
g is total. But ifT is sound, then g is total, sowe have produced a true arithmetical
statement unprovable in T. ■

Deĕnition ... A productive set is a semidecidable subset X of N such that
there exists a μ-recursive total function g : N → N with the following property:
for all n such that im F1(n,−) ⊆ X, g(n) /∈ im F1(n,−).

Remark ... eabove proof ofGödel’s ĕrst incompleteness theoremalso shows
that the set of true arithmetical statements is productive.

eorem .. (Trakhtenbrot). If Σ is a ĕrst-order signature with countably in-
ĕnitely many unary and binary predicate symbols, then the set of all ĕrst-order
sentences true in all ĕnite Σ-structures is not semidecidable.

Proof. We will reduce this to the halting problem. e main idea is to ĕnd a
μ-recursive total function which maps a pair (m, s) of natural numbers to a ĕrst-
order sentence φ such that there is a ĕnite Σ-structure X falsifying φ if and only
if m (ā)↓, where ā is the tape for m coded by s. If we had such a μ-recursive total
function and the set of all ĕrst-order sentences true in all ĕnite Σ-models were
semidecidable, then the complement of the halting set would be semidecidable,
contradicting theorem ...

Fix a TuringmachineM and a tape ā. Since Σ has countably many unary and
binary predicate symbols, we have enough symbols to represent these predicates:

• e unary predicate “x is the integer 0”.

• e binary predicate “x and y are both integers and x < y”.

• e binary predicate “x and y are integers and y = x+ 1”.

• For each a in the alphabet of M, the binary predicate “a is the letter at
position x of the tape at time y”.

• For each possible state q of M, the unary predicate “q is the state of M at
time x”.

It is clear that these can be used to give a ĕnite axiomatisation of the theory of
ĕnite courses-of-computations of M on the input ā, so there is a single ĕrst-
order formula ψ which asserts “X is a ĕnite course-of-computation of M on the



. Oracles

input ā”. Let θ be the ĕrst-order formula asserting “at no time in the course-of-
computation X does M reach an accepting state”. We take φ to be the sentence
ψ → θ. It is clear that ¬φ holds if and only if X is a ĕnite and complete course-
of-computation of M on input ā. us we have the desired sentence φ. ■

 Oracles
Deĕnition ... Let A and B be subsets of N. A many-one reduction from A

to B is a μ-recursive total function f : N → N such that n ∈ A if and only if
f(n) ∈ B. Note that neither A nor B need to be semidecidable. We say A is
many-one reducible to B just if there exists a many-one reduction as above, and
we write A ⩽m B.

Informally,A ⩽m Bmeans that the decision problem forA is at most as hard
as the decision problem for B. In terms of machines,A ⩽m Bmeans that there is
a machineM that, when givenn as an input, produces a tape suitable for input to
an oracle machine O that decides membership of B, such that the concatenation
of these two machines is a machine that decides membership of A.

Proposition ... e relation ⩽m is a preorder on P(N).

Proof. ReĘexivity is clear, and transitivity follows from the fact that the compos-
ition of two μ-recursive total functions is a μ-recursive total function. ■

Proposition ... Let A ⊆ N, and let K be the halting set:

K =
{
pair(m, s)

∣∣m ∈ N and s ∈ N and s codes a tape ā for m and m (ā)↓
}

e following are equivalent:

(i) A ⩽m K.

(ii) A is semidecidable.

Proof. (i) ⇒ (ii). e halting set is semidecidable by theorem .., and the in-
verse image of a semidecidable set under a μ-recursive total function is again
semidecidable by proposition ...

(ii) ⇒ (i). Let g : N ⇁ N be a partial characteristic function for A. Clearly,
wemay assume without loss of generality that domg = A. Since g is μ-recursive,



III. M

it is computed by some Turing machine, say m . Let f : N → N be the function
n 7→ pair(m, in(n)), where in : N → N encodes a natural number n as an input
tape for m . en, n ∈ A if and only if f(n) ∈ K, so f is the required many-one
reduction of A to K. ■

It turns out we get a subtly different notion of reducibility if we allow our
machines to ask the oracle arbitrarily many questions.

Deĕnition ... An augmentable Turing machineM comprises the same data
as a Turing machine, except that the transition function of an oracle machine is
a partial function δ : (Q \ F)× Γ2 ⇁ Q× Γ × {−1, 0,+1}

2, whereQ is the set of
states of M, F is the set of accepting states of M, and Γ is the alphabet of M.

An oracular tape for M is an integer-indexed sequence (oi | i ∈ Z) such that
each oi is in Γ .[] An oraclemachine is an augmentable Turingmachine equipped
with a oracular tape.

Let L be the set of all tapes for an augmentable Turing machine M, and let
O be the set of all oracular tapes for M. e transition function of M induces a
partial function τ : Q× L× O ⇁ Q× L× O as follows:

• If q ∈ F, then τ(q, ā, ō) = (q, ā, ō).

• If δ(q, a0, o0)↑, then τ(q, ā, ō)↑.

• Otherwise, if δ(q, a0, o0) = (q ′, a ′, u, v), then τ(q, ā, ō) = (q ′, ā ′, ō ′),
where

a ′
i =

a ′ if i = −u

ai+u if i ̸= −u

and o ′
i = oi+v.

Note that this function is essentially primitive recursive if we ĕx ō and discard ō ′.
(If Γ contains at least two symbols, thenO is an uncountable set, so we must treat
ō and ō ′ separately!) We deĕne a partial function τ∗ : L× O× N ⇁ Q× L× O

by primitive recursion:

τ∗(ā, ō, 0) = (q0, ā, ō)

τ∗(ā, ō, n+ 1) = τ(τ∗(ā, ō, n))

[] Note that we do not require the set {i ∈ Z |ai ̸= b} to be ĕnite!



. Oracles

Finally, deĕne a partial function τ∞ : L × O ⇁ Q × L by unbounded minim-
isation: τ∞(ā, ō) = (q, ā ′) where τ∗(ā, ō, n) = (q, ā ′, ō ′) and n is the smallest
natural number such that q ∈ F. We think of τ∞(−, ō) : L ⇁ L as the partial
function computed by the oracle machine (M, ō). In general, τ∞(−, ō) is not
μ-recursive and depends on ō, though it is obvious that every Turing machine
can be turned into an augmentable Turing machine in such a way that τ∞(−, ō)

computes the same μ-recursive function as the original Turingmachine and does
not depend on ō.

Let O be the set of all oracular tapes for an augmentable Turing machine M.
Consider the following distance function on O:

d(ō, ō ′) = inf {2−n |∀i ∈ Z. (−n < i < n) → (oi = o
′
i)}

e key point is that d(ō, ō ′) is small when ō and ō ′ differ only in the cells with
small indices. It is clear that dmakes O into a compact ultrametric space.

Proposition ... Let (M, ō) be an oracle machine. For each tape ā, if τ∞(ā, ō)↓,
then there is a positive real number ϵ such that

τ∗(ā, ō, n) = τ∗(ā, ō ′, n) for all natural numbers n

for all oracular tapes ō ′ such that d(ō, ō ′) < ϵ. In particular, τ∞ : L × O ⇁ L is
continuous partial function when L is given the discrete topology.

Proof. It is clear that at each timeN,M can only have accessed the cells of ōwith
indices having absolute value less than N, so for any oracular tape ō ′ such that
d(ō, ō ′) < 2−N, we must have

τ∗(ā, ō, n) = τ∗(ā, ō ′, n) for all natural numbers n ⩽ N

Since we are assuming τ∞(ā, ō)↓, there is anN such that

τ∗(ā, ō ′, n) = τ∗(ā, ō,N) for all natural numbers n > N

for all oracular tapes ō ′ such that d(ō, ō ′) < 2−N, so we may take ϵ = 2−N. ■

Now, ĕx an alphabet Γ with blank symbol b and at least two distinct non-
blank symbols 0 and 1. Let L be the set of all tapes written in Γ . For each natural
number k, choose an injective total function ink : Nk → L, and also choose an
injective total function out : N → L.



III. M

Deĕnition ... Let f : Nk ⇁ N be a partial function. An oraclemachine (M, ō)
computes f just if (M, ō) satisĕes the following conditions:

• Γ is a subset of the alphabet of M, and the symbols on the oracular tape ō
are taken from Γ .

• M has a unique accepting state ⊤.

• For all x⃗ in Nk, τ∞(ink(⃗x))↓ if and only if f(⃗x)↓, and when f(⃗x)↓, we have
τ∞(ink(⃗x)) = (⊤, out(f(⃗x))).

A function computable relative to ō is a partial function f : Nk ⇁ N for which
there is an augmentable Turing machine M such that the oracle machine (M, ō)
computes f.

We can deĕne a recursion-theoretic analogue of the above notion in a fairly
straightforward way:

Deĕnition ... Let p : Nq ⇁ N be a partial function. A function recursive
relative to p is any one of the following:

• e partial function p itself.

• A primitive recursive function.

• A composite h ◦ (g1, . . . , gℓ) : Nk ⇁ N of partial functions g1, . . . , gℓ :

Nk ⇁ N and h : Nℓ ⇁ N recursive relative to p.

• A function ρ[h;g] : Nk+1 ⇁ N obtained by primitive recursion on partial
functions g : Nk ⇁ N, h : Nk+2 ⇁ N recursive relative to p.

• A partial function of the form µ[f] : Nk+1 ⇁ N for some total function
f : Nk+1 → N recursive relative to p.

Remark ... Every partial function f : Nk ⇁ N is obviously recursive relative
to itself. It is also computable relative to some ō.

To be precise, for each natural number k, there is a universal augmentable
Turing machine M with the property that each f : Nk ⇁ N is computed by
(M, ō) for some oracular tape ō. It is clear what (M, ō) has to be: ōmust encode
the graph of f, andMmust be a machine that looks up the value of f(⃗x) from the
oracular tape ō!



. Oracles

Deĕnition ... Let A and B be subsets of N. Let ō be the oracular tape given
by

oi =


b if i < 0
0 if i ⩾ 0 and i /∈ B
1 if i ⩾ 0 and i ∈ B

WesayA isTuring reducible toB if the characteristic function ofA is computable
relative to ō, and we write A ⩽T B.

Remark ... We could equally well deĕne A ⩽T B to mean that the χA is
recursive relative to χB, but then we would have to prove the equivalence of the
two notions!

Proposition ... LetA and B be subsets ofN. A ⩽T B if and only ifN\A ⩽T B.

Proof. Clearly, if χA is computable relative to ō, then 1 −̇ χA is also computable
relative to ō. ■

Example ... If A ⩽m B, then A ⩽T B. However, A ⩽T B does not imply
A ⩽m B. Indeed, let K be halting set; then N \K ⩽T K by the proposition above,
but A ⩽m K if and only if A is semidecidable, by proposition ... is shows
that ⩽m is a ĕner relation on P(N) than ⩽T .

Proposition ... e relation ⩽T is a preorder on P(N).

Proof. We already remarked on reĘexivity, and transitivity is clear (though the
details may be tedious). ■

Deĕnition ... A Turing degree of reducibility is an equivalence class of sub-
sets of N under the equivalence relation ∼ given by

A ∼ B if and only if A ⩽T B and B ⩽T A

We write 0 for the Turing degree of decidable sets. For each Turing degree d, d ′

denotes the Turing degree of the halting set of machines equipped with an oracle
of degree d.

Proposition ... LetA and B be subsets of N. en, there is a subsetA⊔B of N
such that

A ⩽T C and B ⩽T C if and only if A ⊔ B ⩽T C

for all C ⊆ N. In particular, every ĕnite subset of P(N) has a least upper bound
with respect to ⩽T .



III. M

Proof. As suggested by the notation, A ⊔ B is (in a suitable sense) the disjoint
union of A and B. To be precise, it is the set given below:

A ⊔ B = {2n |n ∈ A} ∪ {2n+ 1 |n ∈ B}

Clearly, A ⩽T A ⊔ B and B ⩽T A ⊔ B. It is also clear that if χA and χB are both
computable relative to an oracular tape ō, then χA⊔B is computable relative to ō.
Hence A ⊔ B is indeed the least upper bound of A and B with respect to ⩽T . To
complete the proof, we must show that the empty set has a least upper bound:
in other words, we must ĕnd a lower bound for P(N). But this is easy: if A is a
decidable set, then A ⩽T B for any B ⊆ N. ■

eorem .. (Kleene–Post). ere exist incomparable Turing degrees, i.e. there
are A ⊆ N and B ⊆ N such that A ≰T B and B ≰T A.

We will give several proofs. If we constrain the state space and alphabet of
an augmentable Turing machine to be ĕnite subsets ofN, then we can enumerate
the set of augmentable Turing machines. Let fm(−;X) : N ⇁ N be the partial
function computed by them-th augmented Turingmachine when equippedwith
the oracular tape corresponding to a subset X of N. We shall abuse notation and
identify a subset ofNwith the oracular tape corresponding to it in deĕnition ...

Proof. Let us regard P(N) as a subspace of the space of oracular tapes, equipped
with the evident subspace metric. It can be shown that P(N) is then a compact
ultrametric space (and, in fact, homeomorphic to the Cantor set). In particular,
every non-empty open subset of P(N) contains a non-empty subset that is both
open and closed. We shall construct a sequence of approximations to A and B,
and use compactness to obtain the desired subsets of N in the limit.

Let A0 = B0 = P(N), and let a0 = b0 = 0. Suppose Am and Bm are
open subsets of P(N), and am and bm are given natural numbers. Consider the
following subsets of Am:

Am,0 = {A ∈ Am | fm(bm;A)↓ and fm(bm;A) = 0}

Am,1 = {A ∈ Am | fm(bm;A)↓ and fm(bm;A) = 1}

ese are open subsets, by proposition ...



. Oracles

• If Am,0 is non-empty, then there exist Am in Am,0 and a natural number
a ′
m such that

A ′
m = {A ′ ⊆ N |A ′ ∩ {n ∈ N |n < a ′

m} = Am} ⊆ Am,0

and A ′
m is both open and closed; also set

B ′
m = {B ′ ∈ Bm |bm ∈ B ′} b ′

m = bm + 1

and note that B ′
m is open.

• If Am,1 is non-empty, then there exist Am in Am,0 and a natural number
a ′
m such that

A ′
m = {A ′ ⊆ N |A ′ ∩ {n ∈ N |n < a ′

m} = Am} ⊆ Am,1

and A ′
m is both open and closed; also set

B ′
m = {B ′ ∈ Bm |bm /∈ B ′} b ′

m = bm + 1

and note that B ′
m is open.

• Otherwise, if both Am,0 and Am,1 are empty, then set

A ′
m = Am a ′

m = am

B ′
m = Bm b ′

m = bm

and continue.

Now consider the following subsets of B ′
m:

Bm,0 = {B ∈ B ′
m | fm(a ′

m;B)↓ and fm(a ′
m;B) = 0}

Bm,1 = {B ∈ B ′
m | fm(a ′

m;B)↓ and fm(a ′
m;B) = 1}

ese are open subsets, by proposition ...

• If Bm,0 is non-empty, then there exist B ′
m in Bm,0 and a natural number

bm+1 such that

Bm+1 = {B ′ ⊆ N |B ′ ∩ {n ∈ N |n < bm+1} = Bm+1} ⊆ Bm,0

and Bm+1 is both open and closed; also set

Am+1 = {A ′ ∈ Am+1 |a
′
m ∈ A ′} am+1 = a ′

m + 1

and note that Am+1 is open.



III. M

• If Bm,1 is non-empty, then there exist B ′
m in Bm,0 and a natural number

bm+1 such that

Bm+1 = {B ′ ⊆ N |B ′ ∩ {n ∈ N |n < bm+1} = Bm+1} ⊆ Bm,1

and Bm+1 is both open and closed; also set

Am+1 = {A ′ ∈ Am+1 |a
′
m /∈ A ′} am+1 = a ′

m + 1

and note that Am+1 is open.

• Otherwise, if both Bm,0 and Bm,1 are empty, then set

Am+1 = A ′
m am+1 = a ′

m

Bm+1 = B ′
m bm+1 = b ′

m

and continue.

us, we obtain two decreasing chains of non-empty subsets of P(N):

A0 ⊇ A1 ⊇ A2 ⊇ · · ·
B0 ⊇ B1 ⊇ B2 ⊇ · · ·

Choosing a sequence of elements for each chain, we may obtain a convergent
subsequence by compactness; since Am and Bm contain the closure of Am+1

andBm+1 (respectively), it follows that
∩

m Am and
∩

m Bm are non-empty. Let
A ∈

∩
m Am and B ∈

∩
m Am. By construction, for each fm, either

• fm(bm;A)↓, fm(bm;A) ̸= 1, and bm ∈ B; or

• fm(bm;A)↓, fm(bm;A) = 1, and bm /∈ B; or

• fm(bm;A)↑

and similarly, either

• fm(a ′
m;B)↓, fm(a ′

m;B) ̸= 1, and a ′
m ∈ A; or

• fm(a ′
m;B)↓, fm(a ′

m;B) = 1, and a ′
m /∈ A; or

• fm(a ′
m;B)↑



. Oracles

so fm(−;A) cannot be the characteristic function of B and fm(−;B) cannot be
the characteristic function of A, i.e. A ≰T B and B ≰ A. ■

We may also rephrase the proof and obtain slightly stronger result:

eorem .. (Kleene–Post). ere exist incomparable Turing degrees below 0 ′,
i.e. there areA ⊆ N and B ⊆ N such thatA ⩽T K, B ⩽T K,A ≰T B, and B ≰T A.

Proof. We will construct ĕnite approximations to A and B by induction on m,
and then use proposition .. to pass to the limit.

Let A0 = B0 = ∅, a0 = b0 = 0. We take the following as our inductive
hypotheses:

(i) Am ⊆ Am+1 and d(Am, Am+1) ⩽ 2−am .

(ii) am ⩽ a ′
m ⩽ maxAm+1 < am+1.

(iii) For all A ⊆ N such that d(Am+1, A) ⩽ 2−am+1 , either

• fm(b ′
m;A)↑, or

• fm(b ′
m;A)↓, fm(b ′

m;A) = 1, and b ′
m /∈ Bm+1, or

• fm(b ′
m;A)↓, fm(b ′

m;A) ̸= 1, and b ′
m ∈ Bm+1.

(iv) Bm ⊆ Bm+1 and d(Bm, Bm+1) ⩽ 2−bm .

(v) bm ⩽ b ′
m ⩽ maxBm+1 < bm+1.

(vi) For all B ⊆ N such that d(Bm+1, B) ⩽ 2−bm+1 , either

• fm(a ′
m;B)↑, or

• fm(a ′
m;B)↓, fm(a ′

m;B) = 1, and a ′
m /∈ Am+1, or

• fm(a ′
m;B)↓, fm(a ′

m;B) ̸= 1, and a ′
m ∈ Am+1.

Now, assume we are given Am, Bm, am, and bm. Consider the following
condition:

A ⊆ N and A ∩ {n ∈ N |n < am} = Am and χm(bm;A)↓ (a)

If there are no sets A satisfying condition (a), then take A ′ = Am, B ′ = Bm,
a ′
m = am, b ′

m = bm.



III. M

Otherwise, let A be a set satisfying condition (a). By continuity, there is a
positive real number ϵ such that fm(bm;A ′) = fm(bm;A) for all A such that
d(A,A ′) < ϵ. In particular, we can choose a ĕnite set A ′ with d(A,A ′) < 1

2
ϵ.

Choose a natural number a ′
m such that maxA ′ < a ′

m, 2−a ′
m < 1

2
ϵ, and am ⩽

a ′
m. If fm(bm;A ′) = 1, then set B ′ = Bm; otherwise, set B ′ = Bm ∪ {bm}.

Now consider this condition:

B ⊆ N and B ∩ {n ∈ N |n < b ′
m + 1} = B ′ and χm(a ′

m;B)↓ (b)

If there are no sets B satisfying condition (b), then takeAm+1 = A ′, Bm+1 = B ′,
am+1 = a ′

m + 1, bm+1 = b ′
m + 1.

Otherwise, let B be a set satisfying condition (a). By continuity, there is a
positive real number ϵ ′ such that fm(a ′

m;B ′′) = fm(a ′
m;B) for all B such that

d(B,B ′′) < ϵ ′. In particular, we can choose a ĕnite set B ′′ with d(B,B ′′) < ϵ ′.
Choose a natural number bm+1 such that maxB ′′ < bm+1 and 2−bm+1 < ϵ ′. If
fm(a ′

m;B ′′) = 1, then set A ′′ = A ′; otherwise, set A ′′ = A ′ ∪ {a ′
m}. Either way,

set Am+1 = A ′′, Bm+1 = B ′′, am+1 = a ′
m + 1, bm+1 = b ′′.

By construction, (i), (ii), (iv), (v), and (vi) hold. e triangle inequality im-
plies (iii) holds. Now, take A =

∪
mAm and B =

∪
m Bm. For each nat-

ural number m, we have d(Am+1, A) ⩽ 2−am+1 and d(Bm+1, B) ⩽ 2−bm+1 , so
fm(−;B) ̸= χA and fm(−;A) ̸= χB. us A ≰T B and B ≰T A, as required. To
see that A ⩽T K and B ⩽T K, observe that [...] ■

Proposition .. (Jockusch). Let [N]3 be the set of subsets ofN containing exactly
3 elements. ere exists a primitive recursive function h : [N]3 → N such that imh
is {0, 1} and the halting set is Turing reducible to any inĕnite subsetA ofN such that
h is constant on [A]

3.

Proof. Let us write my(s)↓ to abbreviate the predicate “the p-th Turing machine
halts on input s aer at most y steps”. We deĕne h as follows. Given {x, y, z}with
x < y < z, set h({x, y, z}) = 1 if

∀m < x. ∀s < x.
[
my(s)↓ ⇔ m z(s)↓

]
and set h({x, y, z}) = 0 otherwise. is is primitive recursive by theorem ...
Let A be an inĕnite subset of N and suppose h is constant on [A]

3. Clearly, for
any ĕxed x, h({x, y, z}) = 1 for all sufficiently large y and z. SinceA is inĕnite, it
is unbounded, so hmust be equal to the constant 1.



. Oracles

Now, letm and s be given numbers. Observe that, for all sufficiently large z,
m (s)↓ if and only if m z(s)↓. SinceA is unbounded, there exist x inA such that
max {m, s} < x and z in A such that x < z and m (s)↓ if and only if m z(s)↓. By
construction of A, for any y in A such that x < y < z, we have m (a)↓ if and
only if my(s)↓. erefore, to determine whether or not m (s)↓, it is enough to
ĕnd x and y in A such that max {m, s} < x < y, and then determine whether or
not my(s)↓. us, the halting set is Turing-reducible to A. ■



B

Barendregt, Henk P.
[] e lambda calculus. Its syntax and semantics. Revised. Studies in Logic and the

Foundations of Mathematics . Amsterdam: North-Holland Publishing Co.,
, pp. xv+. : ---; ---.

Church, Alonzo and J. Barkley Rosser
[] “Some properties of conversion”. In: Trans. Amer. Math. Soc. . (),

pp. –. : -. : 10.2307/1989762.

Cohen, Daniel E.
[] Computability and logic. Ellis Horwood Series: Mathematics and its

Applications. Chichester: Ellis Horwood Ltd., .  pp. : ---.

Curry, Haskell B.
[a] “Grundlagen der Kombinatorischen Logik, I”. In: Amer. J. Math. . (),

pp. –. : -. : 10.2307/2370619.
[b] “Grundlagen der Kombinatorischen Logik, II”. In: Amer. J. Math. . (),

pp. –. : -. : 10.2307/2370716.



http://dx.doi.org/10.2307/1989762
http://dx.doi.org/10.2307/2370619
http://dx.doi.org/10.2307/2370716

	Recursion theory
	Primitive recursive functions
	Primitive recursive predicates
	Pairs and lists
	The Ackermann function and "03BC-recursive functions

	Lambda calculus
	"03BB-terms
	Conversions, reductions, and equality
	Arithmetic and recursion
	Miscellaneous topics

	Machines
	Turing machines
	Decidable and semidecidable sets
	Undecidability
	Applications to logic
	Oracles

	Bibliography

